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Abstract

Automatic recognition of mathematical expressions is a challenging pattern recogni-
tion problem since there are many ambiguities at different levels. On the one hand,
the recognition of the symbols of the mathematical expression. On the other hand, the
detection of the two-dimensional structure that relates the symbols and represents the
math expression. These problems are closely related since symbol recognition is influ-
enced by the structure of the expression, while the structure strongly depends on the
symbols that are recognized. For these reasons, we present an integrated approach that
combines several stochastic sources of information and is able to globally determine
the most likely expression. This way, symbol segmentation, symbol recognition and
structural analysis are simultaneously optimized. In this paper we define the statistical
framework of a model based on two-dimensional grammars and its associated parsing
algorithm. Since the search space is too large, restrictions are introduced for making
the search feasible. We have developed a system that implements this approach and we
report results on the large public dataset of the CROHME international competition.
This approach significantly outperforms other proposals and was awarded best system
using only the training dataset of the competition.

Keywords: Mathematical expression recognition, probabilistic parsing, handwriting
recognition

1. Introduction

Mathematical notation constitutes an essential source of information in many fields.
Recognizing mathematical expressions is an important problem in scientific docu-
ment recognition or the acceptance of mathematical expressions in human-based in-
terfaces [1]. Lately, other applications like accessibility for disabled people and, espe-
cially, information retrieval are receiving more attention [2].
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In this pattern recognition problem we usually distinguish between online and of-
fline expressions. Offline formulas are represented as images and can be printed or
handwritten. Meanwhile, an online expression is encoded as a sequence of points in
space, and therefore includes time information. Handwritten expressions generally
present more variability than printed expressions, while online data normally yield
better results than offline expressions because they contain additional information [3].
This paper is focused on automatic recognition of online handwritten mathematical
expressions.

The recognition of math notation is traditionally divided into three problems [1, 2]:
symbol segmentation, symbol recognition and structural analysis. In the literature,
there are two main approaches: sequential (decoupled) solutions and integrated solu-
tions.

Sequential approaches tend to first look for the best segmentation of the input ex-
pression into math symbols. The analysis of the structure is then carried out on that
best symbol segmentation [4]. This type of solution is not able to solve errors made
during the first recognition stage if hard decisions are taken.

Integrated approaches set out to use the global information of the mathematical
expression to obtain the final structure of the formula as a whole [5, 6]. The symbol
segmentation and the symbol recognition is then obtained as a byproduct of the global
optimization. These approaches seem more appropriate because obtaining the best
symbol segmentation as a byproduct depends on the structure of the expression, and
vice versa.

In this paper we present a novel integrated approach for the recognition of online
handwritten mathematical expressions. This approach is inspired in the holistic ap-
proach used in off-line Handwritten Text Recognition (HTR) [7]. In the holistic HTR
approach, the recognition process is modeled in several perception levels integrated
in a unique model: optical models (Hidden Markov Models [8] or Recurrent Neural
Networks [9]) are used for modeling characters in the low level; finite-state models
are used for modeling words in the middle level [8]; and n-gram models are used for
language modeling in the high level.

We follow an analogous approach in this paper with different perception levels
integrated in a unique model. We describe a statistical framework based on two-
dimensional grammars for the highest level since they constitute a natural and pow-
erful model for dealing with structured problems. Mathematical symbols are used in
the middle level that are modeled as sets of strokes, and strokes as primitives in the
lowest level. It is important to remark that other input units smaller than strokes could
be considered in the lowest level (like subsets of consecutive input points) but the prin-
cipal ideas of the approach described in this paper would be the same.

We define the associated parsing algorithm that globally determines the most likely
math expression based on several sources of information. The aspects that allow us
to obtain the segmentation and recognition of symbols as a byproduct are explained in
detail.

In the integrated approach, the search space becomes enormous and therefore we
also present techniques based on spatial and geometric information for effectively re-
ducing the search space. We impose restrictions based on the distance between strokes,
and during the structure analysis we impose restrictions following the idea of hierar-



chical clustering algorithms. Finally we tackle the estimation of all the probability
distributions.

The system that implements this proposal was awarded best system using the train-
ing set of the recent CROHME international competition [10], and has been released
as open-source software. Here we report results on the large public dataset of this
competition.

The paper is organized as follows. First, related work is presented in Section 2. The
statistical framework of our novel grammar-based approach is described in Section 3.
This framework derives two different models: the symbol likelihood that is described
in Section 4, and the structural probability that is defined in Section 5. The parsing
algorithm associated with this statistical framework is given in Section 6, and the ex-
perimentation carried out, along with analysis and discussion of the results, is reported
in Section 7. Finally, conclusions and future work are presented in Section 8.

2. Related Work

The problem of automatic mathematical expression recognition has been studied
for decades [11]. Many approaches have been proposed [12, 4, 13], but unfortunately
most of them cannot be properly compared due to the lack of public datasets or standard
metrics.

The Infty corpus [14] was released several years ago as a great resource of printed
math expressions. More recently the MathBrush dataset [15] provided another impor-
tant resource for handwritten math expression recognition. Over the last few years, the
rapid growth of tactile devices and human-based interfaces has brought more attention
to handwriting recognition solutions. With the recent editions of the CROHME com-
petition [10], and the development of a set of performance evaluation metrics [16, 17],
mathematical expression recognition has become a very active research field. In last
three editions of the CROHME competition, systems were submitted from nine differ-
ent countries.

Different approaches have been presented for math expression recognition. Zanibbi
and Blostein [4] recognized an expression as a tree, and proposed a system based on a
sequence of tree transformations. Eto and Suzuki [18] developed a model for printed
math expression recognition that computed the minimum spanning tree of a network
representation of the expression. Shi ez al. [19, 20] presented a system where symbol
segmentation and recognition were tackled simultaneously based on graphs. They then
generated several symbol candidates for the best segmentation, and the recognized
expression was computed in the final structural analysis [21].

Given the well-known structure of mathematical notation, many approaches are
based on grammars because they constitute a natural way to model this problem. In
fact, the first proposals on math expression recognition were grammar-based [11, 12].
Since then, different studies have been developed using different types of grammars.
For instance, Chan and Yeung [22] used definite clause grammars, the Lavirotte and
Pottier [23] model was based on graph grammars, Yamamoto et al. [24] presented a
system using Probabilistic Context-Free Grammars (PCFG), and MacLean and Labahn [13]
developed an approach using relational grammars and fuzzy sets. In this paper we will
focus on models based on PCFG.



Proposals based on PCFG use grammars to model the structure of the expression,
but the recognition systems are different. Garain and Chaudhuri [25] proposed a sys-
tem that combines online and offline information in the structural analysis. First, they
created online hypotheses based on determining baselines in the input expression, and
then offline hypotheses using recursive horizontal and vertical splits. Finally they used
a context-free grammar to guide the process of merging the hypotheses. Yamamoto
et al. [24] presented a version of the CYK algorithm for parsing bidimensional PCFG
(2D-PCFG) with the restriction that symbols and relations must follow the writing or-
der. They defined probability functions based on a region representation called “hidden
writing area”. PrdSa and V. Hlavac [26] described a system for offline recognition using
2D context-free grammars. Their proposal was penalty-based such that weights were
associated with regions and syntactic rules. The model proposed by Awal et al. [5] con-
siders several segmentation hypotheses based on spatial information, and the symbol
classifier has a rejection class in order to avoid incorrect segmentations.

