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Abstract: 

 

Electrochemical Impedance Spectroscopy (EIS) is a very powerful tool to study the 

behaviour of electrochemical systems. Three conditions must be fulfilled during EIS 

measurements: causality, linearity, and stability. If any of these conditions is not 

achieved, then the conclusions obtained from the analysis of the measured spectra 

may be biased, or even misguided. For this reason, the verification of the compliance 

of these conditions is critical before accepting any analysis performed on an 

experimental spectrum. In a previous work, an experimental spectrum quantitative 

validation technique based on Kramers-Kronig relations was presented. The validation 

method consists in a Kramers-Kronig (KK) validation test, by equivalent electrical circuit 

fitting, coupled with a Montecarlo error propagation method. The validation technique 

builds a consistency region for a given confidence level that allows to discriminate 

between the individual points of the EIS spectrum that are consistent with the four 

fundamental hypotheses, and the inconsistent ones. The aim of this work is to validate 

experimentally if the quantitative validation technique is able to detect nonlinearities. 

In order to achieve this goal, the EIS spectrum of a markedly nonlinear system was 

measured experimentally using different perturbation amplitudes. The validation 

technique was applied to each one of the measured spectra. The method successfully 

managed to identify large nonlinearities; but did not detect slight ones. 
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1. Introduction 

 

The Electrochemical Impedance Spectroscopy (EIS) is an electrochemical technique 

that consists in the application of a sinusoidal voltage or current signal (perturbation 

signal) of known frequency and amplitude to an electrochemical system; while the 

amplitude and the phase of the output current or voltage signal is monitored [1]. This 

technique allows obtaining a large number of properties of the studied 

electrochemical system such as the electrolyte ohmic resistance, the electrode 

properties (i.e. Charge transfer resistance and double layer capacitance) and the 

transport effects [2]. This is possible since EIS is able to deconvolve the different 

physic-chemical processes taking place in the system (i.e. charge transfer, mass 

transfer, etc…) [3]. This ability of EIS is the responsible that nowadays EIS has become a 

key experimental method in a large spectrum of fields [4]. This wide range of fields 

includes typically electrochemistry related fields as fuel cells [5-12], batteries [13-17], 

coatings [18-20], electrochemical sensors [21-26] and supercapacitors [27-31]. But it 

also includes fields not traditionally linked to electrochemistry as enzymatic kinetics 

[32], biochemistry [33-35], food quality control [36], cancer detection [37-38] and 

immunology [39-40], amongst others. This electrochemical technique was first 

introduced in wet-electrochemistry in the late sixties of last century; and then, during 

the seventies, it was adopted by the solid state researchers [41]. Today, EIS is widely 

used in both, liquid systems [42-43] and solid systems [44-45]. 

 

The name of “spectroscopy” is due to the fact that a range of perturbation frequencies 

are applied to the system, typically from the range of tens of kHz to the range of few 

mHz [46]. For each one of these applied frequencies, the impedance of the system is 

calculated. In this manner the EIS spectrum of the system is obtained: the impedance 

of the system as a function of the perturbation [2]. The impedance at a given angular 

frequency, 𝜔, is defined by Ohm’s generalized law [1]: 

 

 
𝑍(𝜔) =

ℱ[𝑈(𝑡)]

ℱ[𝐼(𝑡)]
 (1) 

 

Where 𝑍(𝜔)  stands for the complex impedance of the system at angular 

frequency 𝜔 = 2𝜋𝑓; 𝑈(𝑡) and 𝐼(𝑡) denote respectively the voltage signal and the 

current signal, in the time domain; and ℱ corresponds with the Fourier transform 

operator. The impedance concept is the generalization of the DC electric resistance 

concept. Impedance is a complex magnitude: its module gives the electric resistance of 

the system (amplitude relation between the current and voltage signals), while its 

argument quantifies the time offset between both signals. 
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Three conditions must be fulfilled for the complex Ohm’s law, and thus the impedance 

concept, being valid: causality, linearity and stability [47]. If any of these four 

conditions is not met, then the obtained spectra may be biased, misleading and useless 

to extract proper conclusions on the studied system [48-49]. For this reason it is crucial 

to verify if an experimentally obtained EIS spectrum satisfies the four hypotheses, 

before performing the analysis itself [1]. 

 

A system is considered as a linear system when the relation between the perturbation 

signal and the output signal is given by a set of linear differential equations [50]. 

Consequently, in a linear system the superposition principle holds: the response to a 

linear combination of perturbations is a linear combination of the responses to each 

one of the individual perturbations [51]. Since electrochemical systems are in general 

governed by Buttler-Volmer’s equation, they are generally highly nonlinear systems 

[52]. Therefore, in the case of electrochemical systems the linearity condition is 

achieved by applying a perturbation of low enough amplitude in order to guarantee 

that the nonlinear effects are negligible [53]. However very small perturbation 

amplitudes result in very low signal-to-noise ratios, that result in results with a high 

measurement error [1]. Consequently, the quality of the measurement of an EIS 

spectrum is determined by the trade-off between the linearity hypothesis fulfilment 

(low enough perturbation amplitude) and the maximization of the signal-to-noise ratio 

(high enough perturbation amplitude) [54]. 

 

There is a large number of works in literature that show that the non-fulfilment of the 

linearity condition leads to the generation of non-fundamental harmonics in the 

output signal.  Some of such works are the works of Darowicki and co-workers [53, 55-

56], Victoria and Ramanathan [57], Diard and co-workers [58-63], and Van Gheem’s 

team [64-65]. When a mono-frequency sinusoidal perturbation signal is applied to a 

linear system, a mono-frequency output signal of same frequency is obtained [66]. On 

the contrary, in the case of a nonlinear system, the output signal will be a 

superposition of different sine waves which frequencies are integer multiples of the 

fundamental frequency [67]. These non-fundamental harmonics introduce a 

systematic error in the measured EIS spectrum, which will result in a distortion of the 

spectrum; and consequently, in a bias in the results obtained from its analysis [68].  

