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Abstract. It is our aim in this note to take a closer look at some
separation axioms in the construct AP of approach spaces and con-
tractions. Whereas lower separation axioms seem to be qualitative, the
higher ones seem to have a quantitative nature. Also some characteri-
zations for the corresponding epireflectors will be given.
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1. Introduction and preliminaries.

As one readily knows, metric structures behave badly with respect to the
formation of initial structures or in particular, of products, since e.g. for an
infinite family of metrics, their pMET∞-product is not compatible with the
topological product of the associated underlying topologies. As a remedy to
this defect, the common supercategory AP (the objects of which are called
approach spaces) of TOP and pqMET∞ was introduced in [7], where e.g.
for a considered (infinite) family of metric spaces, their AP-product carries
precisely that part of the numerical information present, which can be retained
if one demands compatibility with the topological product of the family of
underlying metric topologies. The basic difference in nature between approach
and metric spaces consists in the fact that in an approach space, one specifies
all the point-set distances (subsequent to some axioms), where such a point-set
distance does not have to equal the infimum over the considered set of all the
point-point distances, like in the metric case. We now recall the definition of
an approach space. In the sequel, X stands for an arbitrary set and 2X stands
for its powerset.

Definition 1.1. A map δ : X × 2X −→ [0,∞] is called a distance on X if it
satisfies the following conditions:

(D1) ∀x ∈ X : δ(x, {x}) = 0,
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(D2) ∀x ∈ X : δ(x,∅) =∞,
(D3) ∀x ∈ X,∀A,B ∈ 2X : δ(x,A ∪B) = δ(x,A) ∧ δ(x,B),
(D4) ∀x ∈ X,∀A ∈ 2X ,∀ε ≥ 0 :

δ(x,A) ≤ δ(x,A(ε)) + ε,

with A(ε) := {z ∈ X | δ(z,A) ≤ ε}.
The pair (X, δ) is called an approach space.

The morphisms to go along with approach spaces are the so-called contrac-
tions: if (X, δ), (X ′, δ′) are approach spaces, then a map f : X −→ X ′ is called
a contraction if

∀x ∈ X,∀A ∈ 2X : δ′(f(x), f(A)) ≤ δ(x,A).

It was shown in [7] that approach spaces and contractions constitute a topolog-
ical construct, denoted by AP, into which TOP (resp. p(q)MET∞ (via the
usual definition of point-set distances in the metric case)) can be concretely
embedded as a full concretely bireflective and concretely bicoreflective (resp.
concretely bicoreflective) subconstruct. Given an approach space, the topo-
logical and ∞p(q)−metric coreflections have to be interpreted as the topology,
resp. the ∞p(q)-metric “underlying” the given approach space, in the same
sense as we think of the induced topology underlying a given metric. We will
write Tδ for the topological coreflection of a distance δ. For any background
material of categorical nature, we refer to [1] and for detailed information on
approach theory, we refer to [7] and [8]. Let us only mention some alternative
axiomizations for approach spaces which are described in [7], [8] and which will
be used throughout the paper: approach systems (parallelling neighbourhood
systems in topology), regular function frames (parallelling closed subsets in
topology), hulls (parallelling topological closures) and approach limits (paral-
lelling the description of a topology via convergence of filters). For an approach
space (X, δ), the corresponding approach system, resp. regular function frame,
hull and approach limit will be denoted by A := (A(x))x∈X , resp. R, h and
λ and for explicit definitions and transition formulas between these equivalent
characterizations, we again refer to [8]. If confusion might arise, we use a no-
tation like Aδ to denote the approach system corresponding to the distance δ.
We will make no distinction between a distance and its associated approach
system, regular function frame, hull and approach limit. To finish, we agree
upon some notations. If C is a full subconstruct of AP, then EAP(C) stands
for its epireflective hull in AP, being the full subconstruct of AP consisting of
all subspaces of products of C-objects. The metric approach space correspond-
ing to the real line equipped with the Euclidean metric will be denoted by R.
Also the following particular approach spaces will play a role in the sequel: the
indiscrete 2-space I2 := ({0, 1}, δi), where δi(x,∅) := ∞ and δi(x,A) := 0 if
A 6= ∅, and P := ([0,∞], δP) with δP(x,∅) :=∞ and δP(x,A) := (x−supA)∨0
for all x and A 6= ∅.

