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Abstract. In a recent paper, S. Romaguera and M. Sanchis dis-
cussed several properties of semi-Lipschitz real valued functions. In this
paper we analyze the structure of the space of semi-Lipschitz functions
that are valued in a quasi-normed linear space. Our approach is moti-
vated, in part, by the fact that this structure can be applied to study
some processes in the theory of complexity spaces.
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1. Introduction and preliminaries

Motivated, in part, by some problems from computer science and their appli-
cations (see for instance [5, 6, 13, 15, 16, 17]), the theories of completeness have
received a certain attention in the recent years (see, among other contributions,
[1, 2, 3, 9, 10, 18, 19]). These advances have also permitted the development of
generalizations, to the nonsymmetric case, of classical mathematical theories:
hyperspaces, function spaces, etc.

The complexity quasi-metric space was introduced in [16] to study comple-
xity analysis of programs. Recently, it was introduced in [14] the dual com-
plexity space. Several quasi-metric properties of the complexity space were
obtained via the analysis of the dual complexity space. In [15] Romaguera and
Schellekens show that the structure of a quasi-normed semilinear space provides
a suitable setting to carry out an analysis of the dual complexity space.

This paper is a contribution to the study of semi-Lipschitz functions from
a nonsymmetric point of view. We show that this set defined on a quasi-
metric space, that are valued in a quasi-normed linear space and that vanish
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at a fixed point can be endowed with the structure of a quasi-normed linear
space. We show that this space is bicomplete and we also study other types of
completeness.

Throughout this paper the letters R+ and N will denote the set of nonneg-
ative real numbers and the set of positive integers numbers, respectively. Our
basic reference for quasi-metric spaces is [4].

A quasi-metric on a (nonempty) set X is a function d : X × X → R
+

such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y, and (ii)
d(x, y) ≤ d(x, z) + d(z, y).

If d can take the value ∞ then it is called a quasi-distance on X .
Given a quasi-metric d on X, the function d−1 defined onX×X by d−1(x, y) =

d(y, x), is also a quasi-metric on X , called the conjugate of d, and the function
ds defined on X ×X by ds(x, y) = d(x, y) ∨ d−1(x, y), is a metric on X . If d
is a quasi-distance, then d−1 and ds are a quasi-distance and a distance on X ,
respectively.

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and
d is a quasi-metric on X . Each quasi-distance d on X induces a topology T (d)
on X which has as a base the family of balls {Bd(x, r) : x ∈ X, r > 0} where
Bd(x, r) = {y ∈ X : d(x, y) < r}. We remark that the topology T (d) is T0.
Moreover, if condition (i) above is replaced by (i′) d(x, y) = 0 ⇔ x = y, then
T (d) is a T1 topology. A quasi-metric d is said to be bicomplete if ds is a
complete metric.

For more information about quasi-metric spaces see [4] and [8].
Following [7], a cone is a triple (X,+, ·) such that (X,+) is an abelian

semigroup with neutral element 0 and · is a function from R
+ × X into X

which satisfies for all a, b ∈ R
+ and x, y ∈ X :

(i) a·(b·x) = (ab)·x, (ii) (a+b)·x = (a·x)+(b·x), (iii) a·(x+y) = (a·x)+(a·y)
and (iv) 1 · x = x.

A quasi-norm on a cone (X,+, ·) is a function ‖ · ‖ : X → R
+ such that

for all x, y ∈ X and r ∈ R
+: (i) x = 0 if and only if there is −x ∈ X and

‖x‖ = 0 = ‖ − x‖, (ii) ‖r · x‖ = r‖x‖, and (iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
If the quasi-norm q satisfies: (i′) ‖x‖ = 0 if and only if x = 0, then q is

called a norm on the cone (X,+, ·).
A (quasi-)normed cone is a pair (X, ‖ · ‖) such that X is a cone and ‖ · ‖ is

a (quasi-)norm on X .
If (X,+, ·) is a linear space and ‖ · ‖ is a quasi-norm on X , then the pair

(X, ‖ · ‖) is called a quasi-normed linear space. Note that in this case, the
function ‖ · ‖−1 : X → R

+ given by ‖x‖−1 = ‖ − x‖ is also a quasi-norm on X
and the function ‖ · ‖s : X → R

+ given by ‖x‖s = ‖x‖∨‖x‖−1 is a norm on X .

