Automating the development
of Physical Mobile Workflows

A Model Driven Engineering approach

Pau Giner Blasco

Lo gl ‘L
. *47

Supervisor:
Dr. Vicente Pelechano Ferragud

UNIVERSIDAD Centro de Investigacion en

PD(E)L\'/I\ELCEH'&? Métodos de Produccidon de Software

Pau Giner

Automating the development
of Physical Mobile Workflows

A Model Driven Engineering approach

PhD Thesis, March 2010

222 UNIVERSIDAD
F) POLITECNICA
DE VALENCIA

PHRY0O]B)

Centro de Investigacion en Métodos
de Produccién de Software

Pau Giner

Automating the development
of Physical Mobile Workflows

A Model Driven Engineering approach

PhD Thesis, March 2010

Automating the development of Physical Mobile Workflows: A Model
Driven Engineering approach

This report was prepared by
Pau Giner

Supervisors
Vicente Pelechano

Members of the Thesis Committee
Dr. Jordi Cabot Sagrera, INRIA - Ecole des Mines de Nantes
Dr. Paolo Giorgini, University of Trento
Dr. Oscar Pastor Lépez, Universidad Politécnica de Valencia
Dr. Antonio Ruiz Cortés, Universidad de Sevilla
Dr. Antonio Vallecillo Moreno, Universidad de Malaga

Centro de Investigacién en Métodos de Produccién de Software
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia

Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

Release date: 05-03-2010

Comments: A thesis submitted in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy
in Computer Science at the Universidad Politéc-
nica de Valencia.

Preface

he inception of this work has its roots many years before I was

engaged in its elaboration. I remember myself being a child in front
of a pile of random things at my grandparent’s attic. I was fascinated
trying to find out what secret stories were these objects keeping inside.
Now, many years later, I have the opportunity to help these objects to
tell their story.

As illustrated by the Heraclitus’s river, objects and people are part
of processes of continuous change. When we are able to flow through
this river, our environment becomes like the thematic series of Richard
Lohse or the ever-changing figure of a kaleidoscope. Each object turns
into a colorful piece of our society. This fetichistic movement can help
us to escape hyperreality since we can directly ask the world whatever
we want to know.

This work is about touching, pointing at, and playing with, the real
world. Having the opportunity with this work to look at the world with
the eyes of a child has been a great challenge and a unique experience.

Valencia, January 2010 Pau Giner

Acknowledgements

his work would not have been possible without the support and
encouragement of many people. I hope they have learnt half as
much from me as I have from them.

Foremost, I would like to thank my supervisor, Dr. Vicente Pelechano.
He trusted in my work from the very beginning. Thanks to his research
insight I was able to start working in such an interesting field. I also
like to express my gratitude to Prof. Oscar Pastor for his direction of
our research center and for showing me that it is always possible to find
the correct way (or highway).

A special gratitude is due to Carlos, my partner in crime, for sharing
his bullet-proof working spirit. Thanks to Joan, Vicky, Manoli and
Pedro, because working with them has been an experience that helped
me to grow as a researcher but also as a person. I would like to thank
Fani, Mario, Miriam, Paqui, Nacho and Isma for the good times we
spent together in the lab and out of it. I am grateful to Ana for all the
time she saved me with her work.

I would also like to express my thanks to the people that made me
forget everyday that I was in my workplace. I have shared conversations,
meals, delayed flights and even kidnap attempts with them. Thanks to
Bea, Giovanni, Paco, Nathalie, and José Luis because their different
kinds of humour make it possible to have fun with almost anything. I

would also like to thank the rest of friends and colleagues from the ProS
research center for their collaboration.

Special thanks for the people that, from the place that they occupy
in my soul, have injected me the dose of love that is required for feeling
alive. Thanks to Patri for her unconditional support. I wish to thank
my parents, Pilar and Josep for their constant encouragement and love.
They have always supported me to do my best in all matters of life.

Abstract

he Internet of Things vision proposes a tight integration between

real-world elements and Information Systems. Information Sys-
tems can be aware of physical objects thanks to Automatic Identifi-
cation (Auto-ID) technologies such as Radio Frequency Identification
(RFID). When physical elements participate actively in business pro-
cesses, the use of humans as information carriers is avoided. Thus,
errors are reduced and process efficiency is improved.

Although developing this kind of systems is feasible, the techno-
logical heterogeneity in Auto-ID and the fast-changing requirements of
business processes hinders their construction, maintenance and evolu-
tion. Therefore, there is a need to move from ad-hoc solutions to sound
development methods in order to assure the quality of the final product.

This thesis, based on Model Driven Engineering foundations, presents
a development process for the construction of this kind of systems. The
main goal of the present work is to systematize the development of busi-
ness process-supporting systems that integrate physical elements. The
development process defined covers from the system specification to its
implementation and it is focused on the particular requirements of the
linkage between physical and virtual worlds.

For the system specification, a modeling language is defined to cope
with the particular requirements of the Internet of Things domain. From

Vi

this specification, following a set of systematic steps, a software solution
is obtained. This solution is supported by an architecture specifically
designed to cope with the Internet of Things requirements and to survive
to technological evolution.

The proposal has been applied in practice with end-users. Although
the development process is not completely automated, the guidance of-
fered and the formalization of the involved concepts was proven helpful
to raise the abstraction level of development avoiding to deal with tech-
nological details.

Resumen

a visién de la “Internet de las Cosas”, hace énfasis en la integracién
L entre elementos del mundo real y los Sistemas de Informacién. Gra-
cias a tecnologias de Identificaciéon Automatica (Auto-ID) cémo RFID,
los sistemas pueden percibir objetos del mundo fisico. Cuando éstos
participan de manera activa en los procesos de negocio, se evita el uso
de los seres humanos como transportadores de informacién. Por tanto,
el nimero de errores se reduce y la eficiencia de los procesos aumenta.

Aunque actualmente ya es posible el desarrollo de estos sistemas,
la heterogeneidad tecnolégica en Auto-ID y los requisitos cambiantes
de los procesos de negocio dificultan su construcciéon, mantenimiento
y evolucién. Por lo tanto, es necesaria la definicion de soluciones que
afronten la construccién de estos sistemas mediante métodos sélidos de
desarrollo para garantizar la calidad final del producto.

Partiendo de las bases de la Ingenieria Dirigida por Modelos (MDE),
esta tesis presenta un proceso de desarrollo para la construccién de este
tipo de sistemas. Este proceso cubre desde la especificacién del sistema
hasta su implementacion, centrandose en los requisitos particulares del
enlace entre los mundos fisico y virtual.

Para la especificacién de los sistemas se ha definido un Lenguaje de

modelado adaptado a los requisitos de la “Internet de las Cosas”. A
partir de esta especificacién se puede obtener una solucién software de

viii

manera sistematica.

Como validacion de la propuesta, ésta se ha aplicado en la préactica
con usuarios finales. Pese a que el proceso de desarrollo no ofrece una
automatizacién completa, las guias ofrecidas y la formalizacién de los
conceptos implicados ha demostrado ser 1til a la hora de elevar el nivel
de abstraccién en el desarrollo, evitando el esfuerzo de enfrentarse a
detalles tecnolégicos.

Resum

a visié de I"“Internet de les Coses”, emfatitza la integracié entre els
Lelements del mon real i els Sistemes d’Informacié. Gracies a les tec-
nologies d’Identificacié Automatica (Auto-ID) com 'RFID, els sistemes
poden percebre objectes del mén fisic. Quan aquestos participen acti-
vament en els processos de negoci, s’evita I'tis dels éssers humans com
a transportadors d’informacié. Per tant, el nombre d’errors es redueix
i leficiencia dels processos augmenta.

Tot i que actualment ja és possible el desenvolupament d’aquestos
sistemes, 1'heterogenitat tecnologica en Auto-ID i els requeriments can-
viants dels processos de negoci dificulten la construccié, manteniment i
evolucié d’aquells. Per tant, és necessaria la definicié de solucions per
abordar la construccié d’aquestos sistemes mitjancant metodes solids
de desenvolupament que garantisquen la qualitat final del producte.

Prenent com a base ’Enginyeria Dirigida per Models (MDE), aque-
sta tesi presenta un procés de desenvolupament per a la construccié
d’aquest tipus de sistemes. El procés cobreix des de 'especificacié del
sistema fins la seua implementacié, centrant-se en els requeriments par-
ticulars de I’enllag entre el mén fisic i virtual.

Per a I'especificacié dels sistemes s’ha definit un llenguatge de mod-

elat adaptat als requeriments de 1™Internet de les Coses”. A partir
d’aquesta especificacié és possible obtenir una solucié de programari

X Contents

d’una manera sistematica.

Com a validacié de la proposta, aquesta ha estat aplicada en la
practica amb usuaris finals. Tot i que el procés de desenvolupament
no proporciona una automatitzacié completa, les guies proporcionades
i la formalitzacié dels conceptes implicats han mostrat la seua utilitat
per a elevar el nivell d’abstraccié en el desenvolupament, evitant 1’esforg
d’enfrontar-se a detalls tecnologics.

Contents

List of Figures xvi
List of Tables XX
1 Introduction 1
1.1 Motivation 2

1.2 Problem statement 3
1.3 Thesisgoals L. 4
1.4 The proposed solution 6

1.5 Research methodology 7

1.6 Thesiscontext 8
1.7 Thesis structure 9

2 Background 11
2.1 Business Process Management 12
2.1.1 Business process modeling 13

2.1.2 Business process execution 17

2.1.3 Analysis and discussion 19

2.2 The Internet of Things 19

xii

CONTENTS

2.2.1 Technological support
2.2.2 Auto-ID frameworks
2.2.3 Languages for specification
2.2.4 Analysis and discussion
2.3 Mobile applications oo
2.3.1 The Android platform

2.4 Conclusions o

State of the art

3.1 Smart workflows
3.1.1 Analysis and discussion

3.2 Physical Mobile Interactions
3.2.1 Analysis and discussion

3.3 Mobile business processes
3.3.1 Analysis and discussion

3.4 Conclusions s

A design method for physical mobile workflows

4.1 Design method overview
4.1.1 Why a modeling approach?
4.1.2 Steps of the method
4.1.3 Guidance through the process

4.2 Capturing technology-independent requirements
4.2.1 The obtrusiveness concept
4.2.2 Physical interaction

4.3 Technological requirements
4.3.1 Technological analysis
4.3.2 Deployment configuration

4.4 Validating the design with users.

4.4.1 Requirements for the evaluation

CONTENTS xiii

4.4.2 Fast-prototyping for physical mobile workflows . 85

4.5 Tool support for the method 89
4.5.1 The Parkour metamodel 90
4.5.2 Model-based validation 96

4.6 Conclusionso 98

5 Automating the development 101

5.1 The architectural process 103

5.2 Elaboration of the architecture 106
5.2.1 Architecture requirements 106
5.2.2 Technology-independent architecture 107
5.2.3 Programming model 112
5.2.4 Technology mapping 117
5.2.5 Mock Platform 125
5.2.6 Vertical prototype 126

5.3 Automating the development process 129
5.3.1 Architecture metamodel 131
5.3.2 Using design concepts for development 133
5.3.3 Glue code generation 139

5.4 Conclusions 144

6 Adapting obtrusiveness at run-time 147

6.1 Adapting the obtrusiveness level 150
6.1.1 The obtrusiveness adaptation space 152
6.1.2 Defining context conditions 154
6.1.3 Defining transitions 156

6.2 Reconfiguring architecture components 159
6.2.1 Model-based reconfiguration 160
6.2.2 Reconfiguration policies specification 162

6.3 Development of reconfigurable components 164

Xiv CONTENTS
6.3.1 Develop alternative components 165

6.3.2 Connect sources of contextual information 166

6.3.3 Extend the infrastructure 168

6.3.4 Consider efficiency aspects 169

6.4 Conclusions oo 171

7 Validation of the proposal 173
7.1 Designing the smart workflow 175
7.1.1 User activities 175

7.1.2 Requirements for physical interaction 178

7.1.3 Technological analysis 183

7.1.4 Deployment configuration 185

7.2 Early-stage evaluation 187
7.2.1 Workflow re-design 191

7.3 Obtaining a final implementation 192
7.3.1 Tasksupport 193

7.3.2 Integrating identification technologies 194

7.3.3 Communication among systems 195

7.4 Experience applying the approach 196
74.1 Casestudies. 196

7.4.2 Benefits obtained L. 202

7.4.3 Limitations detected 205

7.5 Conclusions e 207

8 Concluding remarks 209
8.1 Contributions 210
8.2 Publications oo 210
8.2.1 Detail of the publications 211

8.2.2 Relevance of the publications 213

83 Futurework 216

CONTENTS XV
Bibliography 217
A Metamodels 233
A.1 Parkour metamodel 234
A.1.1 Constraints 237

A.1.2 Toolsupport 244

A.2 Presto metamodel, 246
A21 Constraints 249

A.22 Toolsupport 252

B Experimental results 255
B.1 Perceived usability of a mobile business service 256
B.1.1 Feedback from users 256

B.2 Fit for mobile working context 258
B.2.1 Feedback fromusers 258

B.3 Perceived impact on mobile work productivity 260
B.3.1 Feedback from users 261

B.4 Additional questions oL 261

XVi CONTENTS

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1

3.2

3.3
3.4

Research methodology followed in this thesis. 8
Application domains involved in this work. 12
Event types defined by BPMN. 14
Activity types defined by BPMN. 14
Gateway types defined by BPMN. 15
Connecting object types defined by BPMN. 16
Gateway types defined by BPMN. 16
Artifact types defined by BPMN. 17
RFID tag. o oo 24
Android architecture. 35
Application domains in this work and their intersecting

sub-domains. 41

Architecture proposed by Wieland for the support of
smart workflows (Wieland et al., 2008). 43

Personal workflow (PerFlow) editor (Urbanski et al., 2009). 44

Generic architecture of the Physical Mobile Interaction
Framework (Rukzio, 2007). 48

XViii

LIST OF FIGURES

3.5

4.1

4.2
4.3
4.4

4.5

4.6

4.7

4.8
4.9
4.10

4.11
4.12

4.13

4.14
4.15

5.1

5.2
5.3
5.4

Dialog model used by PUIP (Rukzio et al., 2005a). . . .