Separation axioms, measuring to which extent different points, or points
not belonging to a closed set, resp. disjoint closed sets can be recognized as
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such by a given space play an important role in topology. In particular, many
well-known extension theories only work (nicely) in the presence of certain sep-
aration axioms, e.g. the uniform completion for T2−uniform spaces or metric
spaces, the Wallman compactification for T1−topological spaces or the C̆ech-
Stone compactification for Tychonoff spaces. In this note we want to focus
on some forms of separation axioms in the realm of approach theory and in
case they determine categorically nice (i.e. epireflective) subconstructs of AP,
to give a description for the corresponding epireflection arrows. We will use
TOP0, resp. TOP1 and TOP2 for the full subconstructs of TOP consisting
of all T0, resp. T1 and T2-spaces.

2. Separation Axioms.

2.1. The T0-axiom. In [10] the categorically correct definition of T0-objects in
the setting of topological constructs in the sense of H. Herrlich (see e.g. [1]) was
given and it was shown there that the resulting subconstruct of all T0-objects
is the largest epireflective, not bireflective subconstruct of the considered topo-
logical construct. We will now identify the T0-objects in AP.

Definition 2.1. We call an approach space (X, δ) a T0-space if every contrac-
tion f : I2 −→ (X, δ) is constant. We write AP0 for the full subconstruct of
AP consisting of all T0−objects.

Proposition 2.2. For every (X, δ) ∈ |AP|, the following assertions are equiv-
alent:

(1) (X, Tδ) ∈ |TOP0|,
(2) (X, δ) ∈ EAP(P),
(3) ∀x, y ∈ X : x 6= y ⇒

((∃ϕ ∈ A(x) : ϕ(y) > 0) ∨ (∃ϕ ∈ A(y) : ϕ(x) > 0))

(4) ∀x, y ∈ X : x 6= y ⇒ (∃γ ∈ R : γ(x) 6= γ(y)),
(5) ∀f ∈ AP(I2, (X, δ)) : f constant,
(6) ∀x, y ∈ X : x 6= y ⇒ A(x) 6= A(y).

Proof. The implication (1)⇒(3) is obvious because it is proved in [8] that for ev-
ery x ∈ X, {{ψ < ε}|ψ ∈ A(x), ε > 0} is a base for the Tδ-neighbourhoodsystem
at x. To verify the implication (3) ⇒ (2), note that it was proved in [8] that
the source

(δ(·, A) : (X, δ) −→ P : x 7→ δ(x,A))A∈2X

is initial in AP. Therefore it suffices to show that it is point-separating in
order to conclude that (X, δ) is a subspace of a power of P, so pick x, y ∈
X with x 6= y. Assume without loss of generality that ϕ(y) > 0 for some
ϕ ∈ A(x). Then automatically δ(x, {y}) ≥ ϕ(y) > 0 and δ(y, {y}) = 0. The
implication (2)⇒(1) is obvious since the concrete bicoreflector from AP onto
TOP preserves products and subspaces, because ([0,∞], TδP) ∈ |TOP0| and
because the latter is an epireflective subconstruct of TOP. The implication (1)
⇒(4) is proved using the implication (1)⇒(3) because for all x ∈ X, δ(·, {x}) ∈
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R. To prove the converse one, take x, y ∈ X, x 6= y and assume without
loss of generality that γ(x) > α > γ(y) for some γ ∈ R, α ∈ R+. Because
γ : (X, Tδ) −→ P is lower semicontinuous, {γ > α} is a Tδ-neighbourhoood of
x not containing y. Furthermore, it is clear that (1) implies (5), whereas the
converse implication follows by contraposition, because if x, y ∈ X were distinct
points such that all neighbourhoods of x contain y and vice versa, f : I2 −→
(X, δ) defined by f(0) := x, f(1) := y would be a non-constant contraction.
The implication (3) ⇒(6) is obvious and we finish with the implication (6)
⇒ (4). Take x, y ∈ X with x 6= y. According to (6), we can assume without
loss of generality that there exists ϕ ∈ A(x) \ A(y). Therefore, it follows
from the transition formula (distance −→ approach system) that there exists
A ∈ 2X with infz∈A ϕ(z) > δ(y,A), whence automatically δ(x,A) > δ(y,A)
and because δ(·, A) ∈ R, we are done.