2. On the structure of the set of semi-Lipschitz functions

Let (X, d), (Y, q) be a quasi-metric space and a quasi-normed space respec-
tively. A function f : X −→ Y is said to be a semi-Lipschitz function if there
exists k ≥ 0 such that q(f(x)−f(y)) ≤ kd(x, y) for all x, y ∈ X . The number
k is called a semi-Lipschitz constant for f .
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A function f on a quasi-metric space (X, d) with values in a quasi-normed
linear space (Y, q) is called ≤(d,q)-increasing if q(f(x) − f(y)) = 0 whenever

d(x, y) = 0. By Y X
(d,q) we shall denote the set of all ≤(d,q)-increasing functions

from (X, d) to (Y, q).
It is clear that if (X, d) is a T1 quasi-metric space, then every function from

X to Y is ≤(d,q) -increasing.

If for each f, g ∈ Y X
(d,q) and a ∈ R

+ we define f + g and af in the usual

way, then it is a routine to show that (Y X
(d,q),+, ·) is a cone.

Example 2.1. Let X = Z3. Let d be the quasi-metric on X given by

d(x, y) =

{

1 if x > y,

0 if x ≤ y.

Let Y = R, q(x) = x ∨ 0 and take f such that f(0) = 0, f(1) = 1 and
f(−1) = −2. It is easy to see that f ∈ Y X

(d,q) but −f /∈ Y X
(d,q). Thus Y X

(d,q) is

not a linear space.

A simple but interesting example of a semi-Lipschitz function is the follo-
wing:

Example 2.2. Let (N, d) be a quasi-metric space where:

d(x, y) =

{

1 if y > x,

0 if y ≤ x.

Then, the dual complexity space, is the quasi-normed space (B∗, q), with

B
∗ = {f : ω → R/

∞
∑

n=0
2−n(f(n) ∨ 0) < ∞} and q(f) =

∞
∑

n=0
2−n(f(n) ∨ 0).

Let now F : (N, d) → (B∗, q) be the function defined by: F (0) = 0, F (n) =
fn such that n < m implies fn > fm, where the order is given by fn > fm if
and only if fn(x) > fm(x) for all x ∈ ω.

Clearly F is a semi-Lipschitz function.

Given a quasi-metric space (X, d) and quasi-normed space (Y, q), fix x0 ∈ X
and put

SL0(d, q) = {f ∈ Y X
(d,q) : sup

d(x,y) 6=0

q(f(x) − f(y))

d(x, y)
< ∞ , f(x0) = 0}.

Then SL0(d, q) is exactly the set of all semi-Lipschitz functions that vanishes
at x0, and it is clear that (SL0(d, q),+, ·) is a subcone of (Y X

(d,q),+, ·).

Now let ρ(d,q) : SL0(d, q)× SL0(d, q) −→ [0,∞] defined by

ρ(d,q)(f, g) = sup
d(x,y) 6=0

q((f − g)(x)− (f − g)(y))

d(x, y)

for all f, g ∈ SL0(d, q). Then ρ(d,q) is a quasi-distance on SL0(d, q). However
ρ(d,q) is not a quasi-metric in general, as Example 1.1 of [11] shows.
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Furthermore, it is clear that for each f, g, h ∈ SL0(d, q) and each r > 0,
ρ(d,q)(f + h, g + h) = ρ(d,q)(f, g) and ρ(d,q)(rf, rg) = rρ(d,q)(f, g) i.e., ρ(d,q) is
an invariant quasi-distance. Moreover, it is easy to check that ρ(d,q)(f,0) = 0
if and only if f = 0, where by 0 we denote the function that vanishes at every
x ∈ X .

Moreover, we can see that, by example 2.1, there exists f ∈ SL0(d, q) such
that ρ(d,q)(0, f) = 0 but f 6= 0.

Consequently, the nonnegative function ‖ · ‖(d,q) defined on SL0(d, q) by
‖f‖(d,q) = ρ(d,q)(f,0) is a norm on SL0(d, q). Therefore (SL0(d, q), ‖ · ‖(d,q)) is
a normed cone.