 

A lot of work has been done in literature in order to develop techniques to verify the 

fulfilment of the four fundamental hypotheses, in general [69-70]; and of the linearity 

condition, in particular [71]. Even a hybrid EIS measurement technique has been 

developed by Orazem’s group: the perturbation amplitude is continually modified in 

order to achieve the linearity condition during the whole measurement [72].  
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Three main types of linearity assessment methods can be found in literature: the 

experimental methods (AC plots and Lissajous plots); the methods based in the 

harmonic analysis of the response signal; and the methods based in the Kramers-

Kronig relations [46]. On the one hand, the experimental methods allow assessing 

linearity in real time during the measurement. These methods include AC plots, 

resolution plots and Lissajous plots: all these plots allow identifying nonlinear 

behaviour by directly monitoring the raw signals in the time domain [1]. Nowadays, all 

EIS softwares include this type of tools, which can be displayed during data acquisition. 

On the other hand, methods based in harmonic analysis assess linearity by quantifying 

the level of non-fundamental harmonics in the output signal. Popkirov and Schindler 

presented one of these linearity assessment methods based on harmonic analysis [48, 

67]. Another example of this type of linearity assessment methods can be found in the 

works of Pintelon’s team [73-74]. Finally, the Kramers-Kronig relations are integral 

equations that relate the real and the imaginary part of complex quantities that meet 

the conditions of causality, finiteness, linearity and stability [2]. A great number of 

works show the power of Kramers-Kronig relations as EIS spectra validation tool. An 

extensive review of the main available methods to apply Kramers-Kronig transforms to 

validate EIS data was written by Agarwal and Orazem [69]. 

 

The main disadvantage of experimental and harmonic analysis based linearity 

assessment methods with respect to Kramers-Kronig based linearity assessment 

methods is that they cannot be applied to an already measured spectrum, if the raw 

signals have not been stored as well: while experimental methods are based on the 

monitoring of the raw signals themselves; harmonic analysis based methods require 

non-fundamental harmonic quantification, which is done by applying Fourier’s 

transform to the raw signals. Meanwhile the Kramers-Kronig based methods only 

require the spectrum itself, and therefore they may be applied to an already measured 

spectrum even if the raw signals are not available.  

 

In a previous work, an experimental spectrum quantitative validation technique based 

on Kramers-Kronig relations was presented [75]. In that work, the validation test was 

experimentally validated with respect to the stability condition: it was shown that the 

presented validation technique was not only able to detect the non-compliance of the 

stability condition; but it was also able to distinguish the inconsistent points from the 

consistent ones in a nonstationary situation. The aim of this work is to verify if the 

experimental spectrum quantitative validation technique is also able to detect the 

non-compliance of the linearity condition. In order to achieve this goal, the 

quantitative validation technique cited above was applied to the spectra of an alkaline 

hydrogen evolution electrochemical cell. These spectra were measured experimentally 

in the same operation conditions with different perturbation amplitudes; thereby 

obtaining a large range of degrees of nonlinearity in the system: ranging from the quasi 
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linear behaviour (valid spectrum) to the highly nonlinear behaviour (non valid 

spectrum). 

 

 

2. Experimental spectrum quantitative validation technique 

 

2.1. Overall methodology 

 

The experimental spectrum quantitative validation technique described in [75]  

consists in the combination of a Kramers-Kronig validation method by equivalent 

circuit fitting; with a Montecarlo error propagation method. Therefore, the 

experimental spectrum quantitative validation technique consists in two stages: firstly, 

the experimental spectrum is fit to an equivalent circuit that satisfies Kramers-Kronig 

relations. Then, in a second stage, the results of the fitting process (fitted circuit 

parameters and their corresponding standard deviations) are introduced in a 

Montecarlo based error propagation algorithm that builds a consistency zone for each 

one of the individual points of the experimental spectrum, for a given confidence level. 

The decision criterion is: 

 

 The experimental points inside of the built consistency region can be 

considered as consistent with Kramers-Kronig relations, with the confidence 

level used to build the consistency regions. Therefore, these points can be 

considered as valid, and used in further analysis of the spectrum; 

 

 On the contrary, the experimental points that lay outside the built consistency 

region can be considered as inconsistent with Kramers-Kronig relations, with 

the confidence level used to build the consistency regions. Consequently, it can 

be deduced that there are enough statistical evidences to conclude that these 

points are inconsistent points (do not satisfy at least one of the four 

hypotheses); and therefore, they should be deleted from any further analysis 

performed on the experimental spectrum.  

 

A graphical summary of the overall methodology in which the experimental spectrum 

quantitative validation technique is based is shown in figure 2 of [75]. 

 

This quantitative validation technique is an hybrid method between Voigt’s method 

[76-77] and the measurement model method developed by Orazem’s group [69, 78-

86]. 

 

Voigt’s method consists in validating the consistency of an experimental EIS spectrum 

by fitting it to an electric equivalent circuit that satisfies the Kramers-Kronig relations 



6 
 

[69]: If the spectrum is well fitted by the equivalent circuit, then it is consistent with 

Kramers-Kronig relations and it can be considered as a valid spectrum. This method 

has two major drawbacks: it only allows to work with the spectrum as a whole (the 

whole spectrum is considered valid; or the whole spectrum is considered non valid); 

and the definition of the acceptance criterion of the test (the definition of “good” and 

“bad” fit) is non-trivial and depends on the studied system. The experimental spectrum 

quantitative validation technique overcomes both issues. The quantitative method sets 

the acceptance criterion for each point of the experimental spectrum through the 

Montecarlo algorithm. Moreover, since this method sets a different acceptance 

criterion for each individual point, it will detect inconsistent points individually rather 

than working with the spectrum as a whole.  