In this paper we present a formal model that is grounded in two studies. First, the
system for math expression recognition based on parsing 2D-PCFG presented in [6].
That model tackled symbol segmentation by computing the connected components of
the input strokes and merging them using productions of the grammar (e.g. an equals
sign is a line below another line). However, this strategy required consideration of
additional classes for symbol composition (e.g. an i without the dot or linked letters
in functions) and finding proper spatial relations for their combination. Moreover,
it could not account for touching symbols or symbols with segmentations that have
not been taken into account with specific productions in the grammar (for instance,
broken symbols like x in Fig. 5). Thus, segmentation was not a hidden variable but
depended on design decisions of the grammar and symbol composition. Also, in [6]
the estimation of the 2D-PCFG was not tackled.

Second, in order to overcome the problems of this segmentation methodology, we
integrated a stroke-based approach similar to [19, 20] into the parsing process of 2D-
PCFG. The solution presented in [19, 20] combined several stochastic sources of in-
formation on symbol segmentation, symbol recognition and symbol relationships in
order to determine the best overall segmentation and recognition. However, it had the
restriction that symbols must be written with consecutive strokes in time and structural
analysis was performed as a decoupled step.

As a result, in this paper we develop a statistical framework for mathematical ex-
pression recognition which main contributions with regard to [6, 19, 20] are: i) a fully
integrated approach based on 2D-PCFG using strokes as primitives with no time order
assumptions. Our proposal integrates several stochastic information sources in order to
globally determine the most likely mathematical expression. In this advanced frame-
work, segmentation becomes a hidden variable; ii) we deal with the estimation of all
the probabilistic sources of information and the reduction of the search space; iii) the
framework is able to deal with all possible mathematical expressions provided that
adequate models (mainly 2D-PCFG) are defined.



3. Statistical Framework

In online handwritten math expression recognition, the input is a sequence of strokes,
and these strokes are in themselves a sequence points. Fig. 1 shows an example of the
input for a mathematical expression. As you can see, the temporal sequence of strokes

s 02 03
0] 03
04
06

Figure 1: Example of input for an online handwritten math expression. The order of the input sequence of
strokes is labeled (0 = 0103 ... 03).

07

does not correspond necessarily to the sequence of symbols that it represents. For ex-
ample, we can see that the user first wrote the subexpression x — y, then the user added
the parentheses and its superscript (x — y)?, finally converting the subtraction into an
addition (x + y)?. This example shows that some symbols might not be made up of
consecutive strokes (e.g. the + symbol in Fig. 1). This means that the mathematical
expression would not be correctly recognized if it was parsed monotonically with the
input, i.e. processing the strokes in the order in which they were written. Meanwhile,
the sequence of symbols that make up a subexpression does not have to respect the
writing order (e.g. the parentheses and the subexpression they contain in Fig. 1).

Given a sequence of input strokes, the output of a mathematical expression recog-
nizer is usually a sequence of symbols [19]. However, we consider that a significant
element of the output is the structure that defines the relationship between the sym-
bols making up the final mathematical expression. As mentioned above, we propose
modeling the structural relationships of a mathematical expression using a statistical
grammatical model. By doing so, we define the problem of mathematical expression
recognition as obtaining the most likely parse tree given a sequence of strokes. Fig. 2
shows a possible parse tree for the expression given in Fig. 1, where we can observe that
a (context-free) structural model would be appropriate due to, for instance, structural
dependencies in bracketed expressions. The output parse tree represents the structure
that relates all the symbols and subexpressions that make up the input expression. The
parse tree derivation produces the sequence of pre-terminals that represent the recog-
nized mathematical symbols. Furthermore, to generate this sequence of pre-terminals,
we must take into account all stroke combinations in order to form the possible mathe-
matical symbols.

Taking these considerations into account, two main problems have been observed.
First, the segmentation and recognition of symbols is closely related to the alignment
of mathematical symbols to strokes. Second, the structural analysis of a math expres-
sion addresses the problem of finding the parse tree that best accounts for the relation-
ships between different mathematical symbols (pre-terminals). Obviously, these two
problems are closely related. Symbol recognition is influenced by the structure of the
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Figure 2: Parse tree of expression (x + y)? given the input sequence of strokes described in Fig. 1. The parse
tree represents the structure of the math expression and it produces the 6 recognized symbols that account
for the 8 input strokes.

mathematical expression, and detecting the structure of the math expression strongly
depends on the segmentation and recognition of symbols. For these reasons we pro-
pose an integrated strategy that computes the most likely parse tree while simultane-
ously solving symbol segmentation, symbol recognition and the structural analysis of
the input.

Formally, let a mathematical expression be a sequence of N strokes 0 = 010, ... oy.
We pose the mathematical expression recognition as a structural parsing problem such
that the goal is to obtain the most likely parse tree ¢ that accounts for the input sequence
of strokes o:

f = argmax p(t| o)
el
where 7 represents the set of all possible parse trees.

At this point, we consider the sequence of mathematical symbols s € S as a hid-
den variable, where S is the set of all possible sequences of symbols (pre-terminals)
produced by the parse tree t: § = yield(f). This can be formalized as follows:

>

= arg max Z p(t,s| o)
teT seS
s=yield(r)

If we approximate the probability by the maximum probability parse tree, and assume
that the structural part of the equation depends only on the sequence of pre-terminals



s, the target expression becomes

f~argmax max p(s|o)-p(t]|s) (D)
€T €S

N
s=yield(t)
such that p(s|o) represents the observation (symbol) likelihood and p(#|s) represents the
structural probability.

This problem can be solved into two steps. First, by calculating the segmentation
of the input into mathematical symbols and, second, by computing the structure that
relates all recognized symbols [4].

However, in this study we propose a fully integrated strategy for computing Eq. (1)
where symbol segmentation, symbol recognition and the structural analysis of the input
expression are globally determined. This way, all the information is taken into account
in order to obtain the most likely mathematical expression.

Next, in Section 4 we define the observation model that accounts for the probability
of recognition and segmentation of symbols, p(s|o). The probability that accounts for
the structure of the math expression p(z|s) is described in Section 5.

4. Symbol Likelihood

As we have seen, in the recognition of online handwritten math expressions, the in-
put is a sequence of strokes 0 = 0103 . . . on, which encodes a sequence of pre-terminals
§ = s5152...5k, (1 < K < N) that represents the mathematical symbols. A symbol is
made up of one or more strokes. Some approaches assumed that users always write
a symbol with consecutive strokes [19, 24]. Although this assumption may be true in
many cases, it constitutes a severe constraint that means that these models cannot ac-
count for symbols composed of non-consecutive written strokes. For example, the plus
sign (+) in the expression in Fig. 1 is made up of strokes 03 and og and would not be
recognized by a model that incorporated this assumption.

