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Abstract. In this paper we study properties of relative collec-

tionwise normality type based on relative properties of normality type

introduced by Arhangel’skii and Genedi.

Theorem Suppose Y is strongly regular in the space X. If Y is para-

compact in X then Y is collectionwise normal in X.

Example A T2 space X having a subspace which is 1− paracompact

in X but not collectionwise normal in X.

Theorem Suppose that Y is s- regular in the space X. If Y is meta-

compact in X and strongly collectionwise normal in X then Y is para-

compact in X.
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1. Introduction

In this paper properties of relative collectionwise normality type based on
relative properties of normality type introduced in [2] and [3] are studied. Our
study focusses on the following well known theorems and relative properties of
paracompactness type introduced in [1] and [4].

Theorem 1.1 (Bing). Every paracompact space is collectionwise normal.

Theorem 1.2 (Michael-Nagami). Every metacompact collectionwise normal
space is paracompact.

A theorem concerning the relative properties of a subspace Y in a space
X becomes a theorem about the corresponding global properties of X by let-
ting Y = X. It is not surprising when the proof of a result concerning relative
properties is a straight forward modification of the usual proof of the corre-
sponding global result. For example we show that if Y is strongly star normal
in X then Y is strongly collectionwise normal in X, Theorem 3.7. The proof is
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the natural relative version of the standard proof that T2 paracompact spaces
are collectionwise normal using the fully normal characterization of paracom-
pactness. However this is not always true. For example there exist a good
number of non-equivalent relative properties of paracompactness type, see [1],
[2], [6], [7] and [8]. Some of these properties are preserved by closed maps
(cp-paracompact in X, [7]) and some are not (paracompact in X from outside,
[7]). Some imply that the subspace Y is paracompact (strongly star normal
in X, [4]) while others do not (1- paracompact in X, [6]). We give an exam-
ple of a T2 space having a subspace which is 1− paracompact in X but not
collectionwise normal in X, Example 5.4. Thus to obtain an analog of Bing′s
Theorem for subspaces Y paracompact in X it is necessary to assume that Y
satisfies relative separation properties not implied by the space X being a T2

space and Y being paracompact in X. If Y is paracompact in X and strongly
regular in X then Y is collectionwise normal in X, Theorem 3.3.

We give several relative versions of the Michael-Nagami Theorem. If Y is
s− regular in X, metacompact in X and strongly collectionwise normal in X
then Y is paracompact in X, Theorem 4.4. If Y is closed, s− regular in X,
collectionwise normal in X and metacompact then Y is paracompact in X,
Corollary 4.5.

Throughout this paper all spaces are assumed to be Hausdorff. Suppose X
is a space and Y a subspace of X. When a set U is said to be open, we mean
open with respect to the topology on X even if U happens to be a subset of
Y. For a set X , x ∈ X, a subset A of X and a collection U of subsets of X,
(U)x = {U ∈ U : x ∈ U}, (U)A = {U ∈ U : A ∩ U 6= φ}, st(x,U) = ∪(U)x and
st(A,U) = ∪(U)A.

2. Definitions and Lemma

Suppose Y is a subset of the space X. The subset Y is 1. regular in X , 2.
super regular in X, 3. strongly regular in X, 4. s- regular in X , 5. normal in
X , 6. s- normal in X , 7. strongly normal in X provided
1. for each x ∈ Y and every subset F of X\{x} closed in X there are

disjoint open sets U and V such that x ∈ U and F ∩ Y ⊆ V [3].
2. for each x ∈ Y and every subset F of X\{x} closed in X there are

disjoint open sets U and V such that x ∈ U and F ⊆ V [3].
3. for each x ∈ X and every subset F of X\{x} closed in X there are

disjoint open sets U and V such that x ∈ U and F ∩ Y ⊆ V [3].
4. Y is both super regular and strongly regular in X.

5. for each pair E and F of disjoint closed subsets of X there are disjoint
open sets U and V such that E ∩ Y ⊆ U and F ∩ Y ⊆ V [3].

6. for each pair, E and F of disjoint closed subsets of X, there are
disjoint open subsets of X , U and V such that E ⊆ U and
F ∩ Y ⊆ V [10].

7. for each pair E and F of disjoint closed (in Y ) subsets of Y there are
disjoint open sets U and V such that E ⊆ U andF ⊆ V [2].
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Suppose Y is a subset of a space X. If Y is super regular or strongly regular
in X (s− normal or strongly normal in X) then Y is regular (normal) in X.
However in general there is no implication between these two stronger condi-
tions. Also if Y is normal (s- normal) in X then Y is regular (s- regular) in
X. If X is a regular (normal) space then every subspace of X is s− regular
(s- normal but not necessarily strongly normal) in X. The subspace Y can be
strongly normal in X without being strongly regular in X.

Suppose Y is a subset of a space X. A collection U is said to be locally finite
on Y provided for every y ∈ Y there is an open V containing y such that (U)V
is finite. A collection F of closed subsets of X is said to be weakly closure
reserving with respect to Y provided for all F ′ ⊆ (F)Y , (∪F

′)∩Y = (∪F ′)∩Y,
[7]. The following lemmas from [7] are frequently used when working with
collections that are locally finite with respect to a subset Y of a space X.