 

In opposition, Orazem’s measurement model method uses a generalized model that 

satisfies Kramers-Kronig relations (i.e. Voigt’s model) as a filter for non-replicacy in 

impedance data [84]. This measurement model allows distinguishing between bias and 

stochastic errors, and obtaining the error structure of the experimental data [85]. The 

error structure is then used with a Montecarlo simulation to obtain an acceptance 

zone that allows discriminating between consistent and inconsistent points. The 

measurement model method is not only able to discriminate between consistent and 

inconsistent points individually; but it is also able to assess the noise level in the 

measurement. The major drawback of this method is that it requires replicating the 

impedance measurements; and therefore it cannot be applied to an already measured 

spectrum if it was not replicated during the original measurement. The experimental 

spectrum quantitative validation technique overcomes this issue since it does not 

require replicating the measurements. 

 

2.2. Circuit fitting 

 

As described in the previous subsection, the first step of the quantitative validation 

technique consists in fitting the experimental spectrum to an electric equivalent circuit 

that satisfies Kramers-Kronig relations. In this work, Voigt’s circuit was used as the 

equivalent circuit to which the experimental spectra were fitted to. As it can be seen in 

figure 1, Voigt’s circuit consists in a 𝑅(𝑅𝐶)𝑛 circuit: it is composed by 𝑛 parallel 𝑅𝐶 

subcircuits in series, with an individual resistance also in series. The main advantages 

of this circuit over other equivalent circuits are: its fulfilment of the Kramers-Kronig 

relations, and its versatility. As it was explained before, the fulfilment of the Kramers-

Kronig relations is a key feature that must have an equivalent circuit in order to be 

used in the quantitative validation technique. On the other hand, the Voigt’s circuit is 

able to fit a wide range of spectra, just by modifying the number of 𝑅𝐶 subcircuits, 𝑛. It 

can even fit spectra with inductive loops by considering 𝑅𝐶 subcircuits with negative 

resistance and capacitance values [77]. It should be noted that the Voigt circuit does 
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not have any physical meaning for the studied system; it is only part of a mathematical 

tool for spectrum validation. Consequently, negative values for resistances and 

capacitances can be accepted for the quantitative validation technique, even though 

they do not have any physical explanation. 

 

Using the impedance expressions for resistors and capacitors, and the impedance 

combination rules [87], the following expressions were obtained for a 𝑅(𝑅𝐶)𝑛 circuit: 

 

 
𝑍′

𝑅(𝑅𝐶)𝑛
(𝜔) = 𝑅1 + ∑ (

𝑅𝑅𝐶𝑖

(𝑅𝑅𝐶𝑖
∙ 𝐶𝑅𝐶𝑖

∙ 𝜔)
2

+ 1
)

𝑛

𝑖=1

 (2) 

 

 
𝑍′′

𝑅(𝑅𝐶)𝑛
(𝜔) = − ∑ (

𝑅𝑅𝐶𝑖
2 ∙ 𝐶𝑅𝐶𝑖

∙ 𝜔

(𝑅𝑅𝐶𝑖
∙ 𝐶𝑅𝐶𝑖

∙ 𝜔)
2

+ 1
)

𝑛

𝑖=1

 (3) 

 

Where 𝑍′
𝑅(𝑅𝐶)𝑛

 and 𝑍′′
𝑅(𝑅𝐶)𝑛

 denote respectively the real and the imaginary part of 

the impedance of the 𝑅(𝑅𝐶)𝑛  circuit; 𝑅1represents the individual resistance; and 

finally, 𝑅𝑅𝐶𝑖
 and 𝐶𝑅𝐶𝑖

 are the resistance and the capacitance of the 𝑖-th 𝑅𝐶 subcircuit. 

Consequently, the vector of parameters associated with the 𝑅(𝑅𝐶)𝑛 circuit, �⃗�𝑅(𝑅𝐶)𝑛
, is 

a 2𝑛 + 1 dimensional vector. 

 

The fitting process consists in determining the vector �⃗�𝑅(𝑅𝐶)𝑛
 that minimizes the fitting 

error.  In the EIS field, the parameter most commonly used to quantify the goodness of 

the fitting is the weighted sum of quadratic errors [1], 𝜒2, which is defined as: 

 

 
𝜒2 = ∑ [𝛼𝑖 ∙ (𝑍′𝑒𝑥𝑝(𝜔𝑖) − 𝑍′

𝑅(𝑅𝐶)𝑛
(𝜔𝑖))

2
+ 𝛽𝑖 ∙ (𝑍′′𝑒𝑥𝑝(𝜔𝑖) − 𝑍′′

𝑅(𝑅𝐶)𝑛
(𝜔𝑖))

2
]

𝑁𝑝

𝑖=1

 (4) 

 

Where 𝑁𝑝  denotes the number of experimental points. Subscript 𝑒𝑥𝑝  refers to 

experimental points; whereas, subscript 𝑅(𝑅𝐶)𝑛 refers to model calculated points 

using equations (2) and (3). Finally, 𝛼𝑖 and 𝛽𝑖 are the weight of the real and the 

imaginary part of the i-th point. 