Example 1.1 of [11] provides an instance of a T1 quasi-metric space (X, d)
such that (SL0(d, q),+) is not a group for some x0 ∈ X . This example suggests
the question of characterizing when (SL0(d, q),+) is a group. In order to give
an answer to this question note that if x0 is a fixed point in the quasi-metric
space (X, d), then the set

SL0(d
−1, q) = {f ∈ Y X

(d−1,q) : sup
d(y,x) 6=0

q(f(x)− f(y))

d(y, x)
< ∞ , f(x0) = 0}

has also a structure of a cone and (SL0(d
−1, q), ‖ · ‖(d−1,q)) is a normed cone,

where ‖f‖(d−1,q) = ρ(d−1,q)(f,0), i.e.,

‖f‖(d−1,q) = sup
d(y,x) 6=0

q(f(x) − f(y))

d(y, x)

for all f ∈ SL0(d
−1, q).

Proposition 2.3. Let (X,d), (Y ,q) be a quasi-metric space and a quasi-
normed space respectively. Then f ∈ SL0(d, q) if and only if −f ∈ SL0(d

−1, q).

Proof. Let f ∈ SL0(d, q) then there exists k ∈ R
+ such that

q(f(x) − f(y)) ≤ kd(x, y) for all x, y ∈ X . We change x by y hence q(f(y) −
f(x)) ≤ kd(y, x) and q(−f(x)−(−f(y))) ≤ kd−1(x, y) then −f ∈ SL0(d

−1, q).
The converse is analogous. �

Corollary 2.4. Let (X,d), (Y ,q) be a quasi-metric space and a quasi-normed
space respectively.Then (SL0(d, q) ∩ SL0(d

−1, q),+, ·) is a linear space.

Proof. It follows from Proposition 2.3 that f ∈ SL0(d, q) ∩ SL0(d
−1, q) if and

only if −f ∈ SL0(d, q) ∩ SL0(d
−1, q). �

Remark 2.5. Note that for each f ∈ SL0(d, q), ‖f‖(d,q) = ‖ − f‖(d−1,q).

Thus the normed cones (SL0(d, q), ‖ · ‖(d,q)) and (SL0(d
−1, q), ‖ · ‖(d−1,q)) are

isometrically isomorphic by the bijective map
φ : SL0(d, q) −→ SL0(d

−1, q) defined by φ(f) = −f .

Furthermore, we have

SL0(d, q) ∩ SL0(d
−1, q) = {f ∈ Y X

(d,q) ∩ Y X
(d−1,q) :
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sup
d(x,y) 6=0

q(f(x)− f(y)) ∨ q(f(y)− f(x))

d(x, y)
< ∞, f(x0) = 0}.

Hence (SL0(d, q)∩SL0(d
−1, q), ‖ · ‖B) is a normed linear space, where ‖ · ‖B

is the norm defined by

‖f‖B = sup
d(x,y) 6=0

q(f(x)− f(y)) ∨ q(f(y)− f(x))

d(x, y)
,

for all f ∈ SL0(d, q) ∩SL0(d
−1, q). Observe that ‖ · ‖B = ‖ · ‖(d,q) ∨ ‖ · ‖(d−1,q)

on SL0(d, q) ∩ SL0(d
−1, q).

The next result, whose proof is very easy, is a characterization that will be
useful.

Proposition 2.6. f ∈ SL0(d, q) ∩ SL0(d
−1, q) if and only if f(x0) = 0 and

there exists k ≥ 0 such that qs(f(x)− f(y)) ≤ kd(x, y).

Remark 2.7. It is straightforward to see that f : (X, d) −→ (Y, q) belongs to
Y X
(d,q) ∩ Y X

(d−1,q) if and only if f(x) = f(y) whenever d(x, y) = 0.

Example 2.8. Let (X, d), (Y, q) be a quasi-metric and a quasi-normed space
such that there is x0 ∈ X satisfying d(x, x0)∧ d(x0, x) = 0 for all x ∈ X . Then
SL0(d, q) ∩ SL0(d

−1, q) = {0}.

Example 2.9. Let X = [0, 1] and let d be the quasi-metric on X given by
d(x, y) = y−x if x ≤ y and d(x, y) = 1 otherwise. Clearly T (d) is the restriction
of the Sorgenfrey topology to [0, 1]. Let (Y, q) be a quasi-normed space and
put x0 = 0. Then, a function f : X −→ Y satisfies f ∈ SL0(d, q)∩SL0(d

−1, q)
if and only if there is k ≥ 0 such that q(f(x) − f(y)) ∨ q(f(y) − f(x)) ≤
k(d(x, y) ∧ d(y, x)) for all x, y ∈ X .