Lemma 2.1. Suppose Y ⊆ X and U is a collection of open subsets of the
space X locally finite on Y. Then the collection {U : U ∈ U} is weakly closure
preserving with respect to Y and locally finite on Y.

Lemma 2.2. Suppose that Y ⊆ X and F is a collection of closed subsets of
the space X weakly closure preserving with respect to Y.
1. If B ⊆ X is closed then {F ∩B : F ∈ F} is weakly closure preserving with
respect to Y.
2. If A ⊆ Y then A ⊆ X\∪(F\(F)A). In particular, for all y ∈ Y, y /∈

∪{F ∈ F : y /∈ F}.

For a space X and Y ⊆ X, a collection A of subsets of the space X is
said to be discrete with respect to Y provided for all x ∈ Y there is an open
neighborhood U of x that intersects at most one member of A. We say that Y
is collectionwise normal in a space X provided for every discrete collection F
of closed subsets of X, there is a collection of open subsets of X, U = {U(F ) :
F ∈ F} discrete with respect to Y such that for all F ∈ F , F ∩ Y ⊆ U(F ) ⊆
X\∪(F\{F}). Notice that a collection of subsets of a space X which is discrete
with respect to a subspace Y of X need not be pairwise disjoint. However in
the case of collectionwise normality in X this is not a problem as seen in the
following lemma.

Lemma 2.3. Suppose Y ⊆ X and U is a collection of open subsets of the space

X discrete with respect to Y. For each U ∈ U let V (U) = U\∪(U\{U}). Then
the collection {V (U) : U ∈ U} is a pairwise disjoint collection of open subsets
of X discrete with respect to Y such that for all U ∈ U , U ∩ Y = V (U) ∩ Y.

Theorem 2.4. If Y is collectionwise normal in the space X then Y is normal
in X.

We say that a subspace Y is strongly collectionwise normal in the space X
provided for every collection F of closed subsets of X which is discrete with
respect to Y there is a collection of open subsets of X, U = {U(F ) : F ∈
F} discrete with respect to Y such that for all F ∈ F , F ∩ Y ⊆ U(F ) ⊆
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X\∪(F\{F}). By Lemma 2.3 the members of U can be taken to be pairwise
disjoint and discrete with respect to Y if we choose. Notice that if Y is a closed
subset of X and F is a collection of closed subsets of X which is discrete with
respect to Y then {F ∩ Y : F ∈ F} is a discrete collection of closed subsets of
X.

Theorem 2.5. If Y is strongly collectionwise normal in the space X then Y
is strongly normal in X and a collectionwise normal subspace of X. If Y is a
closed subset of X then Y is strongly collectionwise normal in X if and only if
Y is collectionwise normal in X.

A closed collectionwise normal subspace of a space X need not be collec-
tionwise normal in X, Example 5.2.

3. Relative paracompact implies relative

collectionwise normality

The following definitions of the most natural properties of relative paracom-
pactness type are from [2]. The subspace Y is said to be 1− paracompact in X
provided every open cover of X has an open refinement locally finite on Y. The
subspace Y is paracompact in X provided every open cover of X has an open
partial refinement covering Y and locally finite on Y. In [6] it is observed that
if Y is strongly regular in X and paracompact in X then Y is normal in X. If
Y is closed and paracompact in X then Y is normal in X. However a closed
subset of a regular space X can be paracompact in X and not s− normal in X,
Example 5.3. Although it is readily seen that if Y is 1− paracompact in X then
Y is super- regular in X it need not be strongly regular in X , Example 5.1.
The following Theorem shows that s− normality in X is a relative property of
normality type that relates to 1− paracompactness in X .

Theorem 3.1. Suppose Y is strongly regular in the space X. If Y is 1− para-
compact in X then Y is s−normal in X.

Proof. Suppose E and F are disjoint closed subsets of X. Since Y is strongly
regular in X, for every x ∈ E there are disjoint open sets W (x) and G(x) such
that x ∈ W (x) and F ∩Y ⊆ G(x). Let W = {W (x) : x ∈ E}∪{X\E} and V be
and open refinement of W locally finite on Y. For each V ∈ (V)E let x(V ) ∈ E
such that V ⊆ W (x(V )).

Let U = ∪(V)E and note that since V is a cover of X , E ⊆ U. Let O = X\U.
Suppose x ∈ F ∩Y. Since V is locally finite on Y, let Q be an open neighborhood
of x meeting only finitely many members of V . Let V ′ = {V ∈ (V)E : Q∩ V 6=
φ} and note that V ′ is finite. If V ′ = φ then Q∩U = φ and so x ∈ O. Suppose
V ′ 6= φ, say V ′ = {V1, V2, .., Vn}. Then Q∩G(x(V1))∩ ...∩G(x(Vn)) is an open
neighborhood of x missing U and so again x ∈ O. Therefore F ∩ Y ⊆ O. �

A space X can have a subspace which is 1− paracompact in X but not
collectionwise normal in X, Example 5.4.This example is not regular and the
subspace Y is not closed.
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Theorem 3.2. Suppose that Y is closed and paracompact in the space X. Then
Y is strongly collectionwise normal in X.