In this section we define a symbol likelihood model that is not based on time infor-
mation but rather spatial information. This model is therefore able to recognize math
symbols made up of non-consecutive strokes. Given a sequence of strokes, testing all
possible segmentations could be unfeasible given the high number of possible com-
binations. However, it is clear that only strokes that are close together will form a
mathematical symbol, which is why we tackle the problem using the spatial and geo-
metric information available since, by doing so, we can effectively reduce the number
of symbol segmentations considered. The application of this intuitive idea is detailed
in Section 4.1.

Before defining the segmentation strategy adopted for modeling the symbol likeli-
hood, we must introduce some preliminary formal definitions.

Definition 4.1. Given a sequence of N input strokes o, and the set containing them
set(0) = {o; | i : 1...N}, a segmentation of o into K segments is a partition of the set
of input strokes

b(o,K) = {b;]i:1...K}

where each b; is a set of (possibly non-consecutive) strokes representing a segmentation
hypothesis for a given symbol.



Definition 4.2. We define Bk as the set of all possible segmentations of the input
strokes o in K parts. Similarly, we define the set of all segmentations 8 as:

BzUBK

1<K<N

Once we have defined the set of all possible segmentations B, we want to calculate
the probability of the segmentation and recognition of symbols for a given sequence
of strokes 0. In Eq. (1), we can define a generative model p(s, 0), rather than p(s|o),
because, given that the term p(0) does not depend on the maximization variables s and
t, we can drop it. The next step is to replace the sequence of N input strokes o by its
previously defined set of segmentations, b = b(0, K) € Bx where 1 < K < N. Finally,
given K, we define a hidden variable that limits the number of strokes for each of the
K pre-terminals (symbols) that make up the segmentation, I : [;...lx. Each [; falls
within the range 1 < [; < min(V, Ly.x), Where Ly is a parameter that constrains the
maximum number of strokes that a symbol can have.

pls,0) = Z Z Z p(s,b. D)

1<K<N beBx I

In order to develop this expression, we factor it with respect to the number of pre-
terminals (symbols) and assume the following constraints: 1) we approximate the sum-
mations by maximizations, 2) the probability of a possible segmentation depends only
on the spatial constraints of the strokes it is made up of, 3) the probability of a symbol
depends only on the set of strokes associated with it, and 4) the number of strokes for
a pre-terminal depends only on the symbol it represents:

K

P(s,0) = max max max ]_1[ p(b) pls; | by) plis | 57) @)

From Eq. (2) we can conclude that we need to define three models: a symbol seg-
mentation model, p(b;), a symbol classification model, p(s;|b;), and a symbol duration
model, p(l;|s;). Fig. 3 shows these models and how they are related. These three models
are discussed in depth below.

4.1. Symbol Segmentation Model

Many symbols in mathematical expressions are made up of more than one stroke.
For example, the symbols x and + in Fig. 1 have two strokes, while symbols like 7 or
# usually require three strokes, etc. As we have already discussed, in this paper we are
proposing a model where stroke segmentation is not based on temporal information, but
rather on spatial and geometric information. We also defined B as the set of all possible
segmentations. Given this definition of $, it is easy to see that its size is exponential
on the number of strokes N. In this section we first explain how to effectively reduce
the number of segmentations considered, and then we describe the segmentation model
used for computing the probability of a certain hypothesis p(b;).

Given a math expression represented by a sequence of strokes o, the number of all
possible segmentations 8B could be unfeasible. In order to reduce this set, we use two



concepts based on geometric and spatial information: visibility and closeness. Let us
first introduce some definitions.

Definition 4.3. The distance between two strokes o; and o; can be defined as the Eu-
clidean distance between their closest points.

Definition 4.4. A stroke o; is considered visible from o; if the straight line between the
closest points of both strokes does not cross any other stroke o.

If a stroke o; is not visible from o; we consider that their distance is infinite. For
example, given the expression in Fig. 1, the strokes visible from o4 are 03, 0 and og.

Furthermore, we know that a multi-stroke symbol is composed of strokes that are
spatially close. For this reason, we only consider segmentation hypotheses b; where
strokes are close to each other.

Definition 4.5. A stroke o; is considered close to another stroke o; if their distance is
shorter than a given threshold.

Using these definitions, we can characterize the set of possible segmentation hy-
potheses.

Definition 4.6. Let G be an undirected graph such that each stroke is a node and edges
only connect strokes that are visible and close. Then, a segmentation hypothesis b; is
admissible if the strokes it contains form a connected subgraph in G.

Consequently, a segmentation b(o, K) = b1b; ... bk is admissible if each b; is, in
turn, admissible. These two geometric and spatial restrictions significantly reduce the
number of possible symbol segmentations.

We need a segmentation model in order to calculate the probability that a given
set of strokes (segmentation hypothesis, b;) forms a mathematical symbol. Commonly,
symbol segmentation models are defined using different features based on geometric
information [27]. Also, the shape of the hypotheses has been used [28].

In this paper, we used a segmentation model very similar to the concept of group-
ing likelihood proposed in [19]. As in [19], we defined a set of geometric features
associated with a segmentation hypothesis b;. First, for each stroke o; of b;, we cal-
culated the mean horizontal position, the mean vertical position and its size computed
as the maximum value of horizontal and vertical size. Then, for each pair of strokes
we calculated the difference between their horizontal positions, vertical positions and
sizes. The average of these differences for each pair determined the features used for
the segmentation model: average horizontal distance (d), average vertical offset (o),
and average size difference (5). Additionally, we defined another feature: average dis-
tance (6). This last feature is computed as the distance between the closest points of
two strokes.

The authors in [19] used a scoring function such that these features were normalized
using a fixed threshold value. However, this normalization depends on the resolution
of the input. In order to overcome this restriction we normalized the features by the
diagonal of the normalized symbol size (see Section 6.1), thereby ensuring that features
are resolution-independent.



Finally, instead of the scoring function proposed in [19], we trained a Gaussian
Mixture Model (GMM) using positive samples ¢ = 1 (the strokes of b; can form a math
symbol) and a GMM using negative samples ¢ = 0 (the strokes of b; cannot form a math
symbol) from the set of all admissible segmentations 8. A segmentation hypothesis b;
is represented by the 4-dimensional normalized feature vector g(b;) = [d, 0, 6, 0], and
the probability p(b;) that a hypothesis b; forms a math symbol is obtained as

p(bi) = pamm(c = 1] g(by)) 3

4.2. Symbol Classification Model

Symbol classification is crucial in order to properly recognize mathematical nota-
tion. In this section we describe the model used for calculating the probability that
a certain segmentation hypothesis b; represents a math symbol s;, i.e. the probability
p(silb;) required in Eq. (2).

