NORMAL SUBGROUPS WHOSE CONJUGACY CLASS GRAPH HAS DIAMETER THREE.

Antonio Beltrán
Departamento de Matemáticas,
Universidad Jaume I, 12071 Castellón, Spain
e-mail: abeltran@mat.uji.es

María José Felipe
Instituto Universitario de Matemática Pura y Aplicada,
Universidad Politécnica de Valencia, 46022 Valencia, Spain
e-mail: mfelipe@mat.upv.es

Carmen Melchor
Departamento de Educación,
Universidad Jaume I, 12071 Castellón, Spain
e-mail: cmelchor@uji.es

Abstract
Let G be a finite group and N a normal subgroup of G. We determine the structure of N when the graph associated to the G-conjugacy classes contained in N has diameter three.

Keywords. Finite groups, conjugacy classes, normal subgroups, graphs.

Mathematics Subject Classification (2010): 20E45, 20D15.

1 Introduction
Let G be a finite group and let N be a normal subgroup of G and let $x \in N$. We denote by $x^G = \{x^g \mid g \in G\}$ the G-conjugacy class of x. Let $\Gamma_G(N)$ be the graph associated to these G-conjugacy classes, which was defined in [2] as follows: its vertices are the G-conjugacy classes of N of cardinality bigger than 1, that is, G-classes of elements in $N \setminus (\mathbb{Z}(G) \cap N)$, and two of them are joined by an edge if their sizes are not coprime. It was proved in [2] that $d(\Gamma_G(N)) \leq 3$ where $d(\Gamma_G(N))$ denotes the diameter of the graph. In this paper we analyze
the structure properties of N when $d(\Gamma_G(N)) = 3$.

The above graph extends the ordinary graph, $\Gamma(G)$, which was formerly defined in [3], whose vertices are the non-central conjugacy classes of G and two vertices are joined by an edge if their sizes are not coprime. The graph $\Gamma_G(N)$ can be viewed as the subgraph of $\Gamma(G)$ induced by those vertices of $\Gamma(G)$ which are vertices in $\Gamma_G(N)$. This fact does not allow to obtain directly properties of the graph of G-classes.

Concerning ordinary classes, L.S. Kazarin characterizes in [7] the structure of a group G having two “isolated classes”. Remember that a group G has isolated conjugacy classes if there exist elements $x, y \in G$ with coprime conjugacy class sizes such that every element of G has conjugacy class size coprime to either $|x^G|$ or $|y^G|$. Particularly Kazarin determined the structure of the groups G with $d(\Gamma(G)) = 3$. It should be noted that similar results have also been tested for other graphs. In [5], Dolfi defines the graph $\Gamma'(G)$ whose vertices are the elements of the set of all primes which occur as divisors of the lengths of the conjugacy classes of G, and two vertices p, q are joined by an edge if there exists a conjugacy class in G whose length is a multiple of pq. In [6] Dolfi and Casolo describe all finite groups G for which $\Gamma'(G)$ is connected and has diameter three.

We have to remark that the primes dividing the G-conjugacy class sizes not necessarily divide $|N|$, it can occur the case when N is abelian and it is non-central in G and consequently we have not control on these primes. For this reason, we observe that new cases appear when we work with G-classes which are not contemplated in the ordinary case. The main result of this paper is the following theorem. From now on, if H is a subgroup of a finite group G we denote by $\pi(H)$ the set of primes dividing $|H|$.

Theorem A. Let G be a finite group and $N \trianglelefteq G$. Suppose that x^G and y^G are two non-central G-conjugacy classes of N such that any G-conjugacy of G has size coprime with $|x^G|$ or $|y^G|$. Let $\pi_x = \pi(|x^G|)$, $\pi_y = \pi(|y^G|)$ and $\pi = \pi_x \cup \pi_y$. Then, $N = O_{\pi}(N) \times O_{\pi}(N)$ with $x, y \in O_{\pi}(N)$ which is a quasi-Frobenius group with abelian kernel and complement or $O_{\pi}(N) = P \times A$ with $A \leq Z(N)$ and P a p-group for a prime p.

Notice that in the conditions of Theorem A if $d(\Gamma_G(N)) \leq 2$ it follows that the graph is disconnected and the structure of N is determined in Theorem E of [2]. Consequently, $d(\Gamma_G(N)) = 3$ and we obtain the following result.

