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1. INTRODUCTION

In an interesting paper Cooper [?] studies the foundations of thermodynam-
ics and the existence of entropy functions on state spaces of thermodynamic
systems. Three different formulations of the second law of thermodynamics
due to Clausius, Kelvin and Caratheodory are considered and it is proved that
Caratheodory’ s axiom is not sufficient for the existence of an entropy function
even in simple spaces. Cooper studies this problem by formulating a concept
of an accesibility relation on the state space S of a thermodynamical system.
This accessibility relation on S is a total preorder and an entropy function
is defined to be a real-valued function on & that preserves the accessibility
relation. If, in addition, the state space S has an additive structure then an
entropy function is also required to preserve the algebraic structure, i.e. it is an
order-preserving function which is also an (algebraic) homomorphism. More-
over if the phase space of the thermodynamic system is a topological space and
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the accessibility relation is continuous then the problem of the existence of a
continuous entropy function is equivalent to that of proving the existence of a
continuous order-preserving real-valued function defined on a topological space
equipped with a continuous total preorder.

Originally the problem of the existence of an order-preserving real-valued
function defined on a totally ordered set was posed and solved by Cantor (see
[?], [?]). Subsequent generalizations were made by Birkhoff (see [?]) and Debreu
(see [?], [?]) among others, including those generalizations that deal with con-
tinuity. For more recent discussions concerning the new contributions to this
framework, see [?]. For an account of the mathematical aspects and founda-
tions of thermodynamics the reader is referred to the book [?] which appeared
before the paper of Cooper. See also the recent account of the second law of
thermodynamics in [?].

Cooper’s paper has the merit of independently discovering or anticipating,
at least implicitly, some deep concepts and results that are to be found in the
vast literature on the existence of order-preserving functions in mathematics,
mathematical economics, measurement theory and other related fields. In par-
ticular, this is true for the concept of additivity of entropy. Cooper’s ideas
about additive entropy closely parallel the modern theory of order-preserving
functions on ordered semigroups and algebraic utility theory. One of the ob-
jectives of this paper is to establish this fact.

It is a remarkable fact that, with the exception of a few quotations (see, e. g.,
[?]), Cooper’s paper appears to have gone largely unnoticed by researchers in
mathematical economics, in the theory of measurement, or in the representation
theory of totally ordered sets and semigroups by real valued functions.

It transpires that there are some mathematical mistakes in Cooper’s paper.
In the present paper we pay special attention to the algebraic aspects, and show
how these errors may be rectified or extenuated. We feel strongly that Cooper’s
paper should be highly commended for introducing several crucial ideas, en-
abling us to discover the astonishing similarity between the structure of the
entropy representation problem and that of the utility representation prob-
lem. To this end we propose certain mathematical interpretations of Cooper’s
modelling of entropy.

The article is organized as follows: Section 7?7 contains definitions, notations,
and necessary background. In section 7?7 the concept of entropy is compared
with the concept of utility function. In Section 7?7 the algebraical aspects of
entropy functions are considered.

2. DEFINITIONS AND PREVIOUS RESULTS

Let X be a nonempty set. A binary relation “=X” defined on X is a total pre-
order if it is reflexive, transitive and total. If in addition “=” is antisymmetric,
then it is said to be a total order.

Associated to “Z” we define the strict preference and the indifference rela-
tions, respectively denoted by “<” and “~”, given by z <y <— —(y 3 z)
andz ~y < z 3y, y 3z (z,y € X).
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A total preorder “3” on X is said to be representable (respectively: pseu-
dorepresentable) if there is a real-valued function v : X — R such that
z 2y <= u(z) <u(y) (respectively: z Jy = u(z) < u(y)) (z,y € X).
Such a function is said to be an order-preserving function or a strictly isotone
function. If the set X is a set of alternatives of some economic agent on which
is defined a preference relation then such an order-preserving function is said to
be a wutility (respectively: pseudoutility) function in the economics literature.