Several approaches have been proposed in the literature to tackle this problem us-
ing different classifiers: Artificial Neural Networks [29], Support Vector Machines
(SVM) [30], Gaussian Mixture Models (GMM) [19], elastic matching [31], Hidden
Markov Models (HMMs) [32, 33] and Recurrent Neural Networks (RNN) [34]. Al-
though not all of these approaches have been tested since some publications used pri-
vate datasets, Bidirectional Long Short-Term Memory RNNs (BLSTM-RNN) are a
state-of-the-art model that has outperformed previously reported results [34]. For this
reason we used a BLSTM-RNN for mathematical symbol classification.

RNNSs are a connectionist model containing a self-connected hidden layer. The
recurrent connection provides information about previous inputs, meaning that the net-
work can benefit from past contextual information [9]. Long Short-Term Memory
(LSTM) is an advanced RNN architecture that allows cells to access context informa-
tion over long periods of time. This is achieved by using a hidden layer made up of
recurrently connected subnets called memory blocks [35].

Bidirectional RNNs [36] have two separate hidden layers that allow the network to
access context information in both time directions: one hidden layer processes the input
sequence forwards while another processes it backwards. The combination of bidirec-
tional RNNs and the LSTM architecture results in BLSTM-RNNs, which have out-
performed standard RNNs and HMMs in handwriting text recognition [35] and hand-
written math symbol classification [34]. They are also faster than HMMs in terms of
classification speed.

In order to train a BLSTM-RNN classifier, we computed several features from a
segmentation hypothesis. Given a mathematical symbol represented as a sequence of
points, for each point p = (x,y) we extracted the following 7 online features:

e Normalized coordinates: (x,y) normalized values such that y € [0, 100] and the
aspect-ratio of the sample is preserved.

e Normalized first derivatives: (x',y’).
e Normalized second derivatives: (x”,y”).

o Curvature: k, the inverse of the radius of the curve at each point.

10



It should be noted that no resampling is required prior to the feature extraction process
because first derivatives implicitly perform writing speed normalization [37].

Furthermore, the combination of online and offline information has been proven to
improve recognition accuracy [32, 30, 38]. For this reason, we also rendered the image
representing the symbol hypothesis b; and extracted offline features to train another
BLSTM-RNN classifier.

Following [38], for a segmentation hypothesis b;, we generated the image represen-
tation as follows. We set the image height to H pixels and kept the aspect ratio (up to
5H, in order to prevent creating too wide images). Then we rendered the image repre-
sentation by using linear interpolation between each two consecutive points in a stroke.
The final image was produced after smoothing it using a mean filter with a window
sized 3 X 3 pixels, and binarizing for every pixel that is different from the background
(white).

Given a binary image of height H and W columns, for each column we computed
9 offline features [7, 38]:

e Number of black pixels in the column.

o Center of gravity of the column.

e Second order moment of the column.

e Position of the upper contour of the column.

e Position of the lower contour of the column.

e Orientation of the upper contour of the column.

e Orientation of the lower contour of the column.

e Number of black-white transitions in the column.

e Number of black pixels between the upper and lower contours.

In order to classify a math symbol hypothesis, we trained two classifiers: a BLSTM-
RNN with online feature vectors, and a BLSTM-RNN with offline feature vectors. The
BLSTM-RNN was trained using a frame-based approach. Given a symbol hypothesis
b; of n frames, we computed a sequence of n feature vectors. Then, we obtained the
posterior probability per symbol normalized as its average probability per frame:

n

1
pls1b) =~ > pls|f) @)

=

Finally, given a segmentation hypothesis b; and using Eq. (4), we obtained the pos-
terior probability of a BLSTM-RNN with online features and the posterior probability
of a BLSTM-RNN with offline features. We combined the probabilities of both classi-
fiers using linear interpolation and a weight parameter (). The final probability of the
symbol classification model is calculated as

p(si | bi) = @ pon(si | bi) + (1 — @) - por(si | b;) 5)

11



4.3. Symbol Duration Model

The symbol duration model accounts for the intuitive idea that a math symbol class
is usually made up of a certain number of strokes. For example, the plus sign (+) is
likely to be composed of two strokes, rather than one or more than two strokes.

As authors proposed in [19], a simple way to calculate the probability that certain
symbol class s; is made up of /; strokes is

c(si, 1)
c(si)
where c(s;, ;) is the number of times the symbol s; was composed of /; strokes and c(s;)

is the total number of samples of class s; in the set used for estimation. We smoothed
these probabilities in order to account for unseen events.

pli|si) =

(6)

5. Structural Probability

The statistical framework described in Section 3 defined the problem of recognizing
a mathematical expression as finding the most likely parse tree ¢ that accounts for the
input strokes 0. Formally, the problem is stated in Eq. (1) such that two probabilities are
required. In the previous section we presented the calculation of the symbol likelihood
p(slo). In this section we will define the structural probability p(t|s) (see Fig. 3).

Although the most natural way to compute the most likely parse tree of an input
sequence would be to define probabilistic parsing models p(t|s), in the literature, this
problem has usually been tackled using generative models p(t, s) (language models)
and, more precisely, grammatical models [39].

Next we define a generative model p(¢, s) based on a two-dimensional extension of
the well-known context-free grammatical models.

5.1. 2D Probabilistic Context-Free Grammars

A context-free model is a powerful formalism able to represent the structure of
natural languages. It is an appropriate model to account for math notation given the
structural dependencies existing between the different elements in an expression (for
instance, the parentheses in Fig. 1). We will use a two-dimensional extension of PCFG,
a well-known formalism widely used for math expression recognition [11, 12, 24, 5, 6].

Definition 5.1. A Context-Free Grammar (CFG) G is a four-tuple (N, Z, S, P), where
N is a finite set of non-terminal symbols, X is a finite set of terminal symbols (N N X =
0), S € N is the start symbol of the grammar, and % is a finite set of rules: A — a,
AeN,ae (NUD)" .

A CFG in Chomsky Normal Form (CNF) is a CFG in which the rules are of the
form A - BC or A — a (where A,B,C € N and a € ).

Definition 5.2. A Probabilistic CFG (PCFG) G is defined as a pair (G, p), where G
is a CFG and p : P —]0, 1] is a probability function of rule application such that
VYA e N : Z;.’;‘l p(A — ;) = 1, where ny is the number of rules associated with
non-terminal symbol A.

12
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Figure 3: Diagram of the process for training the initial mathematical expression recognition system.

Definition 5.3. A Two-Dimensional PCFG (2D-PCFG) is a generalization of a PCFG,
where terminal and non-terminal symbols describe two-dimensional regions. This
grammar in CNF results in two types of rules: terminal rules and binary rules. First,
the terminal rules A — a represent the mathematical symbols which are ultimately the
terminal symbols of 2D-PCFG. Second, the binary rules A 5 BC have an additional
parameter r that represents a given spatial relationship, and its interpretation is that
regions B and C must be spatially arranged according to the spatial relationship r.

