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Abstract Social circles detection is a special case of

community detection in social network that is currently

attracting a growing interest in the research community.

In this paper we propose an empirical evaluation of the

multi-assignment clustering method using different fea-

ture representation models. We define different vecto-

rial representations from both structural egonet infor-

mation and user profile features. We study and com-

pare the performance on two available labelled Face-

book datasets and compare our results with several dif-

ferent baselines. In addition, we provide some insights

of the evaluation metrics most commonly used in the

literature.

Keywords social circles detection · community

detection · feature representation · multi-assignment

clustering · evaluation metrics

1 Introduction

Nowadays, users in social networks tend to organize

the contacts in their personal networks by means of so-

cial circles, a tool already implemented by the major

companies, like for instance Facebook lists or Google+
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Valencia, Spain
E-mail: prosso@dsic.upv.es

circles. However, this labelling is still mostly done man-

ually and, therefore, a growing interest has risen in the

automatic detection of these circles. In addition, this

problem is related to the more general task of commu-

nity detection in graphs, or the identification of subnet-

works in a given network. The main difference between

both problems is the use of information from users’ pro-

files (node attributes), apart from the network structure

itself.

Despite the lack of a precise and well-accepted defi-

nition of community, there is a wide variety of methods

and techniques designed to cope with community de-

tection [9,26]. Moreover, some techniques specifically

designed for social circles detection have been devel-

oped recently [17,20]. In this article, we continue the

research started in [1], based on multi-assignment clus-
tering (MAC) [29,10]. MAC is a clustering technique

not necessarily related to networks or graphs, which

permits to assign the same object into several differ-

ent clusters or, in our case, social circles. In [1], we

conducted preliminary experiments using this method,

defining several vectorial representations of both struc-

tural network information and users’ profile informa-

tion, with the aim to investigate which of these repre-

sentations provides the best results. In this new study,

we expand the experimentation, making variable the

number of users’ profile features employed. Unlike in [1],

we allow for the clustering technique to automatically

detect the number of predicted circles, instead of using

the number of groundtruth circles. We test our method

on two different datasets and evaluate it by means of

measures present in the literature. In this regard, we

provide a critical commentary of the evaluation met-

rics, as we believe they have some flaws to which we

need to pay attention. We compare our results to the

ones provided by the state-of-the-art method in [17,20].
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The rest of the paper is structured as follows. In

Section two, we present previous works on community

detection and social circles detection. In Section three,

we describe thoroughly our methodology, including the

different data representations proposed. In Section four,

we present the datasets, the evaluation measures and

the results of our experiments. Finally, we draw some

conclusions.

2 Previous Work

2.1 Community Detection in Networks

From an abstract point of view, a network is equiva-

lent to a graph, defined by a set of nodes connected

by edges. However, the concept of network has addi-

tional connotations. Networks can represent real struc-

tures such as social networks, biological networks (neu-

ral synaptic networks, metabolical networks), techno-

logical networks (the Internet, the World Wide Web),

logistic networks (distribution networks), etc. There is

no well-accepted formal definition of community in gen-

eral networks. However, there is a consensus on the

fact that it consists of a group of nodes that are more

densely connected to each other than to the nodes out-

side. The relation of membership in a community usu-

ally has an extra meaning, and the vertices in a com-

munity share common properties or play similar roles

within the graph.

Community detection is the task of automated iden-

tification of the communities of a network. A consider-

able number of methods have been developed to solve

this problem [9,26]. The classical methods are classified

in four categories: graph partitioning [15,30], hierar-

chical clustering [12], partitional clustering [19,18] and

spectral clustering [7]. Another family of algorithms is

based on the optimization of a clustering quality in-

dex known as modularity. Modularity optimization is

an NP-complete problem [3] but there are fairly good

approximations which perform in a reasonable time [11,

23,2,22].