 

The quantitative validation technique is based in the hypothesis that the relative errors 

associated to measurement are constant in the whole frequency range [88]. The error 

structure that arises from this hypothesis is an error structure in which the absolute 

error for a given frequency is proportional to the impedance modulus at that 

frequency. The weighting strategy that emerges from this error structure is an inverse-

to-the-square weighting strategy: 
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𝛼𝑖 = 𝛽𝑖 =

1

|𝑍𝑒𝑥𝑝(𝜔𝑖)|
2 (5) 

 

This weighting strategy is very commonly used in EIS fittings [2]. The weighting 

strategy is a major difference between the quantitative validation technique and the 

measurement model method developed by Orazem and co-workers. In the 

measurement model method, rather than selecting a pre-defined error structure (as in 

the case of the validation method used in this work), the error structure is determined 

as an initial step of the method through measurement replication. Using the real error 

structure instead of a pre-defined one increases the power of the measurement model 

method, since it has been shown that the inverse-to-the-square weighting strategy is 

suboptimal for impedance data collected under galvanostatic modulation [82]. 

However a cost must be paid: measurement replication is required. The advantage of 

the quantitative validation technique is that it does not require measurement 

replication; and that therefore, it can be applied to existing spectra for which the 

measurements were not replicated.  

 

In this work, the fitting process was done using a Levenberg-Marquardt minimization 

algorithm taking as the objective function the weighted sum of quadratic errors, given 

by equation (4). The fitting algorithm output consists of the best fit parameters (the 

vector �⃗�𝑅(𝑅𝐶)𝑛
 that minimizes 𝜒2); and the uncertainty associated to each one of the 

obtained parameters, given by the standard error vector, �⃗�𝑅(𝑅𝐶)𝑛
.  

 

A key parameter of the fitting step of the quantitative validation technique is the 

selection of the number of subcircuits, 𝑛. As it was explained in [75], there is an 

optimal number of subcircuits. Below this optimal number, an increase in the number 

of subcircuits generates a significant increase in the goodness of the fitting, while not 

increasing significantly the uncertainty of the model parameters. On the contrary, 

above the optimum number, an increase in the number of subcircuits leads to a 

significant increase of the uncertainty of the model parameters, due to over fitting; 

and a negligible increase of the fitting goodness parameter. In this work, the optimum 

number of 𝑅𝐶 subcircuits was determined individually for each spectrum, using the 

procedure described in the aforementioned reference.  

 

2.3. Montecarlo error propagation algorithm  

 

As described in the subsection 2.1, the second step of the quantitative validation 

technique consists in introducing the fitting results in a Montecarlo error propagation 

algorithm in order to propagate the fitting errors through the model. Firstly, a random 

vector of input model parameters is generated: 
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�⃗�𝑟𝑎𝑛~𝒩(�⃗�𝑅(𝑅𝐶)𝑛

;  �⃗�𝑅(𝑅𝐶)𝑛
) (6) 

 

Where 𝒩 denotes the normal distribution. For the sake of simplicity a component-to-

component vectorial notation has been used: the 𝑖-th component of vector  �⃗�𝑟𝑎𝑛 is 

distributed according to a normal distribution of mean the 𝑖-th component of vector 

�⃗�𝑅(𝑅𝐶)𝑛
 and standard deviation the 𝑖-th component of vector �⃗�𝑅(𝑅𝐶)𝑛

. Both, �⃗�𝑅(𝑅𝐶)𝑛
 

and  �⃗�𝑅(𝑅𝐶)𝑛
 are known, since they were determined in the equivalent circuit fitting 

step. Therefore, each element of the equivalent electric circuit is assigned a random 

variable normally distributed around its fitted value, and with a standard deviation 

equal to its fitting uncertainty. 

 

Secondly, the EIS spectrum of the equivalent circuit associated to the generated 

random vector is simulated: the generated random vector is introduced in equations 

(2) and (3) in order to calculate the real and the imaginary part of the impedance of 

the equivalent circuit associated to the generated random vector for every frequency 

in the experimental frequency range. This constitutes a single iteration of the 

Montecarlo algorithm. 

 

A sufficiently large number of iterations have to be performed in order to ensure the 

convergence of the Montecarlo algorithm: for a large number of iterations the sample 

parameters tend to the population parameters [89]. Convergence graphs, as the ones 

shown in [75], were used in this work in order to monitor the convergence of the 

algorithm. Once convergence is reached, the consistency regions for each measured 

frequency can be built for the real part and the imaginary part, using the collection of 

simulated spectra:  

 

 
𝑍′(𝜔𝑖) ∈ [𝑍 ′̅(𝜔𝑖) − 𝑘 ∙ 𝑠𝑍′(𝜔𝑖); 𝑍 ′̅(𝜔𝑖) + 𝑘 ∙ 𝑠𝑍′(𝜔𝑖)] (7) 

 𝑍′′(𝜔𝑖) ∈ [𝑍′′̅̅ ̅̅ (𝜔𝑖) − 𝑘 ∙ 𝑠𝑍′′(𝜔𝑖); 𝑍′′̅̅ ̅̅ (𝜔𝑖) + 𝑘 ∙ 𝑠𝑍′′(𝜔𝑖)] (8) 

 

While 𝑍 ′̅(𝜔𝑖) and 𝑍′′̅̅ ̅̅ (𝜔𝑖) denote the sample means of the real and the imaginary part 

of the simulated impedance for angular frequency 𝜔𝑖: 

 

 
𝑍 ′̅(𝜔𝑖) =

1

𝑛𝑖𝑡𝑒
∙ ∑ 𝑍′(𝜔𝑖)𝑘

𝑛𝑖𝑡𝑒

𝑘=1

 (9) 

 
𝑍′′̅̅ ̅̅ (𝜔𝑖) =

1

𝑛𝑖𝑡𝑒
∙ ∑ 𝑍′′(𝜔𝑖)𝑘

𝑛𝑖𝑡𝑒

𝑘=1

 (10) 
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Where 𝑛𝑖𝑡𝑒 denotes the number of iterations.  

