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Abstract 

This paper represents an economic optimization of buttressed earth-retaining walls. We explore the 

optimum solutions using a harmony search with an intensification stage through threshold accepting. The 

calibration of the resulting algorithm has been obtained as a result of several test runs for different 

parameters. A design parametric study was computed to walls in series from 4–16 m total height. The 

results showed different ratios of reinforcement per volume of concrete for three types of ground fill. Our 

main findings confirmed that the most sensitive variable for optimum walls is the wall-friction angle. The 

preference for wall-fill friction angles different to 0º in project design is confirmed. The type of fill is stated 

as the main key factor affecting the cost of optimum walls. The design parametric study shows that the soil 

foundation bearing capacity substantially affects costs, mainly in coarse granular fills (F1). In that sense, 

cost-optimum walls are less sensitive to the bearing capacity in mixed soils (F2) and fine soils of low 

plasticity (F3). Our results also showed that safety against sliding is a more influential factor for optimum 

buttressed walls than the overturning constraint. Finally, as for the results derived from the optimization 

procedure, a more suitable rule of thumb to dimension the footing thickness of the footing is proposed. 
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1. Introduction 

The common procedure for economic structure design adopts the cross-section dimensions and material 

grades restricted by professional practice. To satisfy the limit states prescribed by codes, it is necessary to 

analyze the stresses and compute the required reinforcement. As the initial dimensions or material grades 

could be excessive or insufficient, a trial-and-error approach is generally used. Therefore, the cost of the 

structure depends on the experience of the designer. To achieve an economic wall design, a more efficient 

process, as well as an accurate model, is needed. Cost efficient design is not a straightforward method, as 

it is determined by boundary conditions such as type of fill, base-friction angles, soil foundation bearing 

capacity and surcharge loads. As an alternative to this procedure, either exact or heuristic optimization 

approaches can be used.  

Metaheuristic algorithms have proven their efficiency and versatility in solving large-scale and highly 

nonlinear optimization problems [1]. There has been a tremendous amount of research in metaheuristics 

during the last years, most of them nature-inspired on swarm intelligence, biological systems, physical and 

chemical systems [2]. Several heuristic search algorithms belonging to this category are harmony search 

(HS), simulated annealing (SA), threshold accepting (TA), genetic algorithms (GA), ant colonies (ACO), 

particle swarm optimization (PSO), tabu search (TS), flower pollination algorithm (FPA), teaching-learning 

based optimization (TLBO), among others. Rajeev and Krishnamoorthy [3] pioneered by applying genetic 

algorithms to the optimization of weight in steel structures, followed by Coello et al. [4], who applied GA 

to Reinforced Concrete (RC) beams. Sarma and Adeli [5] reviewed major works on cost optimization of 

RC structures published in the past few decades. The robustness of ACO, GA, HS, PSO, SA, TS, FPA, and 

TLBO has been investigated through five benchmark steel frame designs [6-8]. The results showed the 

benefits of incorporating intensification and diversification to navigate the large variable spaces presented 

in these optimization problems effectively.  

Other RC structures have been the subject of numerous optimization studies. The optimum design of frame 

structures was performed by using the Eagle Strategy with Differential Evolution [9]. Kripka et al. [10] 

used SA to minimize the costs of the beams in RC buildings using a grid model. Carbonell et al. [11] aimed 

to achieve the most economical design of RC road vaults by a multi-start global best descent local search, 

a meta-SA and a meta-TA. Prestressed concrete precast road bridges were optimized with hybrid SA [12] 

and the hybrid glowworm swarm algorithm [13]. De Medeiros and Kripka [14] adopted HS to minimize 

the cost of RC columns according to different environmental impact assessment parameters. Camp and 
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Assadollahi [15] used big bang-big crunch (BB-BC) technique to optimize RC footings. Luz et al. [16] used 

hybrid stochastic hill climbing algorithms with a neighborhood move based on the mutation operator from 

the genetic algorithms to minimize the cost of RC open abutments of road bridges. García-Segura et al. [17] 

proposed a Hybrid HS for the design of post-tensioned concrete box-girder pedestrian bridges. Yepes et al. 

[18] used a multiobjective SA to optimize a RC I-beam. Recently, García-Segura and Yepes [19] proposed 

a multiobjective HS to optimize a post-tensioned concrete box-girder road bridge.  

Optimum cantilever retaining walls have recently been studied considering different metaheuristics. Recent 

works on retaining walls studied through SA [20] and TA [21] strategies compared the effect of base soil 

friction angles on the design parameters variations. Talatahari and Sheikholeslami [22] used an enhanced 

charged system search method to optimize the cost of gravity and RC retaining walls. Sheikholeslami et al. 

[23] used the Hybrid Firefly algorithm to minimize the cost of cantilever retaining walls. Swarm 

intelligence techniques such as particle swarm optimization (PSO), accelerated PSO, (APSO), firefly 

algorithm (FA) and cuckoo search (CS) were compared to find the influence of surcharge load and backfill 

slope on the cost and weight optimum cantilever walls [24]. Bekdaş [25] proposed a HS strategy for post-

tensioned axially symmetric cylindrical RC walls. Despite there being limited research on geotechnical 

engineering optimization problems, the studies of Khajehzadeh et al. [26], who studied the design of 

gravity-retaining walls subjected to seismic loading, are also worth mentioning.  

If the wall is taller than 9 m, the thickness of the stem becomes greater, as well as the volume of concrete. 