�

This shows that the T0-property in AP is in fact completely topological and
it is proved in the next proposition that, again like in the topological case, the
corresponding epireflection arrows are obtained as quotients.

Proposition 2.3. AP0 is an epireflective subconstruct of AP. For any (X, δ) ∈
|AP|, we define an equivalence relation ∼ on X by

x ∼ y ⇔ (∀ϕ ∈ R : ϕ(x) = ϕ(y))⇔ A(x) = A(y).

Then the AP-quotient of (X, δ) with respect to ∼ gives us is an AP0-epireflection
arrow for (X, δ).

Proof. For every x ∈ X, we write x for the corresponding equivalence class
w.r.t. ∼ and we denote the corresponding projection by π : X −→ X/ ∼: x 7→
x. By definition of ∼, it is obvious that for each γ ∈ R, the map γ : X/ ∼−→
[0,∞] : x 7→ γ(x) is well-defined. From the descripiton of quotients in AP,
it is now clear that the final regular function frame on X/ ∼ with respect to
π : (X,R) −→ X/ ∼ is exactly

R/ ∼:= {ϕ ∈ [0,∞]X/∼|ϕ ◦ π ∈ R} = {γ|γ ∈ R}.
Then clearly (X/ ∼,R/ ∼) ∈ |AP0| and for every (X ′,R′) ∈ |AP0| and
f ∈ AP((X,R), (X ′,R′)), it is clear that

f : (X/ ∼,R/ ∼) −→ (X ′,R′) : x 7→ f(x)

is a well-defined contraction, being the unique one such that f = f ◦ π. �

The corresponding epireflector is denoted by T0 : AP −→ AP0.

Remark 2.4. AP is universal, i.e. it is the bireflective hull of AP0 in AP.
Moreover, every epireflector from AP onto one of its subconstructs is either a
bireflector or the composition of a bireflector, followed by the AP0−epireflector.

Proof. The universality follows immediately from the result, proved in [8], that
for each (X, δ) ∈ |AP|, the source

(δ(·, A) : (X, δ) −→ P)A∈2X
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is initial in AP, because P ∈ |AP0|. The second part is proved in [10]. �

2.2. The T1-axiom.

Remark 2.5. For every (X, δ) ∈ |AP|, the following assertions are equivalent:
(1) (X, Tδ) ∈ |TOP1|,
(2) ∀x, y ∈ X : x 6= y ⇒ (∃ϕ,ψ ∈ R : (ϕ(x) < ϕ(y)) ∧ (ψ(y) < ψ(x)),
(3) ∀x, y ∈ X : x 6= y ⇒

((∃ϕ ∈ A(x) : ϕ(y) > 0) ∧ (∃ψ ∈ A(y) : ψ(x) > 0)).

(4) ∀x, y ∈ X : x 6= y ⇒ ((A(x) 6⊂ A(y)) ∧ (A(y) 6⊂ A(x))).

Proof. This is proved in the same way as 2.2 . �

Comparing this remark with the way T1-objects are defined in TOP and
the characterizations of T0-objects in AP, yields that the following definition
is plausible:

Definition 2.6. We call an approach space T1 if it satisfies the equivalent
statements from 2.5. We define AP1 to be the full subconstruct of AP defined
by all T1 approach spaces.

Corollary 2.7. AP1 is an epireflective subconstruct of AP.

Next we want to give an internal description of the corresponding epireflector
from AP onto AP0. It is well-known that a topological space (X, T ) is T1 if
and only if it is both T0 and symmetric in the sense of [3], meaning that

∀x, y ∈ X : x ∈ cl({y})⇔ y ∈ cl({x}).

This, together with remark 2.4 above motivates the following line of working:

Definition 2.8. An approach space (X, δ) is called R0 if it satisfies the con-
dition

∀x ∈ X : A(x) =
⋂

y:δ(y,{x})=0

A(y).

The full subconstruct of AP formed by all R0-objects is denoted by APR0 .

