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Abstract

In this paper we give a characterization of the class of completable strong
(non-Archimedean) fuzzy metric spaces, in the sense of George and Veera-
mani.
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1. Introduction

The problem of constructing a satisfactory theory of fuzzy metric spaces
has been investigated by several authors from different points of view. Here
we use the concept of fuzzy metric space that George and Veeramani [1, 3]
introduced and studied with the help of continuous t-norms. In [2, 6], it is
proved that the class of topological spaces which are fuzzy metrizable agrees
with the class of metrizable spaces. This result allows to restate some classical
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theorems on metrics in the realm of fuzzy metric spaces. Nevertheless, the
theory of fuzzy metric completion is, in this context, very different from
the classical theory of metric completion. Indeed, Gregori and Romaguera
proved that there exist fuzzy metric spaces which are not completable [7].
Later, the same authors gave a characterization of those fuzzy metric spaces
that are completable, which we reformulate, for our convenience, as follows:

Theorem 1.1. [8] A fuzzy metric space (X,M, ∗) is completable if and only
if for each pair of Cauchy sequences {an} and {bn} in X the following three
conditions are fulfilled:

(c1) limnM(an, bn, s) = 1 for some s > 0 implies limnM(an, bn, t) = 1 for
all t > 0.

(c2) limnM(an, bn, t) > 0 for all t > 0.

(c3) The assignment t → limnM(an, bn, t) for each t > 0 is a continuous
function on ]0,∞[, provided with the usual topology of R.

There were in the literature examples of non-completable strong fuzzy
metrics that do not satisfy (c1) or (c2) [7, 8], and recently [4], the authors
have constructed a non-completable fuzzy metric space which does not satisfy
(c3).

In this paper we first observe that (c1)− (c3) constitute an independent
axiomatic system and then we will proof, after several lemmas, that strong
fuzzy metrics satisfy (c3), or in other words (Theorem 4.7): A strong fuzzy
metric space (X,M, ∗) is completable if and only if M satisfies (c1) and
(c2). Several corollaries can be obtained from this theorem, for instance a
characterization of completable fuzzy ultrametrics (Corollary 4.9) and also
we could obtain that metric spaces admit a unique completion, but we do
not insist on it because it is well-known from the properties of the standard
fuzzy metric. Several examples illustrate our results.

The structure of the paper is as follows. After the preliminaries section,
in Section 3 we prove that (c1) − (c3) constitute an independent axiomatic
system. In Section 4 we give a characterization for the class of completable
strong fuzzy metrics.

2. Preliminaries

Definition 2.1. (George and Veeramani [1].) A fuzzy metric space is an
ordered triple (X,M, ∗) such that X is a (non-empty) set, ∗ is a continu-
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ous t-norm and M is a fuzzy set on X × X×]0,∞[ satisfying the following
conditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0

(GV2) M(x, y, t) = 1 if and only if x = y

(GV3) M(x, y, t) = M(y, x, t)

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) (or simply
M) is a fuzzy metric on X.

Remark 2.2. M(x, y, ) is non-decreasing for all x, y ∈ X.

George and Veeramani proved in [1] that every fuzzy metric M on X
generates a topology τM on X which has as a base the family of open sets
of the form {BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where BM(x, ε, t) = {y ∈
X : M(x, y, t) > 1− ε} for all x ∈ X, ε ∈]0, 1[ and t > 0.

Let (X, d) be a metric space and let Md a fuzzy set on X × X×]0,∞[
defined by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy metric space, [1], and Md is called the standard
fuzzy metric induced by d. The topology on X deduced from d agrees with
τMd

.

Definition 2.3. (Gregori and Romaguera [8].) A fuzzy metric M on X is
said to be stationary if M does not depend on t, i.e., if for each x, y ∈ X,
the function Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y)
instead of M(x, y, t).

Definition 2.4. (Gregori et al. [5], Istrǎţescu [9].) A fuzzy metric space
(X,M, ∗) is said to be strong (non-Archimedean) if for all x, y, z ∈ X and
all t > 0 satisfies

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t).

A strong fuzzy metric for the minimum t-norm is called a fuzzy ultrametric.
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Proposition 2.5. (George and Veeramani [1].) Let (X,M, ∗) be a fuzzy met-
ric space. A sequence {xn} in X converges to x if and only if limnM(xn, x, t) =
1, for all t > 0.