Theorem 2.10. Let (X,d), (Y ,q) be a quasi-metric and a quasi-normed space
respectively. Then the following assertions are equivalent:

(1) SL0(d, q) = SL0(d
−1, q).

(2) SL0(d, q) is a group.
(3) SL0(d

−1, q) is a group.
(4) SL0(d, q) ⊂ SL0(d

−1, q).
(5) SL0(d

−1, q) ⊂ SL0(d, q).

Proof. (1) ⇒ (2) By corollary 2.4 (SL0(d, q) ∩ SL0(d
−1, q),+, ·) is a linear

space. If SL0(d, q) = SL0(d
−1, q) then (SL0(d, q),+) is a group.

(2) ⇒ (3) Let f ∈ SL0(d
−1, q). By proposition 2.3 −f ∈ SL0(d, q), since

SL0(d, q) is a group, f ∈ SL0(d, q), by proposition 2.3 −f ∈ SL0(d
−1, q).

(3) ⇒ (4) The proof is similar to the proof of (2) ⇒ (3).
(4) ⇒ (5) Let f ∈ SL0(d

−1, q). Then −f ∈ SL0(d, q) ⊂ SL0(d
−1, q) hence

−f ∈ SL0(d
−1, q).Thus f ∈ SL0(d, q).

(5) ⇒ (1) is the same that (4) ⇒ (5). �

Proposition 2.11. Let (X,d), (Y ,q) be a quasi-metric and a quasi-normed
space respectively. If there exists x0 ∈ X such that SL0(d, q) = SL0(d

−1, q),
then SL1(d, q) = SL1(d

−1, q) for each x1 ∈ X.
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Proof. Let f ∈ SL1(d, q). Define a function g on X by g(x) = f(x)− f(x0) for
all x ∈ X . It easy to check that g ∈ SL0(d, q). Thus, g ∈ SL0(d

−1, q). Since
g(x)− g(y) = f(x)− f(y) for all x, y ∈ X we obtain that f ∈ SL1(d

−1, q). �

3. Completeness properties

In this section, we discuss the completeness properties of the semi-Lipschitz
function space.

The following result allows us to prove that if (Y , q) is a biBanach space
then (SL0(d, q) ∩ SL0(d

−1, q), ‖ · ‖B) is a Banach space.

Theorem 3.1. Let (X,d), (Y ,q) be a quasi-metric and a quasi-normed bi-
complete space respectively. Then (SL0(d, q)∩SL0(d

−1, q), ‖ · ‖B) is a Banach
space.

Proof. Let {fn} be a Cauchy sequence in (SL0(d, q)∩SL0(d
−1, q), ‖·‖B). Then,

given ε ≥ 0 there is n0 ∈ N such that

(∗) sup
d(x,y) 6=0

qs((fn − fm)(x)− (fn − fm)(y))

d(x, y)
< ε

for all n,m ≥ n0.
If x = x0 then fn(x) = 0 for all n ∈ N.
Let x 6= x0. We consider the following cases:
Case 1. d(x, x0) 6= 0. Then, we deduce from (∗) that given ε

d(x,x0)
there

exists n′
0 ∈ N such that if n,m ≥ n′

0 then qs(fn(x) − fm(x)) < ε. Therefore,
fn(x) is a Cauchy sequence in (Y, qs).

Case 2. d(x, x0) = 0. Then from remark 2.7 fn(x) = fn(x0) and fm(x) =
fm(x0). Therefore qs(fn(x)− fm(x)) = 0 < ε.

Consequently, fn(x) is a Cauchy sequence in (Y, qs) and {fn(x)} converges
to an element f(x) in (Y, qs) for all x ∈ X . Moreover, {fn} converges to f in
SL0(d, q) ∩ SL0(d

−1, q). Indeed, given ε, since {fn(x)} converges to f(x) for
all x ∈ X , for each x, y there exists n′ such that if m′ ≥ n′ then

qs(f(x)− f ′
m(x)− (f(y)− f ′

m(y)))

d(x, y)
<

ε

2
.