In Section 5.3 we will provide a full description of the spatial relationships con-
sidered here in order to address the recognition of mathematical expressions. The
construction of the 2D-PCFG and the estimation of the probabilities are detailed in
Section 7.3.5.
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5.2. Parse Tree Probability

The 2D-PCFG model allows us to calculate the structural probability of a math
expression in terms of the joint probability p(z, s), such that in CNF is computed as:

pi) =[] palay [] paBCia)

(A—a,t) (A—BC.,1)

where p(a|A) is the probability of the rule A — « and represents the probability that
a is derived from A. Moreover, (A — a,t) denotes all rules (A — «@) contained in the
parse tree t. In the defined 2D extension of PCFG, the composition of subproblems has
an additional constraint according to a spatial relationship r. Let the spatial relationship
r between two regions be a hidden variable. Then, the probability of a binary rule is
written as:
P(BC|A) =" p(BC,r|A)

When the inner probability in the previous addition is estimated from samples, the
mode is the dominant term. Therefore, by approximating summations by maximiza-
tions, and assuming that the probability of a spatial relationship depends only on the
subproblems B and C involved, the structural probability of a mathematical expression
becomes:

p.s)~ [] plalay (M)
(A>a,t)
[] max pBC1A) p(r1 BO) )
(A—BCH

where p(alA) and p(BC|A) are the probabilities of the rules of the grammar, and p(r|BC)
is the probability that regions encoded by non-terminals B and C are arranged according
to spatial relationship r.

5.3. Spatial Relationships Model

The definition of Eq. (8) for computing the structural probability of a math expres-
sion requires a spatial relationship model. This model provides the probability p(r|BC)
that two subproblems B and C are arranged according to spatial relationship 7.

A common approach for obtaining a spatial relationship model is to define a set of
geometric features to train a statistical classifier. Most proposals in the literature define
geometric features based on the bounding boxes of the regions [4, 6, 5], although a
proposal based on shape descriptors has also been studied [40]. The geometric features
are usually modeled using Gaussian models [5], SVM [6] or fuzzy functions [41],
though some authors manually define specific functions [4, 24, 13].

In this work, we deal with the recognition of math expressions using six spatial
relationships: right (BC), below (g), subscript (Be), superscript (BC), inside ( \/E) and
mroot (N ).

In order to train a statistical classifier, given two regions B and C we define nine
geometric features based on their bounding boxes [40] (see Fig. 4). This way, we
compute the feature vector h(B, C) that represents their relationship and can be used
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for classification. The features are defined in Fig. 4, where H is the height of region
C, feature D is the difference between the vertical centroids, and dhc is the difference
between the horizontal centers. The features are normalized by the combined height of
regions B and C.

The most challenging classification is between classes right, subscript and super-
script [6,40]. An important feature for distinguishing between these three relationships
is the difference between vertical centroids (D). Some symbols have ascenders, descen-
ders or certain shapes such that the vertical centroid is not the best placement for the
symbol center.

With a view to improving the placement of vertical centroids, we divided symbols
into four typographic categories: ascendant (e.g. d or 1), descendant (p, i), normal
(x, +) and middle (7, IT). For normal symbols the centroid is set to the vertical centroid.
For ascendant symbols the centroid is shifted downward to (centroid + bottom)/2.
Likewise, for descendant symbols the centroid is shifted upward to (centroid + top)/2.
Finally, for middle symbols the vertical centroid is defined as (top + bottom)/2.

Once we defined the feature vector representing a spatial relationship, we can train a
GMM using labeled samples such that the probability of the spatial relationship model
can be computed as the posterior probability provided by the GMM for class r

p(r| BC) = pemm(r | h(B, C))

This model is able to provide a probability for every spatial relationship r between
any two given regions. However, there are several situations where we would not want
the statistical model to assign the same probability as in other cases. Considering
the expression in Fig. 5, the GMMs might yield a high probability for superscript
relationship ‘3*’, for the below relationship ‘5’, and for the right relationship 2 3°;
though we might expect a lower probability, since they are not the true relationships in
the correct math expression.

Intuitively, those symbols or subexpressions that are closer together should be com-
bined first. Furthermore, two symbols or subexpressions that are not visible from each
other should not be combined. These ideas are introduced into the spatial relationship
model as a penalty based on the distance between strokes.

Specifically, given the combination of two hypotheses B and C, we computed a

dx dy\

dx dy

B dy,

dhc

h(35 C) = [H’ Da dhC, dx, d-xlvdx29 dy’ d)’l»d)’ﬂ

Figure 4: Geometric features for classifying the spatial relationship between regions B and C.
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penalty function based on the minimum distance between the strokes of B and C

penalty(B,C) =1/(1+ min d(o;,0;))
0,€B,0;eC

such that it is in the range [0, 1]. It should be noted that, although it is a penalty
function, since it multiplies the probability of a hypothesis, the lower is the penalty
value the more the probability is penalized.

This function is based on the single-linkage hierarchical clustering algorithm [42]
where, at each step, the two clusters separated by the shortest distance are combined.
We defined a penalty function in order to avoid making hard decisions, because it is
not always the case that the two closest strokes must be combined first.

The final statistical spatial relationship probability is computed as the product of
the probability provided by the GMM and the penalty function based on hierarchical
clustering

p(r | BC) = pamm(r | h(B, C)) - penalty(B, C) €))

An interesting property of the application of the penalty function is that, given that the
distance between non-visible strokes is considered infinite, this function prunes many
hypotheses. Furthermore, it favors the combination of closer strokes over strokes that
are further apart. For example, the superscript relationship between symbols 3 and x
in Fig. 5, although it could be likely, the penalty will favor that the 3 is first combined
with the fraction bar, and later the fraction bar (and the entire fraction) with the x.

6. Parsing Algorithm

In this section we present the parsing algorithm for mathematical expression recog-
nition that maximizes Eq. (1). We define a CYK-based algorithm for 2D-PCFGs in the
statistical framework described in this paper. Using this algorithm, we compute the
most likely parse tree according to the proposed model.

The parsing algorithm is essentially a dynamic programming method. First, the
initialization step computes the probability of several mathematical symbols for each
possible segmentation hypothesis. Second, the general case computes the probability
of combining different hypotheses such that it builds the structure of the mathematical
expression.

The dynamic programming algorithm computes a probabilistic parse table y. Fol-
lowing a notation similar to [43], each element of y is a probabilistic non-terminal

2 X
Figure 5: Example for hierarchical clustering penalty.
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vector, where their components are defined as:
YAbD = pA > by 1 =|b]

such that y(A, b, [) denotes the probability of the best derivation that the non-terminal
A generates a set of strokes b of size [.

Initialization: In this step the parsing algorithm computes the probability of every
admissible segmentation b € B as described in Section 4.1. The probability of each
segmentation hypothesis is computed according to Eqs. (1) and (2) as

YA, b;, ) = max {p(s|A) p(D) p(s|b;) pl]|s)} (10)
VAVK, Vb e By, 1 <i<|bl, 1 << min(N, L)

where L« is a parameter that constrains the maximum number of strokes that a symbol
can have.