To make the stem lighter, a ribbed plate (buttressed) is preferred to a solid plate. Earth-retaining buttressed 

walls made of reinforced concrete (RC) are common structures in civil engineering. Various design factors 

influence the appearance and, consequently, the performance with regard to life span, cost or environmental 

impact [27]. Earth-retaining buttressed walls for roads and building structures are analyzed in this study. 

The method followed in this paper consists of a computer module evaluation of geometric and steel 

reinforcement according to the optimization variables. The cost of every solution is computed, and the limit 

states are checked. The hybrid HS together with a TA strategy is used for a cost optimization and a design 

parametric study. Our paper is divided into five sections: (1) formulation of the optimal design problem; 

(2) the structural evaluation; (3) the proposed HSTA algorithm and calibration; (4) results obtained and 

discussion of the numerical experiments; and (5) conclusions. 
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2. Optimization Problem Definition  

The structural concrete problem proposed consists of an economic optimization. The objective function 

cost (C) to be minimized is defined in Eq. (1). The objective function considers the unit prices pi, and the 

measurements (mi) of the eight cost units in which the wall is divided. Basic prices are given in Table 1 and 

correspond to prices considered in an earlier study of earth-retaining walls by Yepes et al. [20]. The prices 

included the materials, formwork, excavations and fill works. In addition, the structure may satisfy the 

constraints defined as boundary conditions (viz. serviceability and ultimate limit states). The major 

computational effort lies in the evaluation of the ULS and SLS constraints. This study restricts the problem 

to feasible solutions, so no penalty functions are used.  

 C(��) = ∑ �� . 
����,�   (1) 

2.1. Design variables 

The buttressed retaining wall is defined by 32 design variables, which are discrete to adapt to real cases. 

These variables correspond to the geometry, the concrete grades and the passive reinforcement of the wall. 

The geometric variables are the thickness of the stem (b), the thickness of buttresses (ec), the thickness of 

the footing (c), the length of the toe (p), the length of the heel (t), and the distance between buttresses (d). 

The concrete and steel types are the variables considered for the materials. Concrete HA-25 to HA-50 is 

considered in discrete intervals of 5 MPa. Steel types B500S and B400S are considered. The remaining 24 

variables consider the set-up of reinforcement, as shown in Fig. 1 and Fig. 2. The diameter and the number 

of bars define the reinforcement. Three reinforcement flexural bars defined as A1, A2 and A3 contribute in 

the main bending of the stem. The vertical reinforcement of foundation in the rear side of the stem is given 

by A4, up to a height L1. The secondary longitudinal reinforcement is given by A5 for shrinkage and thermal 

effects in the stem. The longitudinal reinforcement of the buttress is given by A6. The area of reinforcement 

bracket from the bottom of the buttress is given by A7 and A8. The upper and bottom heel reinforcement are 

defined by A9 and A11 and the shear reinforcement in the footing by A12. The longitudinal effects in the toe 

are defined by A10. The set of combinations of the values for the 32 variables constitutes the space of 

solutions. 

2.2. Design parameters 

The data fixed in the optimization search are the design parameters of the problem. They are kept constant 

in the optimization process, and are modified for the design parametric study in Section 6. Ground and earth 
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fill properties, safety coefficients and total height of the wall form the parameters. Figure 3a depicts the 

main design parameters. The height of the wall and the depth of soil in front of the wall are given by H and 

H2, respectively. The maximum bearing pressure is the soil foundation ultimate bearing capacity divided 

by the bearing capacity factor of safety. As the maximum bearing pressure of the soil is fixed for a case 

study, this study proposes a parametric study to investigate the sensitivity of the solution to this design 

parameter. The maximum bearing pressure for serviceability conditions is represented by σ, the base-

friction coefficient is µ and the backfill slope on the top of the stem is β. The density, internal friction angle 

and the friction angle determining the angle of earth pressure are given by respectively P(γ, ϕ, δ). The 

roughness between the wall and the fill is determined by a fraction of ϕ. The three types of fills (F1, F2, F3) 

used, based on a previous study [28], are described in Table 3. This kind of wall requires the placement of 

expansion joints, as they affect the distribution of strengths in the plate of the stem. The expansion joints 

are located every three spans of the buttresses, as illustrated in Figure 1. The distance between the buttresses 

and the expansion joints is fixed to 0.82 m so as to obtain equal bending moments in the plate of the stem. 

The parameter � corresponds to the uniform surface loading on top of the fill. The cohesion of the ground 

is considered to be 0.  

2.3. Structural constraints 

The structure is checked according to the Spanish Structural Concrete Code EHE-08 [29]. The flexural and 

shear state limits as well as the cracking state limit are considered. The hyperstatic structure is checked 

according to the method of Huntington [30]. The flexural moment is obtained considering a T-shaped cross-

section (Fig. 1). The cross-section in the top of the stem is relatively small, so the horizontal bending is 

similar to a continuous slab between supports. Fig. 3 illustrates the dimensions of the wall. 

To verify the limit states of the structure, calculation of the active earth pressure is required [31]. The active 

pressure depends on the fill and surface loads. The key forces considered in the wall analysis are the weight 

of the wall (W1), the fill loading on the heel (W2), the earth pressure (P1), the surface load (Q), the weight 

on the front toe (W3), and the passive resistance in front of the toe (Rp). The load on the buttresses is obtained 

from the pressure distribution over the stem multiplied by the distance between buttresses.  