Constructing the T1−epireflector will carry us outside of AP, into the su-
perconstruct PRAP of pre-approach spaces and contractions, as introduced
in [9]. Let us only recall that a pre-approach space is a pair (X, δ) with
δ : X × 2X −→ [0,∞] satisfying (D1), (D2) and (D3) (such δ is called a
pre-distance) and contractions are defined in the same way as above. Just as
in the approach case, a pre-approach distance δ can be equivalently character-
ized by resp. a pre-approach system A, a pre-hull h and a pre-approach limit
λ. For details we refer to [9], but we note that, just as for distances, stepping
from AP to PRAP comes down to dropping the triangular axiom for A and
λ and the idempotency for h. It was proved in [9] that AP is a concretely
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bireflective subconstruct of PRAP. Take (X,h) ∈ |PRAP|. If γ ∈ [0,∞]X ,
define h0(γ) := γ and for each ordinal α ≥ 1,

hα(γ) :=
{
h(hα−1(γ)) α not a limit ordinal∧
β<α h

β(γ) α limit ordinal.

Then there exists some ordinal κ such that hκ(γ) = hκ+1(γ) for all γ ∈ [0,∞]X

and we put h∗(γ) := hκ(γ) for each γ ∈ [0,∞]X . Then it can be proved that h∗ :
[0,∞]X −→ [0,∞]X is a hull on X and idX : (X,h) −→ (X,h∗) is the reflection
arrow. We will write D : PRAP −→ AP for the corncrete reflector and to
simplify notations, we will write (X,D(δ)) instead of D((X, δ)) for (X, δ) ∈
|PRAP|, and analoguously for the associated pre-approach systems, pre-hulls
and pre-approach limits. First note that obviously, |AP1| = |APR0 | ∩ |AP0|.
We will first show that APR0 is a concretely bireflective subconstruct of AP,
yielding at once a description of the concrete bireflector R0 : AP −→ APR0 .

If (X,A) ∈ |AP|, we define a relation ∼R0 on X as follows:

x ∼R0 y ⇔ δ(x, {y}) = 0.

If we put
A∗(x) :=

⋂
y∼R0x

A(y)

for all x ∈ X, and A∗ := (A∗(x))x∈X , then (X,A∗) ∈ |PRAP|. Fix (X,A) ∈
|AP|. Put A0 := A and for every ordinal α ≥ 1, define

Bα(x) :=
{

(Aα−1)∗(x) α not a limit ordinal,⋂
β<αAβ(x) α a limit ordinal , x ∈ X

(note that (X,Bα := (Bα(x))x∈X) ∈ |PRAP|) and define Aα := D(Bα),
whence (X,Aα) ∈ |AP|.
Proposition 2.9. For every (X,A) ∈ |AP|, there exists an ordinal κ for which
Aκ = Aκ+1. If we denote AR0 := Aκ, (X,AR0) ∈ |APR0 | and idX : (X,A) −→
(X,AR0) is the APR0−bireflection arrow.

Proof. Pick (X,A) ∈ |AP|. Since for all ordinals β < α, Aβ ⊃ Aα and hence
0 ≤ δAα ≤ δAβ , it is clear that Aκ+1 = Aκ, if we take a fixed ordinal κ >

card([0,∞]X×2X ). Then define AR0 := Aκ. By construction, it is obvious that
(X,AR0) ∈ |APR0 |. Now fix (X ′,A′) ∈ |APR0 | and f ∈ AP((X,A), (X ′,A′)).
Then by definition, f ∈ AP((X,A0), (X ′,A′)). Now assume that

f ∈ AP((X,Aα−1), (X ′,A′))
for some non-limit ordinal α. In order to verify that

f ∈ PRAP((X,Bα), (X ′,A′)),
pick x ∈ X and ϕ′ ∈ A′(f(x)). We should prove that ϕ′ ◦ f ∈ Bα(x), so let
y ∈ X such that δAα−1(y, {x}) = 0. Then automatically δ′(f(y), {f(x)}) = 0,
so because (X ′,A′) ∈ |APR0 |,

ϕ′ ∈
⋂

z∈X′:δ′(z,{f(x)})=0

A′(z) ⊂ A′(f(y)),
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whence ϕ′ ◦ f ∈ Aα−1(y). Since D is a concrete bireflector, it now immediately
follows that f ∈ AP((X,Aα), (X ′,A′)). Next take a limit ordinal α and assume
that f ∈ AP((X,Aβ), (X ′,A′)) for all β < α. It then trivially follows that f ∈
AP((X,Aα), (X ′,A′)). By transfinite induction, it now follows in particular
that f ∈ AP((X,AR0), (X ′,A′)) so we are done. �

For (X, δ) ∈ |AP|, we will also use the notation (X,R0(δ)) for R0((X, δ))
and the same convention applies for the other equivalent axiomizations for
approach spaces.