 

𝑠𝑍′(𝜔𝑖) and 𝑠𝑍′′(𝜔𝑖) stand for the sample standard deviations of the real part and the 

imaginary part of the impedance for angular frequency 𝜔𝑖: 

 

 

𝑠𝑍′(𝜔𝑖) = √
1

𝑛𝑖𝑡𝑒 − 1
∙ ∑(𝑍′(𝜔𝑖)𝑘 − 𝑍 ′̅(𝜔𝑖))

2

𝑛𝑖𝑡𝑒

𝑘=1

 (11) 

 

𝑠𝑍′′(𝜔𝑖) = √
1

𝑛𝑖𝑡𝑒 − 1
∙ ∑(𝑍′′(𝜔𝑖)𝑘 − 𝑍′′̅̅ ̅̅ (𝜔𝑖))

2

𝑛𝑖𝑡𝑒

𝑘=1

 

 

(12) 

Finally, 𝑘 represents the cover factor. This cover factor depends on the selected 

confidence level. Its value for different confidence levels can be obtained from any 

statistical book. A list of 𝑘 values for the typical confidence levels can be found in a 

previous work [75]. The cover factor determines ℙ[𝐸𝑟𝑟𝑜𝑟 𝐼], the probability of type I 

error. This probability corresponds with the probability of classifying as inconsistent a 

point that is consistent. 

 

Once the confidence regions are built, the following criteria are applied: all the 

experimental points inside the consistency region can be considered to satisfy the 

Kramers-Kronig relations (with a given confidence level), and therefore are consistent 

and can be used in the spectrum further analysis. In contrast, any point outside the 

consistency region does not satisfy the Kramers-Kronig relations (with a given 

confidence level), and consequently does not satisfy at least one of the four 

conditions, hence it has to be from further analysis of the spectrum.  

 

2.4. Practical implementation  

 

The quantitative validation technique can be easily automated in any programing 

language. In this work, it was fully implemented in Labview®: the developed Labview® 

program takes as input the output of NOVA®, which was the software used to control 

the EIS measurement system. Then, the program fits the experimental spectrum to 

Voigt circuits with different number of subcircuits. From the results of these fittings, 

the program determines the optimum number of subcircuits. Finally, the program runs 

the Montecarlo algorithm with the results of the fitting with the optimum number of 

subcircuits, in order to build the consistency zones. 

 

The computational time required to run the quantitative validation technique on an 

experimental EIS spectrum is of about 30 min in a typical laptop [75]. Therefore, this 
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validation algorithm can be easily implemented into routine analysis of the 

experimental results, without considerably overextending the required time for the 

preliminary analysis of the experimental results; and without the need of replicating 

the measurements. 

  

 

3. Experimental work 

 

A highly nonlinear electrochemical system was needed for this work in order to be able 

to obtain a large range of degrees of nonlinearity by changing the perturbation 

amplitude. The selected system was the cathodic electrode of an alkaline water 

electrolyser. This system was described in detail by Herraiz-Cardona and co-workers 

[90-93]. The experimental work of this work consisted in the measurement of the EIS 

spectra of the cathodic electrode of an alkaline water electrolyser using different 

perturbation amplitudes, and thus obtaining different nonlinearity degrees.  

 

Figure 2 shows the experimental setup that was used. It consists in a 3 electrode 

electrochemical cell patented by the Dpto. Ingeniería Química y Nuclear of the 

Universitat Politècnica de València [94]. 

 

On the one hand, the working electrode was one of the electrodes developed by 

Herraiz-Cardona and co-workers. It consisted in a nickel electrode produced at very 

high current densities using the protocol described in [91]. This procedure yields rough 

porous electrodes with very high active areas. On the other hand, the counter-

electrode was a nickel foam with very high surface area (Incofoam® 0.17 cm thick and 

50 pores per linear inch). Finally, a commercial Ag/AgCl (3M KCl) electrode was used as 

the reference electrode. The electrochemical cell was filled with a 30 wt.% KOH oxygen 

free solution, that played the electrolyte role.  

 

The EIS measurements were performed using an Autolab® 302N 

potentiostat/galvanostat equipped with a FRA module. The measurement equipment 

was controlled using NOVA® software. The measurements were taken in the 

frequency range of  10 𝑘𝐻𝑧 − 5 𝑚𝐻𝑧 , with 10 frequencies per decade. The 

measurement parameters used in this work are given in table 1. These parameters 

were optimized using the methodology presented in a previous work [95], where the 

meaning of each measurement parameter was widely explained.  

 

All the experiments were performed in galvanostatic mode and in the same operation 

conditions: at 30℃  and a DC current of −10 𝑚𝐴. This operation DC current was 

selected, since in previous works, it was observed that it corresponded to the most 

nonlinear operation point of the system at 30℃. In each experiment, perturbations of 



12 
 

different amplitudes were used. The perturbation amplitude range that was 

considered in this work was from 2 mA to 10 mA, with a step size of 1 mA. The lowest 

perturbation amplitude (2 mA) was selected since it is known from preliminary works 

that this perturbation amplitude is the optimum perturbation amplitude of the system: 

the highest perturbation amplitude for which the linearity condition is fulfilled. The 

highest perturbation amplitude (10 mA) was selected since it is the maximum 

amplitude that can be used for a DC current of −10 𝑚𝐴 that guarantees that the 

working electrode works as cathode during the whole measurement cycle.  