Since {fn} is a Cauchy sequence, we can also find n0 such that if n,m ≥ n0

then
qs(fn(x) − fm(x) − (fn(y)− fm(y)))

d(x, y)
<

ε

2

for all x, y ∈ X . Thus we have

ε >
qs(f(x) − f ′

m(x) − (f(y)− f ′
m(y)))

d(x, y)
≥

qs(f(x)− fn(x) − (f(y)− fn(y)))

d(x, y)
−

qs(f ′
m(x)− fn(x) − (f ′

m(y)− fn(y)))

d(x, y)

and hence
qs(f(x) − fn(x)− (f(y)− fn(y)))

d(x, y)
≤

ε

2
+

ε

2
= ε.
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Since n0 is independent of x, y, we obtain

sup
d(x,y) 6=0

qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
< ε,

for all n ≥ n0. �

Corollary 3.2. Let {fn} be a Cauchy sequence in (SL0(d, q) ∩ (SL0(d
−1, q),

‖ · ‖B). Then there exists a convergent sequence {kn} in (R, Tu) such that kn
is a semi-Lipschitz constant for fn, where Tu is the usual topology.

Theorem 3.3. Let (Y, q) be a bi-Banach space.

(1) (X, d) is a metric space.
(2) SL0(d, q) = SL0(d

−1, q), ‖ · ‖(d,q) = ‖ · ‖(d−1,q).
(3) (SL0(d, q), ‖ · ‖(d,q)) is a Banach space.

Then: (1) ⇒ (2) ⇔ (3)

Proof. (1) ⇒ (2)
Trivial.
(2) ⇒ (3)
Trivial.
(3) ⇒ (2)
Suppose that (SL0(d, q), ‖ · ‖(d,q)) is a Banach space. Then SL0(d, q) is a

group, so SL0(d, q) = SL0(d
−1, q). Moreover ‖ · ‖(d,q) is a norm on SL0(d, q),

so that ‖f‖(d,q) = ‖ − f‖(d,q) for all f ∈ SL0(d, q). Since −f ∈ SL0(d, q) it
follows that ‖ − f‖(d,q) = ‖f‖(d−1,q). We conclude that ‖ · ‖(d,q) = ‖ · ‖(d−1,q)

on (SL0(d, q). �

To see that in general (3) ⇒ (1) is not true we take Y = 0 for a quasi-metric
space that is not a metric space.

Corollary 3.4. If q is a bicomplete quasi-norm on Y then ρ(d,q) is a bicomplete

quasi-metric in SL0(d, q) ∩ SL0(d
−1, q).

The following result allow us to prove that if (Y, q) is a bicomplete space
then (SL0(d, q), ρ(d,q)) is a bicomplete space:

Theorem 3.5. Let (X, d), (Y, q) be a quasi-metric and a quasi-normed bicom-
plete spaces respectively. Then (SL0(d, q), ρ(d,q)) is a bicomplete space.

Proof. Let {fn} be a Cauchy sequence in (SL0(d, q), ρ(d,q)). Then, given ε ≥ 0
there is n0 ∈ N such that

(∗) sup
d(x,y) 6=0

q((fn − fm)(x) − (fn − fm)(y))

d(x, y)
< ε

for all n,m ≥ n0.
If x = x0 then fn(x) = 0 for all n ∈ N.
Let x 6= x0.We consider the following cases.
Case 1. d(x, x0) 6= 0. Then, we deduce from (∗) that given ε

d(x,x0)
there

exists n′
0 ∈ N such that if n,m ≥ n′

0 then q(fn(x) − fm(x)) < ε and if we
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change n and m q(fm(x)− fn(x)) < ε. Therefore, fn(x) is a Cauchy sequence
in (Y, qs).

Case 2. d(x, x0) = 0. Then d(x0, x) 6= 0 so q(fm(x) − fn(x)) < ε and
q(fn(x)− fm(x)) < ε.

Consequently, fn(x) is a Cauchy sequence in (Y, qs), thus {fn(x)} converges
in (Y, qs) and we define f such that {fn(x)} −→ f(x) in (Y, q). Moreover, {fn}
converges to f in (SL0(d, q), ρ(d,q)).