In real networks, nodes are often shared among dif-

ferent communities. The most popular technique to de-

tect overlapping communities is the clique percolation

method [24]. Given a graph, a k-clique is defined as a

complete subgraph of size k. Clique percolation consists

in the identification of k-clique communities, defined as

the union of all k-cliques that can be reached from each

other through a series of adjacent k-cliques. Despite of

the good performance of this technique, clique percola-

tion remains a hard computational problem, new and

improved implementations still scale worse than some

other overlapping community finding algorithms. Some

alternative algorithms that detect overlapping clusters

have been developed recently, such as the multi-assignment

clustering technique serving as the prediction method

in this article [29,10].

2.2 Social Networks and Social Circles Detection

The study of social networks is a research topic with a

history of decades and it has been recently revitalized

by the appearance of new information and communi-

cation technologies which have opened new ways of in-

teracting. Clustering within social networks has been

studied designing several procedures. Some approaches

base the clustering on the network links [26], while oth-

ers consider the semantic content of social interactions

[33]. In between both methodologies, there has also

been work on combining the links and the content for

doing the clustering [25,28]. Very recently, a new tech-

nique studied the characteristics of community struc-

tures formed around topical discussion clusters, using

modularity maximization algorithms [6].

Social circles detection constitutes a particular case

of social clustering. Within a social network, an ego

network or egonet is defined as the subgraph of the

contacts of a particular user (called the ego). Thus,

it includes all the contacts of the ego (named the al-

ters) and the contact relationship between every pair

of them. Then, the social circles of an ego can be con-

sidered as clusters of the egonet. Social circles may
overlap (share nodes), for example university friends

who were high school friends as well; and they may

also present hierarchical inclusion (the nodes of a cir-

cle totally included into another), for example univer-

sity friends into a generic friends category. In addition

to the graph structure itself, node attributes from the

users’ profiles may be used as a source of information,

as well. Some current, successful work in social circles

detection involves a generative model that considers

circle memberships and a circle-specific profile similar-

ity metric [17,20]. However, other approaches are being

considered, such as the use of MAC [29,10] for circle

prediction. In [17,20], some tests are performed with

this idea, but using only the node attributes, no infor-

mation from the graph structure. In [1], MAC was fed

with representations of both the graph structure and

the node attributes, with successful results. The main

aim of this paper is to focus on users’ profiles features

and to conduct an exhaustive study on how many of

them are necessary to obtain the best results.
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3 Methodology

3.1 Multi-Assignment Clustering

Multi-Assignment Clustering [29,10] is a clustering method,

originally developed for Boolean vectorial data, which

allows for the possibility to assign the same object into

several different clusters. It provides a decomposition of

the data matrix X into a matrix containing the clusters

prototypes Z and a matrix representing the degree to

which a particular data vector belongs to the different

clusters Y. Finding optimal matrices Z and Y is NP-

hard [31], but a probabilistic representation allows to

drastically simplify the optimization problem. In [29]

the authors propose a mixture model where Xij is ei-

ther drawn from a signal or a noise component. The

probability of Xij under the signal model is the fol-

lowing, being βkj independent random variables for the

deterministic centroids Y:

p(Xij |Z, β) =

[
1−

K∏
k=1

βZik

kj

]Xij [ K∏
k=1

βZik

kj

]1−Xij

, (1)

where βkj := p(Ykj = 0)

In addition to the signal model, there is a noise model

for the difference between the original data and the re-

construction made from Z and Y. The model parame-

ters are inferred by deterministic annealing [27,4]. The

computational cost of MAC is proportional to the pa-

rameters, β and Z, and we have observed empirically

that the execution time of MAC is normally lower than

that of other methods such as clique percolation. When
MAC is applied to social circles detection, Y is the ma-

trix indicating which users belong to the different clus-

ters, social circles.