 

In order to ensure the reproducibility of the results it is critical to ensure that the 

surface of the electrode is in similar conditions in all the experiments. To achieve this, 

a pre-treatment was applied to the working electrode before each experiment. This 

pre-treatment consists in the application of a −1.6 𝑉 (vs. Ag/AgCl) potential during 30 

minutes. The purpose of this pre-treatment is to reduce any oxide film that could exist 

on the surface of the porous electrode [92]; thereby guaranteeing that the surface of 

the working electrode was in similar conditions in all the experiments.  

 

Measurements were obtained in triplicate in order to control the reproducibility of the 

obtained results. Replicates of each measurement were not performed sequentially; 

instead, the experiments were done in three different blocks as shown in table 2, 

which gives the temporary order in which the experiments were performed.  As it can 

be seen in the table mentioned above, the order of the experiments inside each block 

was randomized; instead of performing the experiments in order of increasing or 

decreasing amplitude. The random order strategy was selected since randomization 

makes the factors of time and amplitude orthogonal: this means that it allows to 

distinguish the effects of the perturbation amplitude from the effects of possible time 

drifts. On the contrary, if an increasing amplitude strategy is used, it is not possible to 

know if the observed trends are due to a time drift of the system or to the effect of the 

perturbation amplitude. 
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4. Results and discussion 

 

4.1. Nyquist diagrams 

 

Figure 3 shows the experimental EIS spectra obtained with each one of the 

perturbation amplitudes. It should be noted that all the spectra were measured in the 

same operation conditions; and the only thing that changed from one to another was 

the applied perturbation amplitude. All the spectra present a depressed capacitive 

semicircle. Actually, this semicircle is formed by two overlapping semi-circles, a high 

frequency one and an intermediate frequency one [92]. The high frequency semi-circle 

is related to the porosity of the electrode surface; whereas the intermediate frequency 

semi-circle is related to the Hydrogen Evolution Reaction (HER) kinetics [92]. In 

addition, all the spectra except the 10 mA one, present the beginning of a low 

frequency inductive semi-circle. This low frequency inductive semi-circle is due to the 

adsorption/desorption processes of intermediate species on the electrodes. 

Furthermore, a displacement of the spectra from the origin of Nyquist plot can be 

observed. This is related to the resistance of the electrolyte between the working and 

the reference electrodes. Finally, small inductive effects can be observed at high 

frequencies. These high frequency effects are measurement artefacts due to the cable 

connections [96-97]. Since they are due to the connections themselves and not to the 

studied system, these high frequency inductive effects were not taken into account in 

this work. 

 

The results obtained in the three replicates of each experiment are nearly identical: 

the results have a very high reproducibility. For clarity purposes, since they are nearly 

identical, only the results of one of the replicate blocks are presented in figure 2. Since 

a random order strategy was used, the fact that the results are highly reproducible 

implies that no significant time drift took place during the experiments. Consequently, 

the observed variation of the experimental spectra is only due to nonlinear effects and 

not to a time drift or a non-stationarity of the system. 

 

Although the general  shape  of  the  spectrum  is  the  same  for  the  different  

perturbation  amplitudes (except for a perturbation amplitude of 10 mA, for which 

even the general shape varies), a significant variation of the spectra with the 

perturbation amplitude can be observed. A systematic distortion of the system 

spectrum is observed when the perturbation amplitude is increased: an amplitude 

increase leads to a significant and systematic expansion of the intermediate frequency 

capacitive semi-circle. In the extreme case of a 10 mA perturbation amplitude, the 

distortion is so important that it causes a change in the overall shape of the spectrum: 

the low frequency inductive semi-circle is no longer observed. This systematic 

distortion of the EIS spectrum with an increase of the perturbation amplitude is due to 
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the generation of nonlinear effects by the studied system, which in this case is a highly 

nonlinear system. The expansion of the low frequency zone of the EIS spectrum of an 

electrochemical electrode with an increase of the perturbation amplitude was already 

observed by Diard and co-workers [61-62], and is consistent with their theoretical 

formulation [59]. Moreover, in a previous work it was shown that the observed 

systematic distortion of the EIS spectrum with an increase of the perturbation 

amplitude was due to the emergence of nonlinear effects for amplitudes larger than a 

critical perturbation amplitude, which is of 2 mA for the system studied in this work 

[98]. 

 

 

The fact that the spectrum distortion is only observed in the intermediate and low 

frequency zones is due to the fact that nonlinear effects only appear under a threshold 

frequency. For frequencies above the threshold frequency the nonlinear effects are 

negligible even for very large perturbation amplitudes. Thus, the part of the EIS 

spectrum related with frequencies higher than the threshold frequency will not be 

distorted by an amplitude increase, even for large amplitudes. On the contrary, for 

frequencies below the threshold frequency the nonlinear effects are not negligible for 

amplitudes above a critical perturbation amplitude. Consequently, a significant 

distortion of the EIS spectrum will be observed in the frequency zone corresponding 

with frequencies below the threshold frequency, for perturbation amplitudes above 

the critical amplitude. The existence of a frequency threshold above which the 

nonlinear effects are negligible was already observed by Hirschorn and co-workers [54, 

99]. 

 

The threshold frequency of the cathodic electrode of an alkaline water electrolyser 

system, studied in this work, can be estimated from figure 3. It corresponds with the 

frequency above which the effect of the perturbation amplitude on the spectrum is 

significant: this can be approximated to the frequency above which the spectra diverge 

in figure 3. Consequently, the threshold frequency of the studied system is in the range 

of 5 Hz – 7 Hz. This threshold frequency was determined in a previous work using a 

total harmonic distortion based linearity assessment method [98]. The threshold 

frequency obtained with the linearity assessment method was consistent with the 

threshold frequency estimated from figure 3. 