Definition 2.6. (George and Veeramani [1].) A sequence {xn} in a fuzzy
metric space (X,M, ∗) is said to be M-Cauchy, or simply Cauchy, if for each
ε ∈]0, 1[ and each t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1−ε for
all n,m ≥ n0 or, equivalently, lim

n,m
M(xn, xm, t) = 1 for all t > 0. X is said

to be complete if every Cauchy sequence in X is convergent with respect to
τM . In such a case M is also said to be complete.

Definition 2.7. (Gregori and Romaguera [7].) Let (X,M, ∗) and (Y,N, �)
be two fuzzy metric spaces. A mapping f from X to Y is said to be an
isometry if for each x, y ∈ X and t > 0, M(x, y, t) = N(f(x), f(y), t) and, in
this case, if f is a bijection, X and Y are called isometric. A fuzzy metric
completion of (X,M) is a complete fuzzy metric space (X∗,M∗) such that
(X,M) is isometric to a dense subspace of X∗. X is said to be completable
if it admits a fuzzy metric completion.

A t-norm ∗ is called integral (positive) if x ∗ y > 0 whenever x, y ∈]0, 1].

Theorem 2.8. (Gregori et al. [5, Theorem 35]) Let (X,M, ∗) be a strong
fuzzy metric space and suppose that ∗ is integral. If {xn} and {yn} are Cauchy
sequences in X and t > 0 then {M(xn, yn, t)}n converges in ]0, 1].

3. Non-completable fuzzy metric spaces

In this section we will show that the axioms (c1) − (c3) constitute an
independent axiomatic system. To that end, we show three examples of non-
completable fuzzy metric space, which do not satisfy anyone of these three
axioms but they satisfy the other two.

Example 3.1. (Gregori and Romaguera [8, Example 2].) Let {xn} and
{yn} be two strictly increasing sequences of positive real numbers, which
converge to 1 with respect to the usual topology of R, with A∩B = ∅, where
A = {xn : n ∈ N} and B = {yn : n ∈ N}. Put X = A∪B and define a fuzzy
set M on X ×X×]0,∞[ by:
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M(xn, xn, t) = M(yn, yn, t) = 1 for all n ∈ N, t > 0,
M(xn, xm, t) = xn ∧ xm for all n,m ∈ N with n 6= m, t > 0,
M(yn, ym, t) = yn ∧ ym for all n,m ∈ N with n 6= m, t > 0,
M(xn, ym, t) = M(ym, xn, t) = xn ∧ ym for all n,m ∈ N, t ≥ 1,
M(xn, ym, t) = M(ym, xn, t) = xn ∧ ym ∧ t for all n,m ∈ N, t ∈]0, 1[.

As pointed out in [8], an easy computation shows that (X,M, ∗) is a fuzzy
metric space, where ∗ is the minimum t-norm, and it satisfies conditions (c2)
and (c3) of Theorem 1.1. But M does not satisfy condition (c1) of Theorem
1.1. Indeed, in [8] it was observed that {xn} and {yn} are Cauchy sequences
in X such that limnM(xn, yn, t) = 1 for all t ≥ 1, but limnM(xn, yn, t) = t
for all t ∈]0, 1[.

Example 3.2. (Gregori and Romaguera [7, Example 2].) Let {xn} and {yn}
be two sequences of distinct points such that A ∩ B = ∅, where A = {xn :
n ≥ 3} and B = {yn : n ≥ 3}. Put X = A ∪ B and define a fuzzy set M on
X ×X×]0,∞[ by:

M(xn, xm, t) = M(yn, ym, t) = 1−
[

1
n∧m −

1
n∨m

]
,

M(xn, ym, t) = M(ym, xn, t) = 1
n

+ 1
m
,

for all n,m ≥ 3. In [7], it was proved that (X,M, ∗) is a fuzzy metric space,
where ∗ is the Luckasievicz t-norm (a∗b = max{0, a+b−1}), for which both
{xn}n≥3 and {yn}n≥3 are Cauchy sequences. Clearly,

lim
n
M(xn, yn, t) = lim

n

(
1

n
+

1

n

)
= 0.

Therefore, M does not satisfy condition (c2).
On the other hand, M is a stationary fuzzy metric on X, and so it satisfies

conditions (c1) and (c3), since, obviously, this two conditions are satisfied for
stationary fuzzy metrics.