The stages proposed in the development of physical mo-
bile workflows.

The different tasks in the design method proposed. . . .
Design decisions across the different modeling layers. . .

Excerpt of the BPMN model for the book loan workflow
inalbrary. Lo

Framework for characterizing implicit interactions (Ju &
Leifer, 2008).

Tasks from a business model are associated to a region
of the obtrusiveness space.

An example of different mediums and specialization re-
lationships. Lo Lo

Auto-ID services involved in the Smart Library.

The different tasks in the development method proposed.

In-situ evaluation applying Wizard of Oz and HTML pro-
totypes. oo

HTML prototype.

Eclipse-based tools for editing and querying business pro-
cessmodels L Lo

BPMN metamodel used as a basis for the business pro-
cess diagram

Excerpt from the Parkour metamodel

Validation for the deployment unit constraint.

Strategy for covering the abstraction gap in the develop-
ment of physical mobile workflows.

Phases of the architectural process (Volter, 2005).
Architecture component overview.

Example of the role of identification components, data
providers and task processors.

63
66
68

73

75

76

78
83
86

86
89

92

93
94
99

102
105
108

LIST OF FIGURES Xix

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15

5.16

6.1

6.2

6.3

6.4
6.5

6.6

6.7
6.8

Different execution strategies depending on the operation

mode used. 113
A possible implementation for the dynamic to-do list

metaphor used in Presto. 115
Graphical notation used to represent components of the

Android application framework. 120
Implementation of the Task Manager and Controller Com-

ponent. 121
Implementation of the Presto pluggable components. . . 123
Graphical editor for Android-based applications. 125
Components for the Smart Library mobile clients. . . . 127
Book loan process supported by Presto. 129
Automated and manual steps in the model-driven process.130
Excerpt of the metamodel for Presto architecture. . . . 131
Mapping between the design concepts and the architec-

ture components 135
Glue code generation strategy. 140

Example scenario where the obtrusiveness level is ad-
justed gradually. 0oL 148

Example scenario where books are loaned and returned
by means of different technologies at different obtrusive-
nesslevels.. oo 153

OWL Ontology for Smart Environments. 155
Components for supporting model-based reconfiguration. 160

Reconfiguration state machine model (Gomaa & Hussein,

2007). o oo 161
Mapping between architecture components and obtru-

siveness aspects. 163
Smart Hotel architecture model. 167

Performance of the model handling operations. 170

XX LIST OF FIGURES
7.1 Business process mode for the book loan in the Smart

Library case study. 177

7.2 Book return mechanisms at the Denver Library. 178
7.3 Class diagram for the data model used in the Smart Li-

brary case study. 179
7.4 Obtrusiveness level defined for each task in the Smart

Library scenario. 180

7.5 Summarized results. 190

7.6 Relevance of the feedback obtained. 191

7.7 Smart toolbox prototype. 198

7.8 Incidence management prototype. 199

7.9 T-Guide prototype.o 201

7.10 Android-based BPMN editor. 207
A.1 A simplified subset of the Ecore model (Budinsky et al.,

2003) . . 233

A.2 Parkour metamodel 235

A.3 Presto metamodel 247
B.1 Results for the “perceived usability of a mobile business

service” dimension 256

B.2 Results for the “fit for mobile working context” dimension 258
B.3 Results for the “perceived impact on mobile work pro-

ductivity” dimension 260

B.4 Evaluating the realism of the system 262

B.5 Evaluating the acceptance for the services 263

List of Tables

3.1
3.2

3.3

4.1

7.1

8.1

Related work from the smart workflow perspective. . . . 46

Related work from the physical mobile interaction per-
spective. L 52

Related work from the mobile business process perspective. 57

Technologies, mediums and resources for the Smart Li-
brary scenario. Lo 81

Technology analysis for the Smart Library. 186

Summary of publications. 212

xxii LIST OF TABLES

CHAPTER 1

Introduction

nformation Systems have existed for a long time. Humans have faced

the need for recording and transmitting information long before the
invention of the computer. The introduction of Information Technolo-
gies creates a digital world where information can be automatically
processed, improving the Information System efficiency. However, com-
puters have a limited vision of the real-world they are managing. Thus,
there is still a challenge in automating the linkage between digital
and physical worlds.

Nowadays, Information Systems that deal with real-world objects
(such as baggage pieces in an airport or products in a supermarket) are
normally informed by humans. This use of humans as information car-
riers becomes inefficient and error-prone. The gap between the physical
and the digital world commonly results in mishandled luggage or long
queues at the supermarket.

The Internet of Things vision (Gershenfeld et al., 2004) is about
reducing this gap to make daily activities more fluent. By providing a
digital identity to real-world objects, Information Systems can handle

2 Introduction

them in an automatic way. This enables physical objects to participate
actively in business processes by reducing the gap between physical
and virtual worlds (Strassner & Schoch, 2002). In addition, the widely
availability of mobile devices with advanced capabilities allow users to
access the information and services where they need them.

This work deals with physical mobile workflows, which are busi-
ness processes that take advantage of the capabilities of mobile devices
for the identification of physical elements. The high heterogeneity in
identification technologies, the fragmentation in mobile platforms and
the fast-changing nature of business processes, make it hard to develop
this kind of systems in a sound manner. In this work, modeling tech-
niques are applied in order to face the development of such systems
from a higher abstraction level.

The rest of this chapter is organized as follows: Section 1.1 explains
the purpose of this work. Section 1.2 details the problem that the
present thesis resolves. Section 1.3 introduces the goals defined for this
work. Section 1.4 describes the approach followed in this thesis to fulfill
the detected goals. Section 1.5 introduces the research methodology
that has been followed in this work. Section 1.6 explains the context in
which the work of this thesis has been performed. Finally, Section 1.7
gives an overview of the structure of this document.

1.1 Motivation

The capabilities of mobile devices for the Automatic Identification of
real-world elements (Auto-ID) are becoming widespread. Some exam-
ples of these capabilities are the use of on-board cameras for decoding
visual markers or the use of Near Field Communication (NFC) technol-
ogy for reading RFID contactless tags. Auto-ID technologies alleviate
the inherent I/O limitations of mobile devices when dealing with user
tasks (Radi & Mayrhofer, 2008).

When leveraging the Auto-ID capabilities of mobile devices, daily
activities become more fluid for users. Information can be transferred
automatically between physical and digital spaces. Thus, people can

1.2 Problem statement 3

focus on their real world activities while the system, hidden in the
background, controls the business process in an unobtrusive way. For
example, customers in a supermarket can directly access meaningful
information, such as the presence in the product of ingredients likely
to cause an allergic reaction, friends’ opinions about the product, and
price comparisons with similar products just by taking a picture of its
barcode with their mobile devices. Then, they can exit the supermar-
ket with their cart and the checkout is performed as the products are
automatically detected at the exit door.

Integrating real-world objects in business processes has been demon-
strated successful, reducing media breaks, human errors and delayed
information problems (Strassner & Schoch, 2002). Many benefits are
obtained in economic (Langheinrich et al., 2002) and process improve-
ment terms (Fleisch, 2001; Sandner et al., 2005). A better integration
of real and virtual worlds not only improves business processes, but
also enables new business models (Fano & Gershman, 2002; Fleisch &
Tellkamp, 2003).

Facing the development of this kind of systems, however, is not
an easy task. Business processes are constantly changing, which in
turn requires the corresponding evolution in the supporting Informa-
tion System. In addition, systems in the Internet of Things context,
involve a great diversity of technologies to bridge physical and digital
worlds. This heterogeneity forces the developer to know the details of
each technology involved in the system, making these systems difficult
to develop. From the methodological perspective, there is a need for a
systematic development method that can free developers from techno-
logical details and allow a fast propagation of requirement changes to
technological solutions.

1.2 Problem statement

The development of applications for the Internet of Things is an emerg-
ing research topic. The above discussion indicates that some problems
still need to be considered. This work seeks to improve the development

4 Introduction

of business process-supporting applications in the context of the Inter-
net of Things. This challenge is faced from an engineering perspective
by considering design, evaluation and implementation stages. The chal-
lenges faced at each level can be stated by the following three research
questions:

Research question 1. How should the requirements for the integra-
tion of physical elements be captured in business process specifi-
cations?

Research question 2. How to simulate business processes that inte-
grate physical elements in order to validate the captured require-
ments in an early stage of the development?

Research question 3. How can business process specifications be sys-
tematically mapped to technological solutions that allow the pro-
cess behavior to fit the requirements?

These research questions are analyzed and answered in the following
sections.

1.3 Thesis goals

The main goal of this thesis is to define a development process for the
construction of business process-supporting applications that integrate
real-world elements. Since business process modeling techniques have
proven to be effective in reducing the development effort for business
process support systems (Smith & Fingar, 2003), we have applied them
to the particular domain of interest for this work.

First of all, regarding research question 1, one of the main goals
of this work is the study of the linkage between the physical and the
virtual space in business processes. Current business process modeling
techniques provide little support for specifying how physical elements
are integrated in a business process. This is due to the fact that most of
the time a human being is assumed to perform the identification tasks.

1.3 Thesis goals 5

With the use of Auto-ID technologies new interaction techniques are
possible between the physical and the digital world. For example, de-
signers can decide to provide information and services regarding nearby
products, the products the users are facing, or the ones in their hands.
In order to enable the specification of the way the physical-virtual link-
age is supported, it is required to define what to capture, and how to
do it. From a modeling perspective, there is a need for the clear def-
inition of the concepts to be captured and the modeling primitives for
capturing them.

Regarding research question 2, another goal of this work is to
determine whether a business process designed is appropriate or not
by avoiding to deal with technological details. Mechanisms must be
provided in order to obtain valuable feedback regarding the user expe-
rience and the process performance increase in an early stage of devel-
opment with minimal effort. Providing a great degree of automation
for business processes is not always the best option in terms of user
satisfaction (Tedre, 2008). For systems that are integrated in the user
environment it is also important to consider the user perception of the
services provided. Simulating the physical-virtual linkage in the real
world enables the application of iterative design for physical mobile
workflows, which provides frequent feedback about the potential of the
business process designs.

Regarding research question 3, one of the goals of the present
work is to minimize the error-proneness of this kind of developments.
In order to do so, a systematic method is defined to obtain a working
system from specifications by following a sequence of well-defined steps.
Systems in the business process area are usually built by composing
existing functionality based on workflow specifications. However, the
physical mobile workflows introduce new requirements such as the inte-
gration of physical elements and the dynamic management of the user
attentive resources (e.g., not disturbing the user when he/she is engaged
in a relevant task). This work provides support for validating the def-
inition of the physical-virtual linkage for a workflow and generating a
software solution for it.

6 Introduction

1.4 The proposed solution

Model Driven Engineering (MDE) (Schmidt, 2006) proposes the use of
models as the basis for system development. A model is a simplification
of a system, built with an intended goal in mind, that should be able
to answer questions in place of the actual system (Bézivin & Gerbé,
2001). The use of models (such as model of planes in a wind tunnel or
models of software systems) in engineering has a twofold benefit. On
the one hand, models guide the development of a system. On the
other hand, models allow to reason about the system avoiding to
deal with technical details.

Business Process Management (BPM) promotes a continuous re-
engineering cycle for business processes. For BPM to succeed it is re-
quired a seamless transition from process modeling, simulation and ex-
ecution. However, current BPM approaches are focused on the digital
world and do not take into account the particularities of the physical-
virtual linkage. This work pushes towards a development process based
on BPM which takes into account not only the digital world but also
the physical environment in which the process takes place. Specifically,
this development process provides the following contributions:

A design method has been defined in order to capture the activ-
ities that take place in the process and the physical elements involved.
The defined method enables designers to specify the way in which a
user can interact with the environment and to which degree the system
functionality must intrude the users mind.

An evaluation method is provided in order to simulate the in-
tegration of physical elements in business processes. This enables to
anticipate business process results without actually implementing the
supporting system. The method is fast to apply and it allows to re-
produce a level of user experience that is considered to be very close to
what users expect from a final system. The method allows to receive
relevant feedback in terms of user experience and process improvement,
which is essential to reconsider the designs prior to the development of
the final system.