The stem is subject to both flexural and shear efforts diminished by the effect of every buttress that is placed 

at a distance d (Fig. 1). Unlike the top of the stem that acts as a cantilever, the bottom of the stem is subject 
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to considerable coercion from the footing and the bottom of the buttress in the rear side of the stem. The 

bending moments in the half section between the buttresses are given by M1 and M2:  

 �� = −0.03���(� − �) (2) 

 �� = −0.0075���(� − �) (3) 

where p1 is the pressure over the slab on the upper side of the footing, M1 is the bending moment in the 

connection of the stem to the footing, and M2 the bending moment in the stem at a distance equal to (H-c)/4 

from the footing (Fig. 3b). Provided that the distance between buttresses is lower than half the height, the 

shear strength (ν) in the connection of the plate to the footing is defined as: 

 � = 0.4��� (4) 

The bending moments in every span of the stem are considered according to Huntington [30]. The method 

considers a trapezoidal pressure distribution (Fig. 3b), where the maximum value is half the maximum 

pressure P1 in the upper side of the foundation [31]. 

The buttresses are modeled as a cantilever of varying sections. However, as there is a varying depth in the 

cross-section, several considerations are needed. The bending moments and shear stress are given only by 

the horizontal reaction, as the vertical reaction is negligible. The calculation of the bending stress in any 

horizontal T-shape cross-section is obtained by the effective width, as indicated in CED-FIB Model Code 

[32]. Calavera [33] gives the equations to evaluate the mechanical capacity to flexure and shear. Besides, 

Calavera considers the limitations of the Spanish EHE Structural Concrete Code [29]. Overturning, sliding 

and ground stresses are the three limit states of the wall and are checked considering the effect of the 

buttresses. The basic expressions are given in Eqs. (7)–(9). As regards the overturning condition, Eq. (7) 

states that the favorable overturning moments are high enough compared to unfavorable overturning 

moments. In this expression, Mof is the total favorable overturning moment given by Eq. (8); Mou is the total 

unfavorable overturning moment defined by Eq. (9), and γou is the overturning safety factor considered as 

1.8 for frequent events.  

 ��� −  !���" ≥ 0 (7) 

 ��� = $% &'� − ()* − (+)(�! − ℎ%) (8) 

 ��" = +- ∗ 	ℎ0 − +1('� − 2) (9) 

The reaction against sliding is defined by Eq. (10), where N’ is the total sum of weights of the wall and 

ground located over the toe and the heel; µ is the base-friction coefficient, and Ep is the passive resistance 
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in front of the toe, obtained by Eq. (11) [31]. The sliding moment is produced by the horizontal component 

of the earth pressure because of the negligible effect of the vertical component. 

 3 = $%4 + +) (10) 

 +) = ��6789:;(89;<):= (1 + ?@AB)/(? − ?@AB)	 (11) 

The calculations are performed per linear meter, including service and ultimate flexure and ultimate shear. 

The acting shear is compared to the two ultimate values. Both flexural and shear minimum amounts of 

reinforcement, and the geometrical minimum, are examined. Once the 32 variables describing a wall 

solution are chosen, then geometry, materials and passive reinforcement become fully defined. A 50% 

increase in earth pressure is checked not to cause a ground reaction force twice as high as the maximum 

bearing pressure, according to Calavera [33]. 

3. Proposed harmony search strategy 

Harmony Search (HS), proposed by Geem et al. [34], is a population-based stochastic optimization 

approach, which establishes an analogy to attaining the best musical harmony. Researchers have proposed 

various HS variants in the past decade to improve the performance of the basic HS [35,36]. Manjarres et 

al. [37] analyzed the main characteristics and reviewed the applications where the algorithm was effectively 

used. They highlighted the good convergence regardless of the initialized values and the potential to merge 

the characteristics of a group of solutions by simply tuning the values of its probabilistic parameters. While 

Genetic Algorithm considers only two vectors called parents to generate a new solution or offspring, HS 

takes into account all the solutions in the harmony memory. Saka et al. [38] exposed that HS is a special 

case of the Evolutionary Strategy (ES). However, whereas HS allows selection of the design variables from 

a discrete set, ES is a continuous optimization method. Besides, the local strategy is different, as the new 

value of a design variable is obtained by applying a normally distributed based mutation in ES. This paper 

employs a Hybrid Harmony Search with Threshold Acceptance (HSTA) proposed by García-Segura et al. 

[17]. TA, proposed by Dueck and Scheuer [39], minimizes as the search grows. HSTA combines the 

effectiveness of HS in the search of a large variable space with the local search of TA. As it was shown in 

García-Segura et al. [17], for a 130 m deck length, HSTA improved the quality of solution about 8% 

compared to HS. The metaheuristic algorithms provide a diversification and intensification balance to 

global search, and converge to good solutions. Fig. 4 depicts the algorithm structure. The steps of the 

algorithm can be summarized as follows: 
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Step 1. The algorithm parameters are assigned: harmony memory size (HMS), harmony memory 

considering rate (HMCR), harmony memory probability (HMP), pitch adjusting rate (PAR), the maximum 

number of improvisations without improvement (IWI), and the threshold iterations (TI). A design variable 

pool is constructed for each design variable.  

Step 2. Harmony memory matrix (HM) is initialized with random values of the design pool.  First, the 

algorithm creates nHMS*HMS random feasible solutions. Then, HM is filled with the best HMS solution 

vectors.  