Proof. By Theorem 2.5 we need only show that Y is collectionwise normal
in X. Let {Fα : α ∈ Γ} be a discrete collection of closed subsets of X such
that if α, β ∈ Γ with α 6= β then Fα 6= Fβ . For each x ∈ X, let Ux be and
open neighborhood of x meeting at most one member of F . Let V be and
open partial refinement of {Ux : x ∈ X} covering Y locally finite on Y. For
each α ∈ Γ let Vα = ∪{V ∈ V : Y ∩ V ∩ Fα 6= φ}. Then {Vα : α ∈ Γ} is
a collection of open subsets of X locally finite on Y such that for all α ∈ Γ,
Y ∩ Fα ⊆ Vα ⊆ X\ ∪ (F\{Fα}). Since Y is closed and paracompact in X it is
normal in X. For all α ∈ Γ let Gα and Wα be disjoint open subsets of X such
that Y ∩ Fα ⊆ Gα and Y ∩ (∪(F\{Fα})) ⊆ Wα.

For all α ∈ Γ let Hα = Gα ∩ Vα and Uα = Hα\∪{Hβ : β ∈ Γ\{α}}. The
collection U = {Uα : α ∈ Γ} is a pairwise disjoint collection of open subsets
of X. Since for all α ∈ Γ, Uα ⊆ Vα the collection U is locally finite on Y and
Uα ⊆ X\ ∪ (F\{Fα}). Thus we need only show that Fα ∩ Y ⊆ Uα. Note that
for all α ∈ Γ, Fα ∩ Y ⊆ Hα and since Hα ⊆ Vα the collection {Hα : α ∈ Γ}
is also locally finite on Y. Thus by Lemma 2.1 the collection {Hα : α ∈ Γ} is
weakly closure preserving with respect to Y and so for all α ∈ Γ

Y ∩ (∪{Hβ : β ∈ Γ\{α}}) = Y ∩ (∪{Hβ : β ∈ Γ\{α}}).
Suppose α ∈ Γ, x ∈ Y ∩ Fα and λ ∈ Γ\{α}. Since λ 6= α and x ∈ Y ∩ Fα,
x ∈ Y ∩ (∪(F\{Fλ})) ⊆ Wλ. Since Hλ ⊆ Gλ and Gλ ∩Wλ = φ, x /∈ Hλ. Hence
(Y ∩ Fα) ∩ (∪{Hβ : β ∈ Γ\{α}}) = φ and so Y ∩ Fα ⊆ Uα.

We now proceed much as in Theorem 5.1.17 of [5]. Let F = Y ∩ (∪F)
and K = Y \ ∪ U . Since F and K are disjoint subsets of Y closed in X and
Y is normal in X there exist disjoint open sets W and W ′such that F ⊆ W,
K ⊆ W ′.

Clearly for all α ∈ Γ, Y ∩Fα ⊆ W ∩Uα and the collection {W ∩Uα : α ∈ Γ}
is pairwise disjoint. Suppose y ∈ Y. If α ∈ Γ and y ∈ Uα then Uα is an open
neighborhood of y meeting at most one member of {W ∩ Uα : α ∈ Γ}, (that
member being W ∩ Uα) If y /∈ Uα for all α ∈ Γ then y ∈ K and so W ′ is an
open neighborhood of y missing all members of {W ∩ Uα : α ∈ Γ}. Thus the
collection {W ∩Uα : α ∈ Γ} is a pairwise disjoint collection of open sets discrete
on Y such that for all α ∈ Γ, Y ∩ Fα ⊆ W ∩ Uα ⊆ X\ ∪ (F\{Fα}). �

The following is a natural relative version of Bing’s Theorem. In light of
Example 5.4, we need to assume that the subspace Y is relatively regular in X.

Theorem 3.3. Suppose Y is strongly regular in the space X. If Y is paracom-
pact in X then Y is collectionwise normal in X.

Proof. Let F = {F
α
: α ∈ Γ} be a discrete collection of closed subsets ofX such

that if α, β ∈ Γ with α 6= β then Fα 6= Fβ . Using the fact that Y is strongly
regular in X, for each x ∈ ∪{F

α
: α ∈ Γ} let Ux be an open neighborhood of x

such that |{α ∈ Γ : Ux ∩ Fα 6= φ}| = 1 and |{α ∈ Γ : Ux ∩ Fα ∩ Y 6= φ}| = 1.
For each x ∈ X \ ∪{F

α
: α ∈ Γ}, let Ux be an open neighborhood of x such
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that Ux ∩ ∪{F
α
∩ Y : α ∈ Γ} = φ. Let U = {Ux : x ∈ X}. Since Y is

paracompact in X, there is an open partial refinement V of U such that V
covers Y and V is locally finite on Y . Note that since V is a partial refinement
of U , |{α ∈ Λ : V ∩ Fα ∩ Y 6= φ}| ≤ 1 for all V ∈ V . For each y ∈ Y,
let Vy ∈ V such that y ∈ Vy . For each α ∈ Γ, let Yα = Y ∩ Fα. For each
y ∈ ∪{Y