Several reasons helped us making the choice of MAC

over alternative methods for our study. First of all, so-

cial circles detection is a soft clustering task [9] in which

single data points are assigned into multiple social cir-

cles; and MAC, unless other fuzzy clustering strate-

gies, provides hard, binary assignments into different

clusters, instead of fractional assignments with differ-

ent membership levels. In addition, MAC provides a

noise channel along with the signal channel, which gives

important information within the task of social circles

detection. Other techniques, such as Gaussian mixture

models [8], do not model noise. Furthemore, MAC is

more adequate for large networks than other methods

with a very high computational cost, like clique percola-

tion. Finally, MAC is a state-of-the-art technique, hav-

ing recent and influential publications, such as [17,20],

in which it was employed and considered as a baseline

method for social circles detection. In this work, we con-

tinue the research started in [1] and explore further the

possibilities of MAC for this task, investigating novel

representations. We defend the fact that this technique

still has further potentiality and better results can be

obtained. A simple example of the performance of MAC

can be seen in Figure 1.

1

2

3

4

6

5

Fig. 1 Example of the performance of MAC on a simple
graph. The data matrix, X, which serves as input to the
method, is the adjacency matrix of the graph. Y is the out-
put matrix showing which nodes belong to any of the two
clusters. Note that MAC identifies correctly the two cliques
that constitute the graph, including the overlapping node, 3.

As a novelty, we model the structural information of

the egonets into diverse vectorial representations ready

to be supplied to the algorithm. Several vectorial rep-

resentations for user profile features were developed as

well. Unlike the original MAC, we allow the input to

be real data in [0, 1]n as a way to model a hierarchy of

link levels in the case of structural information, or an

aggregation of the number of feature values shared by

two users profiles in the case of user profile information.

In all the experiments, the input data matrix X is

a horizontal concatenation of a matrix S, containing

structural network information, and a matrix P, con-

taining profile features information: X = [S |P]. Rows

represent users of the egonet and, therefore, for every

user u there is a row vector of structural network in-

formation, Su, and a row vector of profile features in-

formation, Pu. Therefore, the number of rows of the

matrix X is the number of users in the ego-network

| u |, and the number of columns of the matrix X is the
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total number of features used to represent structural

and profile information of each user.

3.2 Structural Network Representation

Structural network information is complete, and every

edge in the egonets is contained in the dataset. In this

subsection, we present the different representations of

the structural network information that have been con-

sidered. All of them transform graph links into a matrix

S. We use the following concepts:

– Friendship ranks: when there is a link between two

users, we say they are direct friends or rank 1 friends.

When two users are not direct friends but have a

common direct friend, we say they are rank 2 friends.

Friendship ranks of greater levels can be further de-

fined. In this study we consider up to rank 3 friends,

as we have noticed that greater levels of friendship

introduce a vast amount of noise. There is a column

in S for every friendship rank and user in the egonet.

An element of S is 1 if the row user and the column

user are friends of such rank, and 0 otherwise. Ob-

taining in total 3× | u | structural features for each

user.

– Weighting: the data is weighted depending on the

friendship rank it represents. Rank 1 friendship is

left with 1, whereas rank 2 friendship is weighted

to 0.5 and rank 3 friendship is weighted to 0.25.

Like in the previous case, obtaining in total 3× | u |
structural features for each user.

– Aggregation: for every user, the different friendship

ranks are aggregated into just one value. This is ob-

tained by calculating the maximum weighted friend-

ship rank. Reducing the number of structural fea-

tures to | u |.

The graphs considered in our experiments are not

oriented, and thus all our matrices S are horizontal con-

catenations of symmetric matrices. However, the method

would be equally used for oriented graphs, which would

result in non-symmetric matrices.

3.3 Users’ Profile Representation

There are up to 57 profile features for every user in the

data corpus we used for the experiments. Nevertheless,

in contrast to the structural network information, some

of them contain blanks for the majority of users, provid-

ing little useful information. Other profile features are

redundant or not relevant for the task. Thus, we have

selected the most informative features and we use only

these. We understand them as the ones which have in-

formation for the greatest number of users and that are

the most relevant for the social circles detection task.

Some examples of these features are, in order of impor-

tance: hometown, schools, employers, gender and birth-

day. We conduct our experiments with different subsets

of these features: the most important, the 2 most im-

portant, the 3 most important,... All the features can

take different discrete values from a finite set.