 �� = D ��� ⋯ �F�⋮ ⋱ ⋮��8IJ ⋯ �F8IJK
L(��)⋮L(�8IJ)M (12) 

where xj is the solution vector, n is the number of variables and C is the cost of the solution. 

Step 3. A new harmony vector is improvised. Values of the other decision variables can be chosen from a 

set of possible values in the design variable pools with the probability equal to (1-HMCR) (Eq. (13)). 

Otherwise, each value of the new solution has a probability of HMCR to be chosen from the HM (Eq. (14)). 

For the final case, the value is selected from a solution vector according to its probability, defined by Eq. 

(15). The probability of a solution depends on its position in the ranking (j), the first solution being the best 

one. HMP is a parameter between 0 (corresponding to deterministic choice) and 1 (corresponding to simple 

random sampling). Afterwards, the pitch adjusting determines whether the value is modified one position 

up or down with a probability PAR (Eq. (16)). 

 N@′ ∈ N@	Q@Rℎ	�STUVU@�@RW	(1 − ��L3) (13) 

 N@′ 	 ∈ 	 X�@1, �@2, … , �@��[\	Q@Rℎ	�STUVU@�@RW	��L3 (14) 

 �(]) = 8I^_`a∗(�;8I^)�;8I^bcd  (15) 

 N@′ 	 ∈ 	 �@] ± 1	Q@Rℎ	�STUVU@�@RW	fg3 (16) 

Step 4. Harmony memory matrix is updated. The new solution replaces the worst harmony if its function 

value improves upon the worst one.  

Step 5. Steps 3 and 4 are repeated until the iterations without improving the best harmony reach a maximum 

number of iterations (IWI).  

Step 6. TA carries out a local search around the best solution. Each iteration modifies a percentage of the 

variables (Pvar). Threshold accepting accepts worse solutions when the increment is lower than a threshold 

value (∆T). Initially, a 1% increment in the function value is accepted. This threshold value is reduced 
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gradually to zero during half of the TI. After that, only better solutions are accepted. TA performs a number 

of TI. The vector solution updates the best solution if there is an improvement. 

4. Results of the optimization procedure  

The adjustment of the HSTA parameters is carried out by an experimental process considering the 

parameters of Table 4. The calibrated parameters were obtained as a result of several test runs. The five 

best results are shown in Table 5. A typical evolution of cost from the initial solution to optimum results is 

depicted in Fig. 5. The initial solution is obtained through a random choice of the values of the variables in 

the discrete range between upper and lower bounds. After a feasible solution is obtained, the harmony 

search reduces the cost to about 60% of the initial solution. Then, TA carries out a local search variation of 

a fixed percentage (30%) of variables selected randomly. The algorithm was performed nine times for every 

case to obtain the mean, standard deviation and minimum values of the random results. This ensures the 

solution quality for each objective according to the methodology proposed by Payá-Zaforteza et al. [40], 

based on the extreme value theory. 

5. Main factors affecting optimum walls 

There is a number of factors affecting the design of optimum buttressed retaining walls. The main factors 

are described in this section, leading to a parametric study in the following section. The main factors 

affecting the design are (1) the height of the wall from foundation to the top of the stem, (2) the base-friction 

coefficient, (3) the density and angle of internal friction of the type of fill, (4) the soil foundation bearing 

capacity, (5) the inclination of the earth pressure determined by the wall-fill friction angle, and (6) the 

passive earth pressure in front of the toe. This section analyses the base-friction coefficient, wall-fill friction 

angles and passive earth pressure in front of the toe. Section 6 describes a parametric study of the total 

height of the wall, type of fill and bearing capacity of the foundation, considering the aforementioned 

parameters as fixed. The average values of the optimum walls are considered herein. 

The base-friction coefficient (µ) is one of the factors affecting a cost-efficient design. Fig. 6 illustrates a 

cost variation following upward parabolic trends for the total height of the wall. This trend continues in the 

different base-friction angles of 25º, 30º, 35º and 40º. A standard case corresponds to the type of soil F2, 

and 0.3 MPa maximum bearing pressure. The results show that the costs increase as the wall-friction angle 

decreases. The base-friction angles of 25º and 30º significantly influence the cost as the height increases. 

A tangent of 25º in wall-fill friction results in an increase of 15.92% for a wall of 11 m, compared to a base-
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friction coefficient of 40º. A tangent value of 30º shows an increase of 10.10% for the same height compared 

to a tangent of 40º in base-friction. Higher base-friction angles, i.e. 35º and 40º do not exhibit differences 

as regards cost-optimal designs. It is worth mentioning that a standard angle of 30º is usually considered 

due to the complexity of a more precise value from geotechnical data. An internal angle of friction of the 

fill of 30º is considered for the subsequent design parametric study. 

The wall-fill friction angle that causes the inclination of the earth pressure is the next influential factor on 

the cost. As stated previously, this analysis considers a standard case with an internal angle of friction of 

the fill ϕ = 30º, a type of fill F2 defined in Table 3 and 0.3 MPa as maximum bearing pressure. Fig. 7 shows 

the influence of the wall-fill friction angles δ, which corresponds to 0º, 1/3ϕ (10º) and 2/3ϕ (20º). Costs 

exhibit a steady divergence among such angles as the height increases. Considering a passive pressure angle 

of 10º, the wall-fill friction angles of 10º and 20º show an average cost reduction in the highest walls (9–

16 m) of 5% and 11% respectively, compared to the passive earth pressure angle of 0º.  