α
: α ∈ Γ}, let Wy be an open neighborhood of y such that Wy ⊆ Vy

and |{V ∈ V : Wy ∩ V 6= φ}| < ℵ
0
. Also, for each y ∈ ∪{Y

α
: α ∈ Γ}, let

Oy = Wy \ ∪{V : V ∈ V , Wy ∩ V 6= ∅, and y /∈ V }. For each α ∈ Γ, let
Oα = ∪{Oy : y ∈ Yα}. Clearly, Fα ∩ Y = Yα ⊆ Oα ⊆ X\ ∪ (F\{Fα}) for
all α ∈ Γ. It remains to show that {Oα : α ∈ Γ} is discrete with respect to
Y . To see this, let z ∈ Y, and β, γ ∈ Γ with β 6= γ. It suffices to show that
either Vz ∩ Oβ = φ or Vz ∩ Oγ = φ. By the choice of Vz , either Vz ∩ Yβ = φ

or Vz ∩ Yγ = φ. Without loss of generality, suppose that Vz ∩ Yγ = φ. To see

that Vz ∩Oγ = φ, let u ∈ Yγ . Either Wu ∩ Vz = φ or Ou ⊆ Wu \ Vz. In either
case, Ou ∩ Vz = φ. Since u was chosen arbitrarily, Vz ∩ Oy = φ for all y ∈ Yγ .
Therefore, Vz ∩Oγ = φ, as desired. �

It is not clear as to how one might modify the definition of collectionwise
normality in a space X to obtain a stronger version that would be implied
by being 1− paracompact in X but not by being paracompact in X. A space
X is said to be discretely expandable if every discrete collection of subsets of
X is expandable to a locally finite open collection, [9]. A normal space is
collectionwise normal if and only if it is discretely expandable, [9]. For a space
X and Y ⊆ X,we say that Y is (1−) discretely expandable in X provided
every discrete collection of closed subsets of X, F there is a collection of open
subsets of X, {U(F ) : F ∈ F} locally finite on Y such that for all F ∈ F ,
Y ∩ F ⊆ U(F ) ⊆ X\ ∪ (F\{F}), (F ⊆ U(F ) ⊆ X\ ∪ (F\{F})). Clearly, if Y
is (1−) paracompact in X then Y is (1−) discretely expandable in X.

Theorem 3.4. Suppose Y is s− normal in the space X. If Y is 1− discretely
expandable in X then Y is collectionwise normal in X.

Proof. Let F ={Fα : α ∈ Γ} be a discrete collection of closed subsets of X such
that if α, β ∈ Γ with α 6= β then Fα 6= Fβ . For each x ∈ X let U(x) be an open
neighborhood of x meeting at most one member of F . Let V ={Vα : α ∈ Γ}
be a collection of open subsets of X locally finite on Y such that for all α ∈ Γ,
Fα ⊆ Vα ⊆ X\ ∪ (F\{Fα}).

Since Y is s− normal in X, for all α ∈ Γ there exist open sets Wα and Mα

such that Y ∩ Fα ⊆ Wα ⊆ Wα ⊆ Vα and Y ∩Wα ⊆ Mα ⊆ Mα ⊆ Vα. For all
α ∈ Γ let Gα = Wα\∪{Mβ ∪Wβ : β ∈ Γ\{α}}. Note that for all α, β ∈ Γ, if
α 6= β then Gα ∩Gβ = φ.

Suppose α ∈ Γ and x ∈ Fα ∩ Y. Since the collection {Mγ ∪Wγ : γ ∈ Γ} is

locally finite on Y, if x ∈ ∪{Mβ ∪Wβ : β ∈ Γ\{α}} then x ∈ Mβ ∪Wβ ∩ Y =

(Mβ∪Wβ)∩Y = Mβ∩Y for some β ∈ Γ\{α}. HoweverMβ ⊆ Vβ and Vβ∩Fα =

φ for all β ∈ Γ\{α} a contradiction. Hence x /∈ ∪{Mβ ∪Wβ : β ∈ Γ\{α}} and
so Fα ∩ Y ⊆ Gα ⊆ X\ ∪ (F\{Fα}) for all α ∈ Γ.
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Suppose that x ∈ Y. Since the collection {Wα : α ∈ Γ} is locally finite on Y,

if x ∈ ∪{Wα : α ∈ Γ} then there is an α∗ ∈ Γ such that x ∈ Wα∗ . Thus Mα∗ is
an open neighborhood of x meeting at most one member of {Gα : α ∈ Γ}, i.e.
Gα∗ . Hence the collection {Gα : α ∈ Γ} is discrete with respect to Y. �

Theorem 3.5. Suppose Y is closed and s− normal in the space X. If Y is
discretely expandable in X then Y is strongly collectionwise normal in X.

Proof. Proceed as in Theorem 3.4 replacing the closed discrete collection {Fα :
α ∈ Γ} with the closed discrete collection {Y ∩ Fα : α ∈ Γ}. �

Theorem 3.6. Suppose Y is strongly normal in the space X. If Y is discretely
expandable in X then Y is collectionwise normal in X.