Proposition 2.10. For every (X,R) ∈ |AP|, the AP1-epireflection is ob-
tained by taking the AP0-epireflection of its APR0−bireflection, i.e. the cor-
responding AP1-epireflection arrow is given by

π : (X,R) −→ (X/ ∼,R0(R)/ ∼),

(where ∼ and π are determined by R0(R).)

Proof. It suffices to verify that (X/ ∼,R0(R)/ ∼) ∈ |AP1|. First note that,
with the notations as in 2.3, for all x, y ∈ X

δR0(R)/∼(x, {y}) = sup
γ∈R0(R),γ(y)=0

γ(x) = sup
γ∈R0(R),γ(y)=0

γ(x) = δR0(R)(x, {y}).

Because (X,R0(R)) ∈ |APR0 |, this implies that

∀x, y ∈ X : δR0(R)/∼(x, {y}) = 0⇒ δR0(R)/∼(y, {x}) = 0,

i.e. that (X/ ∼, TR0(R)/∼) is a symmetric space in the sense of [3] (called an
R0- space there) and since it also belongs to |TOP0|, it belongs to |TOP1|
and we are done. �

2.3. The T2-axiom. If X is a set and F ⊂ [0,∞]X , we call

〈F〉 := {γ ∈ [0,∞]X | ∀ε > 0,∀M <∞ : ∃γεM ∈ F : γ ∧M ≤ γεM + ε},

resp. c(F) := supγ∈F infx∈X γ(x), the saturation, resp. the level of F. If
(X,A) ∈ |AP| and x, y ∈ X, then A(x) ∨ A(y) := 〈A(x) ∪ A(y)〉 is the
supremum of A(x) and A(y) in the lattice of all saturated ideals in [0,∞]X .

Remark 2.11. If (X, δ) ∈ |AP|, the following assertions are equivalent:
(1) ∀x, y ∈ X : x 6= y ⇒ c(A(x) ∨ A(y)) > 0,
(2) ∀x, y ∈ X : x 6= y ⇒ (∃ϕ ∈ A(x),∃ψ ∈ A(y) : infs∈X(ϕ ∨ ψ)(s) > 0,
(3) (X, Tδ) ∈ |TOP2|.

Proof. Obvious since ({{ϕ < ε}|ε > 0, ϕ ∈ A(x)})x∈X is a base for the Tδ-
neigbourhood system. �

Again, a comparison with the classical topological situation and taking into
account that the role of neighbourhood filters in topology is played by the
so-called approach systems in approach theory, makes it plausible to define
Hausdorff objects in AP in the following, again topological, way:
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Definition 2.12. We call an approach space T2 if it satisfies the equivalent
statements from 2.11. We define AP2 to be the full subconstruct of AP defined
by all T2 approach spaces.

Corollary 2.13. AP2 is an epireflective subconstruct of AP.

As an answer to a question raised by H. Herrlich, an internal description of
the epireflector from TOP onto TOP2 was given by V. Kannan in [5], making
use of a transfinite construction. We will now derive an explicit description for
the epireflector from AP onto AP2, along the same lines as was done for the
T1-case in the section above. First we define a property R for approach spaces,
which is inspired by the notion of reciprocity for convergence spaces, as defined
in [2].

If (X,A) ∈ |AP|, we define a relation ∼R on X by

x ∼R y
⇔ (∃x1 := x, . . . , xn := y : ∀i ∈ {1, . . . , n− 1} : c(A(xi) ∨ A(xi+1)) = 0).

Definition 2.14. We call (X, δ) ∈ |AP| an R- space if it fulfills the following
condition

∀x ∈ X : A(x) =
⋂
y∼Rx

A(y)

and we denote the full subconstruct of AP formed by all R-spaces by APR.