On a totally ordered set X it is possible to define a natural topology, called
the order topology, a subbasis of which is given by the family of subsets:
(—o0,a)={zre X : z<a}, (b+0)={yeX : b<y} (a,be X).

Let (X, 7) be a topological space endowed with a total preorder “=3”. Then
“<” is said to be T-continuous if for every x € X the subets (—oo,x) and
(x,400) are T-open.

A total preorder “Z” on X is said to be separable in the sense of Debreu if
there is a countable subset C' C X such that for every z,y € X with z < y,
there exists ¢ € C' with x X ¢ 3 y. It turns out that this property characterizes
the representability of a total preorder “=” by means of an order-preserving
function. (See, e.g., [?], pp. 14 and fI.)

In general an order-preserving function may or may not be continuous with
respect to the order topology of X and the Euclidean topology of R. The prob-
lem of the existence of a continuous order-preserving function on an ordered
topological space was solved by Debreu (see [?], [?]) in two classical papers. To
that end, Debreu introduced the concept of a gap.

Definition 2.1. Let R denote the extended real line. A degenerate set in R
is one having at most one element. A gap of a subset S of R is a maximal
nondegenerate interval disjoint from S and with a lower bound and an upper
bound in S. An interval of R of the form (a,b] or [a,b) is said to be half-open
half-closed.

Theorem 2.2. (Debreu’ s Open Gap Lemma): If S is a subset of R, there is
an increasing function g : S — R such that all the gaps of g(S) are open.

Theorem 2.3. (Debreu’ s Representation Theorem): If there is a real-valued
order-preserving function on a totally preordered topological space X then there
is a continuous real-valued order-preserving function on X.

Finally, we mention that the abstract study of the relationship between order
and topology was initiated by Nachbin (see [?]).

3. ENTROPY AND UTILITY THEORY

In this section we present the approach given by Cooper in [?], relative to
the existence of a continuous utility function on a totally preordered topological
space.

First we recall some nomenclature and notations used in Cooper’s work.

(See [?]).
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The state space S of a thermodynamic system is a separable topological
space. There is a relationship, called accesibility relation and denoted “—”
among the elements of S. The fact s;—s2 may be read “a transition from sy
to so is possible”. We write s; - so for the negation of the statement s;—so,
and we write s;1 & so if both s;—s5 and ss—s; hold. For s; — s9 we shall
understand s;—s2 and so - $1. A function f: S — R is an entropy function
for an accesibility relation “=” whenever s1—=s2 <= f(s1) < f(s2) for every
S1,82 € S.

Remark 3.1. Observe the analogy with the classical framework coming from
Economics in which a consumer defines a preference relation “=<” on a nonempty
set of goods X, usually called consumption set. As defined above, in this con-
text a wtility function is a map u: X — R such that z Sy < u(z) < u(y)
for every x,y € X. Utility functions and entropy functions (and other similar
concepts such as scale in measurement theory) are examples of order-preserving
functions.

Henceforth we will not use Cooper’s notation and refer to all order-preserving
functions as utility functions.
Coming again to Cooper’s work, Theorem 1 in [?] can be stated as follows:

Theorem 3.2. (Cooper’s Theorem 1): Let (X,T) be a separable topological
space equipped with a continuous total preorder “ZS”. Then there is a continuous
utility function for “37.

Unfortunately Cooper’s result is not correct in the general case. This can
be easily seen in the next example.

Example 3.3. Let X = [0,1] x {0,1} € R? endowed with the lexicographic
order “31” given by (z,y) 31 (a,b) < z <a,orxz=a,y <b Let T be
the order topology on X relative to “Z1”. Observe that (QN [0,1]) x {0,1}
is topologically dense in X. However X is not order separable in the sense of
Debreu because X has uncountably many jumps. (See [?], Proposition 1.6.11
on p. 23). Therefore, there is no utility function for “=X.”. (See, e.g., [?], pp.
14-15). Here a jump in X is defined as a pair of points z,y € X with < y
such that there isno z € X with x < z < y.