Example 3.3. (Gregori et al. [4, Proposition 9].) Let d be the usual metric
on R restricted to ]0, 1] and consider the standard fuzzy metric Md induced
by d. Put X =]0, 1] and define a fuzzy set M on X ×X]×]0,∞[ by

M(x, y, t) =


Md(x, y, t), 0 < t ≤ d(x, y)

Md(x, y, 2t) · t−d(x,y)1−d(x,y) +Md(x, y, t) · 1−t
1−d(x,y) , d(x, y) < t ≤ 1

Md(x, y, 2t), t > 1
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In [4] it is proved that (X,M, ∗) is a fuzzy metric space, where ∗ is the usual
product. Also, it is obtained that for the Cauchy sequences {an} and {bn}
in X, given by an = 1

n
and bn = 1 for all n ∈ N, the assignment

lim
n
M(an, bn, t) =


t
t+1
, 0 < t < 1

2t
2t+1

, t ≥ 1

is a well-defined function on ]0,∞[ which is not continuous at t = 1. There-
fore, M does not satisfy condition (c3).

Next, we will see that M satisfies conditions (c1) and (c2).
For proving that M satisfies (c1), we suppose that {an} and be {bn} are

two Cauchy sequences in ]0, 1] such that limnM(an, bn, s) = 1 for some s > 0.
By Remark 2.2, we can find t0 > 1, with t0 > s, such that limnM(an, bn, t0) =
1. Then,

lim
n
M(an, bn, t0) = lim

n
Md(an, bn, 2t0) = lim

n

2t0
2t0 + |an − bn|

= 1

and thus limn |an − bn| = 0.
Let t > 0. We distinguish two cases:

(1) If t ∈]0, 1], then there exists n0 ∈ N such that |an − bn| < t for all
n ≥ n0, since limn |an − bn| = 0. Then

lim
n
M(an, bn, t) = lim

n

(
2t

2t+ |an − bn|
· t− |an − bn|

1− |an − bn|
+

t

t+ |an − bn|
· 1− t

1− |an − bn|

)
=

= t+ 1− t = 1

(2) If t > 1, then

lim
n
M(an, bn, t) = lim

n

2t

2t+ |an − bn|
= 1

Therefore, limnM(an, bn, t) = 1 for all t > 0, and so M satisfies (c1).
Now, we will prove that M satisfies (c2). Suppose the contrary, i.e., there

exist two Cauchy sequences {an} and {bn} such that limnM(an, bn, s) = 0
for some s > 0. First, we claim that M -Cauchy sequences are Cauchy for the
usual metric d of R restricted to ]0, 1]. Indeed, if {an} is a Cauchy sequence in
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(X,M, ∗), then limn,mM(an, am, t) = 1 for all t > 0. In particular, for t > 1
we have that limn,mM(an, am, t) = limn,m

2t
2t+|an−am| = 1, and so limn,m |an−

am| = 0, i.e., {an} is Cauchy in (R, d).
Then, there exist a, b ∈ [0, 1] such that {an} and {bn} converge to a and

b, respectively, for the usual topology of R restricted to [0, 1]. Therefore,
limn |an − bn| = |a− b|.

We distinguish two cases:

(1) Suppose that |a− b| = 0. Then for t0 > 1 we have that

lim
n
M(an, bn, t0) = lim

n

2t0
2t0 + |an − bn|

=
2t0

2t0 + |a− b|
= 1.

So M(an, bn, t) = 1 for all t > 0, since M satisfies condition (c1), a
contradiction.

(2) Suppose that |a − b| ∈]0, 1]. Taking into account our assumption and
Remark 2.2, we can find 0 < t0 < |a − b|, with t0 < s, such that
limnM(an, bn, t0) = 0. Then there exists n0 ∈ N such that |an−bn| > t0
for all n ≥ n0, and so

lim
n
M(an, bn, t0) = lim

n

t0
t0 + |an − bn|

=
t0

t0 + |a− b|
> 0,

a contradiction.

Therefore, M satisfies (c2).

Consequently, (c1)− (c3) constitute an independent axiomatic system.

4. Completable strong fuzzy metrics

In this section we will show that condition (c3) in Theorem 1.1 can be
omitted when (X,M, ∗) is a strong fuzzy metric space.

We begin this section giving five lemmas.

Lemma 4.1. Let (X,M, ∗) be a strong fuzzy metric space and let {an}, {bn}
be two Cauchy sequences in X. For each t > 0, the sequence {M(an, bn, t)}n
converges in [0, 1] with the usual topology of R restricted to [0, 1].
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Proof.
Fix t > 0. Let {an} and {bn} be two Cauchy sequences in X. Since [0, 1] is

compact the sequenceM(an, bn, t) ∈ [0, 1] has a subsequence {M(ank , bnk , t)}k
that converges to some c ∈ [0, 1]. We will see that {M(an, bn, t)}n converges
to c.