Corollary. Let G be a finite group and $N \trianglelefteq G$. Suppose that $\Gamma_G(N)$ is connected and $d(\Gamma_G(N)) = 3$. Let us consider $x, y \in N$ such that $d(x^G, y^G) = 3$. Set $\pi = \pi(|x^G|) \cup \pi(|y^G|)$. We have that $x, y \in O_{\pi}(N)$, $N = O_{\pi}(N) \times O_{\pi}(N)$ with $O_{\pi}(N)$ a quasi-Frobenius group with abelian kernel and complement or $O_{\pi}(N) = P \times A$ with $A \leq Z(N)$ and P a p-group for a prime p.

2
Proof. It follows immediately by Theorem A. □

Proofs of these results are based on the techniques appeared in [7] although we do not use them in ours. When \(N = G \) we obtain the result of Kazarin.

2 Proof of Theorem A

First, we show three elementary results necessary to prove the main theorem.

Lemma 1. Let \(G \) a \(\pi \)-separable group. Then the conjugacy class length of every \(\pi \)-element of \(G \) is a \(\pi \)-number if and only if \(G = H \times K \), where \(H \) and \(K \) are a Hall \(\pi \)-subgroup and a \(\pi \)-complement of \(G \), respectively.

Proof. This is Lemma 8 of [1].

In the particular case in which \(\pi = p' \), the complement of some prime \(p \), the above Lemma is true without assuming \(p \)-separability (which is equivalent to \(p \)-solvability).

Lemma 2. If, for some prime \(p \), every \(p' \)-element of a group \(G \) has index prime to \(p \), then the Sylow \(p \)-subgroup of \(G \) is a direct factor of \(G \).

Proof. This is Lemma 1 of [4].

Lemma 3. Let \(G \) be a finite group and \(N \leq G \). Let \(B = b^G \) and \(C = c^G \) be two non-central \(G \)-conjugacy classes of \(N \). If \((|B|,|C|) = 1 \). Then

a. \(C_G(b)C_G(c) = G \).
b. \(BC = CB \) is a non-central \(G \)-class of \(N \) and \(|BC| \) divides \(|B||C| \).
c. Suppose that \(d(B,C) \geq 3 \) and \(|B| < |C| \). Then \(|BC| = |C| \) and \(CBB^{-1} = C \). Furthermore, \(C\langle BB^{-1} \rangle = C \langle BB^{-1} \rangle \subseteq \langle CC^{-1} \rangle \) and \(|\langle BB^{-1} \rangle| \) divides \(|C| \).

Proof. This is Lemma 2.1 of [2].

Proof of Theorem A. We proceed by induction on \(|N| \). Notice that the hypotheses are inherited by every normal subgroup in \(G \) which is contained in \(N \) and contains \(x \) and \(y \). By using the primary decomposition we can assume that \(x \) and \(y \) have order a power of two primes, say \(p \) and \(q \), respectively.

Step 1. \(q = p \) if and only if \(xy = yx \).

Suppose that \(xy = yx \) and that \(p \neq q \). Observe that \(C_G(xy) = C_G(x) \cap C_G(y) \) and consequently, \(|x^G| \) divides \(|(xy)^G| \) and \(|y^G| \) divides \(|(xy)^G| \). Thus, we
obtain a G-conjugacy class connected with x^G and y^G, which is a contradiction by hypotheses. Conversely, suppose that $p = q$. We know that p cannot divide either $|x^G|$ or $|y^G|$. Furthermore, the hypotheses imply that $(|x^G|, |y^G|) = 1$, so we have $G = C_G(x)C_G(y)$ and $|x^G| = |G : C_G(x)| = |C_G(y) : C_G(x) \cap C_G(y)|$. Now, since y is a p-element in $\mathbb{Z}(C_G(y))$, we deduce that $y \in C_G(x) \cap C_G(y)$ and hence $xy = yx$.

Step 2. $p, q \in \pi$.

We define $K = C_G(x) \cap C_G(y)$. First, we assume that $p \neq q$ and $xy \neq yx$. We have $|G : K| = |G : C_G(x)||C_G(x) : C_G(x) \cap C_G(y)| = |x^G||y^G|$, which is a π-number. Since $x \in \mathbb{Z}(C_G(x))$ and x is a p-element but $x \notin K$, we know that p divides $|C_G(x) : K| = |y^G|$. This means that $p \in \pi_y$. Similarly we obtain that q divides $|x^G|$, that is, $q \in \pi_x$. Consequently, $p, q \in \pi$.