Remark 3.4. In view of this example some additional condition must be added
to separability in order to get the desired result. A possible such condition is
connectedness.

Since Cooper’s paper deals with problems in physics, perhaps it was taken
for granted that the state spaces that do arise in thermodynamics satisfy the
connectedness assumption. In Cooper’s words:

<< The physical model for a thermodynamic system is a system isolated from
the external world by barriers impassible to heat but through which mechanical,
electromagnetic, gravitational or other interactions with the external world are
possible: these interactions will be summed up under the term interactions of
the ground theories. The ground theories are the parts of physics established
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independently of thermodynamics such as mechanics, electromagnetic theory.
Within the thermodynamic system, subsystems capable of being isolated by bar-
riers impassible to heat may exist: but it must be assumed that these internal
barriers can be removed.>>

We can interpret here that the existence of one of the “barriers” there men-
tioned would carry a disconnection of the space. So that if “the barriers were
removed”, the space would become connected. Here we should recall Newton’s
words: “Natura non facit saltum”.

Debreu’s theorem (see [?], [?]) states that being (X, 7) a second countable
space, every T-continuous total preoder “=X” defined on X is continuously repre-
sentable. In the particular case of X being a metric space, separability and sec-
ond countability are equivalent conditions. So, another way to correct Cooper’s
Theorem 1 is assuming that the system space is metric.

4. ENTROPY AND THE THEORY OF ORDERED SEMIGROUPS

Section 4 in Cooper’s paper [?] is devoted to the study of “Composition
of systems: additivity of entropy”. Having a positive perspective in mind we
only want here to give a possible interpretation of Cooper’s arguments, and
to establish the results in a more rigorous setting. In our opinion, the ideas
contained in section 4 of [?] are very rich and deep, and have clear analogies
with powerful items concerning the representation of totally ordered semigroups
through additive utility functions.

A glance at the beginning of section 4 in [?] shows that the main idea object
of study is the possibility of finding thermodynamic systems that interact to get
a new system. Consequently, a natural question arises: “What relationships, if
any, appear between the entropy of the new system after interaction, and the
entropies before the interaction of the systems involved?” Cooper establishes
some axioms to deal with this kind of problem. Such axioms lean on additivity
properties. The objective is finding entropy functions that are unique up to
linear transformations.

As in the previous sections in [?], the validity of several lemmata and the-
orems in section 4 of Cooper’s paper require additional assumptions and con-
siderations for the physical models studied that are not explicitly mentioned
by Cooper. For instance, if we understand the composition of systems as a
binary operation defined on the set of all possible systems, it is natural that
this binary operation be associative and commutative as well. Cooper does not
mention the above conditions in [?], in spite that in Cooper’s arguments such
properties seem to be implicitly assumed.

With such interpretations, our framework will be the theory of totally or-
dered semigroups. Useful references here for further reading are [?], [?], [?],

7], [7].
Remark 4.1.

(1) Despite it is greatly at variance with the notation common in semigroup
theory, along this section 7?7 we will keep additive notation, much more



16 Candeal, De Miguel, Indurdin and Mehta

familiar to reserchers on algebraic utility. We have already chosen that
notation in previous works as [?], [?] and [?], and it fits better with the
notation used in section ?? of the present paper.

(2) There are interpretations of several axioms encountered in other mathe-
matical theories that could have some similarities with Cooper’s axioms
and ideas in [?]. The reader could investigate analogies with expected
utility theory (see [?]) and axiomatical treatment of statistical means

(see [7], [7]).

In order to deal with the algebraic setting used in Cooper’s work (see [?]),
we introduce some previous concepts about ordered semigroups.

A semigroup (S,4) is a set S endowed with a binary operation + that is
associative. A semigroup S having a null element e such that r+e=x =e+x
for every x € S is said to be a monoid. If each element x of a monoid S
has a converse —z such that x + (—z) = (—z) + ¢ = e then S is said to
be a group. A semigroup (S,+) endowed with a total ordering = is said to
be a totally ordered semigroup if the ordering = is translation-invariant (i.e.:
r 3y <= z+z23y+z <= z+z 3 z+yforevery z,y,2 € 5). In
particular, a totally ordered semigroup S is always cancellative, i.e.: x + z =
Yy+z <= rx=y <= z+z=z+yforevery z,y,z € S.