This probability is the product of a range of factors such that it is maximized for
every mathematical symbol class s: probability of terminal rule, p(s|A) (Eq. (7)), prob-
ability of segmentation model, p(b) (Eq. (3)), probability of mathematical symbol clas-
sifier, p(s|b) (Eq. (5)), and probability of duration model probability, p(l|s) (Eq. (6)).

General case: In this step the parsing algorithm computes a new hypothesis y(A, b, [)
by merging previously computed hypotheses from the parsing table until all N strokes
are parsed. The probability of each new hypothesis is calculated according to Egs. (1)
and (8) as:

A,b,l) = A,b,l
(A, b, 1) = max{ y(A, b, ), max max iﬂiff{

p(BC | A)yy(B, b, 1) ¥(C, b, lc) p(r | BC) }} )
VA, 2<I<N

suchthat b = bgUbc; bgNbe =0andl=1g+Ic.

This expression shows how a new hypothesis y(A, b, /) is built by combining two
subproblems y(B, bg, Ig) and y(C, b¢, I¢), considering both syntactic and spatial infor-
mation: probability of binary grammar rule p(BC|A) (Eq. (8)) and probability of spatial
relationship classifier p(r|BC) (Eq. (9)). It should be noted that both distributions sig-
nificantly reduce the number of hypotheses that are merged. Also, the probability is
maximized taking into account that a probability might already have been set by the
Eq. (10) during the initialization step.

Finally, the most likely hypothesis and its associated derivation tree 7 that accounts
for the input expression can be retrieved in y(S, 0, N) (where S is the start symbol of
the grammar).

6.1. Complexity and Search Space

We have defined an integrated approach for math expression recognition based on
parsing 2D-PCFG. The dynamic programming algorithm is defined by the correspond-
ing recursive equations. The initialization step is performed by Eq. (10), while the
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general case is computed according to Eq. (11). In addition to the formal definition,
there are some details of the parsing algorithm regarding the search space that need
further explanation.

Once several symbol hypotheses have been created during the initialization step, the
general case is the core of the algorithm where hypotheses of increasing size 2 <[ < N
are generated with Eq. (11). For a given size /, we have to test all the sizes in order
to split [ into hypotheses bg and b¢ such that [ = Ig + [c. Once the sizes are set, for
every set of strokes by we have to test every possible combination with another set b¢

using the binary rules of the grammar A S BC. According to this, we can see that the
time complexity for parsing an input expression of N strokes is O(N*|P|) where |P| is
the number of productions of the grammar. However, this complexity can be reduced
by constraining the search space.

The intuitive idea is that, given a set of strokes bg, we do not need to try to combine
it with every other set bc. A set of strokes b defines a region in space, allowing us to
limit the set of hypothesis b¢ to those that fall within a region of interest. For example,
given symbol 4 in Fig. 5, we only have to check for combinations with the fraction bar
and symbol 3 (below relationship) and the symbol x (right or sub/superscript relation-
ships).

We applied this idea as follows. Given a stroke o; we define its associated region
r(o;)) = (x,y,s,t) in the 2D space as the minimum bounding box that contains that
stroke, where (x,y) is the top-left coordinate and (s, ¢) the bottom-right coordinate of
the region. Likewise, given a set of strokes b = {o; | 1 < j < |b|} we define r(b) =
(Xp, Y5, Sb, ) as the minimum rectangle that contains all the strokes o; € b. Therefore,
given a spatial region r(bg) we retrieve only the hypotheses b whose region r(b¢) falls
in a given area R relative to r(bg). Fig. 6 shows the definition of the regions in the
space in order to retrieve relevant hypotheses to combine with by depending on the
spatial relation. The dimensions of the normalized symbol size (R,,, R;,) are computed
as: R,,, the maximum between the average and median width of the input strokes; and
Ry, the maximum between the average and median height of the input strokes. These
calculations are independent of the input resolution. The normalized symbol size is also
used to normalize other distance-related metrics in the model, like determining what
strokes are close together in the multi-stroke symbol recognition or the normalization
factor of features in the segmentation model.

In order to efficiently retrieve the hypotheses falling in a given region R, every
time a set of hypotheses of size I4 is computed, we sort this set according to the x
coordinate of every region r(b,) associated with y(A, ba,l4). This sorting operation
has cost O(N log N). Afterwards, given a rectangle r(bp) in the search space and a size
lc, we can retrieve the hypotheses y(C, b, [¢) falling within that area by performing
a binary search over that set in O(log N). Although the regions are arranged in two-
dimensions and they are sorted only in one dimension, this approach is reasonable since
math expressions grow mainly from left to right.

Assuming that this binary search will retrieve a small constant number of hypoth-
esis, the final complexity achieved is O(N> log N|P|). Furthermore, many unlikely hy-
potheses are pruned during the parsing process.
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Figure 6: Spatial regions defined to retrieve hypotheses relative to hypothesis bp according to different
relations.
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7. Experimentation

We have developed seshat', an open-source system that implements the parsing
algorithm of the approach proposed in this study?. In order to evaluate the performance
of this proposal, we carried out several experiments using a large public dataset from a
recent international competition [10].

7.1. Dataset

The CROHME 2013 competition [10] released a large resource for math expres-
sion recognition as a result of combining and normalizing several datasets. Currently,
it represents the largest public dataset of online handwritten math expressions. This
dataset has 8 836 math expressions for training and a test set of 671 math expressions.
The number of math symbol classes is 101.

We report results on the competition test set in order to provide comparable results.
We needed a validation set for the estimation of the models used in the parsing algo-
rithm. For this reason, we extracted 500 math expressions from the training set, such
that both sets had the same distribution of symbols. Therefore, the sets used in the ex-
perimentation described in this paper were a training set made up of 8, 336 expressions
(81K symbols), a validation set with 500 expressions (5K symbols) and the CROHME
2013 test set containing 671 math expressions (6K symbols).

7.2. Evaluation

Automatic performance evaluation of math expression recognition is not straight-
forward [44, 45]. Problems arise resulting from ambiguity in the ground-truth repre-
sentation in that several encodings can account for the same expression [46]. Also,
there are different sources of error: segmentation, symbol recognition and structural
errors; and a global value is usually desired to measure a recognition result.

The set of metrics based on label graphs [16, 17] is intended to overcome the ambi-
guities in the ground-truth representation. The label graph representation uses strokes
as primitives to encode a math expression. A label graph is essentially a directed graph
over primitives that can be represented using adjacency matrices. In a label graph,
nodes represent strokes, while edges define segmentation and spatial relationships.
Computing Hamming distances over label graphs allows classification, segmentation
and structural errors to be characterized separately, or using a single measure.

The last CROHME competitions and publications in the field report this set of met-
rics [10]. Consequently, we report results using them. The set of metrics includes pre-
cision and recall at symbol level, and Hamming distances at stroke level. Furthermore,
two global error metrics are provided: AB, which is the Hamming distance between
the adjacency matrices normalized by the label graph length; and AE is the average
per-stroke classification, segmentation and layout errors [16, 17].