Fig. 8 depicts results for every height and wall-fill friction angles of 20º, 10º and 0º considering a passive 

earth pressure of 0º. Considering the aforementioned standard case, walls from 9–16 m show lower costs 

in 10º and 20º angles compared to a wall-fill friction angle of 0º. In this case, the wall-fill friction angles of 

10º and 20º show an average cost reduction in the highest walls (i.e. 9–16 m) of 6% and 9% respectively, 

compared to passive earth pressure angle 0º. In the shortest walls, the differences in cost are barely 1% for 

an angle of passive pressure of 10º, and 2% for an angle of 0º. The results explain the preference in project 

design for wall-fill friction angles different to 0º as the height increases. However, the most relevant factor 

that affects this parameter is the roughness of the wall surface, usually considered smooth. Design based 

on angles different to 0º is generally not justified; therefore the parametric design in this study considers 

0º. A conservative passive earth pressure angle of 0º is taken so as to ignore such pressure in front of the 

toe. 

An influential factor in retaining walls is the safety against overturning. A value of 1.8 is generally used as 

a safety coefficient against overturning. Using this coefficient of overturning, the condition factors obtained 

for this study remain between 1.07–2.49. Note that a factor of one implies strict compliance. Such a range 

reveals that overturning is not a major constraint for optimum walls. On the other hand, safety against 

sliding is a greater constraint. Considering a safety coefficient against sliding of 1.5, the range of sliding 

factors obtained barely exceeds one. This indicates that safety against sliding is relevant for optimum walls, 

compared to the overturning constraint.  
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6. Design parametric study 

The design parametric study shows the variation of relevant variables according to the fill, height and 

bearing capacity of the foundation. This approach enables to investigate the sensitivity of the solution to 

these parameters. It gives rise to general recommendations that can be useful for the day-to-day design of 

buttressed earth-retaining walls with a restrictive cost at early design stages. A set of 13 wall heights ranging 

from 4–16 m are studied. Besides the total height, the parameters considered are the maximum bearing 

pressure for serviceability conditions h; considering 0.2, 0.3 and 0.4 MPa and the types of fill F1, F2 and F3 

respectively defined in Table 3. All parameters considered account for a set of 117 different wall 

combinations performed nine times for statistical validity. A total of 1053 walls were calculated. The 

remaining relevant parameters described in Section 5 are considered constant values, as described in Table 

6. MATLAB software was used in an Intel Core i5 processor at 3.6 GHz. An average of 12.5 minutes was 

necessary for each iteration.  

Fig. 9 shows the cost variation for a total of 117 walls studied based on averaged values. The cost results 

are sensitive to the soil foundation bearing capacity in all types of fills in a different manner as the height 

increases. Coarse granular fills F1 and fine soils of low plasticity F3 exhibit greater sensitivity than mixed 

soils F2. An average increment of cost of 10.15% in F1 is observed, between grounds of 0.2 and of 0.4 MPa 

maximum bearing pressure, followed by 9.72% and 4.80% in F3 and F2, respectively. Note that such 

increments correspond to average values for walls taller than 10 m, the height from which differences in 

cost become relevant. Concerning the practical use, fill F2 and 0.2 MPa presents a parabolic expression 

equal to 13.946x2 - 61.459x + 373.59 with a value for R² equal to 0.9995. The expression 16.837x2 - 61.039x 

+ 332.92 with R² equal to 0.9982 explains the increment for the most economic solutions that correspond 

to fill F3 (granular soil with fines) with σ equal to 0.2 MPa. Results show that the maximum bearing pressure 

is one of the main key parameters affecting the cost of optimum walls mainly in coarse granular fills F1 and 

F3 and less in F2. 

Table 7 summarizes the features of the best solutions for a 7 m height in F1. The best cost solution C 

corresponds to 0.3 MPa. As regards the buttresses, the minimum results show that thickness of the stem b 

and the footing c are unaffected by the bearing capacity considered. As for the distance between buttresses 

d, the most economical solution grants a larger distance between buttresses. The toe for the case of 0.2 MPa 

maximum bearing pressure has a slightly longer toe p than the 0.3 and 0.4 MPa counterparts. It is worth 

noting that the optimal solution in 0.4 MPa implies a shorter heel with a thicker footing height c. The 
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amount of reinforcement in the stem (Rst), is similar in the three bearing capacities. However, in this specific 

case the footing exhibits a 42% greater steel amount (Rft) in 0.2 MPa grounds than in 0.3 MPa grounds, 

while 0.4 MPa grounds present 15% greater amount than in 0.3 MPa. As expected, the ratio of steel 

reinforcement per cubic meter of concrete in the whole wall (wst) rises as the bearing capacity decreases. 

Table 8 depicts the mean values of the three bearing capacities and the difference in cost respect to the 0.4 

MPa ground. It can be seen that the greatest differences of σ are obtained from 11 meters’ height and above. 

This can be explained by a greater demand for stability in the lowest maximum bearing pressure considered 

(0.2 MPa), as the length of the footing (heel, p + toe, t) is only slightly larger (see Table 7).  