Proof. Let F ={Fα : α ∈ Γ} be a discrete collection of closed subsets of X
such that if α, β ∈ Γ with α 6= β then Fα 6= Fβ . Let V ={Vα : α ∈ Γ} be
a collection of open subsets of X locally finite on Y such that for all α ∈ Γ,
Fα ∩ Y ⊆ Vα ⊆ X\ ∪ (F\{Fα}).

For all α ∈ Γ, since Y is strongly normal in X and Fα ∩ Y ⊆ Vα, there exist
open sets Wα and Mα such that Fα ∩ Y ⊆ Wα ⊆ Vα, Wα ∩ Y ⊆ Mα ⊆ Vα and
Mα ∩ Y ⊆ Vα. For all α ∈ Γ let Gα = Wα\∪{Mβ ∪Wβ : β ∈ Γ\{α}}. Then as
in Theorem 3.4 for all α ∈ Γ, Fα∩Y ⊆ Gα ⊆ X\∪(F\{Fα}) and the collection
{Gα : α ∈ Γ} is discrete with respect to Y. �

Question 1 Suppose Y is s- normal in the space X and discretely expandable
in X. Is Y collectionwise normal in X?

For a normal space X , a subspace Z can be collectionwise normal in X
without being 1− discretely expandable in X, Example 5.2. A subspace Y of a
normal space X can be 1− paracompact in X but not strongly collectionwise
normal in X. In fact a subspace of a compact space X need not be strongly
collectionwise normal in X, Example 5.5. In [4] a relative property of para-
compactness type which does imply strongly collectionwise normality in X is
introduced. Suppose X is a set, U , V collections of subsets of X and y ∈ X.
The collection V is said to star refine U at y provided there is a U ∈ U such
that st(y,V) ⊆ U. For a space X , a subspace Y is said to be strongly star -
normal in X provided for every collection U of open subsets of X covering Y
there is a collection V of open subsets of X covering Y which star refines U at
every point of ∪V .

Theorem 3.7. If Y is strongly star normal in the space X then Y is strongly
collectionwise normal in X.

Proof. (Proceed as in Theorem 5.1.18 of [5]) Let F ={Fα : α ∈ Γ} be a col-
lection of closed subsets of X which is discrete with respect to Y such that
if α, β ∈ Γ with α 6= β then Fα 6= Fβ . For each y ∈ Y let Uy be and open
neighborhood of y meeting at most one member of F . Let W be a collection
of open subsets of X covering Y which star refines U = {Ux : x ∈ Y } at
every point of ∪W and V be a collection of open subsets of X which covers
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Y and star refines W at every point of ∪V . Then using the same argument
as in Lemma 5.1.15 of [5], we see that V is a collection of open subsets of X
covering Y such that for every V ∈ V there is a U ∈ U with st(V,V) ⊆ U .
For each α ∈ Γ let Vα = ∪{V ∈ V : V ∩ Fα 6= φ} and note that for all α ∈ Γ
Fα ∩Y ⊆ Vα ⊆ X\∪ (F\{Fα}) and the collection {Vα : α ∈ Γ} is discrete with
respect to Y. �

4. Relative versions of the Michael-Nagami Theorem

By replacing “locally finite” with “point finite” in the definitions of (1−)
paracompactness we obtain relative metacompact analogs [7]. The subspace Y
ofX is strongly metacompact in X provided every open cover of X has an open
refinement point finite on Y . The subspace Y of a space X is metacompact in
X provided every open cover of X has an open partial refinement point finite on
Y . Clearly for a space X strongly metacompactness in X is a natural relatively
metacompact analog of 1− paracompactness in X and metacompactness in X
is the corresponding relative metacompact analog of paracompactness in X.

Before presenting several relative versions of the Michael - Nagami Theorem
here are several examples clarifying the limitations of what we can expect. A
closed discrete subspace of a normal space X is always strongly metacompact
in X and collectionwise normal but need not be paracompact in X, Example
5.2. In Example 5.6 we give a regular space X having an open subspace Y
which is strongly collectionwise normal in X and strongly metacompact in X
but not 1− paracompact in X. In Example 5.7 we give a non regular space X
having a closed subspace Y which is super regular in X, strongly metacompact
in X and 1− discretely expandable in X but not 1− paracompact in X.

Question 2 Suppose Y is strongly metacompact in X and 1− discretely ex-
pandable in the space X. Is Y paracompact in X?

The proof of Theorem 5.3.3 (Michael-Nagami Theorem) of [5] can be readily
modified to prove the following relative version.

Theorem 4.1. Suppose that X is a regular space and Y ⊆ X. If Y is strongly
metacompact in X and 1− discretely expandable in X then every open cover of
X has an open partial refinement covering Y which is the countable union of
collections locally finite on Y.

Question 3 Suppose that X is a regular space, Y ⊆ X and every open cover
of X has an open partial refinement covering Y which is the countable union
of collections locally finite on Y. Is Y paracompact in X?

For a closed subspace Y of a space X, Y is paracompact in X if and only if
every open cover of X has an open partial refinement covering Y which is the
countable union of collections locally finite on Y, [8]. Also for a closed subset
Y, Y is strongly metacompact in X if and only if Y is a metacompact subspace
of X, [7].
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Corollary 4.2. Suppose Y is closed in the regular space X. If Y is 1- discretely
expandable and metacompact then Y is paracompact in X. (Is Y 1- paracompact
in X?)