Suppose now that $p = q$ and $xy = yx$. Let us see that $p \in \pi$. We denote $X = x^G$ and $Y = y^G$ and we assume for instance that $|X| > |Y|$. By hypothesis, the distance between X and Y in $\Gamma_G(N)$ is 3. We can apply Lemma 3(c) and we obtain $X(YY^{-1}) = X$, $YY^{-1} \subseteq XX^{-1}$ and $|\langle YY^{-1} \rangle|$ divides $|X|$. On the other hand, since $G = C_G(x)C_G(y)$ we have $X \subseteq C_G(y)$. As a result, $YY^{-1} \subseteq XX^{-1} \subseteq C_G(y)$. In particular, if we take $z = y^g \neq y$, for some $g \in G$, we have $w = zy^{-1} \in YY^{-1} \subseteq C_G(y)$, so $[z, y] = 1$. We obtain that w is a non-trivial p-element and, since p divides $|YY^{-1}|$, which divides $|X|$, we conclude that $p \in \pi_x$. If $|Y| > |X|$ we can argue similarly to get $p \in \pi_y$.

Step 3. We can assume that $N/\mathbb{Z}(N)$ is neither a p-group nor a q-group (particularly, we can assume that N is not abelian).

As we have said at the beginning, x is a p-element and y is a q-element. Suppose that $N/\mathbb{Z}(N)$ is a p-group (the reasoning is analogous if we suppose that it is a q-group). Hence we can write $N = P \times A$ where $A \leq \mathbb{Z}(N)$ and A is a p'-group. If $p \neq q$, it follows that $x \in P$ and $y \in A$, which leads to a contradiction with Step 1. Thus, $p = q$ and $x, y \in P$, so the theorem is proved.

Step 4. We can suppose that N is not a π-group.

Let us see that if N is a π-group, then N is a quasi-Frobenius group with abelian kernel and complement or $N = P \times A$ with $A \leq \mathbb{Z}(N)$ and A a p'-group. Assume that N is a π-group. As N is non-abelian by Step 3, there exists a conjugacy class z^N such that $|z^N| \neq 1$. Since $|z^N|$ divides $|z^G|$, then either $(|z^N|, |x^G|) = 1$ or $(|z^N|, |y^G|) = 1$. Thus, $|z^N|$ is either a π_x-number or a π_y-number. If $\Gamma(N)$ is disconnected, we know by Theorem 2 of [3] that N is quasi-Frobenius group with abelian kernel and complement. Moreover, $\Gamma(N)$ cannot be empty since by Step 3, we can assume that N is not abelian. Consequently, we can assume that $\Gamma(N)$ is connected and this forces to either $|x^N| = 1$ or $|y^N| = 1$. Suppose for instance that $|x^N| = 1$, that is, $x \in \mathbb{Z}(N)$.
By Step 3 we can take w an s-element of $N \setminus Z(N)$ with $s \neq p$. Observe that $|w^N|$ must be a p-number, so w^G is connected to y^G in $\Gamma_G(N)$. Since x and w have coprime orders and $x \in Z(N)$ we have that $|w^G|$ and $|x^G|$ both divide $|(wx)^G|$. As a consequence, we have a contradiction because $|(wx)^G|$ has primes in π_x and π_y. Then we can suppose that N is not a π-group.

Step 5. Conclusion in case $p \neq q$.

Let z be a π'-element of $K \cap N$ and let us prove that $|z^G|$ is a π'-number. Suppose that $s \in \pi$ is a prime divisor of $|z^G|$. We can assume for instance that $s \in \pi_x$, otherwise we proceed analogously. Since $|z^G|$ divides $|(zx)^G|$ we obtain that s divides $|(zx)^G|$. On the other hand, we know by the proof of Step 2 that $q \in \pi_x$. Therefore, $|(zx)^G|$ is divisible by primes in π_x and π_y, a contradiction. Consequently, $s \notin \pi$ and $|z^G|$ is a π'-number, as wanted.

Let M be the subgroup generated by all π'-elements of $K \cap N$. Note that $M \neq 1$, otherwise $K \cap N$ would be a π-group and, since $|N : K \cap N| = |KN : K|$ divides $|G : K|$, which is a π-number too, then N would be a π-group, a contradiction with Step 2. Let us prove that $M \leq G$. Let α be a generator of M, so $|\alpha^G|$ is π'-number. Since $|(G : K|, |\alpha^G|) = 1$ we have $G = K\langle \alpha \rangle$ and hence, $\alpha^G = \alpha^K \subseteq K \cap N$. Therefore, $\alpha^G \subseteq M$, as wanted.