Fig. 10 shows the variation in the total volume of concrete per linear meter for the interval of heights of the 

retaining wall. The results show the increment in volume of concrete between F1 F2, and F3 fills with the 

height. The type of concrete obtained for the best solutions is 25 MPa. For a minimum cost solution, there 

is a need for higher amount of concrete in F3 fill types as its condition of low plasticity soil. The parabolic 

expression for F3 fill type and 0.4 MPa maximum bearing pressure adjusts to 0.1039x2 - 0.2543x + 0.7447 

with R² = 0.9909. The rest of h	exhibit a less accurate adjustment in walls from 12–16 m height. Fills F1 

and F2 present less accuracy in trend as the use of greater ratio of steel per m3 becomes necessary in the 

cross-section of the highest walls. The variation adjusts to the parabolic curves for the nine cases studied. 

The volume of concrete for the lower cost corresponds to fill type F1 and 0.4 MPa, as expected, and adjusts 

to 0.0689x2 - 0.2526x + 1.4274 with R² = 0.9923. 

Fig. 11 illustrates the variation of thickness of the stem, for the range of heights studied. Values show almost 

negligible variation of the thickness for the lowest stem belonging to the lowest walls, for the different type 

of fill and ground stress. The average values show a linear variation in the range of 6–10 m height and 

adjusts to the expression y = 0.0201x + 0.1212. Thickness values range from 0.25–0.57 m. Conversely, 

granular soils F2 and fine soils F3 allow for thinner stems than do F1. Values range from 0.25–0.3 m in F2 

and up to 0.45 m in F3. 

Fig. 12 shows the variation of thickness of the footing. Similar to cantilever retaining walls, the footing of 

buttressed walls generally adopts a thickness between 1/12–1/10 of the wall height, according to Calavera’s 

recommendations [33]. Values decrease from a uniform value of 0.30 m for all types of fill in the shortest 

walls to up to 0.90–1.11 m in higher walls, subject to the type of fill. The general trend shows that higher 

walls exhibit a relative decrease of thickness per meter of height. Higher values correspond to fills F1 
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showing little difference subject to the maximum bearing pressure. The types of fill F2 and F3 show similar 

values for h. The expression for F3 equals to 0.0585x + 0.2909. Walls between 4–6 m height exhibit similar 

footing thickness, as there is a minimum thickness required for bending and shear stress constraints. 

Fig. 13 outlines the total length of the footing. The length on average in fill F1 exhibits relevant differences 

for all the heights subject to the three bearing capacities studied. Such differences range up to almost 2 m 

length between 0.2–0.3 MPa. The proportion of the toe increases as the height increases, due to more 

demanding ground stress conditions. It is worth noting the difference for 0.2 MPa ground stress compared 

to the 0.3 and 0.4 MPa cases, as a way to adapt to lower foundation stresses. The length of the footing in 

fill ijshows an increasing difference as the height increases. Values range from 1.05–7.60 m in F3. The 

average function adjusts to 0.0296x2 + 0.1985x - 0.31 with 3�= 0.998.  All fill types exhibit greater 

sensitivity of the length of the footing to the maximum bearing pressure. It is worth noting the influence of 

fill F2 for slip resistance as greater length of the footing is required in 0.2 MPa grounds. The expression 

now equals 0.0602x2 - 0.3442x + 1.4642 with a regression coefficient of 0.9914. Considering such values, 

fill type F1 requires larger sizes of footing than do F2 and F3, 24% and 9% respectively. It is observed that 

the length of the toe in the footing is clearly longer for 0.2 MPa maximum bearing pressure compared to 

the 0.3–0.4 MPa cases with regard to adaptation to lower ground stresses. 

As regards the thickness of the buttresses, walls are more toe-heel compensated and require less thickness 

for the buttresses in fill type F1, which results in similar cost solutions. Fig. 14 depicts the thickness of the 

buttresses, ec, which remains in the interval of 0.25–0.30 m. It is worth noting that fill F1 exhibits a 

decreasing thickness for 0.4 MPa grounds, as the distances among buttresses are shorter in F1. Fig. 15 shows 

that the distance between buttresses obtained is influenced by the bearing capacity of the foundation as the 

height rises. The distance adapts to the recommended values of 1/3H to 1/2H, adopted in the usual practice 

according to Calavera [33] for walls under 10 m. The higher walls can be narrowed to shorter distances; a 

stricter boundary defined by the expression y=0.378x+0.8 as upper bound and y=0.19x+1.15 as lower 

bound. These boundaries narrow the recommendation to an interval between 1/5H and 1/3H. 

Fig. 16 shows the variation of steel used per volume of concrete in the wall for the three types of fill and 

all the heights studied. All results used type of steel B500S. Values range from 30–80 kg/m3 of 

reinforcement. Fig. 17 shows the variation of steel used per volume of concrete in the stem, including the 

buttress. The linear performance obtained is worth noting in the ratio of reinforcement of the stem, 

compared to that in the footing (Fig. 18). The type of fill F1 in 0.2 MPa grounds exhibits a steadier linear 
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progression in the reinforcement ratio of the footing (equal to 7.1043x - 5.1616) than in the stem (y=3.2959x 

+ 11.459). The values of all the ratios fall in the range of 30–65 kg/m3 in the stem and between 20–100 

kg/m3 in the footing.  

Analysis of the ratio of kg of steel per volume of concrete for the stem and the footing concluded that the 

type of fill affects differently the ratio of reinforcement needed in each part of the wall. Therefore, 

considering the whole wall, the ratio exhibits a difference between types of fill. Walls in F1 need for a higher 

rate of reinforcement than F2 and F3 both in the stem and the footing. The fill F3 has a ratio of 42 against 

the fill F1 with a ratio 48 in the whole wall. On the other hand, F3 shows a more balanced ratio between the 

stem and the footing, with a difference of 8%, while F1 shows a difference of 16%. 