Question 4 Suppose Y is (strongly) metacompact in X and collectionwise
normal in X. Is Y paracompact in X?

In Question 3 if locally finite on Y is replaced with discrete with respect to
Y the answer is yes.

Lemma 4.3. Suppose that Y is strongly regular and strongly collectionwise
normal in the space X. If every open cover of X has an open partial refinement
covering Y which is the countable union of collections discrete with respect to
Y then Y is paracompact in X.

Proof. Let U be an open cover of X. For all x ∈ X let Wx be an open neigh-
borhood of x such that Wx ⊆ U and Y ∩ Wx ⊆ U for some U ∈ U . Let
W = {Wx : x ∈ X} and V = ∪{Vn : n < ω} be an open partial refine-
ment of W covering Y such that for all n < ω, the collection Vn is discrete
with respect to Y. For all n < ω, since Vn is discrete with respect to Y, the
collection {V : V ∈ Vn} is discrete with respect to Y. For each n < ω let
Gn = {G(V, n) : V ∈ Vn} be a collection of open subsets of X discrete with re-
spect to Y such that for all V ∈ Vn, V ∩Y ⊆ G(V, n) and G(V, n) ⊆ U for some
U ∈ U . For each n < ω let Fn = ∪Vn. For each V ∈ Vo let H(V, 0) = G(V, 0).
For each 0 < n < ω and V ∈ Vn let H(V, n) = G(V, n)\ ∪ {Fk : k < n}. For
each n < ω let Hn = {H(V, n) : V ∈ Vn} and let H = ∪{Hn : n < ω}. We now
show that H covers Y and is locally finite with respect to Y.

Let y ∈ Y. Let n = min{k < ω : y ∈ Fk}. Since y ∈ Y ∩ Fn and Vn is
discrete with respect to Y, there is a V ∈ Vn with y ∈ V ∩ Y ⊆ G(V, n) and so
y ∈ H(V, n). Let m = min{k < ω : y ∈ ∪Vk} and V ′ ∈ Vm such that y ∈ V ′.
Since V ′ ⊆ Fm, V ′ is an open neighborhood of y missing all members of Hk for
all m < k < ω. For all k ≤ m, since the collection Gk and hence Hk is discrete
with respect to Y, let Ok be an open neighborhood of y meeting at most one
member of Hk. Then V ′ ∩Oo ∩ ...∩Om is an open neighborhood of y meeting
only finitely many members of H. �

Again the proof of Theorem 5.3.3 (Michael-Nagami Theorem) of [5] can be
readily modified to prove the following relative version. We include a proof
here to demonstrate the modifications needed for this theorem and in the proof
of Theorem 4.1.

Theorem 4.4. Suppose that Y is strongly regular in the space X. If Y is meta-
compact in X and strongly collectionwise normal in X then Y is paracompact
in X.

Proof. Let O be an open cover of X and let U = {Uα : α ∈ Γ} be an open
partial refinement of O covering Y point finite on Y such that if α, β ∈ Γ and
α 6= β then Uα 6= Uβ. Let Vo = {φ}. Suppose k < ω and for all i ≤ k the
collection Vi has been defined and Wi =

⋃

Vi such that
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1. Vi is an open partial refinement of U discrete with respect to Y
2. if x ∈ Y such that |{α ∈ Γ : x ∈ Uα}| ≤ i then x ∈ ∪{Wj : j = 0..i}.

Let Tk+1 = {T ⊆ Γ : |T | = k + 1} and for all T ∈ Tk+1 let
FT = (X\ ∪ {Wj : j = 0..i}) ∩ (X\ ∪ {Uα : α ∈ Γ\T }).

Suppose T ∈ Tk+1. If x ∈ Y ∩FT then {α ∈ Γ : x ∈ Uα} ⊆ T and x /∈ ∪{Wj :
j = 0..k}. Hence {α ∈ Γ : x ∈ Uα} = T and so Y ∩ FT ⊆ ∩{Uα : α ∈ T }.
Suppose that x ∈ Y. If |{α ∈ Γ : x ∈ Uα}| ≤ k then ∪{Wj : j = 0..k} is an
open neighborhood of x missing all members of {FT : T ∈ Tk+1}. Suppose
|{α ∈ Γ : x ∈ Uα}| ≥ k + 2. Let α1, α2, ..., αk+2 be distinct members of {α ∈
Γ : x ∈ Uα}. Then ∩{Uαi

: i = 1..k + 2} is an open neighborhood of x meeting
no member of {FT : T ∈ Tk+1}. Suppose |{α ∈ Γ : x ∈ Uα}| = k + 1. Let
T ′ = {α ∈ Γ : x ∈ Uα} and note ∩{Uα : α ∈ T ′} is a neighborhood of x meeting
exactly one member of {FT : T ∈ Tk+1}. Hence we see that {FT : T ∈ Tk+1} is
a collection of closed subsets of X which is discrete with respect to Y.