Given a totally ordered semigroup (S, 4+, 3), an element x € S is said to be
positive (respectively: negative) when y < z+y and also y < y+x (respectively:
when 2+ y < y and also y + & < y) for every y € S. Notice that an element
x € S is positive (respectively: negative) if and only if z < x 4+ x (respectively:
2+ a < z). The set of positive (respectively: negative) elements of S is
said to be the positive cone of S, denoted ST (respectively: S7). A simple
exercise shows that these cones are stable in the following sense: If 2,y € ST
(respectively: S7) then z +y,y +x € ST (respectively: S™). Notice also that
S may have an element e that is neither positive nor negative. In this case e
must be the null element for the operation +, and S is, a fortiori, a monoid.
Moreover, in this case it is clear that an element x is positive (respectively:
negative) if and only if e < = (respectively: = < e).

A totally ordered semigroup (5, +, 3) is said to be:

(1) positive (respectively: negative) if it consists only of positive (respec-
tively: negative) elements.

(2) additively representable (respectively: pseudo-representable) if there ex-
ists a utility (respectively: pseudo-utility) function u for 3 that is an
homomorphism (i.e.: u(x +y) = u(z) + u(y), for every z,y € S).
The associated function w is said to be an additive utility (respectively:
pseudo-utility) function.

A positive semigroup (S, +, 3) is said to be:

(1) Archimedean if for every x,y € S with © < y, there exists n € N such
n times

—_——N—
that y <n-z,(n-z=2+---+x),
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(2) super-Archimedean if for every z,y € S such that x < y there exists
n € N such that (n+1) -2z <n-y.

A totally ordered group is said to be Archimedean if its positive cone is
Archimedean.

A totally ordered semigroup (5,4, 3) is said to be super-Archimedean if
its positive cone (ST, +, %) is super-Archimedean and also the negative cone
(S7,+ Zop), endowed with the converse ordering “3,,” defined by « Zop
y <= y 3z (x,y €9), is super-Archimedean.

In the case of totally ordered groups, the Archimedean condition is equivalent
to the existence of an additive representation. This is a key result stated by
Holder early in 1901. (See [?], or [?], p. 300.)

Remark 4.2.

(1) Even in the case of positive semigroups Archimedeaness is not good

enough to guarantee the additive representability.
An example is the strictly positive cone (0,00) x (0,00) of the lexi-
cographic plane (R?, +, <7) where the sum + is defined coordinate-
wise and the ordering 3y, is given by (a,b) 31 (¢,d) if a < ¢ or else
a=c, b<d. Itis well-known that this ordered set does not admit a
utility representation, even non-additive. (See [?], pp. 200-201).

(2) In [?] it is proved that super-Archimedean implies Archimedean: For
instance, in the particular case of S being a commutative and positive
semigroup, it holds that if x,y are positive, then y < x + y, so that
m+1)y<n-(z4+y) = y<n-z
The converse is not true: In the strictly positive cone of the lexico-
graphic plane we have that (1,1) < (1,2) but, for any positive n € N,
(n+1,n+1) < (n,2n), so that it is not super-Archimedean.

(3) As also shown in [?], Archimedean totally ordered groups are super-
Archimedean: For instance, if G is Abelian and e < x < y, we have
that y —x < y. Thusify <n-(y—2) = (n+1)-z<n-y.

In this framework of semigroups, there is also a characterization of additive
representability:

Theorem 4.3.

(1) The following statements are equivalent for a positive totally ordered
semigroup (S, +,3):
(i) (S,+,3) is additively representable,
(i) (S,+,3) is super-Archimedean.

(2) A semigroup (S,4+,3) is additively representable if and only if its pos-
itive and negative cones are additively representable.