 

Finally, it can be observed that the 50 Hz point presents a high variability from one 

spectrum to another. However, there is no systematic pattern in its variation. The 

variation of the 50 Hz point is not due to the effect of the perturbation amplitude; 

instead, it is due to noise. This frequency presents higher noise than the rest of the 

spectrum due to the electric coupling of the measurement instrument with the electric 

supply grid. This coupling is responsible for the random variability of the 50 Hz point. 
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4.2. Consistency zones 

 

The quantitative validation technique presented in section 2 was applied to each one 

of the experimental spectra individually. The number of iterations used for the 

Montecarlo algorithm was 100000 in every case, since this value guaranteed the 

convergence of the method, as it was observed in [75]. The obtained results are shown 

in figures 4 to 9. These figures give the real and imaginary plots for each case. The 

experimental points are represented with the built consistency regions overlaid. The 

represented consistency zones correspond to a confidence level of 95.45%. They are 

defined by an upper limit and lower one. These representations allow to easily detect 

the inconsistent points, just by identifying the experimental points outside of the 

corresponding consistency region. Since the results obtained for perturbation 

amplitudes from 2 mA to 6 mA are very similar, only the results of 2 mA and 3 mA are 

presented for the sake of simplicity. 

 

It can be observed that the quantitative validation technique does not detect any 

inconsistent point for perturbation amplitudes from 2 mA to 7 mA. However, it can be 

observed that the consistency regions narrow with increasing perturbation amplitude. 

On the contrary, the quantitative validation technique detects inconsistent points for 

perturbation amplitudes of 8 mA, 9 mA and 10 mA. In the three cases, the identified 

inconsistent points are in the intermediate/low frequency region. As it was discussed 

in the previous subsection, the nonlinear distortion of EIS spectra only occurs in the 

frequency range below the transition frequency. Therefore, the series of inconsistent 

points detected by the quantitative validation technique correspond with part of the 

distortion due to nonlinear effects. Consequently, the quantitative validation 

technique is able to detect nonlinearities, but only in the case of very significant 

nonlinear effects (8 mA to 10 mA). It does not detect slight nonlinearities (3 mA to 7 

mA). Urquidi-Macdonald and co-workers already observed that the Kramers-Kronig 

relations were highly insensitive to nonlinearity [50]. More recently, it has been shown 

that Kramers-Kronig relations are only sensitive to nonlinearities if at least part of the 

spectrum has been measured in a range above the threshold frequency of the system; 

and even then, the sensitivity is not very high [99]. In this case, the threshold 

frequency of the system (5 to 7 Hz) is encompassed by the measurement frequency 

range (10 kHz to 5 mHz); therefore the requirement proposed by Hirschorn and 

Orazem is fulfilled in this work. Consequently, under these conditions, the Kramers-

Kronig relations are sensitive to nonlinearities, though there sensitivity is not very high. 

Since the quantitative validation technique is based on Kramers-Kronig relations, it is 

normal that it is only able to detect big nonlinearities and not slight ones; and only if 

the threshold frequency is encompassed by the measurement frequency range. This is 

consistent with the observations extracted from figures 4 to 9. 
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In the 8 mA case, the quantitative validation technique only detects the inconsistent 

points in the imaginary plot; and not in the real plot.  In the 9 mA and the 10 mA cases, 

it detects inconsistent points in both the real and the imaginary plots. However, in 

both cases the detected inconsistent point with the highest frequency is identified in 

the imaginary plot and not in the real plot. This suggests that the imaginary 

component is more sensitive to nonlinearities (at least for this system); and therefore, 

the imaginary consistency region has a higher detection power.  

 

In the 8 mA, 9 mA and 10 mA cases, the frequency of the inconsistent point with the 

highest frequency is around 1 Hz, as it can be seen in figures 7.b, 8.b and 9.b. This 

value corresponds with the estimation of the threshold frequency determined using 

the quantitative validation technique, since it is the highest frequency for which the 

measured impedance fails to satisfy the linearity condition according to the 

quantitative validation technique; and by definition, the threshold frequency is the 

frequency above which the system does not present nonlinear behaviour even for very 

large perturbation amplitudes. In subsection 4.1, the threshold frequency of the 

system was estimated to be around 5-7 Hz. It can be observed that the order of 

magnitude of the threshold frequency determined using the quantitative validation 

technique is of the same order of magnitude than the threshold frequency estimated 

from the EIS spectra themselves. It can be deduced that the quantitative validation 

technique allows to properly estimate the threshold frequency of a given system with 

the proviso that the nonlinearity is large enough, since the method is not able to 

detect slight nonlinearities. 

 

The whole study was repeated using potentiostatic modulation in order to determine if 

the type of modulation affected the sensitivity of the quantitative validation technique 

to nonlinearities. Exactly the same trends observed in galvanostatic mode, and 

presented in this work, were observed in potentiostatic mode. It can be deduced that 

the type of modulation does not significantly affect the sensitivity of the quantitative 

validation technique to nonlinearities. 
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5. Conclusions 

 

In conclusion, the quantitative validation technique manages  to  validate  the  

experimental  impedance  spectra  by building  a  consistency  region  that  allows 

distinguishing  the  consistent  points  of  an experimental  spectrum  from  the  

inconsistent  ones.  In this work, it has been proved experimentally that the 

quantitative validation technique is able to detect severe nonlinearities; but it is not 

sensible enough to detect slight nonlinearities. The low sensitivity to nonlinearity of 

the quantitative validation technique is inherited from the Kramers-Kronig relations, 

which have been proved not to be very sensitive to the failure to fulfil the linearity 

condition. In addition, in the case of severe nonlinearities, the quantitative validation 

technique gives a good estimation of the transition frequency of the system, above 

which the system does not present a nonlinear behaviour even for large perturbation 

amplitudes. 