1.5 Research methodology 7

A software architecture is defined in order to integrate the com-
ponents required for executing the business process. In order to provide
a low-coupled and model-based solution, we make use of business pro-
cess orchestration engines and reconfiguration engines. In this way, we
can define how the different services involved in the process are co-
ordinated (by means of an orchestration engine) and adapted to the
current business context (by means of a reconfiguration engine) using
executable models.

1.5 Research methodology

In order to perform the work of this thesis, we have carried out a research
project following the design methodology for performing research in in-
formation systems as described by (March & Smith, 1995) and (Vaish-
navi & Kuechler, 2004). Design research involves the analysis of the
use and performance of designed artifacts to understand, explain and,
very frequently, to improve on the behavior of aspects of Information
Systems (Vaishnavi & Kuechler, 2004).

The design cycle consists of 5 process steps: (1) awareness of the
problem, (2) suggestion, (3) development, (4) evaluation, and (5) con-
clusion. The design cycle is an iterative process; knowledge produced
in the process by constructing and evaluating new artifacts is used as
input for a better awareness of the problem. Following the cycle defined
in the design research methodology, we started with the awareness of
the problem (see Fig. 1.1): we identified the problem to be resolved and
we stated it clearly.

Next, we performed the second step which is comprised of the sug-
gestion of a solution to the problem, and comparing the improvements
that this solution introduces with already existing solutions. To do this,
the most relevant approaches were studied in detail. Once the solution
to the problem was described, we plan to develop and validate it (steps
3 and 4). These two steps are performed in several phases (see Fig. 1.1).
The tasks carried out in these steps were intended to characterize phys-
ical mobile workflows, define techniques for their design, simulation and

8 Introduction

Step 1 Step 2 Step 3 and 4 Step 5

Problem Solution State of the Charac_terlzatlo_n Simulation Tool support .
X . of physical mobile technique N > Conclusions
awareness suggestion : art review workflows q for automation

Architecture
for execution

4

Figure 1.1: Research methodology followed in this thesis.

execution providing tool support for each.

Finally, we will analyze the results of our research work in order
to obtain several conclusions as well as to delimitate areas for further
research (step 5).

1.6 Thesis context

This Thesis is being developed in the context of the research center
Centro de Investigacion en Métodos de Produccion de Software of the
Universidad Politécnica de Valencia. The work that has made the devel-
opment of this thesis possible is in the context of the following research
government projects:

e DESTINO: Desarrollo de e-Servicios para la nueva sociedad digi-
tal. CYCIT project referenced as TIN2004-03534.

e SESAMO: Construccién de Servicios Software a partir de Mode-
los. CYCIT project referenced as TIN2007-62894.

e OSAMI Commons: Open Source Ambient Intelligence Commons.
ITEA 2 project referenced as TSI-020400-2008-114.

e Atenea: Arquitectura, Middleware y Herramientas. ProFIT project
referenced as FIT-340503-2006-5.

1.7 Thesis structure 9

e “Internet de las Cosas como soporte a Procesos de Negocio”. Primeros
proyectos de Investigacién de la UPV, referenced as PAID-06-09
number 2920.

1.7 Thesis structure

The approach followed in this work follows the BPM principles. The
work has been structured to reflect this process. First, Chapter 2 gives
an overview of some relevant concepts related to Business Process Man-
agement, Automatic Identification technologies, and mobile platforms
in which this work relies. Chapter 3 compares this work with simi-
lar approaches in the area. Chapter 4 defines the design method that
is followed in our approach to capture the requirements for physical
mobile workflows. In BPM terms, this involves to provide support to
the modeling and simulation stages of the development. Chapter 5 de-
fines an architecture that supports physical mobile workflow execution
and makes the architecture usable at modeling level. In order to do
so, the architecture is formalized in a metamodel and model transfor-
mation techniques are used to automate the development based on this
architecture. Chapter 6 extends the architecture capabilities in order to
handle models at run-time for providing physical mobile workflows with
a greater degree of adaptation. Chapter 7 details how the proposal has
been validated. Finally, Chapter 8 summarizes the contributions and
provides some insights about further work. Two appendices have been
included to provide more detail on the specification of the modeling lan-
guages defined (Appendix A) and the experimentation results obtained
by the application of our approach (Appendix B).

10

Introduction

CHAPTER 2

Background

his work deals with systems that take advantage of the Auto-ID

capabilities of mobile devices in order to improve the business pro-
cesses in an organization. This is what we call physical mobile work-
flows. In order to define this specific domain, it has been situated with
respect to different research areas that have some aspects in common.
As it is shown in Fig. 2.1, physical mobile workflows are part of three
disciplines: Business Process Management, the Internet of Things, and
Mobile Applications.

This work relies on different concepts and technologies from these
areas. In order to clarify the foundations in which our approach relies,
different technologies and techniques are introduced in this chapter.
The remainder of the chapter is structured as follows. Section 2.1 in-
troduces concepts to support the modeling and execution of business
processes. Section 2.2 provides an overview of the technologies and
techniques that enable the construction of systems for the Internet of
Things. Section 2.3 provides an overview of the impact of mobility in
the development of a system and mobile platforms for coping with these

12 Background

Physical
mobile
workflows

X7 .
i ppplic®

Figure 2.1: Application domains involved in this work.

requirements. Finally, Section 2.4 concludes the chapter.

2.1 Business Process Management

Business Process Management (BPM) is a set of techniques and tech-
nologies that enables a company to build executable processes that span
across multiple organizations or systems, usually through visual work-
flow steps (Davis, 2009). Different initiatives have emerged for support-
ing BPM such as Business Process Modeling Notation (BPMN) (OMG,
2006) and Web Services Business Process Execution Language (WS-
BPEL) (Alves et al., 2007). BPM techniques have proven to be ef-
fective in reducing the development effort for business process support
systems (Smith & Fingar, 2003).

2.1 Business Process Management 13

2.1.1 Business process modeling

Different notations are used for the modeling of business processes such
as UML Activity diagrams (Dumas & ter Hofstede, 2001), IDEF (Mayer
et al., 1992), ebXML BPSS (Hofreiter et al., 2002) or Business Process
Modeling Notation (BPMN) (OMG, 2006). The common characteristics
of this notations is their capability for modeling the sequence of activi-
ties, the participants involved in the process and the data or messages
interchanged between them.

The BPMN standard was developed by the BPMI (Business Pro-
cess Management Initiative) to provide a notation that could be easily
understood by all business stakeholders. The specification was adopted
by the Object Management Group (OMG) as the standard notation for
the modeling of business processes.

In order to provide an overview of the expressivity obtained by busi-
ness process modeling notations in general and BPMN in particular, the
most relevant building blocks included in BPMN are described below.
This set of elements is organized in four categories which are Flow Ob-
jects, Connecting Objects, Swimlanes and Artifacts:

Flow objects

These elements constitute the main graphical elements to define the
behavior of a Business Process. These refer to:

Events. An event is something that “happens” during the course of a
business process. These events affect the flow of the process and
usually have a cause (trigger) or an impact (result). Events are
depicted as circles with open centre to allow internal markers to
differentiate different triggers or results. There are three types of
events, based on when they affect the flow: Start, Intermediate,
and End. Figure 2.2 shows the complete set of events defined by
the notation.

Activities. An activity is a generic term for work performed within
a business process. An activity can be atomic or non-atomic

14 Background

@
S &L
NP

StartO ®®
memedte ()
«O00 000 O®E@

Figure 2.2: Event types defined by BPMN.

L) L) L

Task (atomic) Process/Sub-Process Activity looping Multiple instances
Collapsed

%
"%
(//"‘F
%,
0

Figure 2.3: Activity types defined by BPMN.

(compound). The types of activities considered are: Process, Sub-
Process, and Task. Only Tasks and Sub-Processes define a specific
graphical object (a rounded rectangle). On the contrary, Processes
are built as a set of activities and the controls that sequence them.
In addition, Tasks and Sub-Processes include a set of attributes
which determine if these activities are repeated or performed just
once. This repetition can be performed either sequentially (loop
marker) or in parallel (parallel marker). Figure 2.3 depicts the
different types of activities and the markers available to specify
when the activity can be repeated and how.

Gateways. A Gateway is used to control the divergence and conver-
gence of Sequence Flows. Thus, it will determine branching, fork-

2.1 Business Process Management 15

Exclusive (XOR) Inclusive (OR) Activity Paralell
Data-based Event-based

O ® O % P

Figure 2.4: Gateway types defined by BPMN.

ing, merging, and joining of paths. Internal markers will indicate
the type of behavior control. Figure 2.4 depicts the different types
of gateways provided by the notation.

Connecting objects

These elements allow connecting Flow objects or other information. The
connecting objects defined by the notation are:

Sequence Flow. It is used to show the order in which activities will
be performed in a process. This type of connecting object can in
turn be specialized in Normal, Conditional and Default Flow.

Message Flow. It is used to show the flow of messages between two
participants that are prepared to send and receive between them.
In BPMN, two separate Pools in the diagram represent two dif-
ferent participants (e.g., business entities or business roles).

Association. An Association is used to associate information with
Flow Objects. Text and graphical non-Flow Objects (i.e. data
objects) can be associated with Flow Objects.

Figure 2.5 depicts the different connecting objects defined by the
BPMN notation.

16 Background

Normal Flow Conditional Flow Default Flow Message Flow Association

Figure 2.5: Connecting object types defined by BPMN.

Pool Lanes

Lane

Poo
Poo

Lane

Figure 2.6: Gateway types defined by BPMN.

Swimlanes

These elements allow grouping Flow objects based on a particular cri-
terion. This category includes two types of elements (see Fig 2.6) which
are:

Pools: represent a participant in a process. Normally it represents an
organization and its different parts are represented by lanes in the
pool.

Lanes: are used to organize and categorize activities. This is achieved
by partitioning the Pool in different lanes.

Artifacts

The elements included within this type are introduced into business
process models to improve their understanding (see Fig. 2.7). Within

2.1 Business Process Management 17

Group Data Object Text Annotation

Eescription

Figure 2.7: Artifact types defined by BPMN.

this category we find:

Data Object. This element provides information about activity re-
quirements and results.

Group. The grouping can be used for documentation or analysis pur-
poses. Groups can also be used to identify the activities of a
distributed transaction that is shown across Pools.

Annotation: Text Annotations are the mechanism provided to model-
ers to introduce additional information for the reader of a BPMN
diagram.

In addition to these four categories, the BPMN notation handles
advanced modeling concepts such as exception handling, transactions
and compensation.

2.1.2 Business process execution

Business process modeling becomes quite useful for capturing require-
ments, but in order to have a successful BPM, executable definitions
of the process are needed. Many Information Systems supporting busi-
ness processes contain the business process logic scattered through the
system. This results in monolithic applications that become difficult
to maintain and evolve. With an executable definition of the business

18 Background

process, the knowledge about the process is centralized and the pro-
cess can be updated easily resulting in the immediate update of the
corresponding Information System.

Different languages appeared to allow the definition of executable
business processes such as XML Process Definition Language (XPDL),
Yet Another Workflow Language (YAWL) or Web Service Business Pro-
cess Execution Language (WS-BPEL) (Alves et al., 2007).

WS-BPEL is one of the most widespread languages in the business
process execution area. WS-BPEL is an XML-based language for Web
Services orchestration. It provides constructs for the coordinated invo-
cation of different Web Services. Many solutions exist, both commercial
and open source, to provide execution support for this standard. Mi-
crosoft BizTalk, Oracle BPEL, Intalio BPMS, ActiveBPEL or Apache
ODE are some of the business process execution engines with support
for WS-BPEL.

WS-BPEL covers different aspects required for process execution.
It includes a property-based message correlation mechanism, XML and
WSDL typed variables, an extensible language plug-in model to allow
writing expressions and queries in multiple languages (XPath is sup-
ported by default) and structured-programming constructs including
if-then-elseif-else, while, sequence (to enable executing commands in
order) and flow (to enable executing commands in parallel).

WS-BPEL processes interact with external web services in two ways:
(1) invoking operations on other web services, and (2) receiving invoca-
tions from clients (either the client that initiated the process or an ex-
ternal system involved in an asynchronous communication). WS-BPEL
defines the relationship with external entities using the Partner Link
concept. The Partner Link has a name, a type (that defines the roles
required for communication) and indicates which of the roles it plays.
In this way, the functionality required by each party is exposed by the
process engine to allow callback invocations.

Another interesting aspect of WS-BPEL is that there exist map-
pings (OMG, 2006; Ouyang et al., 2006; Recker & Mendling, 2006)
that cover the gap between modeling notations such as BPMN and

2.2 The Internet of Things 19

WS-BPEL. Although there is not a direct equivalence between both
notations (Recker & Mendling, 2006), model transformations were de-
fined to bridge them (Giner et al., 2007a) for a representative subset of
their elements. Thus, business processes modeled with BPMN can be
translated automatically to an executable WS-BPEL definition.