It worth noting that the dimensions of the wall can be reduced compared to the usual rules in professional 

practice. Optimized feasible walls can reach lower values for the thickness of the footing than the 

dimensioning values 1/12H and 1/10H prescribed by Calavera [33]. As for the distance between buttresses 

and same objective, the highest walls could be straightened by shorter distances between buttresses than 

the values proposed by Calavera [33]; a narrower boundary between 1/5H and 1/3H can be achieved (Fig. 

15). 

7. Conclusions 

A hybrid harmony search (HSTA) algorithm is used for optimizing the cost of buttressed earth-retaining 

walls. The calibration of the variables involves a variation of variables of 30% and a harmony memory size 

of 200 initial solutions. From the starting 800 solutions, the first quartile of 200 best solutions is taken. This 

first filter allows us to extract a good set of solutions to begin with. The algorithm includes a threshold 

accepting strategy that improves solutions by incremental cost reduction for the final accepted solution. 

The results show that the base friction coefficient as well as the wall-fill friction angle are crucial factors 

affecting the design. A 30 tangent value for the base friction and a 0 wall-fill friction angle was used for a 

design parametric study with a set of 13 wall heights. This study shows the variation of relevant variables 

according to the fill, height and bearing capacity of the foundation. Optimum walls depict a good parabolic 

correlation with the total height of the wall. Average expressions for the cost, the total volume of concrete, 

as well as the relevant geometric variables were derived, which can be useful for the day-to-day design of 

buttressed walls. In that sense, the analysis reveals that the dimensions of the thickness of the footing can 

be reduced compared to the usual rules in professional practice. Thus, upper bounds of 1/15H and 1/20H 
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for the thickness are proposed with a cost objective. The highest walls could be straightened by shorter 

distances between buttresses than the values used usually as practical rules; a narrower boundary between 

1/5H and 1/3H can be achieved. The cost results are sensitive to the maximum bearing pressure for each 

type of fill in a different manner as the height increases. The ratio of reinforcement per volume of concrete 

for the whole wall and each single part is a relevant number for the comparison among other types of 

retaining walls. To conclude, the methodology described is flexible and open to further modifications and 

extensions, so that costs can be reduced in RC structural designs. However, designing real RC structures is 

a complex process that still requires engineering judgment. Future research using the algorithm might 

include a sensitivity analysis of more parameters and a comprehensive analysis of additional constraints, 

such as different distributions of ground-bearing pressures and full slip-circle analysis and other earth 

retaining structures, such as mechanically stabilized earth walls.  
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Notation U stem thickness � footing thickness ℎ stem height 
� wall measurement � toe length �� unit prices � uniform surface loading on top of the fill R heel length 
z footing length �< total volume of concrete  ��	,…,�F design variables k length of the footing g�, … , g�� reinforcement variables 
Rst reinforcement of the stem 
Rft reinforcement of the footing 3! total weight of steel L wall cost i objective function i�, i�, ij types of fills � total height of the wall �� foundation depth ��� moment reaction at the base of the wall 
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��" total favorable overturning moment f( , l, m) earth pressure f) passive earth pressure on the toe n Surface loading on top of the fill 
α angle slope of the buttress   density of the fill  �o safety coefficient against sliding  �� safety coefficient against overturning l internal friction angle m wall-fill friction angle h maximum bearing pressure  4 base-friction coefficient 
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Table 1. Unit costs 
 

Unit Cost (€) 
m3 of concrete HA-25 in stem 56.66 
m3 of concrete HA-30 in stem 60.80 
m3of concrete HA-35 in stem 65.32 
m3 of concrete HA-40 in stem 70.41 
m3 of concrete HA-45 in stem 75.22 
m3 of concrete HA-50 in stem 80.03 
m3 of concrete HA-25 in foundation 50.65 
m3 of concrete HA-30 in foundation 54.79 
m3 of concrete HA-35 in foundation 59.31 
m3 of concrete HA-40 in foundation 64.40 
m3 of concrete HA-45 in foundation 69.21 
m3 of concrete HA-50 in foundation 74.02 
kg of steel B400S 0.56 
kg of steel B500S 0.58 
m3 stem formwork 21.61 
m2 of foundation formwork 18.03 
m2 of earth removal 3.01 
m3 front in-fill 4.81 
m3 of backfill 5.56 

 
 
 
Table 2. Design variables 

Variables   Lower Bound Increment 
Upper bound 

(cm) 
Nº of 
values 

c  H/20 5 cm H/5 f(H)*  
b  25 cm 2.5 cm 122.5 40 
p  20 cm 10 cm 610 60 
t  20 cm 15 cm 905 60 
ec  25 cm 2.5 cm 122.5 40 
d  H/5 cm 5 cm 2H/3 f(H)* 
fck  25, 20, 25, 40, 45, 50   7 
fyk  400, 500   2 

A1 to A10 ∅∅∅∅ 
6, 8, 10, 12, 16, 20, 

25, 32  

 
8 

n 1 steel rebar 2 rebars 12 rebars 6 

A11 to A12 
∅∅∅∅ 

6, 8, 10, 12, 16, 20, 
25, 32 

  8 

n 1 steel rebar 4 rebars 10 rebars 7 
*Number of values depends on the height 

 

Table 3. Types of fill considered (density and internal friction angles) 
 