Proof. The proof may be seen in [?]. For the sake of completeness let us see its
main ideas: In order to prove the key implication (i) = (i) of part (1), fix
an element xg € S and, given x € S, set u(z) = sup{m/n :m,n e N m-xy <
n-x}. Following the proof of Holder’s theorem that appears in [?], pp. 300-301,
we obtain that v is an additive pseudo-utility. So, it only remains to check the
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injectivity of u, and this comes from the fact of S being super-Archimedean:
Observe that being x,y € S such that x < y, there exists n € N for which
m+1l)-z<ny = (n+1)ux) <n-uly) = ulz) <n/(n+1)) uly) <
u(y). To prove part (2) we must give a construction of a global utility function
u: S — R from partial utility functions u™, v~ : ST, 8~ — R. The key step
consists in proving that for any = € S one can find an element y € ST, that
depends on z, such that z +y € ST. Then set u(z) = u™(z +y) — u™ (y), and
test that w is the required additive utility function. (I

Holder’s main result can be improved taking into account the continuity of
the additive utilities involved.

Proposition 4.4. Let (G,+,3) be a totally ordered group. Then (G,+,3) is
representable through a continuous and additive utility function if and only if
(G,+,3) is Archimedean.

Proof. See Theorem 1 in [?]. O

Remark 4.5.

(1) One may expect that the key property of Archimedeaness established
in Proposition 7?7, that in the case of totally ordered groups guarantees
the existence of a continuous additive utility function, will be main-
tained for semigroups. Unfortunately things are no longer the same
in this case. It follows from Remark ?? that Archimedeaness is not
good enough to obtain additive utility representations (continuous or
not) for totally ordered semigroups. Actually, we have that: Fven be-
ing representable by an additive utility function, a semigroup could not
admit a continuous additive utility representation. An example is the
semigroup S = [2,3) U [4, 00) with the usual addition and ordering of
the reals. The crux for the non-existence of a continuous and additive
utility function in this example, is the discontinuity as regards the or-
der topology of the algebraic operation +. In other words, S is not a
“topological” totally ordered semigroup in the sense that the algebraic
operation is not continuous as regards the order topology.

(2) The result established in Debreu’s open gap lemma cannot be extended
to the framework of additive utility functions on semigroups. The last
example shows that there exists positive semigroups that admit addi-
tive utility functions, but none of such additive utility representations
is continuous. Of course, by Theorem 7?7, any such ordered semigroup
will admit continuous utility representations, but now none of those
continuous utilities is additive.

Let (S,+,3) be a totally ordered semigroup. First we might notice that
there is no topology given a priori on .S, except maybe the order topology.
But, even endowed with the order topology, we do not know whether (S, +, 3)
is a topological semigroup or not, in the sense of the following definition.
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Definition 4.6. A topological semigroup (S,+,7) is a semigroup (S,+) en-
dowed with a topology “r” that makes continuous the binary operation “+7:
(x,y) € Sx Sr—x+yeS. A totally ordered semigroup (S,+,3) is said to
be a topological totally ordered semigroup if the binary operation “+7” is con-
tinuous with respect to the order topology on S. Similarly, a topological group
(G,+,7) is a group (G,+) endowed with a topology “r” that makes continuous
the binary operations “+”7 : G x G — G, and “inv” : G — G, given by
inv(z) = —x, for every x € G. So a topological totally ordered group is a
totally ordered group (G,4+,3) such that “+” and “inv” are both continuous
as regards the order topology.

Remark 4.7. It is known that totally ordered groups are topological as re-
gards the order topology (see [?]), so that Theorem ?? can be extended to the
framework of totally ordered groups. As was pointed out in Remark ?7?, the
above property is no longer true for totally ordered semigroups.

The condition of being topological will be necessary for the existence of a
continuous additive representation on totally ordered semigroups. In addition,
the following main question arises now : Let (S, +, 3) be a super-Archimedean
topological totally ordered semigroup. Is S representable by a continuous util-
ity function? The answer is positive, as next result states.