First note that |AP2| = |AP0| ∩ |APR|. To begin with, we will prove
that APR is a bireflective subconstruct of AP by describing the bireflector
R : AP −→ APR. Let (X,A) ∈ |AP|. If we put

A†(x) :=
⋂
y∼Rx

A(y)

for all x ∈ X, and A† := (A†(x))x∈X , then (X,A†) ∈ |PRAP|. Fix (X,A) ∈
|AP|. Put A0 := A and for every ordinal α ≥ 1, define

Bα(x) :=
{

(Aα−1)†(x) α not a limit ordinal,⋂
β<αAβ(x) α a limit ordinal , x ∈ X

(note that (X,Bα := (Bα(x))x∈X) ∈ |PRAP| and define Aα := D(Bα), whence
(X,Aα) ∈ |AP|.

Proposition 2.15. For all (X,A) ∈ |AP|, there exists an ordinal κ for which
Aκ+1 = Aκ. If we denote AR := Aκ, (X,AR) ∈ |APR| and idX : (X,A) −→
(X,AR) is the APR−bireflection arrow.

Proof. The proof is exactly the same as that of 2.9 except for verifying that
for (X ′,A′) ∈ |APR| and f ∈ AP((X,A), (X ′,A′)), if we assume that f ∈
AP((X,Aα−1), (X ′,A′)) for some non-limit ordinal α (*), it follows that f ∈
PRAP((X,Bα), (X ′,A′)). Therefore, pick x ∈ X and ϕ′ ∈ A′(f(x)). Assume
that y ∈ X and x1 := y, . . . , xn := x such that c(Aα−1(xi) ∨ Aα−1(xi+1)) = 0
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for all i ∈ {1, . . . , n− 1}. Then it follows from our assumption (*) that for all
i ∈ {1, . . . , n− 1}

c(A′(f(xi)) ∨ A′(f(xi+1))) = sup
γ∈A′(f(xi))

sup
µ∈A′(f(xi+1))

inf
z′∈X′

(γ ∨ µ)(z′)

≤ sup
γ∈A′(f(xi))

sup
µ∈A′(f(xi+1))

inf
z∈X

(γ∨µ)(f(z)) ≤ c(Aα−1(xi)∨Aα−1(xi+1)) = 0,

showing that f(y) ∼R f(x). Because (X ′,A′) ∈ |APR|, this implies that
ϕ′ ∈ A′(f(y)) whence ϕ′ ◦ f ∈ Aα−1(y) and this completes the proof. �

For (X, δ) ∈ |AP|, we will also use the notation (X,R(δ)) for R((X, δ)) and
the same convention applies for the other equivalent axiomizations for approach
spaces.

Proposition 2.16. For every (X,R) ∈ |AP|, the AP2-epireflection is ob-
tained by taking the AP0-epireflection of its APR−bireflection, i.e. the corre-
sponding AP2-epireflection arrow is given by

π : (X,R) −→ (X/ ∼,R(R)/ ∼),

(where ∼ and π are detremined by R(R).)

Proof. We only need to check that (X/ ∼,R(R)/ ∼) ∈ |AP2|. Now assume that
x, y ∈ X for which every TR(R)/∼-neighbourhood of x meets every TR(R)/∼-
neighbourhood of y. Note that TR(R) = {{µ > 0} | µ ∈ R(R)} and that with
the notation introduced in 2.3 R(R)/ ∼= {γ|γ ∈ R(R)}. This yields that
x ∼R y where the ∼R-relation is taken with respect to R(R), and because
(X,R(R)) ∈ |APR|, it follows that AR(R)(x) = AR(R)(y), whence x = y.

�

2.4. Regularity. In [11], three different suggestions for regularity were pro-
posed, and in [5], it was motivated that the strongest one of them is the correct
notion of regularity in the construct AP. We simply recall this definition for
the sake of completeness. For any set X, let F(X) stand for the set of all filters
on X and for each F ∈ F(X) and ε ≥ 0, let F (ε) denote the filter generated by
{F (ε) | F ∈ F}.

Definition 2.17. [11], [5] An approach space (X, δ) is called regular if

∀ε ≥ 0,∀F ∈ F(X) : λ(F (ε)) ≤ λ(F) + ε.

We write RAP for the full subconstruct of AP formed by all regular spaces,
and it was proved in [11] that it moreover is concretely bireflective. For some
other equivalent characterizations of regularity in terms of distances and ap-
proach systems, we refer to [11].