'https://github.com/falvaro/seshat
2Demo available at http://cat.prhlt.upv.es/mer
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7.3. Estimation of Models

The proposal presented in this paper has several probabilistic models that are used
as a source of information during the recognition process of a math expression. Below
we outline how each model is estimated. Fig. 3 shows the probabilistic models and
processes used for learning them.

7.3.1. Symbol Classification Model

We trained two BLSTM-RNN using the RNNLIB library?, one for online classi-
fication and the other for offline classification. We used the same configuration for
both BLSTM-RNN. The only difference was the size of the input layer, which was
determined by the feature set: 7 inputs for online data and 9 inputs for offline data.
The output layer size was 101, i.e. the number of symbol classes, and the forward and
backward hidden layers each contained 100 LSTM memory blocks.

The network weights were initialized with a Gaussian distribution of mean 0 and
standard deviation 0.1. The network was trained using online gradient descent with
a learning rate of 0.0001 and a momentum of 0.9. This configuration obtained good
results in both handwritten text recognition [35] and handwritten math symbol classifi-
cation [34]. We trained each network until the error ceased to improve on the validation
set for 50 epochs.

7.3.2. Symbol Segmentation Model

Given the expressions of the training set, we extracted all admissible segmentation
hypotheses b; € B(see Fig. 3). Thus, we obtained 360K 4-dimensional samples of sym-
bol segmentations, where 7.5% samples corresponded to proper symbol segmentations
and 92.5% samples were incorrect segmentations. From the validation set we extracted
35K samples: 4.4% correct and 95.6% incorrect segmentations.

We trained the GMMs using the training samples and the Expectation-Maximization
algorithm. The parameters of the model were chosen by minimizing the error when
classifying the segmentation hypotheses of the validation set. The number of mixtures
in the final GMMs was 5.

7.3.3. Symbol Duration Model

To estimate the duration model we used a simple ratio between the number of times
a given symbol s; was composed of /; strokes and the total number of samples of that
symbol found in the training set. The values for a math symbol class were smoothed
using add-one smoothing [47] in the range [1, Lyax].

7.3.4. Spatial Relationships Model

We extracted the spatial relationships between symbols and subexpressions for all
the math expressions of the training set (see Fig. 3). This extraction had to be carried
out taking into account the centroid computation for each type of symbol and the com-
bination of regions. By doing so, we obtained 68K 9-dimensional samples of spatial

3http://sourceforge.net/projects/rnnl/
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relationships for training and 4K samples for validation. The distribution of the classes
was quite unbalanced. In the training set the right relationships were very common
(71.84%), while inside and mroot relationships were infrequent (2.51% and 0.19%).
The percentage of samples of below, subscript and superscript were about 12.08%,
5.56% and 7.82%, respectively.

Once we had the set of training samples, we trained a GMM per class using the
Expectation-Maximization algorithm. The number of mixtures of the final GMMs was
5, since it represented the best trade-off between the complexity of the model and the
classification error in the validation set.

7.3.5. 2D-PCFG Estimation

The structure of the mathematical expressions is described by a 2D-PCFG. Since
the rules of math notation are well-known, starting from the CFG provided by the or-
ganizers of the CROHME competition, we manually modified it to improve the mod-
eling of some structures. We also added productions that increase ambiguity in order
to model certain structures like the relations between categories of symbols (upper-
case/lowercase letters, numbers, etc.). However, the probabilities of the productions of
the 2D-PCFG have to be estimated.

An usual approach to estimating probabilistic grammars is the Viterbi score [48].
We recognized the expressions of the training set in order to obtain the most likely
derivation trees according to the grammar. As recognizing the training set will intro-
duce errors into the computed trees, we used constrained parsing [46] to obtain the
parse tree that best represents each training sample. Fig. 7 shows an scheme of the this
training process. Then, the probability of a production A — « was calculated as

c(A - a)
c(A)

such that c(A — @) is the number of times that the rule A — « was used when recog-
nizing the training set, and c(A) is the total number of productions used that have A as
left-hand operator. In order to account for unseen events, we smoothed the probabilities
using add-one smoothing [47].

pA—a)=

7.4. Parameter Setting

The parsing algorithm defined in Section 6 has two steps. First, when the parsing
table is initialized, multi-stroke symbol hypotheses are introduced as subproblems of
1 < n < Ly strokes following Eq. (10). Then, in the general case, the parsing table
is filled with hypotheses of n > 2 strokes by combining smaller subproblems using
Eq. (11). This produces a scaling problem of the probabilities.

The probability of a hypothesis of size n > 2 created in the initialization step is the
product of four probabilities, while the hypothesis resulting from the combination of
subproblems will involve 6n — 2 terms in the calculation. Moreover, the different prob-
abilistic distributions have been estimated separately, which leads to values in different
scales.

For these reasons, following [20], we assigned different exponential weights to
each model probability, and we also added an insertion penalty in the initialization
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Figure 7: Diagram of the process for training the final mathematical expression recognition system.

step (Eq. (10)). These parameters alleviate the scaling differences of the probabilities.
Furthermore, the weights help to adjust the contribution of each model to the final
probability, since some sources of information are more relevant than the others.

The parameters of the parsing algorithm are: insertion penalty, exponential weights,
segmentation distance threshold and maximum number of strokes per symbol (Lp,x).
We set L,x = 4 because it accounts for 99.81% of the symbols in the dataset. The
remaining parameters were set initially to 1.0 and we tuned them using the downhill
simplex algorithm [49] minimizing the AE metric [16] when recognizing the validation
set. Fig. 7 shows this process as the final process.

7.5. Experiments and Results

After training all the models and parameters using the training set, we used the
system that obtained the best results on the validation set to classify the test set of the
CROHME 2013 competition. Eight systems participated, including a preliminary ver-
sion of this model (system IV). All but two of the systems used only the competition
training set (8, 836 math expressions). System III also used 468 additional math ex-
pressions, and System VII was trained using roughly 30, 000 math expressions from a
private corpus. The description of each system can be found in [10].

Table 1 shows the performance metrics at symbol level, and Table 2 shows results
at stroke level. Results show that system VII performed the best, obtaining very good
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Table 1: Object-level evaluation for the CROHME’ 13 dataset. Systems sorted by decreasing recall for correct
symbol segmentation and classification (Seg+Class).