Theorem 4.8.

(1) Let (S,+,23) be a totally ordered semigroup, additively representable
by a continuous utility function v : S — R. Then (S,+,3) is a
topological semigroup as regards the order topology.

(2) Let (S,+,3) be a super-Archimedean topological totally ordered semi-
group. Then S is representable by a continuous additive utility function.

Proof. See Proposition 1 and Theorem 2 in [?]. O

Coming back to Cooper’s work, we observe that the nub of the reasoning
in section 4 of [?] seems to be in the Lemma 1, in which Cooper justifies
the existence of an state that is the mid point between two given states that
interact. Cooper’s proof is essentially based on the connectedness of the system
and the continuity of the relation “=”. Cooper’s result presents an evident
analogy with the following result that appears in [?].

Proposition 4.9. Let (S,+,3) be a topological totally ordered semigroup that
is positive and connected. Then given u,v € S there exists s € S such that
s+s=u+v. (Such point s is said to be the mid point between u and v).

Proof. Just consider the sets A={z¢€ S : z+z2z<u+v}and B={ye S :
u+v =y + y} and use an standard argument of connectedness. (For details,
see Lemma 6 in [?]). O

One of the keys in Proposition 7?7 is the condition of translation-invariance.
Cooper, in section 4 of [?], uses a very similar condition, denoted “Int(a)”. In
Cooper’s words:
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<< A system Z is called the composition of the systems =t, 22, ... Z" and is
written = = {E',22,.. . 2"} if there is a homeomorphism of the product space
S1x82x...xS™ onto the state space of S which is such that if {s',s?,...s"} is
the state corresponding to (s',s?,...s") then {s',s% ...s" 71 8], s" T ... s"}
— {st, 8%, .. 8" st s s} if and only if s < sh. >>

Observe that if we understand the composition of systems as being commu-
tative, and denote a + b the composition of states a and b (i.e.: a+bis {a,b} in
Cooper’s notation) then by Int(a) we have that s7 — s3 <= s34+t — sa+t
(<= t+s3 — t+ s2, by commutativity of the composition), for any states
$1, 82 and t. Thus we recover the translation-invariance of the operation “+”.
Moreover, using henceforward the usual notation “<” instead of Cooper’s “—”,
it follows from Int(a) that p < s <q¢ = p+p < s+ s < g+ ¢ for any states
D, s,q. This fact is used by Cooper to justify the uniquenesss of the mid point.

As a matter of fact, in Cooper’s arguments the property Int(a) is not used
in such justification. Apparently Cooper only uses Int(a) for compositions in
which at least four states are involved.

Let us analyze now the topological condition that is imposed on the semi-
group in the statement of Proposition ?7. Observe that the binary operation
“+” is required to be continuous as regards the order topology. This require-
ment is essential to obtain the desired result. Coming back to the example
introduced in Remark 77, we notice that “+” is not continuous there: Indeed
(7,9) is a neighbourhood of 8 = 4 + 4, but every neighbourhood of 4 as re-
gards the order topology must contain some element o smaller than 3 so that
a+a ¢ (7,9). In particular, the existence of a mid point fails to be true in
such example because there is no s € S such that s +s=2+5.

Therefore we may assert that Cooper should have noticed that not only
a continuous order is necessary, but also the composition of systems must be
continuous. In Cooper’s proof it is said that, given two states u and v, the sets
L(u,v) ={s : s+s<u+wv}and R(u,v) ={s : u+wv < s+ s} are open,
due to the continuity of “=X”. But this is not true in general: In the example
given in Remark ??, we see that L(2,5) = [2,3) is open, but R(2,5) = [4,+0)
fails to be open. This anomalous behaviour cannot appear when the operation
“+” is continuous.

The result stated in Proposition ?7? is used in [?] to prove that, under such
conditions, if there exists an additive utility function that represents (S, +, 3),
then it must be continuous. Later in [?] it is proved that an additive util-
ity must always exist, as a consequence of the connectedness and the fact of
(S, 4+, 3) being topological. Actually it is proved that, under the conditions of
Proposition 7?7, connected implies super-Archimedean. This fact is used to get
an additive utility function, in view of Theorem ?7.