We define as | f | the number of features considered,

and as | v | the total number of values of the consid-

ered features that are taken by at least one user in the

egonet. We encode the profile features information in

the matrices P, for which the following representations

have been defined:

– Explicit: There is a column of P for every different

value of the considered features. An element of P is

1 if the row user takes the column value for the re-

spective feature, and 0 otherwise. Obtaining in total

| v | profile features for each user.

– Intersection: There is one column of P for every

user in the egonet and every considered profile fea-

ture. An element of P is 1 if the sets of values of

the row user and the column user, for that particu-

lar feature, intersect. It is 0 otherwise. In this case,

obtaining | f | × | u | profile features for each user.

– Weighted: There is just one column of P for every

user in the egonet. An element of P represents the

proportion of features for which the row user and the

column user share at least one value. It is calculated

as |s||f | , where | s | is the number of features shared

between both users. Reducing the number of profile

features to | u |.

4 Experiments

4.1 Dataset

We use two data corpora for the experiments. The first

one is the training part of the dataset published for the

Kaggle competition on learning social circles in net-

works [14]. The second one is the ego-Facebook dataset

of social circles from Facebook from the Stanford Large

Network Dataset Collection [16], used in [17,20]. In

both cases, the data consist of hand-labelled friendship

egonets from Facebook and a set of up to 57 profile fea-

tures for every node in those networks. Some statistics

for both datasets are shown in Table 1.

The degree of a given user is defined as the number

of different circles which it belongs to. MAC takes as a

parameter the range of possible degrees of the users of

an egonet. In all our experiments the minimum degree
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Table 1 Statistics of the data corpora

Kaggle ego-Facebook
Egonets 60 10

Users in smallest egonet 45 59
Users in largest egonet 670 1045

Total users 14519 4167
Connections 348131 88234

Circles 592 193

is set to 0 and the maximum degree is set to 3. In this

regard, unlike previous studies, we do not include any

prediction technique for the number of circles within the

egonets, but we predict in every case a fixed number of

35 circles. We rely on MAC to leave empty the extra

circles.

4.2 Evaluation Metrics

The aim of any evaluation metric E(C, C̄) defined for

the task is to measure the similarity between the set

of predicted circles C = {C1, . . . , CK} and the set of

groundtruth circles C̄ = {C̄1, . . . , C̄K}. In this regard,

two main approaches appear in the references. One of

them is based on the definition of a similarity score

s(C, C̄) between two circles, with a further calculation

of the best alignment between C and C̄. The other is

based on an edit distance between C and C̄. In each

case described below, the final evaluation measure is

the average of the evaluation measures obtained for all

the egonets in the respective dataset.

Within the first approach, the similarity measures

s can perfectly be well-established similarity metrics

between sets. In the references, the Jaccard coefficient

[13], the F-measure [17] and the Balanced Error Rate

[5] have been used. Their performance is similar, and

we have decided to report the F-measure in this article.

It is calculated as:

F (C, C̄) = 2× precision(C, C̄)× recall(C, C̄)

precision(C, C̄) + recall(C, C̄)
(2)

being precision(C, C̄) =
| C ∩ C̄ |
| C |

,

and recall(C, C̄) =
| C ∩ C̄ |
| C̄ |

Two different alignments between sets of circles are

defined in the references. The first one is described in

[32] as follows: every detected circle is matched with

its most similar groundtruth community, and the per-

formance is computed. After that, every groundtruth

community is matched with its most similar predicted

community, and the performance is computed again.

The final evaluation function is the average of the two

performance measures:

Eb(C, C̄) =
1

2|C̄|
∑
C̄i∈C̄

max
Cj∈C

s(C̄i, Cj)

+
1

2|C|
∑
Cj∈C

max
C̄i∈C̄

s(C̄i, Cj) (3)

This average is done because matching only from

one side leads to degenerate optimal performance (for

example, outputting all possible subsets of nodes as

detected communities would achieve perfect matching

groundtruth communities to the detected ones). How-

ever, this measure is too optimistic, several groundtruth

circles can be aligned to just one predicted circle or

vice versa, without any penalization to non-aligned pre-

dicted or groundtruth circles.