Let {GT : T ∈ Tk+1} be a collection of open subsets of X discrete with
respect to Y such that for all T ∈ Tk+1, Y ∩ FT ⊆ GT ⊆ X\(∪{FT ′ : T ′ ∈
Tk+1\{T }}). Also assume that for all T ∈ Tk+1, if Y ∩ FT = φ then GT = φ.
For all T ∈ Tk+1, let VT = GT ∩ (∩{Uα : α ∈ T }) and note that Y ∩ FT ⊆ VT .
Let Vk+1 = {VT : T ∈ Tk+1} and Wk+1 =

⋃

Vk+1. Then Vk+1 is an open
partial refinement of U discrete with respect to Y. Suppose that x ∈ Y such
that |{α ∈ Γ : x ∈ Uα}| ≤ k + 1. Then there is a T ∈ Tk+1 such that x ∈
X\ ∪ {Uα : α ∈ Γ\T }. Thus

x ∈ X\ ∪ {Uα : α ∈ Γ\T } = ((X\
k
⋃

i=0

Wi) ∪ (
k
⋃

i=0

Wi)) ∩ (X\ ∪ {Uα : α ∈ Γ\T })

= [(X\
k
⋃

i=0

Wi) ∩ (X\ ∪ {Uα : α ∈ Γ\T })]∪ [(
k
⋃

i=0

Wi) ∩ (X\ ∪ {Uα : α ∈ Γ\T })]

⊆ FT ∪
k
⋃

i=0

Wi.

Hence for all x ∈ Y such that |{α ∈ Γ : x ∈ Uα}| ≤ k + 1, x ∈
k+1
⋃

i=0

Wi. Thus,

since U is point finite on Y, V =
⋃

n<ω

Vn is an open partial refinement of U

covering Y such that for all n < ω the collection Vn is discrete with respect to
Y. By Lemma 4.3, Y is paracompact in X . �

Corollary 4.5. Suppose Y is closed and s− regular in the space X. Then
Y is paracompact in X if and only if Y is collectionwise normal in X and
metacompact.

5. Examples

Example 5.1. A T2 space X having a subspace Y which is 1− paracompact
in X but not strongly regular in X.
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Let X = ω ∪ (ω × ω) ∪ {∗}. Define a topology on X as follows:
1. points of ω × ω are isolated,
2. for each n < ω, {{n} ∪ ({n} × (k, ω)) : k < ω} is a local base at n,
3. the collection {{∗} ∪ ((k, ω)× ω) : k < ω} is a local base at ∗.
Then X is T2 and the subspace Y = ω is 1− paracompact in X but the closed
set Y cannot be separated from the point ∗ by open subsets of X. Thus Y is
not strongly− regular in X.

Example 5.2. Bing’s Example G.

Let X be Bing’s Example G, Y the nonisolated points of X and Z the
isolated points of X. The subset Y is a closed discrete subspace of X and
therefore is strongly metacompact in X and collectionwise normal. However Y
is not collectionwise normal in X. The subspace Z is an open discrete subspace
of X and therefore strongly collectionwise normal in X and paracompact in X
but not 1− discretely expandable in X.

Example 5.3. A regular space X having an open normal subspace which is
collectionwise normal in X but which is not 1− discretely expandable in X and
a closed subspace Z which is paracompact in X but not s− normal in X.

The space X is a standard modification of the Tychonoff plank. Let X =
[0, ω1]× [0, ω]\{(ω1, ω)}. Define a topology on X as follows:
1. Points of ω1 × ω are isolated.
2. For all n < ω let {B(α, n) : α < ω1} be a neighborhood base for the point
(ω1, n) where B(α, n) = (α, ω1]× {n} for all α < ω1.
3. For all α < ω1 let {G(α, n) : n < ω} be a neighborhood base for the point
(α, ω) where G(α, n) = {ω1} × (n, ω] for all n < ω.
Clearly X is a regular space.

Let Y = X\({ω1}×ω). Since Y is an open normal subspace ofX it is strongly
normal in X. The closed sets ω1 × {ω} and {ω1} × ω cannot be separated by
open subsets of X. Thus not only is X not normal but Y is not s− normal in
X.

The subset Y is collectionwise normal inX since it is an open subset ofX and
the direct sum of compact subspaces (Y = ⊕{{α}× [0, ω] : α < ω1}). However
Y is not 1− discretely expandable in X. To see this let C = {ω1} × ω and
F = {{r} : r ∈ C} and note that F is a discrete collection of closed subsets of
X. Suppose that for all r ∈ C, U(r) is an open neighborhood of r. For all n < ω
let βn < ω1 such that B(βn, n) ⊆ U(ω1, n). Let β

∗ = sup{βn : n < ω} and note
that β∗ < ω1. Choose β∗ < γ < ω1 and let k < ω. Then (γ,m) ∈ G(γ, k) ∩
B(βm,m) ⊆ G(γ, k) ∩ U(ω1,m) for all k < m < ω. Hence every neighborhood
of the point (γ, ω) meets infinitely many members of {U(r) : r ∈ C}. Thus the
collection {U(r) : r ∈ C} is not locally finite on Y.

Let Z = {ω1} × ω. The closed discrete subspace Z is easily seen to be
paracompact in X but like Y it is not s− normal in X.