Cooper’s reasoning in section 4 of [?] follows a different path: Cooper starts
by assuming that there is a continuous entropy (constructed in [?], Theorem 1).
Then Cooper tries to achieve a new entropy, now continuous and additive, by
modifying the (not necessarily additive) original entropy. In Cooper’s method,
given any entropy for the system, the set of states can be embedded in a segment
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of the real line, since it is the continuous image of a connected set. So any other
entropy will be the composition of the given entropy with a strictly increasing
function from the real line into itself. Interpreting Cooper’s arguments, it seems
that any two states sg and s1, such that sg — si, are identified with the real
numbers 0 and 1. Then Cooper applies the Lemma 1 in [?] again and again, to
obtain all the states that are in correspondence with a dyadic number in (0, 1).
By continuity, and density of the dyadic numbers in (0, 1), Cooper obtains the
converse of an additive entropy whose range is the whole [0, 1]. It seems that
Cooper is arguing that, being u an entropy, the expression v~ (u(a) + u(b))
taken as the converse entropy of the composition a + b, defines an additive
entropy v such that v(a + b) = u~!(u(a) + u(b)), a,b being any two systems.
Such construction is not clear, however: Actually the so defined function v
may or may not be additive. Indeed, the original system could fail to have
a null element as regards “+”, whereas v=1(0) should act as a null element.
All along this construction, the only true fact concerning additivity is that the
original entropy w is additive as regards a new binary operation “x” defined by
axb=u"tu(a) + u()), a,b being any two states. Unfortunately, this new
composition of states, “«”, could have no connection with the original one “+”.
Anyways, Cooper’s arguments in section 4 of [?] are by no means worth-
less: On the one hand in Cooper’s proof of Lemma 1 the density of the dyadic
numbers in (0,1) is considered in order to get a suitable entropy. This ar-
gument has been used to analyze the structure of nontrivial totally ordered
connected topological semigroups (5,4, 3), and prove that they are homeo-
morphic, algebraically isomorphic and isotonic to some unlimited interval of
the totally ordered group of additive real numbers endowed with the usual Eu-
clidean topology. (For further details see Corollary 1 and Theorem 5 in [?]).
On the other hand, it is also noticeable that in Theorem 2 in section 4 of [?],
Cooper says that: << The entropy function is uniquely determined for any
one system by its values for two particular systems and, when so defined for
one system, is defined uniquely for any other system by its value for one state
of that system. Any two possible choices of the entropy function are related
linearly.>> Cooper’s argument follows from Lemma 1 in [?] whose proof is
not clear as we have already mentioned. However, we feel that while Cooper’s
argument is not completely rigorous from a mathematical point of view, it
does demonstrate that Cooper’s intuition was correct and provides a basis for
some deep results in fields that are apparently far removed from concepts and
theories of thermodynamics such as, for example, algebraic utility theory.

Proposition 4.10. Given two additive pseudo-utilities u,v defined on a totally
ordered semigroup (S, +, 3) there exists a positive constant o such that v = a-u.

Proof. Let us see a proof for the particular case of positive semigroups and u, v
being pseudoutilies that take values in (0,400). (For a complete proof, see

Lemma 1 in [?]): Fix a € S, and consider an element s € S. Put k = ZEZ% and
v(a

= Ty Approximate k by a strictly increasing sequence (r,)nen of rational
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numbers. Being r, = 22 with p,,q, € Z, ¢, # 0, (n

. € N), it follows that
pru(a) < quu(s) = pp-a < ¢ s = pypv(a) < guuv(z) (n € N). Taking

limits as n tends to infinity, we have that v(s) > [“2] - v(a) = a - u(s). A

u(a)

similar argument shows that u(s) > a~! - v(s). Therefore v(s) = a-u(s). O
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