Note that, where the lower separation axioms we discussed in AP all turn
out to be topological in the sense that an approach space (X, δ) is Ti if and
only if its topological coreflection in Ti in the classical sense (with i ∈ {0, 1, 2}),
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the regularity condition stated above is of a purely quantitative nature. This
was already noted in [11], where it is shown that

δ(x,A) :=


∞ A = ∅

0 x ∈ A
1 x 6 ∈A,A infinite
2 other cases

x ∈ R, A ⊂ R

defines an approach distance on R such that (R, δ) 6 ∈|RAP| but (R, Tδ) is a
regular topological space. It was also already stated in [11] that for topological
spaces, this notion of regularity is equivalent to the classical one.

2.5. Complete Regularity. We recall the definition of uniform approach
spaces from [8].

Definition 2.18. An approach space (X, δ) is called uniform if and only if
there exists a collection D of ∞p-metrics on X which is closed with respect to
taking finite suprema and such that

∀x ∈ X,∀A ∈ 2X : δ(x,A) = sup
d∈D

δd(x,A).

The full subconstruct of AP formed by all uniform approach spaces is de-
noted by UAP and it can be shown (see e.g. [8]) that UAP = EAP(pMET∞).
It was also proved in [8] that for every (X, δ) ∈ |AP|, the corresponding
UAP−epireflection arrow, which in fact is a concrete bireflection arrow, is
given by

idX : (X, δ) −→ (X, δu := sup
d∈Gs(δ)

δd),

with
Gs(δ) := {d|d ∞p−metric on X, δd ≤ δ}.

The following proposition shows that ‘being uniform’ is precisely the correct
quantified generalization of complete regularity to the approach setting and it
was proved in [8] that for topological objects, these two notions are equivalent.

Proposition 2.19. For every (X, δ) ∈ |AP|, the following assertions are
equivalent:

(1) (X, δ) ∈ |UAP|,
(2) ∀x ∈ X,∀A ∈ 2X ,∀ε > 0,∀ω <∞ : ∃ fωε ∈ AP((X, δ),R) :

fωε (x) = 0 and ∀z ∈ A : fωε (z) + ε ≥ δ(x,A) ∧ ω.
(3) ∀x ∈ X,∀A ∈ 2X ,∀ε > 0,∀ω <∞ : ∃ fωε ∈ AP((X, δ),R) bounded :

fωε (x) = 0 and ∀z ∈ A : fωε (z) + ε ≥ δ(x,A) ∧ ω.

Proof. We first show that (1) implies (2). Therefore let D be a collection of
∞p-metrics on X which is closed w.r.t. the formation of finite suprema and
such that δ = supd∈D δd and fix x ∈ X,A ∈ 2X , ε > 0 and ω < ∞. Then we
can find dωε ∈ D with

δdωε (x,A) + ε > δ(x,A) ∧ ω
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and because fωε := dωε (x, ·) ∈ AP((X, δ),R), we are done. That (2) implies (3)
is clear since for every f ∈ AP((X, δ),R) and ω < ∞ , obviously |f | ∧ ω ∈
AP((X, δ),R). Finally we show that (3) implies (1). In order to verify that
(X, δ) ∈ |UAP|, it sufices to show that δ ≤ δu, so fix x ∈ X,A ∈ 2X , ε > 0
and ω < ∞. According to (3), we can find fωε ∈ AP((X, δ),R) bounded such
that fωε (x) = 0 and such that fωε (a) + ε ≥ δ(x,A) ∧ ω for each a ∈ A . If we
denote the Euclidean metric on R by dE , it is clear that dE ◦ (fωε × fωε ) is an
∞p-metric on X, which belongs to Gs(δ) because fωε is a contraction. It then
is clear that

δu(x,A) + ε ≥ inf
a∈A
|fωε (x)− fωε (a)|+ ε ≥ δ(x,A) ∧ ω,

completing the proof.
�

To see that, like regularity, this is a numerical, non-topological separation
axiom, note that

d(x, y) :=
{
|x− y|/2 x ≤ y
|x− y| x > y

x, y ∈ R

defines a pseudo-quasi-metric on R, such that (R, Td) is a completely regular
topological space but (X, δd) 6 ∈|UAP|.
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