2.1.3 Analysis and discussion

Business process management area has gained momentum from both
academy an industry. Different kinds of solutions exist, from high level
modeling notations to technological solutions that implement them.
However, business process management is mainly constrained to the
digital world. When facing the integration of physical elements it is
done at technological level. For example, using WS-BPEL any system
accessible by means of Web Services can be integrated. However, deal-
ing with Auto-ID particularities in the process implementation makes
the process description difficult to maintain.

The extension of business process modeling notations to integrate
physical elements is faced in this work. In this way, identification re-
quirements are faced from a specification perspective. This work ex-
tends BPMN since it has become one of the most accepted modeling
notations for business processes and the existing WS-BPEL mappings
allow to turn specifications in executable systems easily. In this way,
physical objects can be modeled and enter the BPM cycle from the
beginning.

The possibility of defining business process that integrate seamlessly
real-world elements can make analysts to consider the use of Auto-1D
in the systems they specify, favoring the implantation of the Internet of
Things.

2.2 The Internet of Things

New trends in computation are emerging with the goal of integrating
computing services seamlessly in the environment and offering a “nat-

20 Background

ural interaction” to users. Ubiquitous Computing (Ubicomp) (Weiser,
1991), Pervasive Computing (PerCom) (Hansmann et al., 2001), Am-
bient Intelligence (Aml) (Aarts et al., 2002) or Everyware (Greenfield,
2006) are some of the paradigms that share this goal.

The scenarios envisioned by these initiatives often demand a com-
bination of advanced technologies such as sensor-networks, wearable
computers, speech and gesture recognition or machine reasoning capa-
bilities to make the environment behave intelligently. Far from the idea
of making objects competing in intelligence with humans, the Internet
of Things vision faces the integration of real and virtual worlds following
a more practical approach.

The Internet of Things approach proposes augmenting real-world
elements with a digital identity to achieve this integration. This is
not much demanding for physical elements. Real-world elements are not
required to be augmented with complex computing capabilities but just
labeled with a unique identifier to make them computer-aware. With
a digital identity, the services that Information Systems offer can reach
the physical world. This idea was well illustrated by Bruce Sterling in
his talk at The Emerging Technology Conference in 2006:

“We are not talking about a smart object that is ubig-
uitously computing. But the everyday object, the dumb-
est, cheapest, most obvious thing we can buy or use. Ex-
cept it has a unique digital identity, so it becomes trackable,
sortable, rankable, and findable in space and time.”

Advances in Automatic Identification (Auto-ID) technologies have
helped to start moving the Internet of Things vision into reality. Auto-
ID enables real-world objects to be taken automatically in considera-
tion by a software system, making objects not human-dependent any-
more (Romer et al., 2004). Thanks to Auto-ID, people, places and
things can be identified in a myriad of different ways. Radio Frequency
Identifications (RFID), Smartcards, barcodes, magnetic strips, and con-
tact memory buttons to name a few, are some Auto-ID enabler tech-
nologies with a different degree of automation (Want et al., 1999).

2.2 The Internet of Things 21

Automatically identifiable objects receive different names such as
Spimes (objects that are trackable in space and time), Blogjects (objects
that blog), UFOs (Ubiquitous Findable Objects) or EKOs (Evocative
Knowledge Objects). This heterogeneity in terminology shows that the
Internet of Things is still under construction and the discussions about
what the Internet of Things exactly is, are not finished yet.

From the different emerging applications for the Internet of Things,
the present work is particularly interested in the integration of real-
world objects in business processes. The Internet of Things paradigm
can provide numerous benefits in this field, leading to interesting chal-
lenges and opportunities in different business areas (Romer et al., 2004)
such as source verification, counterfeit protection, one-to-one market-
ing, maintenance and repair, theft and shrinkage, recall actions, safety
and liability, disposal and recycling as well as mass customizing.

There is an increasing interest in the Internet of Things technologies
from academia and industry. Many prototypes have been developed to
experiment its benefits in contexts as grocery retail (Roussos et al.,
2002), aircraft maintenance (Lampe et al., 2004), air pollution moni-
toring (Kanjo et al., 2009) and home appliance orchestration (Urbanski
et al., 2009). Some developments are also carried by different compa-
nies to improve their processes (Strassner & Schoch, 2002). Auto-ID
is used at Ford to speed up replenishment of parts in its production
process. The British retailer Sainsbury uses Auto-ID technologies to
track chilled food products from receiving, through distribution, to the
store shelf. Infineon uses Auto-ID for Cool Chain Management in order
to control the temperature during the transport of chemical products.

The increase in the maturity level of the Internet of Things can
be shown in the presence of Auto-ID in many real in-production sys-
tems (Federal Trade Commission, 2005; Weinstein, 2005). Auto-ID is
present in car keys, employee cards and event tickets to control the ac-
cess. SpeedPass for purchasing gas and goods at Fxxon Mobile shops or
the transport cards for the London and Hong Kong transport system
are some examples based on Auto-ID technologies. Some organizations
such as US Department of Defense and Wal-Mart require its suppliers
the use of the most advanced Auto-ID technologies.

22 Background

The current technological support for applications in the context of
the Internet of Things, and the available frameworks and languages that
allow the development for these technologies, are presented below.

2.2.1 Technological support

Auto-ID is the core technology for the Internet of Things. Many existing
technologies permit to attach a digital identity to an object. However,
there are six main forms of automatic identifications in use today (Ja-
mali et al., 2007):

Barcodes. Barcodes use an optical machine-readable representation
for identifiers. Their use requires a direct line of sight between
readers and tags, demanding user intervention in many cases. De-
spite their limitations, this is the dominant Auto-ID technology in
the retailer industry. Traditional barcodes (i.e., linear barcodes)
use parallel lines and the width between them to represent data.
There are many different bar code languages. Each language has
its own rules for encoding characters (e.g., letter, number, punctu-
ation), printing, decoding requirements, and error checking. Uni-
versal Product Code (UPC) and European Article Number (EAN)
are some of the numbering schemata used to express identifiers
when linear barcodes are used.

More recently, bi-dimensional barcodes appeared. These technolo-
gies encode information in a two-dimensional image. Images can
be made from a matrix of black and white squares (e.g.: DataMa-
triz, Aztec Code, QR Code, etc.) or by any other symbology (such
it is the case of fiducials (Bencina & Kaltenbrunner, 2005)). Bi-
dimensional barcodes are a practical solution for Auto-ID since
they are cheap to produce and camera phones can easily read
them.

Contact memory buttons. This consists in a coin-shaped stainless
steel container that encapsulates a memory. This memory can be
accessed when it is in contact with a touch probe (that can act

2.2 The Internet of Things 23

as a reader and writer for the memory). Since this technology
requires direct contact, it has been applied in the access control
field as a digital key. When disconnected from a host controller
the data stored can be retained for over 100 years. Memory in
these buttons is passive, containing no battery or internal power
source to retain data.

Magnetic Strips. A band of magnetic material on a card is used to
store data. By modifying the magnetism of the iron-based mag-
netic particles that form the band, data can be recorded. The
most common use of this technology is for financial cards.

Optical Strips. A panel of laser sensitive material is laminated in a
card and is used to store the information in a similar way as it
is stored in optical discs such as CD ROMs or DVDs. Since the
material is altered by a laser when it is written, the media can be
only written once and the data is non volatile. ISO/IEC 11693
and 11694 standards cover the encoding details.

Radio Frequency Identifications (RFID). RFID consists in the trans-
mission of the identity of an object wirelessly, using radio waves.
An RFID tag consists of a microchip and an antenna (see Fig. 2.8).
Since there is no need for line of sight or contact between tags and
readers, this technology provides a high level of automation.

RFID tags fall into two general categories, active and passive,
depending on their source of electrical power. Active RFID tags
contain their own power source, usually an on-board battery. Pas-
sive tags obtain power from the signal of an external reader and
they simply reflect the energy back. In addition, RFID tags can
incorporate read/write memory. Electronic Product Code (EPC)
is the numbering scheme defined for encoding identifiers in RFID
tags.

The reading distance for RFID varies from a maximum of few me-
ters for passive RFID and hundreds of meters for active RFID. In
addition to reaching long distances, there is also interest in short
distance reading. RFID based technologies such as Near Field

24 Background

Figure 2.8: RFID tag.

Communication (NFC) provide a 10 centimeter distance commu-
nication to ensure the communication is made explicit by the user.

Smartcards. These cards include embedded integrated circuits which
can process information. Several types exist. Memory cards con-
tain only non-volatile memory storage components, and perhaps
some specific security logic. Microprocessor cards contain volatile
memory and microprocessor components. Contactless smartcards
rely on technologies such as NFC to avoid the inconvenience of
requiring direct contact between readers and cards but restricting
the communication to a certain distance for security reasons.

Despite of the diffusion of the above technologies, text-based iden-
tification is still common nowadays. This consists in writing (or print-
ing) the natural name or part number of an object as simple text.
Human intervention is required for reading tags resulting in an inef-
ficient process. However, this mechanism cannot be overlooked as a
complementary technology for the above ones. In this way an alter-
native human-readable identifier is used as backup in case the main
Auto-ID technology fails.

2.2 The Internet of Things 25

2.2.2 Auto-ID frameworks

Deploying an Auto-ID-enabled system involves a lot more than purchas-
ing the right tags and installing the right readers. To get business value
from all of the information collected, companies will need middleware to
filter the data. They may need to upgrade enterprise applications and
integrate them with Auto-ID middleware. However, the connections to
existing software infrastructure results in a mismatch of capabilities and
requirements (Sarma, 2004).

The need for defining architectures that support Auto-ID has lead
to the development of frameworks and middleware to abstract from the
filtering and aggregation tasks needed when tags are processed.

Some middleware is technology-specific such as it is the case of
RFID. The EPC Network standard published by EPCglobal (the pre-
dominant RFID standardization body) defines a number of functional
roles that an RFID middleware must provide as well as the interfaces
that must be implemented around these roles. This include the reader,
the filtering and collecting middleware, and the EPC information ser-
vice (EPCIS). Accada (Floerkemeier et al., 2007) (later renamed to
Fosstrak) an open source implementation of the EPC network standard
was developed by the Auto-ID labs. Other RFID-specific solutions such
as SAP’s Auto-ID infrastructure (Bornhovd et al., 2004), Siemens RFID
Middleware Architecture (Wang & Liu, 2005) or Sun RFID also provide
solutions to integrate different RFID readers with Information Systems.

The present work however is interested in the integration of physical
elements from a technological independent perspective. In order to
achieve this, several initiatives emerged to offer middleware to support
Auto-ID in a technology independent fashion. A representation of these
proposals are described below.

Web presence. This work (Kindberg et al., 2002) is defined to pro-
vide web presence for people, places, and things. The identifier
resolution mechanism presented is inspired in the Web not only as
a technological foundation but it also adapts metaphors from the
Web to the physical world such as the hyperlink concept. Iden-

26

Background

tifier resolution is presented as a way to link the physical world
with virtual Web resources. In this paradigm, designed to support
nomadic users, the user employs a handheld, wirelessly connected,
sensor-equipped device to read identifiers associated with physical
entities. The identifiers are resolved into virtual resources or ac-
tions related to the physical entities (as though the user “clicked
on a physical hyperlink”).

Physical entities are divided in three categories: people, places
and things. Entities are bound to a resource that has an URL
and it is accessible by the standard HTTP protocol. Two modes
of web presence are considered: (1) internal support (for devices
whose internal state is readable and/or settable via HTTP oper-
ations) and (2) external support (for non-electronic entities that
cannot have an embedded web server). URLs for elements can
be discovered using broadcast, sensed directly, or provided by an-
other system.

Open lookup infrastructure. This work (Roduner & Langheinrich,

2007) presents an architecture for the publication and discovery of
resources (information and services) associated with physical ele-
ments. It is based on the idea of physical objects having a unique
identity, and different users extending them with associated ser-
vices in an open manner. A lookup service to locate services that
can scale to large networks such as Internet is defined.

The architecture for the lookup service is based on the following
concepts: resources and their descriptions, resource repositories, a
manufacturer resolver service, and search services. Resources offer
information on, or services for, a physical product. Resources can
be provided by the original product manufacturer or any other
party.

Resource descriptions include a unique identifier, a list of the phys-
ical elements this resource is associated with (referenced by their
tag identifiers), the profile they follow (an agreed syntax and se-
mantics to which the resource adheres), the URL to the actual
resource, and some context (time, location, status, etc.) and de-

2.2 The Internet of Things 27

scriptive (title and description) information.

Resource descriptions are stored at the resource repositories. The
manufacturer resolver service (based on the Object Naming Ser-
vice (ONS) defined by the EPCglobal Network) is used to find
the resource repository that contains the information about an
element given its tag identifier. A search service is also provided
to locate resources based on queries. Search services crawl all reg-
istered resource repositories and create an index in a similar way
as search engines do with the Web.