Type of fill Description Density q 
(kN/m3) 

Internal friction 
angle r (º) 

F1 Coarse granular fill (GW, GP) 22 35 

F2 Granular soils with more than 12% fines (GW, GS, SM, SL) and fine 
soils with more than 25% coarse grains (CL-ML) 

20 30 

F3 Fine soils of low plasticity with less than 25% coarse grains (CL-
ML) 

18 24 
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Table 4. Calibration of HSTA parameters 
 

HMS nHMS HMCR HMP PAR TI P var IWI 
30 3 0.6 0.6 0.2 200 0.1 50 
50 4 0.7 0.7 0.4 500 0.2 100 
100 5 0.8 0.75 

 
1000 0.3 150 

200 
 

0.85 0.8 
 

5000 0.4 200 
300 

 
0.9 0.9 

  
0.5 300 

 

Table 5. Best performing results 
 

HMS nHMS HMCR HMP PAR TI Pvar IWI Cost reduction in TA Aver age(€) Standard 
Deviation (€) 

200 4 0.8 0.1 0.2 1000 0.3 150 5% 1096.93 11.43 
300 4 0.85 0.9 0.2 5000 0.1 500 5% 1080.91 14.97 
300 4 0.85 0.2 0.2 1000 0.1 500 1% 1083.30 19.75 
200 4 0.7 0.6 0.2 5000 0.4 300 1% 1063.80 8.47 
200 4 0.8 0.9 0.2 1000 0.3 300 1% 1094.88 8.34 

 

Table 6. Fixed parameters for the design parametric study 

Design parameters Value 
Fill slope, β  0 

Foundation depth, H2 2 m 

Uniform load on top of the fill, γ 10 kN/m2 

Wall-fill friction angle, δ 0º 

Base-friction coefficient, µ tg 30º 

Safety coefficient against sliding, γfs 1.5 

Safety coefficient against overturning, γfo 1.8 

EHE safety coefficient for loading  Normal 

ULS safety coefficient of concrete 1.5 

ULS safety coefficient of steel 1.15 

EHE ambient exposure IIa 

 

Table 7. Comparison of results for H = 7 and fill F1 

 

 
Maximum bearing pressure 

 
0.2 MPa  0.3 MPa 0.4 MPa 

Average Cost (€) 667.39 639.23    650.82    

Best cost(€) 643.77    618.76    628.73    

b (m) 0.25 0.25 0.25 

c (m) 0.37 0.36 0.38 

p (m) 0.46 0.2 0.57 

t (m) 1.40 1.38 1.07 

ec (m) 0.25 0.25 0.63 

d(m) 2.98 3.14 2.85 

Rst(kg) 71.10    74.0    71.20    

Rft(kg) 47.60    27.50    32.50    

Rt (kg/m) 38.29    34.40    32.83    
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Table 8. Cost results in fill F1  
 

H (m) 0.2 MPa 
Difference 
with 0.4 MPa 

0.3 MPa 
Difference 
with0.4 MPa 

0.4 MPa 

4 318.17 -1.14% 322.20 0.13% 321.79 

5 413.98 1.60% 414.13 1.64% 407.34 

6 527.38 0.25% 520.32 -1.10% 526.06 

7 667.40 2.48% 639.23 -1.81% 650.82 

8 800.11 0.93% 790.92 -0.22% 792.64 

9 942.23 1.37% 934.14 0.52% 929.30 

10 1,110.31 0.20% 1,155.78 4.12% 1,108.11 

11 1,406.45 9.44% 1,297.39 1.83% 1,273.66 

12 1,615.51 5.38% 1,608.24 4.95% 1,528.57 

13 1,874.23 7.96% 1,806.85 4.53% 1,725.02 

14 2,301.57 12.29% 2,172.99 7.09% 2,018.82 

15 2,602.19 14.07% 2,501.85 10.63% 2,235.93 

16 2,955.75 11.76% 2,835.09 8.00% 2,608.30 

 

 

 

Fig. 1. Earth-retaining wall with buttresses. Floor plan 
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Fig. 2. Reinforcement variables for the design of earth-retaining walls. Elevation. Source: Yepes et al. 
(2015) 
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Fig. 3. Dimensions of a buttressed wall 

 

 

 

 

Fig. 4. HSTA flowchart 
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Fig. 5. Typical cost variation for hybrid harmony search (HSTA) 

 

 

 

 

Fig. 6. Cost Variation for different base-friction angles in fill F2 and 0.3 MPa maximum bearing pressure 
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Fig. 7. Cost variation for different wall-fill friction angles. 10º angle of passive pressure  
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Fig. 8. Cost variation for different wall-fill friction angles.0º angle of passive pressure 
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Fig. 9. Cost variation for different wall-fill friction conditions 

 

 

 

Fig. 10. Variation of volume of concrete per linear meter  
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Fig. 11. Variation of thickness of the stem 

 

 

 

Fig. 12. Variation of thickness of the footing compared to Calavera’s recommendations  
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Fig. 13. Variation of length of the footing  

 

 

 

 

Fig. 14. Variation of thickness of the buttresses 
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Fig. 15. Variation of the distance between buttresses, compared to Calavera’s recommendations 

 

 

 

Fig. 16. Variation of ratio of the amount of steel per volume of concrete in the wall 
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Fig. 17. Variation of ratio the amount of steel per volume of concrete in the stem 

 

 

Fig.18. Variation of ratio the amount of steel per volume of concrete in the footing 

 