Indeed, given ε, since fn(x) converges to f(x) for all x ∈ X , for each x, y
there exists n′ such that if m′ ≥ n′ then

qs(f(x)− fm′(x) − (f(y)− fm′(y)))

d(x, y)
<

ε

2

and since {fn} is a Cauchy sequence, we can also find n0 such that if m′, n ≥ n0

then
qs(fm′(x)− fn(x) − (fm′(y)− fn(y)))

d(x, y)
<

ε

2

for all x, y ∈ X .
Thus we have

ε >
qs(f(x)− fm′(x) − (f(y)− fm′(y)))

d(x, y)

≥
qs(f(x)− fn(x) − (f(y)− fn(y)))

d(x, y)
−

qs(f ′
m(x)− fn(x) − (f ′

m(y)− fn(y)))

d(x, y)

and hence
qs(f(x) − fn(x)− (f(y)− fn(y)))

d(x, y)
≤

ε

2
+

ε

2
= ε.

Since n0 is independent of x, y

sup
d(x,y) 6=0

qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
< ε,

for all n ≥ n0. Consequently (SL0(d, q), ρ(d,q)) is a bicomplete space. �

Corollary 3.6. Let {fn} be a Cauchy sequence in (SL0(d, q), ‖ · ‖(d,q)) there
exists a convergent sequence {kn} in (R, Tu) such that kn is a semi-Lipschitz
constant for fn.

4. Another completeness properties

In this section, we discuss another completeness properties of the semi-
Lipschitz function space.

Let us recall that right K-completeness and left K-completeness constitute
very useful extensions of the notion of completeness to the nonsymmetric con-
text.

In fact, they have been successfully applied to different fields from hyper-
spaces and function spaces to topological algebra and theoretical computer
science.
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Let (X, d) be a quasi-metric space. A net {xδ} ⊂ X , δ ∈ Λ, is called left
K-Cauchy provided that for each ε > 0 there is δ0 such that d(xδ2 , xδ1) < ε for
all δ1 ≥ δ2 ≥ δ0, and {xδ} ⊂ X is called right K-Cauchy provided that for each
ε > 0 there exists δ0 such that d(xδ1 , xδ2 ) < ε for all δ1 ≥ δ2 ≥ δ0.

A quasi-metric ρ is called left K-complete (resp. right K-complete) if each
left K-Cauchy net (resp. right K-Cauchy net) converges.

The following result allow us to prove that if (Y, q) is a biBanach and finite
dimensional space then (SL0(d, q) ρ(d,q)) is a right K-complete space:

Theorem 4.1. Let (X, d), (Y, q) be a quasi-metric and a quasi-normed bicom-
plete finite dimensional space respectively. Then ρ(d,q) is right K-complete.

Proof. Let {fδ} be a right K-Cauchy net in (SL0(d, q), ρ(d,q)). Then, given
ε ≥ 0 there is δ0 such that

(⋆) sup
d(x,y) 6=0

q((fδ1 − fδ2)(x) − (fδ1 − fδ2)(y))

d(x, y)
< ε

for all δ1 ≥ δ2 ≥ δ0.
Let x 6= x0.We consider the following cases.

Case 1. d(x, x0) 6= 0 and d(x0, x) 6= 0. Then, we deduce from (⋆) that given
ε

d(x,x0)
and ε

d(x0,x)
respectively there exists δ′0 such that if δ1 ≥ δ2 ≥ δ′0 then

qs(fδ1(x)− fδ2(x)) < ε. Therefore{fδ(x)} is a Cauchy net in (Y, q).

Case 2. d(x0, x) = 0 and d(x, x0) 6= 0. Then

q(fδ1(x)) − q(fδ2(x)) ≤ q(fδ1(x) − fδ2(x)) ≤ εd(x, x0)

for all δ1 ≥ δ2 ≥ δ0 and q(−fδ(x)) = 0, since qs(fδ1(x)) ≤ εd(x, x0)+ q(fn0
(x))

thus {fn(x)} is a bounded net in the finite dimensional space (Y, q), there exists
a convergent subnet {fδ′(x)} in (Y, q). Given ε > 0 there exists δ0 ∈ Λ such
that if δ1 ≥ δ′2 ≥ δ0 then

qs(fδ1(x)− f(x)) = qs(fδ1(x) − fδ′
2
(x) + fδ′

2
(x))

≤ qs(fδ1(x) − fδ′
2
(x)) + qs(fδ′

2
(x) − f(x)).