Event-based framework for smart identification. An event-based
architecture for Auto-ID applications is defined in this work (Romer
et al., 2004). Identification is based on enter and leave events.
Physical elements are associated with a wvirtual counterpart (a
representation of a physical element in the digital world). Vir-
tual counterparts are classified according to which kind of element
(objects or locations) are associated to, and their cardinality (a
single element or a set of elements). The presented architecture
stresses the relevance of locations (either geographic or symbolic),
considering relationship of neighborhood (elements that are close
to a location), containment and hierarchical organization. Time
dimension is also considered and a query interface is defined to
obtain information about the history of detections.

A virtual counterpart repository is defined to make virtual coun-
terparts accessible. The architecture is defined in a technological-
independent fashion. Different implementations of the architec-
ture have been developed, using Jini and Web Services.

A service oriented smart items infrastructure. An architecture to
support real-world objects with computing capabilities is used to
decentralize business processes in this work (Spiefl et al., 2007).
This distributed schema is intended to increase scalability, data
accuracy and response time.

The architecture is service based and it is structured in the follow-
ing layers: device layer, device level service layer, business process

28 Background

bridging layer, system connectivity layer, and enterprise applica-
tion layer.

The device layer comprises the actual smart item devices (sensors
and Auto-ID devices) and the communication between them. The
device level service layer manages the deployable services used by
the device layer. It contains a service repository that for each
service stores a service description (service description provides
metadata like name, identifier for the service, version, vendor,
etc.) and one or more service executables (since a service may
be deployable on different platforms, an atomic service may have
more than one service executable).

The business process bridging layer has two major functions: (1)
to aggregate and transform data from the devices to business-
relevant information, thereby reducing the amount of data being
sent to the enterprise application systems, and (2) to execute busi-
ness logic for different enterprise application systems. The system
connectivity layer provides system and data integration by rout-
ing messages and data to the correct back-end systems. Finally,
the enterprise application layer consists of traditional enterprise
IT systems responsible for controlling and managing enterprise
business applications.

EMTI%lets. EMI? (de Ipifia et al., 2005) is a reflective middleware for
controlling smart objects from mobile devices. EMI? defines a
multi-agent software architecture that provides discovery, inter-
action, presentation and persistency abstractions. In particular,
three main types of agents are considered in the architecture:
EMZP Proxy to represent the user, EMI? Object to represent phys-
ical elements and devices, and EMI? BehaviourRepository to sup-
port adaptation of EMP Objects according to the user preferences.
These components of the architecture can be dynamically incor-
porated by means of plug-ins.

Services are provided in the EMI? platform by means of EMI?lets
(Environment to Mobile Intelligent Interaction applets). An EMI?let
is downloaded from the EMI? Object into the user device (EMI? Proxy)

2.2 The Internet of Things 29

and offers a user interface to interact with the service associated
with a physical element. Physical elements supporting a digital
service are tagged. These tags point to a resource in a EMPlet
server.

Defining Auto-ID architectures that are independent from the used
technology supposes a conceptualization effort. In this line is worth not-
ing the definition of data models for the data handled by Auto-ID infras-
tructures (specially RFID systems). This is the case of Physical Markup
Language (PML) (Brock, 2001). PML is an XML-based language used
for the description of physical elements including its hierarchy, classi-
fication and categorization, description and ascribed information (e.g.,
name, ownership or cost). Wang proposed a data model (Wang & Liu,
2005) based on the Entity-Relationship paradigm considering temporal
aspects.

2.2.3 Languages for specification

The specification of systems can be improved by using a language based
on concepts that are close to their application domain. Different lan-
guages (graphical and textual) have been defined to support several of
the aspects involved in the application domain this work deals with,
such as the definition of pervasive services, context information or poli-
cies. A representation of such languages is provided below.

VRDK. The Visual Robot Development Kit (VRDK) (Heil et al.,
2006) is a graphical tool that enables users to script their Aml
environment. The user can create scripts either via drag&drop or
by handwriting commands directly on the screen. Its target audi-
ence are technical interested users who do not necessarily master a
general purpose programming language. A VRDK script consists
of a set of processes and a set of hardware. The tool builds on the
following concepts: components, events, commands, mathemati-
cal expressions, workflows and context.

The code generator transforms the script into executable code
(currently C# and C are supported) and automatically deploys it

30 Background

on the participating devices: the application runs distributed in
the environment of the user.

PervML. Pervasive Modeling Language (PervML) (Mutioz & Pelechano,
2005) is a domain specific language for the development of per-
vasive systems. PervML provides a a set of conceptual primitives
that allow the description of the system independently of the tech-
nology. PervML covers the full development process of a perva-
sive system by defining a development method and providing the
needed tools to support it.

PervML promotes the separation of roles where developers can
be categorized as system analysts and system architects. Systems
analysts capture system requirements and describe the pervasive
system at a high level of abstraction using the service metaphor
as the main conceptual primitive. Analysts build three graphical
models: (1) The Services Model describes the kinds of services
(by means of their interfaces, their relationships, their triggers
and a State Transition Diagram for specifying the behavior of
each service); (2) The Structural Model describes the components
that are going to provide the defined services; (3) The Interaction
Model describes how these components interact to each other.

System architects specify what devices and/or existing software
systems support system services. Binding Providers (elements
that are responsible of binding the software system with its physi-
cal and logical environment) become the basic building blocks for
PervML systems. Architects build three models: (1) The Binding
Provider Model specifies every kind of binding provider (their in-
terfaces and their relationships); (2) The Component Structural
Model specifies which binding providers are used by each sys-
tem component; (3) The Functional Model specifies which actions
should be executed when a component operation is invoked.

The use of precise models to capture the requirements of a Per-
vasive System, allows the automatic generation of code. PervGT
is a tool to support PervML method, enabling the definition of
diagrams and supporting the code generation. Generated systems

2.2 The Internet of Things 31

rely on the OSGi platform.

Context Modeling Language. In order to assist designers with the
task of exploring and specifying the context requirements of a
context-aware application, the Context Modeling Language (CML) (Hen-
ricksen & Indulska, 2005) is defined. CML provides a graphical no-
tation for describing types of information (in terms of fact types),
their classification (sensed, static, profiled or derived), relevant
quality meta-data, and dependencies between different types of
information. CML also allows fact types to be annotated to indi-
cate whether ambiguous information is permitted (e.g., multiple
alternative location readings), and whether historical information
is retained. Finally, it supports a variety of constrains, both gen-
eral (such as cardinality relationships) and special purpose (such
as snapshot and lifetime constraints on historical fact types).

A software infrastructure is also proposed, which is organized in
loosely coupled layers. The context gathering layer acquires con-
text information from sensors and processes this information to
bridge the gap between raw sensor output and the level of ab-
straction required by the context management system. The con-
text reception layer provides a bi-directional mapping between the
context gathering and management layers. The context manage-
ment layer is responsible for maintaining a set of context models
and their instantiations. The adaptation layer manages common
repositories of situation, preference and trigger definitions and
evaluates these on behalf of applications.

Finally, a software engineering methodology is briefly described.
This methodology is organized in the following tasks: analysis,
design, implementation, infrastructure customization and testing.

Rei. Rei (Kagal et al., 2003) is a Policy Language for a pervasive com-
puting environment. Rei is based on deontic concepts and includes
constructs for rights, prohibitions, obligations and dispensations
(deferred obligations). The policy language is not tied to any
specific application and permits domain specific information to
be added without modification. Rei is based on the believe that

32 Background

most policies can be expressed as what an entity such as users
agents or services, can/cannot and should/should not do in terms
of actions, services, conversations etc. Rei is implemented in Pro-
log, a logic programming language. The Re: policy language in-
cludes certain domain independent ontologies and accepts domain
dependent ontologies. The former includes concepts for permis-
sions, obligations, actions, speech, acts, etc. The later is a set
of ontologies, shared by the entities in the system, which define
domain classes (e.g., person, file, readBook) and properties asso-
ciated with the classes (e.g., age, num-pages, email). Rei includes
three types of constructs: (1) policy objects to represent rights,
obligations, prohibitions and dispensations; (2) meta-policy for
conflict resolution; and (3) speech acts to modify policies dynam-
ically (delegate, revoke, cancel and request). Associated with the
policy language is the policy engine that interprets and reasons
about user rights and obligations from what is specified in policies.

2.2.4 Analysis and discussion

Several conclusions arise from the analysis of the Internet of Things
carried in terms of technologies, frameworks and languages.

Several technologies exist to support Auto-ID offering different
properties. Depending on the targeted application, a particular tech-
nology should be considered. There is not a one-size-fits-all solution
in identification technologies. For industrial applications RFID pro-
vides an optimal degree of automation. However, for casual users bi-
dimensional barcodes result attractive because of the easy way in which
they can be produced and processed.

Regarding frameworks, the frameworks introduced provide generic
capabilities for integrating physical and virtual worlds but they do not
provide explicit support to the specific requirements for business pro-
cesses support. An analysis of frameworks that are closer to our domain
of interest is provided in Chapter 3.

Regarding languages, there is no specific language for modeling the
particular requirements of the physical-virtual linkage in terms of identi-

2.3 Mobile applications 33

fication requirements. No integration with business process is provided
by the considered languages. VRDK is the only language to consider
a notion of workflow, however, the notation used to define this is quite
basic (since end-users are the target audience) lacking the expressivity
of a business process modeling language. Context description languages
such as Context modeling language have no specific constructs for
identification, being identifiers considered as sensed information.

The conclusion is that support for Auto-ID is mainly provided at
technological level. Frameworks are starting to abstract the technologi-
cal heterogeneity but still lacking business process integration. There is
a completely lack for specification languages that can cover the physical-
virtual gap for business processes.

2.3 Mobile applications

The use of mobile devices is widespread nowadays. With the advanced
capabilities of mobile devices such as connectivity, positioning systems,
sensors, and advanced interaction mechanisms, new valuable services
can be provided. Mobile devices are considered the first pervasively
available computer and interaction device.

Mobility emphasizes several concerns (space, time, personality, so-
ciety, environment, and so on) often not considered by the traditional
desktop systems (Krogstie et al., 2004). In addition, many limitations
in terms of computing capabilities, screen size and so on, must be con-
sidered when systems are designed for being accessed through a mobile
device. Mobile information systems users are characterized by frequent
changes in the context (Siau, 2003). In particular, this work is inter-
ested in environment context (entities that surround the user) and task
context (what the user is doing).

Software development facilities must be provided for leveraging the
great capabilities of mobile devices. The development of application for
mobile devices has not been an easy task. Mobile operating systems
have been mainly closed to developers. While a few have opened up
to the point where they will allow some Java-based applications to run

34 Background

within a small environment on the phone, many do not allow this (Di-
Marzio, 2008). Even the systems that do allow some Java apps to run do
not allow the kind of access to the “core” system that standard desktop
developers are accustomed to having.

The Open Handset Alliance! (OHA) was formed by Google with
the goal of providing the first open, complete, and free platform created
specifically for mobile devices. Different organizations joined the OHA
including mobile operators, semiconductor companies, handset manu-
facturers, and software companies. The result is the Android platform.
The first version of Android was released on November 2007, almost one
year later (in October 2008) the first mobile device supporting Android
was released. In 2010 Android was featured in 20 devices and many
more were planned including mobile phones, laptops, digital picture
frames, e-book readers, home appliances, and gaming devices among
others.

The availability of an open platform for mobile devices enables the
development of innovative applications. Considering the number of sen-
sors that are present in current mobile devices, developing mobile ap-
plications that integrate the physical and the virtual spaces is feasible
with the Android platform. For example, Google Goggles’ allows to
search information by taking a picture of a physical element such as a
landmark, a book, a business card, or a painting. In this work, the An-
droid platform is used for the development of physical mobile workflows.
Next section provides more detail about this platform.

2.3.1 The Android platform

Android is an open software platform for mobile development that is
intended to provide a full-stack for developers. Android includes an op-
erating system, middleware, applications and development tools. This
section describes the most innovative aspects of the Android platform
since it has been used in this work.

Thttp://www.openhandsetalliance.com
2http://www.google.com/mobile/goggles/

2.3 Mobile applications 35

Application Framework

Libraries Android Runtime

(OpenGL|ES, SQLite, WebKit...)
Dalvik VM

Linux kernel
(Drivers for Camera, WiFi, USB...)

Figure 2.9: Android architecture.

Figure 2.9 provides an overview of the architecture of the platform.
The platform is defined in different layers. Is worth noting that all the
applications make use of the platform in the same way. There are not
special privileges for certain applications (e.g., preinstalled applications)
and any application can access to any platform service.

The Android Operating System is based on Linux 2.6. Mobile de-
vice manufacturers are in charge of developing drivers for their devices
that follow the Linux directives. On top of the operating system, ba-
sic system functionality is provided by native C/C++ libraries. Most
of them provide low-level functionality based on well established open
source projects such as OpenGL|ES, FreeType, SQLite or WebKit. This
layer abstracts the particularities of each hardware piece. For example,
OpenGL can be used to program graphics regardless of the technology
used for the device screen.

One of the native components that plays a central role for the devel-
opment of Android applications is the Dalvik Virtual Machine. Dalvik
allows the development of applications for Android in Java. The Dalvik
virtual machine allows the system functionality to be accessed from a
higher abstraction layer. The Dalvik can run classes compiled by a
Java language compiler that have been transformed into Dalvik Exe-

36 Background

cutable (*.dex) format, a format that is optimized for efficient storage
and memory-mappable execution.