Example 5.4. A T2 Lindelöf space X having a subspace which is 1− para-
compact in X but not collectionwise normal in X.
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Let Y and Z be disjoint subsets of R\Q such that for every nonempty open
subset U of R |U ∩ Y | = ω1 = |U ∩ Z|. Well order Q, Y , and Z, say

Q ={qn : n < ω} , Y = {yα : α < ω1} and Z = {zα : α < ω1}.
For any set A ⊆ R let qA = {n < ω : qn ∈ A}, yA = {α < ω1 : yα ∈ A} and

zA = {α < ω1 : zα ∈ A}. Let X = (R×{0, 1})∪ (Y ∪Z ∪Q)∪ (ω1×ω×{0, 1})
and define a topology on X as follows:
1. All points of ω1 × ω × {0, 1} are isolated.
2. For all α < ω1 a basic open neighborhood of yα [zα] is of the form

{yα} ∪ ({α} ×q U × {0}) [{zα} ∪ ({α} ×q U × {1})]
where U is an open neighborhood of yα [zα] in R.

3. For all n < ω a basic open neighborhood of qn is of the form
{qn} ∪ ((α, ω1)× {n} × {0, 1}) where α < ω1.

4. For all x ∈ R a basic open neighborhood of (x, 0) [(x, 1)] is of the form
([x, a)× {0}) ∪ ((x, a) ∩ (Y ∪Q)) ∪ (y(x, a)×q (x, a)× {0})
∪((α, ω1)×q (x, a)× {0, 1}) where a ∈ R , x < a and α < ω1.
[

((b, x]× {1}) ∪ ((b, x) ∩ (Z ∪Q)) ∪ (z(b, x)×q (b, x)× {1})
∪((β, ω1)×q (b, x)× {0, 1}) where b ∈ R , b < x and β < ω1.

]

The space X is T2 Lindelöf but not regular. The subspace Y ∪ Z ∪Q is 1−
paracompact in X but not collectionwise normal in X.

To see that Y ∪Z∪Q is not collectionwise normal in X let F = (R×{0})∪Y
and K = (R×{1})∪Z. Note F and K are disjoint closed subsets of X. Suppose
that U and V are disjoint open subsets of X such that

F ∩ (Y ∪ Z ∪Q) = Y ⊆ U and K ∩ (Y ∪ Z ∪Q) = Z ⊆ V.
Then U ∩ V ∩Q 6= φ.

Example 5.5. A compact space X having a subspace Y which is not strongly
collectionwise normal in X.

Let X = (ω1+1)× (ω+1) with the product topology and Y = X\{(ω1, ω)}
(Tychonoff plank). Then since X is compact Y (and every other subspace of
X) is 1− paracompact in X. The collection of closed subsets of X
F ={(ω1 + 1)× {ω}} ∪ {{(ω, n)} : n < ω}
is discrete with respect to Y . Using the same argument that the Tychonoff
plank is not normal using the closed (in Y ) sets ω1 × {ω} and {ω1} × ω, one
can use F to show that Y is not strongly collectionwise normal in X.

Example 5.6. A regular space having a subspace which is strongly meta-
compact in X and strongly collectionwise normal in X but not 1− discretely
expandable in X.

Let X = R × R, Y = R × {0} and Z = X\Y. Points of Z have their usual
open neighborhoods. For each x ∈ R a basic neighborhood of (x, 0) will be
of the form {x} × (−ǫ, ǫ) where ǫ > 0. Clearly X is regular and Z is strongly
metacompact in X and strongly star normal in X. However the points of the
closed discrete subset Y cannot be separated by open subsets of X which are
discrete with respect to Z.
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Example 5.7. A nonregular space having a subspace which is super regular
in X, strongly metacompact in X and 1− discretely expandable in X but not
1− paracompact in X.

Let A = ω1 with the order topology. Let B = [0, 1] with points of (0, 1]
having usual open neighborhoods in [0, 1] with the order topology and open

neighborhoods of 0 are of the form U\{
1

n
: n = 1, 2, ...} where U is a usual

open neighborhood of 0 in [0, 1] with the order topology. Note that B is T2

but not regular. Also {
1

n
: n = 1, 2, ...} is closed, 1− discretely expandable in

B and super regular in B.
The construction of the space X is based on examples in [2] and [7]. Let

X = A×B with the topology defined as follows:
1. for a ∈ A and y ∈ (0, 1] basic open neighborhoods are of the form

{a} × V where V is an open neighborhood of y in B,
2. for a ∈ A basic open neighborhoods of (a, 0) are of the form

∪{{x} × Vx : x ∈ U} where U is an open neighborhood of a in A
and for all x ∈ U, Vx is an open neighborhood of 0 in B.

Let Y = A × {
1

n
: n = 1, 2, ...} and note that Y is a closed discrete subset of

X and therefore strongly metacompact in X. Also note that Y is super regular
in X but not strongly regular in X. It is not difficult to show that Y is 1−
discretely expandable in X. To see that Y ia not 1− paracompact in X , let
U = {[0, α] × B : α < ω1}. Using the Pressing Down Lemma it is easily seen
that U does not have an open refinement that is locally finite on Y.
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