Contrary, suppose that {M(an, bn, t)}n does not converge to c. Then,
we can find a subsequence {M(ami , bmi , t)}i of {M(an, bn, t)}n converging to
a ∈ [0, 1], with a 6= c.

Now, since M is strong, for each i, k ∈ N we have that

M(ank , bnk , t) ≥M(ank , ami , t) ∗M(ami , bmi , t) ∗M(bmi , bnk , t)

and taking limit as i, k →∞, we have that

lim
k
M(ank , bnk , t) ≥ lim

i
M(ami , bmi , t).

With a similar argument, we can also obtain

lim
i
M(ami , bmi , t) ≥ lim

k
M(ank , bnk , t).

So, c = limkM(ank , bnk , t) = limiM(ami , bmi , t) = a, a contradiction.
Therefore, limnM(an, bn, t) = c.

�

Lemma 4.2. Let (X,M, ∗) be a fuzzy metric space, let {an} be a Cauchy
sequence in X and let {tn} be a strictly increasing (decreasing) sequence of
positive real numbers converging to t0 > 0 (for the usual topology of R). Then
limn,mM(an, am, tn) = 1.

Proof. It is immediate.
�

Lemma 4.3. Let (X,M, ∗) be a strong fuzzy metric space. Let {an}, {bn} be
two Cauchy sequences in X and let {tn} be a strictly increasing (decreasing)
sequence of positive real numbers converging to t0 > 0 (for the usual topology
of R). Then, the sequence {M(an, bn, tn)}n converges in [0, 1], with the usual
topology of R restricted to [0, 1].
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Proof. Let {an}, {bn} be two Cauchy sequences in X and let {tn} be
a strictly increasing sequence of positive real numbers converging to t0 > 0.
Consider the sequence {M(an, bn, tn)}n ⊂ [0, 1]. Since [0, 1] is compact then,
there exists a subsequence {M(ank , bnk , tnk)}k of {M(an, bn, tn)}n converging
to c ∈ [0, 1].

Suppose that {M(an, bn, tn)}n does not converge to c. Then, we can find
a subsequence {M(ami , bmi , tmi)}i of {M(an, bn, tn)}n converging to a ∈ [0, 1],
with a 6= c.

Suppose, without loss of generality, that a > c. We will construct, by
induction, two subsequences {M(ankl , bnkl , tnkl )}l and {M(amij , bmij , tmij )}j
of {M(ank , bnk , tnk)}k and {M(ami , bmi , tmi)}i, respectively, as follows.

Take mi1 = m1 ∈ N. We can choose nk1 ∈ N such that nk1 > mi1 and
tnk1 > tmi1 (since {tnk} is strictly increasing). By Remark 2.2 and using that
M is strong, we have that

M(ank1 , bnk1 , tnk1 ) ≥M(ank1 , bnk1 , tmi1 ) ≥

M(ank1 , ami1 , tmi1 ) ∗M(ami1 , bmi1 , tmi1 ) ∗M(bmi1 , bnk1 , tmi1 ).

Now, we choose mi2 ∈ N such that mi2 > nk1 . Given mi2 , we can choose
nk2 ∈ N such that nk2 > mi2 and tnk2 > tmi2 . By Remark 2.2 and using that
M is strong, we have that

M(ank2 , bnk2 , tnk2 ) ≥M(ank2 , bnk2 , tmi2 ) ≥

M(ank2 , ami2 , tmi2 ) ∗M(ami2 , bmi2 , tmi2 ) ∗M(bmi2 , bnk2 , tmi2 ).

Therefore, by induction on j we have that

M(ankj , bnkj , tnkj ) ≥

M(ankj , amij , tmij ) ∗M(amij , bmij , tmij ) ∗M(bmij , bnkj , tmij ).

Taking limit as j →∞, by Lemma 4.2 we have that.

c = lim
j
M(ankj , bnkj , tnkj ) ≥ lim

j
M(amij , bmij , tmij ) = a,

a contradiction.
Therefore, limnM(an, bn, tn) = c.
If {tn} is strictly decreasing, it is proved in a similar way.

�
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Lemma 4.4. Let (X,M, ∗) be a strong fuzzy metric space. Let {an}, {bn}
be two Cauchy sequences in X and let {tn}, {sn} be two strictly increasing
(decreasing) sequences of positive real numbers converging to t0 > 0 (for the
usual topology of R). Then, limnM(an, bn, tn) = limnM(an, bn, sn).