On top of the virtual machine Java utility functions based on Apache
Harmony® are provided. These libraries provide interfaces and classes
for programming. Data structures such as collections, connectivity func-
tions to handle sockets and input and output access are only some of
the functionalities that are provided with these core libraries.

In order to facilitate the development an application framework is
also provided. This framework provides the basic building blocks, com-
munication mechanisms and APIs that any Android application will
use. From the software engineering perspective, the application frame-
work is the most relevant layer in the Android platform since it defined
the main components that form any Android-based application. The
main components that form the framework are detailed below.

The Android application framework

The Android application framework is based on loosely-coupled compo-
nents. Each component developed is declared in the Android Manifest.
When a component is described in the Android Manifest, it defines the
way it is integrated in the platform by indicating the possibilities for
communicating with other components and the permissions that each
application requires form the platform. In this way, when an application
is installed by users, they can know which kind of use of their mobile
device would make a certain application.

The Android application framework provides the following main
components: Activity, Service, Content Provider and Broadcast Re-
ceiver. These components are introduced below.

Activity. An Activity presents a visual user interface to the user. An
activity is designed around a well-defined purpose (e.g., viewing,
editing, dialing the phone, taking a photo, etc.). It handles a par-
ticular type of content (e.g., a list of contacts) and accepts a set of

3http://harmony.apache.org/

2.3 Mobile applications 37

actions. The user interface provided by the Activity is composed
by a hierarchy of interaction nodes (View and ViewGroup ele-
ments following the composite pattern) that process input events.
Each activity has a lifecycle that is independent of the other activ-
ities in its application or task and it is managed by the application
framework.

Service. A Service provides functionality that is executed in the back-
ground (e.g., a service that plays music). It is possible to connect
to an ongoing service and start it if it is not already running.
While connected, communication with the service is performed
through an interface that the service exposes. Different compo-
nents such as Activities or other Services can be binded to a Ser-
vice.

Content Provider. A content provider makes data available to other
applications. The data can be internally stored in the file system,
in an SQLite database, or in any other particular mechanism. A
Content Provider exposes generic mechanisms for accessing the in-
formation regardless of the underlying implementation technology
used.

Broadcast Receiver. A broadcast receiver is a component that re-
acts to announcements from other components. Broadcasts can
originate from system code (e.g., indicate that the battery is low)
or other applications. In response to the broadcast, Broadcast
Receivers can start an activity or use the NotificationManager to
alert the user. Notifications can get the user’s attention in vari-
ous ways (flashing the backlight, vibrating the device, playing a
sound, etc.).

Android allows different components to execute simultaneously and
it provides an inter-component communication mechanism based on In-
tents. An Intent is an abstract description of a desired action (e.g.,
obtaining an image) regardless of the component that provides this func-
tionality. Components declare in their manifest which kinds of intents
they can respond to, and the linkage between the caller and the callee

38 Background

is performed dynamically at run-time. This enables the extensibility of
the platform since newly installed applications can take advantage of
already installed components.

2.4 Conclusions

This chapter provides an overview of different techniques and tools that
are related with the work presented in this document. The analysis has
considered three application domains: Business Process Management,
the Internet of Things and Mobile Applications. This work is aimed at
providing development support for systems that fit in these three areas.
Thus, much of the technologies and techniques introduced are applied
in the following chapters. A more detailed analysis of the proposals that
are more close to the goal of this work is provided in Chapter 3.

CHAPTER 3

State of the art

his chapter introduces different approaches that support the de-

velopment of physical mobile workflows. Once we have analyzed
in Chapter 2 the general application domains in which physical mobile
workflows fit, we analyze the specific proposals in this domains that are
closely related to our approach. This analysis allows us to determine
the way in which each proposal addresses the aspects that are central
in our approach.

In order to classify the different approaches and determine to which
extent they can support physical mobile workflows, we have character-
ized the systems of interest for this work. The necessary properties that
a system must fulfill to be considered a physical mobile workflow are
detailed below.

A well-defined business process. Most of the research in Ubiqui-
tous Computing has been focused on supporting the informal and
unstructured activities that are typical of much of our everyday
lives (Abowd & Mynatt, 2000). However, the application domain
targeted in this work is different, since it is focused on well-defined

40

State of the art

and structured activities. Applications of this domain are char-
acterized by a clear definition of the activities involved and their
coordination. For example, the loan process of a library or the
production method in a factory are composed by a clear sequence
of steps that must be followed.

Explicit identification. This work deals with business processes in

which physical elements are involved. For the integration of these
elements, Auto-ID technologies are used. The Auto-ID approach
involves to artificially augment physical elements with a digital
identity (e.g., a barcode, a visual marker, an RFID tag, etc). This
requires an effort in labeling physical elements with the purpose
of simplifying the identification of the physical context. The use
of explicit identification of the physical context results in a sim-
pler approach in contrast to processing the environment “as is”.
Whether the labeling effort is acceptable or not depends on the
particular application.

User participation. Although Auto-ID enables process automation

in many cases, a complete automation of business processes is not
always possible or desirable (Tedre, 2008). This work considers
the user participation as central in the workflow. In particular,
we are interested on the interaction between the user and their
physical environment by means of a mobile device, and how this
is adapted according to the business context to provide different
levels of automation. The use of a mobile device allows the user
to access the information and services directly from the domain
objects involved in the process.

The above properties make the application of modeling techniques

appropriate for the development of physical mobile workflows. On the
one hand, business processes can be easily described by workflow nota-
tions. In contrast to most of the user processes, the sequence of steps
that must be followed to support a business goal of a company or or-
ganization is simpler that the description of the personal motivations
in long-lived, everyday human activities (Li & Landay, 2008) such as

41

¥/ v,

workflows

Physical
mobile
workflows

&
2.
-
z
]
(%)

Physical
business . mobile
processes interactions

Figure 3.1: Application domains in this work and their intersecting sub-
domains.

staying fit. On the other hand, Auto-ID technologies share a set of basic
concepts (Kindberg et al., 2002) that can be used to characterize the
physical-virtual linkage regardless of the particular technology used.

Physical mobile workflows are a specific kind of systems that can be
considered in the intersection of Business Process Management (BPM),
the Internet of Things (IoT) and Mobile Applications domains. An
overview of the technologies and techniques used in these areas was
presented in Chapter 2. Figure 3.1 illustrates different research areas
that are relevant to the present work and their intersections. In partic-
ular, we considered approaches that deal with systems that fulfill most
of the features defined above for physical mobile workflow characteriza-
tion. We identified three research areas where physical mobile workflows
fit: smart workflows, physical mobile interactions and mobile business
processes. Relevant approaches in these areas have been analyzed and
discussed in this chapter.

The remainder of the chapter is structured as follows. Section 3.1
presents related work in the smart workflow area. Section 3.2 intro-

42 State of the art

duces the research carried out in the physical mobile interaction area.
Section 3.3 studies different approaches in the mobile business process
area. Finally, Section 3.4 concludes the chapter.

3.1 Smart workflows

Smart Workflows (Wieland et al., 2008) are business processes that cross
the boundary between the digital and the physical worlds. Physical
mobile workflows can be defined as a specific kind of smart workflows
that are accessed by means of a mobile device. Relevant proposals from
the smart workflow research area are introduced below.

Context-aware workflows. Wieland defines the Smart Workflow (Wieland
et al., 2008) concept and provides an architecture for transforming
the low-level data that is captured by different kinds of sensors
(not only those based on Auto-ID) into information at the busi-
ness level. Wieland proposes a three layered architecture model
which relies on the Nexus platform'.

Figure 3.2 shows the architecture for a system supporting a pro-
duction process in a factory. The context provisioning layer (CPL)
is responsible for managing the context information and for pro-
viding that information using pull-based and push-based commu-
nication. Nexus platform is used for context provisioning. The
context integration layer (CIL) uses the generic interface provided
by the CPL to integrate information into higher-level represen-
tations by filtering and aggregating information. Context Inte-
gration Processes (CIPs) together with a context-aware workflow
engine is used to implement this layer. The CIL provides con-
text information at different semantic levels for smart workflows
and other context aware applications. Finally, the smart work-
flow layer (SWL) realizes the smart workflows. To support smart
workflow definition, Context4BPEL is defined. Context4BPEL is
a modeling language for context-aware workflows. The primitives

"http://www.nexus.uni-stuttgart.de/

3.1 Smart workflows 43

wait for
SWL O_.{ fetch contextH assign work completion]_'O

Context Integration Processes
g domain
o specific
Que | Query | TransportComplete Query ClPs
MachineByToolld Tool Event MeasuringDevice
CIL
Context-aware Workﬂow Engine (Context4BPEL)
core
Context Context Context Context CIPs
Query Insert Manipulation Event
A, A4 Y
cPL ﬂ Nexus Platform |

Figure 3.2: Architecture proposed by Wieland for the support of smart work-

PerF

flows (Wieland et al., 2008).

introduced allow the workflow to (1) subscribe to certain context
events, (2) query context information, and (3) route the control
flow according to context conditions.

lows. PerFlows (Urbanski et al., 2009) are defined as personal
workflows. The PerFlow system is aimed at addressing the in-
teroperability between devices and applications for achieving the
user’s personal goals. PerFlows are defined by end-users to model
their everyday tasks. A PerFlow allows specifying conditions
based on context information such as location, that cause tasks
to start, tasks to skip, and tasks to abort. Figure 3.3 shows the
PerFlow modeler tool which is used to define workflows.

In order to support PerFlows, context information is integrated
in the workflow. This approach makes also use of the Nexus plat-
form to handle context information but also integrates a location
system based on GPS. PerFlow provides a distributed workflow
system with dynamic adaptable processes which is more focused
to support daily activities which are not easy to completely for-
malize. Users participate in the workflow by means of their mobile

44

State of the art

©F, PICo Modeler - Sal_MainFlow.cspmodel 52 . [Daily Flow.spel =g
Daily Flow
[5 Select
[} Marquee
- Make Coffee Task
Kamiiucislan MakeCoffee AN
L= Process » < P

info.prpe. MakeCoffeeApplication
Step =

&-Dependiency CoffeTaken?
& Application | | D—

(= Context *

Context

%, Composite Statement SolToMOTK]

[0 Statement 4 RoutePlanner ~,
< info o RoutsPlanmerpplication.

RoutePlanner ~,

‘ Go Home

info. e RoutePlarmerpplication

Process | Step behavior

Figure 3.3: Personal workflow (PerFlow) editor (Urbanski et al., 2009).

devices, and different levels are considered for workflow automa-
tion. In the process definition, tasks are classified as reversible or
not reversible. For tasks that are considered reversible, the sys-
tem acts in a proactive manner: the system automates the action
since users can go back to the previous state. In addition, PerFlow
allows to define conditions for skipping tasks to make the process
more fluent if a given condition is met.

Decoflows. Tuskable spaces are defined as places fitted with a task

computing framework (Loke, 2009). A task computing framework
is in charge of bridging the gap between user tasks (what the user
wants to accomplish) and system services (environmental capa-
bilities to complete the tasks). Based on this idea, Loke defines
mechanisms for nontechnical users to specify service composition
to fulfill their tasks (Loke, 2003). Workflow definitions are based
on Eco scripts. Eco is a textual language with semantics based on

3.1 Smart workflows 45

m-calculus and can be translated into WS-BPEL.

Eco language allows to define service orchestration for multi-agent
environments that can interact with the environment that is easy
to understand and provides execution support. An example ex-
pression in Eco is provided below:

make coffee; dim lights; wait for lights; download news; wait
for news; show news on tv;

The system executes ECO task statements concurrently, subject

to explicit prerequisites; the operator “;” indicates a parallel com-

position. Each task statement sends a command to a particular

agent (e.g., coffee refers to the brewing agent in the coffee ma-

chine) which processes one command at a time.

SAP’s Auto-ID infrastructure. The Auto-ID Infrastructure (Born-
hovd et al., 2004) defined by SAP, has as a main goal to convert
RFID or sensor data into business process information by associ-
ating it with specified mapping rules and metadata. The infras-
tructure is tailored to meet the requirements of RFID and it makes
use of the standard services that EPCGlobal defined for dealing
with RFID detection events. The architecture defines four layers:
device layer, device operation layer, business process bridging layer
and enterprise application layer.

At the device layer a hardware-independent low-level interface
is defined to integrate different kind of identification devices. It
consists of the basic operations for reading and writing data and
a publish/subscribe interface to report observation events. The
device operation layer coordinates multiple devices. It provides
functionality to filter, condense, aggregate, and adjust received
sensor data. The business process bridging layer associates incom-
ing messages with existing business processes. At this layer infor-
mation of tracked objects is maintained such as object location,
aggregation information, and information about the environment
of a tagged object. Finally, the enterprise application layer sup-
ports business processes of enterprise applications such as Supply
Chain Management (SCM), Customer Relationship Management

46

State of the art

Property Context- Perflows SAP De-
aware coflows
workflows
Workflow yes yes yes yes
support
Real-world context context RFID service
interaction invocation
User - yes - -
participation
Automation | automated | skip/undo | automated | automated
levels
Modeling WS-BPEL graphical - textual
technique
Method - - - -

Table 3.1: Related work from the smart workflow perspective.