Let $D = \langle x^G, y^G \rangle$. Notice that $D \leq G$ and $D \subseteq N$. Let α be a generator of M. As we have proved that $|\alpha^G|$ is π'-number, then $|(\alpha^G, |x^G|) = 1$, so $G = C_G(x)C_G(\alpha)$. Thus, $x^G = x^{C_G(\alpha)} \subseteq C_G(\alpha)$ because $\alpha \in K$. The same happens for y, that is, $y^G \subseteq C_G(\alpha)$, so we conclude that $[M, D] = 1$.

We define $L = MD$ and we distinguish two cases. Assume first that $L < N$. Note that $x, y \in L \leq G$ and L trivially satisfies the hypotheses of the theorem. By applying induction to L we have in particular $L = O_\pi(L) \times O_{\pi'}(L)$. Observe that the fact that $M \neq 1$ implies that $O_{\pi'}(L) > 1$. Now, by definition of M, we have that $|K \cap N : M|$ is a π-number. As $|N : K \cap N|$ is also a π-number, it follows that $|N : O_{\pi'}(L)|$ is a π-number too. Then, $O_{\pi'}(L) = O_{\pi'}(N)$ is a Hall π'-subgroup of N. We can apply Lemma 1 so as to conclude that $N = O_\pi(N) \times O_{\pi'}(N)$ with $x, y \in O_\pi(N)$. Since $O_{\pi'}(N) > 1$, we apply the inductive hypotheses to $O_\pi(N) \leq N$ and we deduce that $O_\pi(N)$ is a quasi-Frobenius group with abelian kernel and complement or $O_\pi(N) = P \times A$ with $A \leq Z(N)$ and P is a p-group so the theorem is finished.

From now on, we assume that $L = N$ and let us see that $Z(N) = 1$. Otherwise, we take $\overline{N} = N/Z(N)$ and $\overline{G} = G/Z(N)$. If $|\overline{x}| = 1$, then $|\overline{x}, \overline{y}| = 1$, and thus $[x, y] \in Z(N)$. Since $(o(x), o(y)) = 1$, it is easy to prove that $[x, y] = 1$, a contradiction. Analogously, we have $|\overline{y}| \neq 1$. Consequently, \overline{N} satisfies the assumptions of the theorem. By induction, we have $\overline{N} = O_{\pi'}(\overline{N}) \times O_{\pi}(\overline{N})$ with $\overline{x}, \overline{y} \in O_{\pi}(\overline{N})$ and $O_{\pi}(\overline{N})$ is either a quasi-Frobenius group with abelian kernel
and complement or $\overline{N} = \overline{P} \times \overline{A}$ with $\overline{A} \leq Z(\overline{N})$ and \overline{P} a p-group. In the latter case, $[\overline{y}, \overline{x}] = 1$ which leads to a contradiction as we have seen before. So we are in the former case. It follows that $N = O_{\pi}(N) \times O_\pi(N)$ with $x, y \in O_\pi(N)$ and by applying induction to $O_\pi(N) < N$, we have the result. Therefore, $Z(N) = 1$. On the other hand, we have proved that $[M, D] = 1$. Thus $M \cap D \subseteq Z(N) = 1$ and $N = M \times D$ with $x, y \in D$. Since $M \neq 1$, we can apply induction to D and we get $D = O_{\pi}(D) \times O_\pi(D)$ with $x, y \in O_\pi(D)$ and $O_\pi(D)$ is a Frobenius group with abelian kernel and complement (notice that $Z(O_\pi(D)) = 1$ because $Z(N) = 1$). The p-group case cannot occur because x and y do not commute. Notice that if M is a π'-group then the theorem is proved. Assume then that M is not a π'-group and we will obtain a contradiction. Let $s \in \pi$ such that s divides $|M|$. We can assume that $s \in \pi_x$ (we proceed analogously if $s \in \pi_y$). Suppose that there exists an s'-element $z \in M$ such that $|z^M|$ is divisible by s. Since N is the direct product of M and D, we have that $(zy)^N = z^Ny^N$ is a non-trivial class of N whose size is divisible by s and by some prime of $|y^N| \neq 1$. This is not possible because $|(zy)^G|$ would have primes in π_x and π_y. Thus, the class size of every s'-element of M is a s'-number. It is known that $M = M_1 \times S$ with $S \in Syl_\pi(M)$. In this case, $Z(S) \subseteq Z(N) = 1$, a contradiction.

Step 6. Conclusion in case $p = q$.