Now qs(fδ′
2
(x)−f(x)) < ε

2 because {fδ′
1
(x)} is a convergent net. Given δ′1 ≥ δ1,

such that fδ′
1
is in the subnet then

q(fδ′
2
(x) − fδ1(x)) =

q(fδ′
2
(x)− fδ′

1
(x) + fδ′

1
(x) − fδ1(x)) ≤

q(fδ′
2
(x)− fδ′

1
(x)) + q(fδ′

1
(x) − fδ1(x)) <

ε

2
since {fδ′

1
(x)} converges and {fδ} is right K-Cauchy. On the other hand

q(fδ1(x)− fδ′
2
(x)) < ε

2 because {fδ2} is a right K-Cauchy net. Thus {fδ(x)} is
a convergent net.

Case 3. d(x0, x) 6= 0 and d(x, x0) = 0. Then q(−fδ1(x)) ≤ εd(x0, x) +
q(−fδ0(x)) and q(fδ(x)) = 0 respectively, since {fδ} is a bounded sequence on
the finite dimensional space (Y, q).
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Consequently {fδ(x)} is a convergent net in (Y, qs), and we define f such
that {fn(x)} converges to f(x) for each x ∈ X . Let {fδ} a right K-Cauchy net
in (SL0(d, q), ρ(d,q)).

Let us see that { q(fδ(x)−fδ(y))
d(x,y) } converges to q(f(x)−f(y))

d(x,y) for all x, y ∈ X such

that d(x, y) 6= 0.
Since {fδ} is a right K-Cauchy net, given ε > 0 there exists δ0 such that if

δ1 ≥ δ2 ≥ δ0 then

sup
d(x,y) 6=0

q((fδ1 − fδ2)(x) − (fδ1 − fδ2)(y))

d(x, y)
<

ε

2
.

Since fn(x) converges to f(x)∀x ∈ X , for each x, y there exists δ′0 such that
if δ′1 ≥ δ′0 then

qs(f(x)− fδ′
1
(x)− (f(y)− fδ′

1
(y)))

d(x, y)
<

ε

2
.

Thus given ε > 0, for all δ′ ≥ δ0 and for each x, y ∈ X : d(x, y) 6= 0 and we
take δ1 ≥ (δ′ ∨ δ′0)

q(f(x)− fδ′(x)− (f(y)− fδ′(y)))

d(x, y)
=

q(f(x)− fδ′(x)− fδ1(x) + fδ1(x)− (f(y)− fδ′(y)− fδ1(y) + fδ1(y)))

d(x, y)
≤

q(f(x)− fδ1(x) − (f(y) + fδ1(y)))

d(x, y)
+
q(fδ1(x)− fδ′(x)− (fδ′(y) + fδ1(y)))

d(x, y)
< ε.

for all x, y such that d(x, y) 6= 0

sup
d(x,y) 6=0

q(f(x) − fδ′(x) − (f(y)− fδ′(y)))

d(x, y)
< ε,

for all δ′n ≥ δ0.
�

Corollary 4.2. Let (X, d), (Y, q) be a quasi-metric and a quasi-normed space
respectively.

Let {fδ} be a right K-Cauchy in (SL0(d, q), ρ(d,q)). If for each x ∈ X {fδ(x)}
converges to f(x) in (Y, qs) then {fδ} converges to f in (SL0(d, q), ρ(d,q)).

Theorem 4.3. Let (X, d), (Y, q) be a quasi-metric T1 and a quasi-normed
bicomplete space respectively. Then ρ(d,q) is right K-complete.

Proof. Let {fδ} be a right K-Cauchy net in (SL0(d, q), ρ(d,q)). Then, given
ε ≥ 0 there is δ0 such that

(♦) sup
d(x,y) 6=0

q((fδ1 − fδ2)(x)− (fδ1 − fδ2)(y)))

d(x, y)
< ε

for all δ1 ≥ δ2 ≥ δ0.
Let x 6= x0.
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Since (X, d) is T1, d(x, x0) 6= 0 and d(x0, x) 6= 0 then, we deduce from
(♦) that given ε

d(x,x0)
and ε

d(x0,x)
there exists δ′0 such that if δ1 ≥ δ2 ≥ δ′0

then qs(fδ1(x) − fδ2(x)) < ε. Thereforefn(x) is a Cauchy net in (Y, q) for all
x ∈ X . Thus {fδ(x)} is a convergent net in (Y, qs) and we define f such that
{fn(x)} converges to f(x) for each x ∈ X . Let {fδ} a right K-Cauchy net in
(SL0(d, q), ρ(d,q)).