(CRM), or Asset Management running on SAP or non-SAP back-
end systems.

3.1.1 Analysis and discussion

The different approaches in the smart workflow area are mainly focused
on supporting business process execution. These proposals normally
observe events form the real world and provide automatic service or-
chestration accordingly. Conversely, our approach allows to better de-
tail the way in which the physical-virtual linkage is established and the
degree to which users participate in the workflow.

Table 3.1 shows a comparison of the presented approaches. The
table shows to which extent the different approaches cope with some
of the most relevant aspects of our proposal. All the introduced ap-
proaches have the goal of supporting business processes (see workflow
support row). Nevertheless, different techniques are used for model-
ing (see modeling technique row). These techniques include proprietary

3.2 Physical Mobile Interactions 47

notations (either graphical or textual) and integration with WS-BPEL.
The modeling languages used are focused on business process execution,
providing low-level abstractions for business process modeling (com-
pared to BPMN, for example).

The presented approaches do not provide facilities for user partici-
pation (see user participation row) in the processes with the exception
of PerFlow. Our approach provides mechanisms for an effective partic-
ipation of users in workflows. PerFlow allows users to participate in a
workflow with their mobile devices. However, in the case of PerFlows
the automation level cannot be adjusted in a flexible manner. PerFlow
provides only two mechanisms to vary the automation degree of the pro-
cess (some tasks can be skipped under certain conditions, and reversible
user tasks can be performed in advance by the system). Our approach
provides richer mechanisms for regulating the process automation in dif-
ferent levels and the user participation in the process. The rest of the
proposals are mainly focused on the support for automated processes
(see automation levels row).

These proposals consider the interaction with the real world in a dif-
ferent way (see real-world interaction row). Context-aware workflows
and PerFlows react in response to context changes, SAP’a Auto-ID In-
frastructure provides Auto-ID capabilities by means of RFID and De-
coflows are mainly concerned in device communication to request and
invoke distributed functionality. Our approach focuses on Auto-ID but
it is not biased towards any particular technology.

Since the presented approaches are mainly concerned with execution
aspects, they lack methodological guidance (see method row), and only
Perflow provides tool support for the easy edition of workflow defini-
tions.

3.2 Physical Mobile Interactions

Physical mobile interactions (Rukzio et al., 2006) are mobile interac-
tions between a user, a mobile device, and a smart object in the real
world. In this approach the user interacts with digitally-augmented

48 State of the art

Smart Object User-mediated Mobile Device
object selection

_
Visual

Augementation

Pointing > Camera
Server
Radio
Augmentation
NFC/RFID - [€ Touching > NFC/RFID
Tag
Short Range Network
) Short Range | anning: > Interface (NFC,
Service Network Bluetooth, WLAN)
Interface
--------- Scanning--+----1» Localisation (GPS)
Light Sensor o Light Emitter (Laser
< oiting Pointer)

(GPRS, UMTS)

Figure 3.4: Generic architecture of the Physical Mobile Interaction Frame-
work (Rukzio, 2007).

objects through the mobile device as he/she interacts with the mobile
device and the mobile device interacts with the object. Physical mobile
workflows can be considered a specific kind of system based on phys-
ical mobile interactions that supports a well-defined business process.
The approaches studied from the physical mobile interaction area are
detailed below.

Physical Mobile Interaction Framework. The Physical Mobile In-
teraction Framework (PMIF) was defined to support rapid de-
velopment of physical mobile applications (Rukzio et al., 2005Db).
PMIF provides an architecture that is based on a stream metaphor.
That is, the application sees the connection between the mobile
device and the physical object as a stream on which the applica-
tion can read or write.

Figure 3.4 shows all elements involved in the architecture of PMIF:
the mobile device, the smart object, and related services running
on a server. The mobile device acts as a mediator between the

3.2 Physical Mobile Interactions 49

physical and the digital world. The server represents the digital
world which offers information and services related to the smart
object. The latter represents the physical world and provides
entry points into the digital world (the smart object provides a
link to corresponding services that are made available by a server).

The communication between the mobile device and the smart ob-
ject can be based on different modalities as it is illustrated at
Fig. 3.4: information provided by the smart object can be sensed
by the mobile device (unidirectional arrow from smart object to
mobile device), the mobile device can submit information to the
smart object which senses it (unidirectional arrow from the mo-
bile device to the smart object) or there can be a bidirectional
communication between the mobile device and the smart object
(bidirectional arrow between mobile device and smart object).

Rukzio et al. compare different physical mobile interaction tech-
niques (Rukzio et al., 2006) and provide guidelines for their se-
lection during design. These techniques are touching, pointing,
scanning, and user-mediated interaction. PMIF provides imple-
mentations of the interaction techniques touching using NFC or
RFID, pointing using visual markers or a laser pointer, scanning
using Bluetooth or GPS and user mediated object selection. In
addition, new interaction techniques can be added to the archi-
tecture in a pluggable manner.

Context-sensitive User Interface Profile. Berg and Coninx intro-
duced the Context-sensitive User Interface Profile (CUP) (den
Bergh & Coninx, 2005). CUP is a UML-based notation that al-
lows the specification of requirements for context integration into
an interactive application. CUP proposes some improvements on
UMLI (da Silva & Paton, 2003) to consider context aspects. CUP
takes some notions from the Context Modeling language (Hen-
ricksen & Indulska, 2005) and defines a UML-based modeling lan-
guage to define interactions based on them.

CUP is defined by means of the UML profile extension mecha-
nism. the following models are defined: The application model

50

State of the art

shows the concepts and the relations between them that are used
within the application. The task dialog model provides an hierar-
chical view to the activities that need to be accomplished. The
context model shows the concepts that can influence the interac-
tion of the user with the application directly or indirectly. The
abstract presentation model shows the composition of interactors
in the user interface and describes the general properties of the
interactors (the data they interact with and meta information
about them). The concrete presentation model describes the user
interface for a specific set of contexts or platforms.

The context model defined considers the nature of gathering con-
text information (manually entered into the system by the user/de-
signer of the software or automatically sensed/interpreted), the
information about the platform through which the user interacts
with, context information ambiguity, and the topic of interest.

The Physical User Interface Profile. The Physical User Interface

Profile (PUIP) (Rukzio et al., 2005a) supports the design of differ-
ent aspects of a physical mobile interaction. PUIP extends CUP
and it is also based on UML. PUIP supports the integration of
aspects like the type of information presented at some point and
how the real world context changes during an interaction.

PUIP is defined to allow designers to classify, compare and evalu-
ate new physical mobile interactions. PUIP is intended to support
all the phases of the development process with a main role in the
communication among stakeholders.

The profile is defined to capture some of the aspects that charac-
terize physical mobile interactions. For the user interface descrip-
tion PUIP considers the physical constraints of mobile interactions
with the real world (e.g., the user must be in a specific distance to
a physical object before starting the interaction). Device features
(e.g., different screen sizes) are considered to support different
modalities of interaction since most existing physical mobile in-
teractions are multimodal. Finally, the temporal context (e.g.,
duration of interaction) and the social context (e.g., presence of

3.2 Physical Mobile Interactions 51

PhysicalBrowsing

[AR

:VisualMarker
renderedBy=Display,
GroupComponent=Visiblelnformation

<<user>>
Get aware of the marker
on the display

[30 < U_D_Relation-

<300]

<<user>>
Move near to display

E|<_ _______ -

:StartFocusAndBrowse
renderedBy=MobileDevice,
GroupComponent=InitialDisplay

:FocusOfTheCamera ~ ~ — __
renderedBy=MobileDevice, =
GroupComponent=FocusAndBrowse

<<requires>>
<<user>> : U_D_Relationsshi
Focus camera visibleByTheUser = true
on the visual marker distance = 30 < x < 300

:VisualMarker
renderedBy=Display,

I{ mponent=Visiblelnformation .
GroupCompone! isiblelnformatios <<requires>>

Y
<<user>> L i
_______ Take picture “srequires>> /! :MD_D_Relationsship |
isCameraFocusedOnMaker = true |

:StartMarkerInterpretation
renderedBy=MobileDevice,
GroupComponent=FocusAndBrowse

<<system>>
_______________ Show the information

related to the hyperlink

‘Webpage
renderedBy=MobileDevice,
GroupComponent=InformationDisplay

Figure 3.5: Dialog model used by PUIP (Rukzio et al., 2005a).

multiple users in front of a display) are also considered.

Figure 3.5 shows a task model based on PUIP. Since it is based on
CUP, PUIP uses UML 2.0 activity diagrams to model tasks based
on the concepts used in ConcurTaskTrees (Mori et al., 2002).
PUIP further details the semantics of CUP stereotypes. For ex-
ample in Fig. 3.5 the user interface element StartFocusAndBrowse
is annotated with property values showing that the element is part
of the group component InitialDisplay and rendered by the device

52 State of the art

’ Property PMIF CuUP ‘ PUIP
Workflow no low-level low-level
support
Real-world pluggable yes yes
interaction
User yes yes yes
participation
Automation guidelines low-level low-level
levels
Modeling UML UML UML
technique
Method yes yes yes

Table 3.2: Related work from the physical mobile interaction perspective.

MobileDevice.

3.2.1 Analysis and discussion

Different kinds of interactions between mobile devices and the environ-
ment have been studied (Iftode et al., 2004). The previous chapter
detailed in Section 2.2 the technologies, infrastructures and languages
to bridge the gap between the physical and the digital world. The ap-
proaches introduced in this section organize these interaction concepts
and technologies in methods that allow the development of systems sup-
porting more complex interactions.

Table 3.2 shows a comparison of the presented approaches. All these
approaches define methods (see method row) for specifying interactions
between the user (see user participation row) and the environment. For
specifying these interactions UML-profiles are used (see modeling tech-
nique row). Although these proposals are not intended to describe
workflows (see workflow support row), some of them (CUP and PUIP)
make use of UML activity diagrams to model the coordination of the
different services in each interaction technique described.

3.3 Mobile business processes 53

These techniques can be used in conjunction with our approach if
there is a need for describing the internals of an interaction technique.
When an interaction technique is not natively supported by a platform,
a description of the interaction and the computing elements involved
could be useful for developers in order to guide its implementation in a
particular device. However, our approach is not focused on describing
interaction techniques but describing how these techniques can be com-
bined to support a business process. Thus, the interaction techniques
described with the introduced approaches are used as building blocks
in our approach to support workflows.

Since these approaches describe the internals of physical interac-
tions, the automation level offered (see automation levels row) depends
on the components used at modeling, but there is no explicit notion of
the automation level. PMIF allows different Auto-ID technologies to
be incorporated in a pluggable manner which provides more flexibility
in defining the automation level at architecture level (see real-world in-
teraction row), but mechanisms for defining it explicitly or adapting it
to context conditions are lacking. Conversely, our approach takes into
account the user attention as a resource that must be considered when
deciding which interaction technique to use.

3.3 Mobile business processes

Mobility allows users to access digital services on the go. The use of
mobility to support business processes is an essential aspect of physical
mobile workflows since it allows users to interact with business process
services closer to the place they are needed. Physical mobile workflows
can be defined as a specific kind of mobile business processes where
physical elements are integrated in the process by means of Auto-ID.
The approaches studied from the mobile business process area are de-
tailed below.

PerCollab. PerCollab (Chakraborty & Lei, 2004) uses an extended
version of WS-BPEL (xBPEL) to formally define business pro-
cesses with human partners and exploits dynamic user context to

54 State of the art

address mobility issues. PerCollab seeks to address the respec-
tive limitations in workflow systems (lack of support for direct
human-to-human communication) and collaboration tools (lack
of orchestration) by effectively integrating the two. Specifically,
PerCollab allows people to participate in business processes using
any traditional communication mechanism.

PerCollab provides mechanisms to dynamically select an appro-
priate device or modality to engage the user for a particular in-
teraction. The choice of an appropriate device may change in the
course of a business process. The xBPEL language allows to de-
fine new types of partner in WS-BPEL processes: human partner
(a human participant in the process), process-to-people (commu-
nication between the human partners and the WS-BPEL process)
and people-to-people (direct communication between the human
participants).

The xBPEL definition is translated into WS-BPEL and it is de-
ployed into a business process execution engine that interacts with
different PerCollab components that are exposed as web services.
PerCollab depending on the location activity and preferences, se-
lects a communication mechanism to fulfill a given task. The
components of the PerCollab architecture include the Interaction
Controller that acts as a proxy to represent all human partici-
pants, the Context Service that gathers and processes context in-
formation, and several Modality Adapters to transform messages
to a specific format.

Mobile Process Landscaping. Mobile Process Landscaping (PML) (K6h-

ler & Gruhn, 2004) is a method to decompose business processes in
different levels of detail, in order to identify mobile sub-processes.
The idea of the method is to split the modeling of processes into
different tiers, starting with a coarse and simplified form of the
process description and then increasing the level of detail with
each tier. The method can be applied to different modeling no-
tations and it is useful for determining portions that can be dis-
tributed.