Segments Seg+Class | DAG Relations
Rec. Prec. | Rec. Prec. | Rec. Prec.

viI 979 98.1 | 93.0 933 | 95.2 95.5
seshat | 92.0 90.7 | 82.2 81.0 | 88.0 82.0
A 85.0 87.1 | 739 758 | 76.3 79.9
VII | 903 869 | 73.8 71.0 | 73.0 77.7
v 845 86.5 | 66.7 68.3 | 72.6 74.3
I 80.7 864 | 664 71.1 | 45.8 63.0
I 852 779 | 62.6 57.3 | 88.5 78.3
VI 579 473 | 477 39.0 | 31.8 70.0

I 469 384 | 252 20.6 | 33.7 71.6

results. It was awarded the strongest system in the competition. However, as they used
a large private dataset we were not able to fairly compare its performance to that of the
other systems. System IV was a preliminary version of seshat and was awarded the
best system trained using only the CROHME training dataset. The main differences
between System IV and seshat are as follows: seshat includes offline information in
the symbol classifier; symbol segmentation and spatial relationships classification are
carried out by GMMs in seshat and by SVMs in system IV; seshat uses visibility
between strokes and a clustering-based penalty; and the probabilities of the grammar
were not estimated in System IV.

Table 2: Stroke-level evaluation for the CROHME’13 dataset. Systems sorted by increasing AE. AB, and
AE are measured on directed labels graphs (8548 strokes; 81007 (undirected) stroke pairs).

Label Hamming Distances u error (%)
Strokes Pairs Seg Rel | AB, AE
VII 537 1777 170 1607 | 24 43

seshat 1583 | 7829 700 7129 | 69 13.2
Iv* 2187 | 9493 1201 8292 | 10.1 183
VIl 2302 | 15644 4945 10699 | 12.1 193

I 2748 | 19768 1527 18241 | 139 220
v 2898 | 10803 1228 9575 | 127 228
I 3415 | 15135 1262 13873 | 15.0 26.2
VI 4768 | 43893 5094 38799 | 27.6 36.7
I 6543 | 41295 5849 35446 | 26.8 41.6

The system presented in this paper significantly outperformed at all levels the other
systems that were trained using the CROHME dataset. At symbol level, symbol clas-
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sification of correctly segmented symbols of seshat obtained recall and precision of
about 82.2% and 81.0%, while the next best system (system VIII) obtained 73.8 and
71.0%. The absolute difference was more than 8% in recall and 10% in precision. Re-
garding spatial relationships, recall and precision for seshat stood at 88% and 82%,
while System VIII gave 73% and 77.7%. This translates into an absolute difference
of about 14% in recall and 4.3% in precision. Results at stroke-level were also better
than those of the systems trained only using the CROHME dataset. The systems were
ranked according to the global error metric AE, where seshat had 13.2%, some 6.1%
less than next best system (19.3). Table 3 shows that the confidence interval [50] was
13.2% + 0.9 at 95% of confidence. We were not able to obtain confidence interval for
the other systems because the final system outputs were not freely available.

In addition to the experimentation comparing our proposed model to other systems,
it is interesting to see how each of the stochastic sources contribute to overall system
performance. For this reason we also carried out an experiment to observe this be-
havior. Some models are mandatory for recognizing math expressions: the symbol
classifier, the spatial relationships classifier and the grammar. We performed an experi-
ment using only these models (base system), then adding the remaining models one by
one. Also, the grammar initially had equiprobable productions and then we compared
the performance when the probabilities of the rules were estimated.

Table 3 shows the changes on system performance when each source of informa-
tion is added. Global error metrics AB,, and AE consistently decreased with each added
feature. Confidence intervals computed for AE showed that the improvements were
significant from the first row to the last row. Symbol segmentation and symbol recog-
nition also improved with each addition. It is interesting that, when no segmentation
model was used, symbol segmentation still gave good results. This was the case be-
cause the parameters of the integrated approach converged to high values of the inser-
tion penalty and low values of the segmentation distance threshold. In this way, the
parameters of the system itself could alleviate the lack of a segmentation model. In
any case, when the segmentation model was included, system performance improved
significantly. Furthermore, we would like to remark that, when the relations penalty
was included in the model, the number of hypotheses explored was reduced by 56.7%.

Table 3: Contribution to overall system performance of the different sources of information used. The
models and features listed in each row are cumulative, such that the system shown in the last row includes
all information sources. Confidence intervals [S0] were computed for AE.

Segments Seg+Class Relations || Label Hamming Distances u error (%)
Rec. Prec.|Rec. Prec.|Rec. Prec.||Strokes Pairs Seg Rel |AB, AE

Base system 87.6 83.6(78.3 74.7|87.0 75.0| 1987 11999 1172 10827|9.1 16.5+1.0
+ duration mod. [88.0 84.2|78.7 75.3(86.2 755 1928 12055 1138 10917|9.0 158+ 1.1
+ segment. mod.|90.9 90.4|81.3 80.8 [81.5 73.7| 1634 10272 834 9438|7.6 13.7+1.0
+ rel. penalty 91.8 91.3(82.0 81.5|81.4 74.0|| 1556 10397 724 9673|7.5 13.2+0.9
+ gram. estim. |92.0 90.7|82.2 81.0 |88.0 82.0 1583 7829 700 712969 13.2+0.9
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The structural analysis is harder to evaluate. Prior to estimating the grammar prob-
abilities, the results at object level seem to worsen when the segmentation model was
included, although at stroke-level the errors in spatial relationships decreased from
about 11,000 to 9,500 stroke pairs. Because of the inheritance of spatial relations in
label graphs [16] some types of structural errors can produce more stroke-pair errors
than others [17]. Specifically, when the segmentation model was used, the segmenta-
tion distance threshold was approximately twice as high as the value of the threshold
in the base system. This had two effects. First, that the system was able to account for
more symbol segmentations, as shown by the corresponding metrics. Second, that a
bad decision in symbol segmentation can lead to worse structural errors. Nevertheless,
the estimation of the probabilities of the grammar led to great improvements in the de-
tection of the structure of the expression with barely any changes in symbol recognition
performance.

8. Conclusions

In this paper we have presented a statistical model for online handwritten math ex-
pression recognition. We defined the statistical framework of a system based on parsing
2D-PCFG that integrates several sources of stochastic information. This constitutes a
fully integrated approach that simultaneously determines the best symbol segmenta-
tion, symbol recognition and the most likely structure of the recognized mathematical
expression. The search space is restricted with spatial and geometric information for
making the search feasible.

We developed the software that implements the proposed system and released it
as open-source. Furthermore, we report results on a large public dataset used in an
international competition. A detailed discussion of system performance and the contri-
bution of each part of the model is also provided. A preliminary version of this model
was awarded as best system using only the training dataset of the CROHME compe-
tition [10]. Finally, the model presented in this study significantly outperforms other
approaches at all levels.

The estimation of the 2D-PCFG had an important effect on system’s performance.
Since the estimation of a PCFG requires many data, we need to obtain more resources
for this purpose.

One of the limitations of the system is that for giving account of unseen mathemat-
ical expression, the 2D-PCFG should be adequately smoothed or an error-correcting
technique should be used. Also, each source of information could be improved with
other features and classifiers. Moreover, this model deals with online handwritten math
expression recognition, and is based on strokes as primitives. However, the proposed
model is directly applicable to offline expressions, considering connected components
as primitives. Future work will be focused on applying this model to offline mathemat-
ical expression recognition, both printed and handwritten.
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