In [17,20] the alignment is defined as an optimal

correspondence via linear assignment, found by means

of the Hungarian algorithm [21]:

Eh(C, C̄) = max
f :C→C̄

1

|f |
∑

C∈dom(f)

(1− s(C, f(C))

This approach ensures that, unlike in the previous

case, there are no cases of single-to-multiple circles align-

ment. Nevertheless, the use of the Hungarian algorithm

makes the set having the smaller number of circles to

have all its circles aligned, whereas the other set will

always have a number of max(|C|, |C̄|)−min(|C|, |C̄|) cir-

cles without being aligned at no cost. Sadly, this leads to

degenerate optimal performance, as having all possible

subsets of nodes as detected communities would achieve

a perfect matching. In [17,20], the authors state that

this kind of undesirable behaviour only happens when

the number of predicted circles is greater than the num-

ber of groundtruth circles. However, it presents other

problems, as well. For instance, predicting only one per-

fect circle would have a perfect matching as well, forget-

ting that the rest of groundtruth circles remain without

prediction.

The use of an edit distance as an evaluation measure

for the task was introduced at the Kaggle competition

on learning social circles in networks [14]. This distance,

Ed(C, C̄), has four basic edit operations: adding a user

to an existing circle, creating a circle with one user,

removing a user from a circle and deleting a circle with

one user; every one of them at cost 1. We believe that it

is the most complete and accurate evaluation measure

of the ones described, as it is a global measure between

sets of circles, it does not consider single-to-multiple

circles alignments and it does not lead to degenerate

optimal performance.
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Table 2 Baselines and results of the experiments on the Kaggle and ego-Facebook datasets. We report results evaluated by
the Eb, Eh and Ed evaluation measures. The prediction is closer to the groundtruth when the values of Eb and Eh are higher
or the value of Ed is lower.

Dataset
Kaggle ego-Facebook

Baseline Eb Eh Ed Eb Eh Ed

Method in [17,20] 0.4714 0.5739 267.23 0.3899 0.5335 502.40
Empty circles * * 285.02 * * 423.30

All in one circle 0.3771 0.5318 352.67 0.3330 0.5242 570.80

Max. friendship rank N. profile features Eb Eh Ed Eb Eh Ed

1

1 0.4133 0.4994 425.95 0.3778 0.4225 686.20
2 0.4165 0.4879 342.18 0.3935 0.4439 432.70
3 0.4078 0.4852 381.60 0.3696 0.3752 598.30
4 0.4265 0.4326 283.22 0.3353 0.3639 486.30
5 0.4324 0.4469 285.68 0.3601 0.3858 477.20

2

1 0.3135 0.3600 271.15 0.2916 0.4234 405.50
2 0.2934 0.3664 263.28 0.1535 0.2321 414.60
3 0.2979 0.3710 261.47 0.1848 0.2670 401.30
4 0.2114 0.3001 271.57 0.1192 0.1846 415.00
5 0.2481 0.3501 269.35 0.1301 0.2062 415.80

3

1 0.1960 0.2311 280.83 0.1086 0.1496 415.00
2 0.1622 0.2041 277.27 0.1078 0.1783 420.00
3 0.1727 0.2250 275.75 0.0825 0.1427 420.30
4 0.1317 0.2007 280.00 0.0376 0.0580 420.90
5 0.1388 0.2093 279.92 0.0536 0.0939 421.00

4.3 Results

One of the main objectives of this article is to compare

our results to the state-of-the-art technique for social

circles detection described in [17,20]. However, we do

not have access to the optimal parameter values of the

method and, therefore, we cannot replicate the exact

results reported in those works. We have tried several

parameter values, and report the best performing re-

sults among these tests.