Let us see that { q(fδ(x)−fδ(y))
d(x,y) } converges to q(f(x)−f(y))

d(x,y) for all x, y ∈ X such

that d(x, y) 6= 0.
Since {fδ} is a right K-Cauchy net, given ε > 0 there exists δ0 such that if

δ1 ≥ δ2 ≥ δ0 then

sup
d(x,y) 6=0

q((fδ1 − fδ2)(x) − (fδ1 − fδ2)(y))

d(x, y)
<

ε

2
.

Since fn(x) converges to f(x)∀x ∈ X , for each x, y there exists δ′0 such that
if δ′1 ≥ δ′0 then

qs(f(x)− fδ′
1
(x)− (f(y)− fδ′

1
(y)))

d(x, y)
<

ε

2
.

Thus given ε > 0, for all δ′ ≥ δ0 and for each x, y ∈ X : d(x, y) 6= 0 and we
take δ1 ≥ (δ′ ∨ δ′0)

q(f(x)− fδ′(x)− (f(y)− fδ′(y)))

d(x, y)
=

q(f(x)− fδ′(x)− fδ1(x) + fδ1(x)− (f(y)− fδ′(y)− fδ1(y) + fδ1(y)))

d(x, y)
≤

q(f(x)− fδ1(x) − (f(y) + fδ1(y)))

d(x, y)
+
q(fδ1(x)− fδ′(x)− (fδ′(y) + fδ1(y)))

d(x, y)
< ε.

for all x, y such that d(x, y) 6= 0

sup
d(x,y) 6=0

q(f(x) − fδ′(x) − (f(y)− fδ′(y)))

d(x, y)
< ε,

for all δ′n ≥ δ0.
�
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[6] L. M. Garćıa-Raffi, S. Romaguera and E. A. Sánchez-Pérez, The supremum

asymmetric norm on sequence algebras: a general framework to measure com-

plexity distances, Electronic Notes in Theoretical Computer Science 74 (2003).
URL:Http://www.elsevier.nl/locate/entcs/volume74.html, 12 pages.

[7] K. Keimel and W. Roth, Ordered Cones and Approximation, Springer-Verlag, Berlin
(1992).

[8] H. P. A. Künzi, Nonsymmetric distances and their associated topologies: about the

origin of basic ideas in the area of asymmetric topology, Handbook of the History of
General Topology, ed. by C. E. Aull and R. lowen, Vol 3, Hist. Topol. 3, Kluwer Acad.
Publ., Dordrecht, (2001), 853–968.

[9] H. P. A. Künzi, Nonsymmetric topology, in Topology with Applications, Bolyai Soc.
Math. Studies 4, pp. 303–338, Szekszard, Hungary, (1993).

[10] S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr. 157 (1992),
15–23.

[11] S. Romaguera and M. Sanchis, Properties of the normed cone of semi-Lipschitz func-

tions, Acta Math. Hungar. 108 (1-2) (2005), 55–70.
[12] S. Romaguera and M. Sanchis, On semi-Lipschitz functions and best approximation in

quasi-metric spaces, J. Approximation Theory 283 (2000), 292–301.
[13] S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric

spaces, J. Math. Anal. Appl. 283 (2003), 219–235.
[14] S. Romaguera and M. Schellekens, Quasi-metric properties of complexity spaces, Topol-

ogy Appl. 98 (1999), 311–322.
[15] S. Romaguera and M. Schellekens, Duality and quasi-normability for complexity spaces,

Appl. Gen. Topol. 3 (1) (2002), 91–112.
[16] M. Schellekens, The Smyth completion: A common foundation for denotational seman-

tics and complexity analysis, Electron. Notes Comput. Sci. 1 (1995), 1–22.
[17] M. B. Smyth, Totally bounded spaces and compact ordered spaces as domains of com-

putation, in Topology and Category Theory in Computer Science, G. M. Reed, A. W.
Rosco, and R. F. Wachter, Eds., Clarendon, Oxford (1991), pp. 207–229.

[18] M. B. Smyth, Completeness of quasi-uniform and syntopological spaces, J. London
Math. Soc. 49 (1994), 385–400.

[19] Ph. Sünderhauf, Quasi-uniform completeness in terms of Cauchy nets, Acta Math.
Hungar. 69 (1995), 47–54.

Received January 2005

Accepted May 2005
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