Let $K = C_G(x) \cap C_G(y)$ as in Step 2. Let z be a p'-element of $K \cap N$ and let us prove that $|z^G|$ is a π'-number. Suppose that $s \in \pi$ is a prime divisor of $|z^G|$. We can assume for instance that $s \in \pi_y$, otherwise we proceed analogously. Since $|z^G|$ divides $|(zx)^G|$ we obtain that s divides $|(zx)^G|$. On the other hand, we know by the proof of Step 2 that $q \in \pi_x$. Therefore, $|(zx)^G|$ is divisible by primes in π_x and π_y, a contradiction. Consequently, $s \not\in \pi$ and $|z^G|$ is a π'-number, as wanted.

Let T be the subgroup generated by all p'-elements of $K \cap N$. We have that $T \neq 1$ because otherwise $K \cap N$ would be a π-group and this implies that N is a π-group as in Step 5, a contradiction. Let us prove that $T \subseteq G$. If α is a generator of T, we know that $|\alpha^G|$ is a π'-number. Then $|\alpha^G| = 1$, so we have $G = K C_G(\alpha)$ and $\alpha^G = \alpha^K \subseteq K \cap N$. Therefore, $\alpha^G \subseteq T$ as wanted.

Since the class size of every p'-element of T is a p'-number then, by Lemma 2, $T = O_p(T) \times O_{p'}(T)$. However, by definition of T, we have $O_p(T) = 1$, or equivalently $M = O_{p'}(T)$. Now, notice that if $s \in \pi$ and $s \neq p$, then the class size of every element of T is an s'-number so, it is well known that T has a Sylow s-subgroup central and we can write $T = O_{\pi}(T) \times O_\pi(T)$. On the other hand, $|N : T| = |N : K \cap N||K \cap N : T|$ where $|N : K \cap N| = |KN : K|$ is a π-number and $|K \cap N : T|$ is a power of $p \in \pi$. Therefore $O_{\pi}(N) = O_{\pi}(T)$ and $O_\pi(N)$ is a Hall π'-subgroup of N. We have proved that the class size of every p'-element of N is a π'-number, so by Lemma 1, we have $N = O_{\pi'}(N) \times O_\pi(N)$. We apply induction to $O_\pi(N) < N$ and the proof is finished. □
We give an example showing that the converse of Theorem A is not true.

Example 1. We take the Special Linear group $H = \text{SL}(2, 5)$ which is a group of order 120 that acts Frobeniusly on $K = \mathbb{Z}_{11} \times \mathbb{Z}_{11}$. Let $P \in \text{Syl}_5(H)$ and we consider $N_H(P)$. Then, we define $N = KP$, which is trivially a normal subgroup of $G = KN_H(P)$. We have that the set of the G-conjugacy class sizes of N is $\{1, 20, 242\}$. Consequently, there are not two non-central G-classes of N such that any non-central G-class of N has size coprime with one of both.

Let us look at several examples illustrating Theorem A.

Example 2. We take the following groups from the library *SmallGroups* of GAP $G_1 = \text{Id}(324, 8)$ and $G_2 = \text{Id}(168, 44)$ that have the normal subgroups exposed now. The abelian 3-subgroup $P = \mathbb{Z}_3 \times \mathbb{Z}_3$ and $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, respectively. It follows that the set of conjugacy class sizes of P is $\{1, 2, 3, 3\}$ and the set of conjugacy class sizes of A is $\{1, 7\}$. We construct $N = P \times A$ and $G = G_1 \times G_2$. We have that N is a normal subgroup of G and the set of G-conjugacy class sizes of N is $\{1, 2, 3, 7, 14, 21\}$ so $d(\Gamma_G(N)) = 3$ and N satisfies that it is the direct product of a 3-group and $A \leq \mathbb{Z}(N)$. Note that in this example it follows that $O_{\pi'}(N) = 1$ and $\pi = \{2, 3\}$.

Example 3. In order to illustrate the quasi-Frobenius case it is enough to consider any group G and a normal subgroup $N = G$ such that $\Gamma(N)$ has two connected components. Thus, by applying Theorem of [3] we know that N is a quasi-Frobenius group with abelian kernel and complement.

Acknowledgements

The results in this paper are part of the third author’s Ph.D. thesis at the University Jaume I of Castellon. The research of the first and second authors is supported by the Valencian Government, Proyecto PROMETEOII/2015/011. The first author is also partially supported by Universitat Jaume I, grant P11B-2012-05.

References