In addition, we compare our results to two simple

baselines which perform surprisingly well under certain

evaluation metrics. The first of these baselines consists

in defining an empty set of circles, C = ∅. It can be

evaluated only by the Ed evaluation measure, as there

is no possible alignment between the set of groundtruth

circles C̄ and an empty set. However, it is interesting

to report this baseline, as the Ed evaluation measure

heavily penalizes the misclassification of users into cir-

cles. Thus, defining no circle at all performs better than

other simple baselines.

The second baseline consists in an only circle com-

posed by all the alters in the egonet. This baseline per-

forms especially well when evaluated by the Eh mea-

sure. The reason is that the greatest groundtruth circle

gets aligned with the circle provided and the F-measure

between them is the reported result. The larger this

groundtruth circle, the better the performance of this

baseline. The rest of groundtruth circles, without an

aligned predicted circle, bring no penalty to that re-

sult.

The results obtained by the baselines and our ex-

periments are shown in Table 2. We evaluate the per-

formance with the 3 evaluation measures defined in the

previous subsection: Eb (best matching), Eh (Hungar-

ian matching) and Ed (edit distance). We employ in ev-

ery case aggregated structural network representations,
having maximum friendship ranks 1, 2 or 3. We use only

weighted users’ profile representations as well, contain-

ing information from 1 to 5 profile features. We have

conducted this selection due to the results of prelimi-

nary experiments, and do not report results using more

than 5 profile features, as they perform worse. The best

results are very different depending on whatever evalu-

ation measure is used. When employing the Ed evalua-

tion measure, based on an edit distance, one particular

feature representation, the one containing up to friend-

ship rank 2 and 3 profile features, obtains the best re-

sults in both datasets. When employing the evaluation

measures based on alignments, Eb or Eh, there is no

single best-performing feature representation. However,

the combination of a rank 1 structural network repre-

sentation (equivalent to the adjacency matrix of the

egonet) and a low number of profile features gives bet-

ter results. The result obtained with a rank 1 structural

network representation and 5 profile features, evaluated

by the Eb evaluation measure, constitutes an anomaly
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to this, probably explained by the extremely optimistic

behaviour of Eb.

The best results that we have obtained with the

Ed evaluation measure are more accurate than both

the method in [17,20] and the two baselines. In the

case of the ego-Facebook dataset, our results improve

by a wide margin the ones obtained by the method in

[17,20]. However, when using the evaluation measures

based on alignments, our predictions are not generally

more accurate than either the method in [17,20] or the

baselines. Nevertheless, in these cases, the performance

decrease suffered by our method is moderate. Thus, we

conclude that MAC can obtain acceptable results when

being evaluated by the measures based on alignments,

while improving significantly the results when using the

edit distance. However, the behaviour of the evaluation

measures seems to be quite odd. While the three of

them are designed to evaluate the similarity between a

pair of sets of circles, the best-performing feature rep-

resentations for the measures based on alignments pro-

vide bad results for the edit distance, and vice versa.

This behaviour and the adequacy of the different evalu-

ation measures for the task need to be further studied.

5 Conclusions

MAC, as a prediction technique for community detec-

tion in social network, was already used in [17,20]. In

that work, only the users’ profile information was used

for prediction and its performance was lower than the

one obtained with the method proposed by the authors.

In this article we have proved that, provided that struc-

tural network information is incorporated and modelled

in the right way, MAC can also constitute a valid tech-

nique for social circles detection. We also remark the

wide disparity of the results when the different evalua-

tion measures defined for the task are employed. Some

of these metrics require alignments that present some

flaws, leading to degenerate optimal performance.

There are several possible extensions of the work

presented here. One of them is to improve the use of

the profiles. We have conducted our experiments on the

5 profile features that we considered the most informa-

tive. However, extra tests could be done incorporating

some of the less informative features, or using them

alone, especially for the Kaggle dataset. In addition,

new representations might be defined. Network struc-

ture representation could be enhanced, for example, us-

ing representations able to capture cycles. Moreover,

some new features could be extracted from the network

structure. They include node centrality measures such

as the eigenvector and betweenness. Finally, we also

consider the fusion of the method in [17,20] and MAC

for prediction, making profit of the beneficial aspects of

both techniques.
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