 

First, the advantage of the proposed method over the traditional equivalent circuit 

fitting KK test (Voigt’s method) is that the proposed method is a quantitative method, 

whereas Voigt’s test is a rather subjective method: what is the limit between a good fit 

and a bad fit? The proposed method gives an objective quantitative criterion for 

acceptance/rejection of points; and it allows to discriminate individual points, rather 

than working with the spectrum as a whole. Second, the advantage of the proposed 

method over the existing linearity assessment tools available in literature, such as 

Lissajous plots and FFT based linearity assessment methods, is that it can be 

performed in already measured spectra for which only the spectrum is available (nor 

the measured raw signals in the time domain, nor the signals in the frequency domain 

are available). Furthermore, the proposed method does not have big computational 

requirements. These characteristics make the quantitative validation technique a good 

candidate to be automated and included in routine preliminary analysis of EIS spectra: 

before the analysis of any EIS spectra, the proposed method can be applied to it in 

order to detect the presence of high nonlinearities during the measurement that may 

have distorted the spectrum, and thus, bias the obtained results. The consistency 

regions will discriminate the consistent points from the inconsistent ones, allowing to 

remove the inconsistent ones from further analysis of the EIS spectrum. 
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6. Nomenclature 

 

Latin letters 

 

𝐶   Capacitance (𝐹) 

𝑛  Number of RC subcircuits in Voigt circuit 

𝑛𝑖𝑡𝑒   Number of iterations 

𝑁𝑝   Number of points in the impedance spectrum 

𝑅   Resistance (𝛺) 

ℙ   Probability operator 

𝑠   Sample standard deviation 

�⃗�𝑟𝑎𝑛   Random vector of input parameters 

�̅�   Sample mean 

𝑍  Complex impedance (𝛺) 

𝑍′  Impedance real part (𝛺) 

𝑍′′  Impedance imaginary part (𝛺) 

 

Greek letters 

 

𝛼   Real part weight factor 

𝛽   Imaginary part weight factor 

𝜒2   Sum of weighed squared residuals of the model (𝛺2) 

𝜔  Angular frequency (𝑟𝑎𝑑 ∙ 𝑠−1) 

 

Subscripts 

 

𝑒𝑥𝑝   Experimental spectrum points 

𝑅𝐶𝑖  i-th RC subcircuit of Voigt circuit 

𝑅(𝑅𝐶)𝑛  Voigt circuit with 𝑛 RC subcircuits 
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Table 1. EIS measurement parameters 

Measurement parameter Value 

Integration time 1.0 𝑠 

Number of integration cycles 1 𝑐𝑦𝑐𝑙𝑒 

Number of stabilization cycles 10 𝑐𝑦𝑐𝑙𝑒𝑠 

Maximum stabilization time 3.0 𝑠 

Minimum stabilization cycle fraction 0.00 
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Table 2. Experiment order 

Order Block Experiment Order Block Experiment Order Block Experiment 

1 

1 

5 mA 10 

2 

3 mA 19 

3 

9 mA 

2 4 mA 11 9 mA 20 7 mA 

3 7 mA 12 2 mA 21 4 mA 

4 3 mA 13 5 mA 22 2 mA 

5 2 mA 14 10 mA 23 6 mA 

6 6 mA 15 7 mA 24 10 mA 

7 8 mA 16 8 mA 25 8 mA 

8 9 mA 17 4 mA 26 5 mA 

9 10 mA 18 6 mA 27 3 mA 
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Figure 1. Voigt's circuit 
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Figure 2. Experimental setup 
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Figure 3. Change in the Nyquist plot of the system with the perturbation amplitude 
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Figure 4. Experimental impedance spectrum (real part plot (a) and imaginary part plot 
(b)) obtained for a perturbation amplitude of 2 mA; and the consistency region built 

with the described methodology for a confidence level of 95.45% and 100000 
iterations of the Montecarlo algorithm 
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Figure 5. Experimental impedance spectrum (real part plot (a) and imaginary part plot 
(b)) obtained for a perturbation amplitude of 3 mA; and the consistency region built 

with the described methodology for a confidence level of 95.45% and 100000 
iterations of the Montecarlo algorithm 
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Figure 6. Experimental impedance spectrum (real part plot (a) and imaginary part plot 
(b)) obtained for a perturbation amplitude of 7 mA; and the consistency region built 

with the described methodology for a confidence level of 95.45% and 100000 
iterations of the Montecarlo algorithm 
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Figure 7. Experimental impedance spectrum (real part plot (a) and imaginary part plot 
(b)) obtained for a perturbation amplitude of 8 mA; and the consistency region built 

with the described methodology for a confidence level of 95.45% and 100000 
iterations of the Montecarlo algorithm 
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Figure 8. Experimental impedance spectrum (real part plot (a) and imaginary part plot 
(b)) obtained for a perturbation amplitude of 9 mA; and the consistency region built 

with the described methodology for a confidence level of 95.45% and 100000 
iterations of the Montecarlo algorithm 
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Figure 9. Experimental impedance spectrum (real part plot (a) and imaginary part plot 
(b)) obtained for a perturbation amplitude of 10 mA; and the consistency region built 

with the described methodology for a confidence level of 95.45% and 100000 
iterations of the Montecarlo algorithm 
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