Proof. Let {an}, {bn} be two Cauchy sequences in X and let {tn}, {sn}
be two strictly increasing sequence of positive real numbers converging to
t0 > 0. By Lemma 4.3, there exist a, c ∈ [0, 1] such that limnM(an, bn, tn) =
a and limnM(an, bn, sn) = c. Contrary, suppose that limnM(an, bn, tn) 6=
limnM(an, bn, sn). Suppose, without loss of generality, that a < c.

In a similar way that in the proof of the above lemma, we will construct
two subsequences {M(ank , bnk , tnk)}k and {M(ami , bmi , smi)}i of {M(an, bn, tn)}n
and {M(an, bn, sn)}n, respectively, such that tnk > smk for all k ∈ N and we
have that

M(ank , bnk , tnk) ≥
M(ank , amk , smk) ∗M(amk , bmk , smk) ∗M(bmk , bnk , smk)

for each k ∈ N.
Taking limit as k →∞, by Lemma 4.2 we have that

a = lim
k
M(ank , bnk , tnk) ≥ lim

k
M(amk , bmk , smk) = c,

a contradiction.
Therefore, limnM(an, bn, tn) = limnM(an, bn, sn).
The case in which {tn} and {sn} are strictly decreasing is proved in a

similar way.
�

Lemma 4.5. Let (X,M, ∗) be a strong fuzzy metric space. Let {an}, {bn} be
two Cauchy sequences in X and let {tn} be a strictly increasing (decreasing)
sequence of positive real numbers converging to t0 > 0 (for the usual topology
of R). Then, limnM(an, bn, tn) = limnM(an, bn, t0).

Proof. Let {an}, {bn} be two Cauchy sequences in X and let {tn} be
a strictly increasing sequence of positive real numbers converging to t0 > 0.

By Lemma 4.3, there exists a ∈ [0, 1] such that limnM(an, bn, tn) = a
and by Lemma 4.1, there exists c ∈ [0, 1] such that limnM(an, bn, t0) = c.
Note that, by Remark 2.2, since {tn} is strictly increasing converging to t0,
we have that for each n ∈ N we have that M(an, bn, tn) ≤ M(an, bn, t0) and
so a ≤ c.
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Since limnM(an, bn, t0) = c, for each ε ∈]0, 1[, with ε < c, we can find
nε ∈ N such that M(anε , bnε , t0) ∈]c− ε/2, c+ ε/2[. By axiom (GV 5) we can
find δnε > 0 such that M(anε , bnε , t) ∈]c− ε, c+ ε[ for each t ∈]t0 − δnε , t0[.

Suppose that c > a. Taking into account the last paragraph, we will con-
struct a sequence {M(ank , bnk , sk)}k, where {ank} and {bnk} are subsequences
of {an} and {bn}, respectively, converging to c, as follows.

Let i1 ∈ N, with 1
i1
< min{c, t0}, then there exist n1 ∈ N and s1 ∈

]t0− 1
i1
, t0[ such that M(an1 , bn1 , s1) > c− 1

i1
. Choose i2 ∈ N, with 1

i2
< t0−s1,

then we can find n2 ∈ N, with n2 > n1 and s2 ∈]t0 − 1
i2
, t0[, such that

M(an2 , bn2 , s2) > c− 1
i2

. Thus, in this way by induction on k, we construct the
sequence {M(ank , bnk , sk)}k, which obviously satisfies limkM(ank , bnk , sk) =
c. On the other hand, {sk} is a strictly increasing sequence of positive real
numbers converging to t0. Therefore, by Lemma 4.4 limkM(ank , bnk , rk) = c
for each strictly increasing sequence {rk} of positive real numbers converg-
ing to t0. In particular, if we consider the subsequence {tnk} of {tn}, then
limkM(ank , bnk , tnk) = c, a contradiction, since limnM(an, bn, tn) = a < c.

Therefore, limnM(an, bn, tn) = c.
The case of {tn} strictly decreasing is proved in a similar way.

�

Theorem 4.6. Let (X,M, ∗) be a strong fuzzy metric space, and let {an},
{bn} be two Cauchy sequences in X. Then the assignment

t→ lim
n
M(an, bn, t), for each t > 0

is a continuous function on ]0,∞[ provided with the usual topology of R.

Proof. Let {an} and {bn} be two Cauchy sequences in X. By Lemma
4.1, the assignment t → limnM(an, bn, t) for each t > 0, is a well-defined
function on ]0,∞[ to [0, 1].

Next, we will see that this function is continuous. First we see that for
each t > 0 the mentioned function is left-continuous.

Fix t0 > 0. By Lemma 4.1, we have that there exists c ∈ [0, 1] such that
limnM(an, bn, t0) = c. We distinguish two cases:

(1) Suppose that c = 0. By Remark 2.2 and Lemma 4.1 we have that
limnM(an, bn, s) = 0 for all s ∈]0, t0[. So, the function t→ limnM(an, bn, t)
is left-continuous at t0.
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(2) Suppose that c ∈]0, 1]. Contrary, suppose the function t→ limnM(an, bn, t)
is not left-continuous at t0.

Then, there exists ε0 ∈]0, 1[ such that for each δ ∈]0, t0[ we can find tδ ∈
]t0 − δ, t0[ such that bδ = limnM(an, bn, tδ) /∈]c − ε0, c + ε0[. Note that, by
Remark 2.2, bδ ≤ c and so bδ < c− ε0.

On the other hand, given tδ ∈]t0−δ, t0[, since limnM(an, bn, tδ) = bδ < c−
ε0, for ε0/2 we can find n(δ) ∈ N such that M(an, bn, tδ) ∈]bδ−ε0/2, bδ+ε0/2[
for each n ≥ n(δ). Therefore, M(an, bn, tδ) < c− ε0/2 for each n ≥ n(δ).

Now, we will construct a sequence {M(ank , bnk , tk)}k, where {ank} and
{bnk} are subsequences of {an} and {bn}, respectively, as follows.

Consider i1 ∈ N, with 1
i1

< t0. We can find t1 ∈]t0 − 1
i1
, t0[ such

that limnM(an, bn, t1) < c − ε0. Then, we can find n(i1) ∈ N such that
M(an, bn, t1) < c− ε0/2 for each n ≥ n(i1). We choose n1 = n(i1).

Consider now, i2 ∈ N, with 1
i2
∈]t1, t0[. We can find t2 ∈]t0 − 1

i2
, t0[ such

that limnM(an, bn, t2) < c − ε0. Then, we can find n(i2) ∈ N such that
M(an, bn, t2) < c − ε0/2 for each n ≥ n(i2). We choose n2 ≥ n(i2), with
n2 > n1.

So, by induction on k we construct the sequence {M(ank , bnk , tk)}k, where
{ank} and {bnk} are subsequences of {an} and {bn}, respectively, such that
M(ank , bnk , tk) < c − ε0/2 for each k ∈ N. Also, {tk} is a strictly in-
creasing sequence of positive real numbers converging to t0. Therefore,
by Lemma 4.5, we have that limkM(ank , bnk , tk) = limkM(ank , bnk , t0) =
limnM(an, bn, t0) = c, a contradiction.

So, the above assignment is a left-continuous function at t0.
In a similar way it is proved that t→ limnM(an, bn, t) is right-continuous

at t0 using a strictly decreasing sequence {tn} converging to t0 and thus it is
continuous at t0.

Hence, the assignment t → limnM(an, bn, t) is a continuous function on
]0,∞[.
�

Theorem 4.7. A strong fuzzy metric space (X,M, ∗) is completable if and
only if for each pair of Cauchy sequences {an} and {bn} in X the following
conditions are fulfilled:

(c1) limnM(an, bn, s) = 1 for some s > 0 implies limnM(an, bn, t) = 1 for
all t > 0.

(c2) limnM(an, bn, t) > 0 for all t > 0.
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Proof. The proof is immediate using Theorem 4.6 and Theorem 1.1.
�

By Theorem 2.8 and the fact that the minimum t-norm is integral, the
following corollaries are immediate.

Corollary 4.8. Let (X,M, ∗) be a strong fuzzy metric space and suppose
that ∗ is integral. Then (X,M, ∗) is completable if and only if for each pair
of Cauchy sequences {an} and {bn} in X the condition (c1) is satisfied.

Corollary 4.9. Let (X,M, ∗) be a fuzzy ultrametric space. Then (X,M, ∗)
is completable if and only if for each pair of Cauchy sequences {an} and {bn}
in X the condition (c1) is satisfied.

Remark 4.10. We cannot remove the condition that ∗ is integral in Corol-
lary ?? as shows Example 3.2. In addition, the fuzzy metric of Example 3.1
is a non-completable fuzzy ultrametric which does not satisfy (c1).
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