3.3 Mobile business processes 55

A business process is considered mobile according to the MPL
criteria if there is an “uncertainty of location” that is caused by
external factors (i.e., the process-executing person has no freedom
of choice regarding the place of the process execution), and a co-
operation with external resources (from the process-point of view)
is needed in the execution of the process.

Based on the previous definition, MPL proposes the following
steps: (1) analysis of the process model and identification of mo-
bile business processes, (2) Redesign of the identified process par-
titions, (3) specification of the mobile part as required by the new
business processes, (4) validation of the profitability of the change,
and (5) implementation of the change.

MPL method is useful for detecting the different parts of a “tradi-
tional” business process that can be distributed. A mobile business
process version of a process is obtained by analyzing the activities
at different levels. The modeling layers considered are company
structure and organization, functions, activities, and the dialog
and information flow. A systematic approach is provided for an-
alyzing business processes at the different levels.

Sliver. Sliver (Hackmann et al., 2006) is an execution engine for mobile
devices that supports SOAP and WS-BPEL. Sliver is designed to
overcome the limitations of WS-BPEL when it is used for sup-
porting the dynamic nature of ubiquitous services. In particular,
Sliver deals with the limited computing resources of mobile de-
vices and the connectivity problems. Sliver is designed to (1)
have a suitably small storage and memory footprint; (2) depend
only on the Java APIs that are available on mobile devices; and
(3) support a wide variety of communication media and protocols
flexibly.

Sliver supports the core features of WS-BPEL and has a total code
base of 114 KB. Sliver supports all of the basic and structured
activity constructs with the exception of the compensate activity,
and supports basic data queries and transformations expressed
using the XPath language. Sliver also supports the use of WS-

56

State of the art

BPEL Scopes and allows for local variables and fault handlers to
be defined within them. Sliver performs different optimizations
(e.g., avoid message schema validation) to fit mobile limitations
at run-time. In order to provide flexibility, Sliver enables the
dynamic change of partner links during WS-BPEL execution. In
order to be transport-agnostic, the WS-BPEL specifications do
not define how to assign actual communication endpoints to each
partner link. Thus, Sliver maps the names of incoming partner
links to the kinds of messages that they accept as input. then, it
maps the names of outgoing partner links to concrete endpoints.

Mobile Workflow Engine. As opposed to an isolated and standalone

application environment, this workflow engine (Pajunen & Chande,
2007) is presented as a composition platform which can orches-
trate local applications and system services.

In order to support this approach, different workflow-related stan-
dards are extended. Support is provided (1) to query local deploy-
ment information (e.g., phone numbers) by means of XPath, (2)
better handle attachments during WS-BPEL execution, and (3)
support mobile specific protocols (e.g., SMS, MMS and Bluetoth).

The mobile workflow engine supports integration to local appli-
cations from the mobile device (e.g., browser, map, calendar, and
messaging). In order to enable SOAP and WSDL based interfaces
for these applications; the mobile workflow engine includes wrap-
pers on them. These wrappers transform coming SOAP messages
to function calls and invoked call back calls to out-going SOAP
messages.

A model-driven approach was considered for the development of
user interfaces for processes based on the workflow engine (Ruoko-
nen et al., 2008). This approach provides mechanisms for extend-
ing mobile business process models with Ul models. Model-driven
techniques are applied in order to obtain customized Uls to sup-
port user interaction with heterogeneous devices. For example, if
camera application is not supported, a textual description can be
required instead (i.e., a text field is provided).

3.3 Mobile business processes 57

Property PerCol- MPL Sliver MWE
lab
Workflow execution modeling yes yes
support
Real-world — — — —
interaction
User yes yes yes yes
participation
Automation modality - multiple resource
levels selection partners adaptation
Modeling WS-BPEL | proprietary | WS-BPEL | WS-BPEL
technique + UML
Method - yes - yes

Table 3.3: Related work from the mobile business process perspective.

Requirements of Ul customization are captured by the plaftorm
model and the presentation model with a role similar to those
defined in the reference framework for multi-target user inter-
faces (Calvary et al., 2003). The final result for each process
is one WS-BPEL file and several (X)HTML files to present all
the required Ul views and WSDL files. To support customization
of Uls, in addition to process description, platform customization
rules are provided.

3.3.1 Analysis and discussion

Research in the mobile business processes area has been mainly focused
on supporting service orchestration in a constrained environment as it
is the mobile device. However, the capabilities for linking the physical
and digital spaces in a way that fits the business process requirements
has not been explored. Our approach analyzes the general requirements
of business processes and provides mechanisms to define the physical-
virtual linkage accordingly.

58 State of the art

Table 3.3 shows compared results of the different proposals pre-
sented in this section. All the approaches presented provide support to
business process (see workflow support row). Nevertheless, PerCollab is
more focused on providing execution support to mobile workflows while
Mobile Process Landscaping (MPL) supports the analysis phase. The
rest of the approaches provide both mechanisms to model and execute
mobile workflows.

None of the approaches provides mechanisms to describe how phys-
ical elements are integrated in the workflow (see real-world interaction
row). Thus, these approaches should be complemented if there is a need
for effectively linking the physical and the digital worlds. However, all
the approaches analyzes consider the user as a central element in both
analysis and execution of the workfow (see user participation row).

These proposals offer different mechanisms for adapting the work-
flow to the user needs. Allow participants to appear dynamically, pro-
vide multiple modalities and adapting to the available resources are
the techniques used. By means of these techniques the automation of
the process can be modified (see automation levels row). However, the
adaptation provided by these proposals has the goal of avoiding techni-
cal aspects such as the screen size. Our approach addresses a different
issue that is more related to human limitations of the user (e.g., atten-
tion) than technical limitations of the device (e.g., screen size).

Modeling techniques are applied by all the different approaches (see
modeling technique row). WS-BPEL is used for describing process exe-
cution aspects. MWE complements WS-BPEL descriptions with UML
Activity diagrams. Activity Diagrams are used to describe the tasks at
the user interaction level. MPL and MWE define a sequence of steps to
guide the system development according to their approach (see method
row).

3.4 Conclusions

This chapter presents the state of the art in the disciplines that are
related to this work. These areas are really active these days with many

3.4 Conclusions 59

emerging initiatives. However, there is still a lack of proposals to provide
mechanisms that allow the development of physical mobile workflows
from a high level of abstraction. Modeling languages are used only to
describe execution aspects providing minimal support to analysis, which
avoids the application of the re-engeneering process defined by BPM.

For effectively capture workflow requirements in the IoT, other as-
pects than service orchestration must be considered. The present work,
defines support for the analysis, simulation and execution by supporting
the specific requirements of physical mobile workflows. Since many ap-
proaches already address them, our approach is not focused in defining
service orchestration but describing the ways in which physical elements
are involved in the process and the way users interact with them in this
context.

60

State of the art

CHAPTER 4

A design method for physical
mobile workflows

he use of Auto-ID technologies for the support of business processes

provides new opportunities for process automation (Strassner &
Schoch, 2002). Depending on the use of a specific technology (RFID,
barcodes, smart cards, or traditional keyboards and mice), a different
degree of automation is possible. Furthermore, the automation level
demanded by users varies from task to task. Sometimes users want to
be aware of the system actions, however, in other situations users want
the system to act silently without disturbing them.

According to Tedre (Tedre, 2008), a process should be carefully stud-
ied before determining what to automate and to what degree it should
be automated. The need for studying what to automate becomes more
relevant when business processes take place in a pervasive environment
where many options for automation exist. For physical mobile work-
flows, in contrast to desktop-based systems, the design of the automa-
tion level becomes a must.

This chapter introduces a methodological approach for the design

62 A design method for physical mobile workflows

of physical mobile workflows. The goal of this method is to provide a
mechanism for defining the desired degree of automation for the
physical-virtual linkage of a given business process. In order to
systematize the development of such systems, the method is based on
the Business Process Management (BPM) initiative principles.

BPM is an initiative that promotes the continuous re-engineering
of business processes. BPM conceives software development as an im-
provement cycle where processes are continuously analyzed, modeled,
simulated, executed and monitored. Since current solutions for BPM
are mainly focused on the digital world (i.e., orchestration of digital
services), support is lacking for coping with the particularities of the
physical-virtual linkage in the different stages of the BPM cycle. This
work builds onto existing BPM techniques and extends them to inte-
grate business processes with the physical world at different levels. The
method provides support to model, simulate and execute physical mobile
workflows. Existing BPM techniques are complemented with support
for capturing the identification requirements, evaluating the user partic-
ipation in a real environment, and executing the workflow in a software
platform.

Our approach is focused on the first phases of the BPM cycle: busi-
ness process design, simulation and execution. In particular we are
interested in providing mechanisms to project these techniques to the
physical world. Other BPM phases such as the Business Activity Mon-
itoring (BAM) are not considered in our approach since they take place
mainly at the digital world and existing tools can be used for this pur-
pose.

Figure 4.1 shows an overview of the stages in the development pro-
cess proposed in our approach. The physical mobile workflow is itera-
tively designed. In each design cycle, the workflow is put into practice
to obtain feedback from the users. The feedback obtained is used to
improve the original design. When no further changes are required, the
system specification is used to guide the implementation of the final
system. This chapter provides detail on the stages involved in the iter-
ative design of physical mobile workflows. It introduces the aspects to
be considered during design and simulation. Chapter 5 provides detail

4.1 Design method overview 63

.
Design Simulation Implementation
[+] [+]

Changes?

System
specification

Figure 4.1: The stages proposed in the development of physical mobile work-
flows.

on the implementation of physical mobile workflows. Finally, Chap-
ter 6 covers the specific case of workflows that require to be modified
at run-time instead of following the redesign cycle.

The remainder of the chapter is structured in the following manner.
Section 4.1 provides an overview of the design method and how it is
integrated in our approach. Section 4.2 introduces the concepts used to
describe the physical-virtual linkage in an abstract manner. Section 4.3
introduces mechanisms to describe the capabilities of the Auto-ID tech-
nologies available. Section 4.4 provides guidelines to validate in practice
the designs obtained with the method. Section 4.5 formalizes the intro-
duced concepts and provides tool support for the definition and valida-
tion of the system specification that is used as input for later steps in
the development process. Section 4.6 concludes the chapter.

4.1 Design method overview

This section provides more detail on the development method intro-
duced in this work. The design stage is the initial stage in our method
(see Fig. 4.1). Since we are following a model-driven approach, the spec-
ification obtained at design drives the later stages in the development of
the system. Thus, the design stage becomes central to the development
method.

64 A design method for physical mobile workflows

The design method captures by means of models the concepts that
are relevant in the development of physical mobile workflows. The ben-
efits of using a model-driven approach and the steps to be followed in
the design of physical mobile workflows are introduced below.

4.1.1 Why a modeling approach?

Traditionally, the application of Auto-ID to business processes has mainly
been approached from a technological perspective (by developing inte-
gration middleware and architectural designs). However, deploying an
Auto-ID-enabled system involves a lot more than purchasing the right
tags and installing the right readers (Sarma, 2004).

The way in which a business goal is achieved depends on the prop-
erties of the physical-virtual integration. Certain business models are
only feasible with an adequate level of automation in the physical-
virtual linkage (Fano & Gershman, 2002). For example, using RFID
for identifying products in a supermarket allows checkout to be auto-
mated (Roussos et al., 2002), and does not require the participation of
a cashier in the process. Thus, when modeling a business process it is
not possible to determine which tasks are required for handling physical
elements (e.g., requiring a cashier to handle them or not) if there is no
notion of how they participate in the process. Models are key in our
proposal to provide this notion by linking identification requirements to
technological requirements in a gradual manner.

Abstraction is one of the fundamental principles of software engi-
neering in order to master complexity (Kramer, 2007). Our approach
makes use of modeling techniques in order to promote abstraction in
the development of physical mobile workflows. By abstracting techni-
cal details, we can describe the physical-virtual connection of a workflow
regardless of the particular technology used for the implementation. In
the case of physical mobile workflows, modeling techniques are applied
to obtain the following benefits:

Focus on the process. Separation of concerns is promoted by our ap-
proach in order to allow designers to focus on a specific aspect of

4.1 Design method overview 65

the workflow at a time. Business analysts can define the way in
which physical elements participate in a business process with-
out thinking on technology limitations. They can think on the
way they want the process tasks to flow, and later, the appropri-
ate identification mechanisms can be chosen to cope with their
requirements.

Explore the solution space. The use of models allows to capture not
only a specific solution but also the rationale behind it. In this
way, alternative solutions can be re-considered and the design
knowledge can be better reused for similar problems. In addi-
tion, support for traceability allows to easily identify the model
elements affected when different issues are detected during the
system evaluation.

Support system evolution. The fast changing nature of business pro-
cesses and the technological heterogeneity of identification tech-
nologies suggests that systems in this area must be designed to
evolve. By analyzing the knowledge captured in models by our
approach, it can be easily determined whether or not a new tech-
nology fits better with the requirements of the physical-virtual
linkage for a given process.

Our approach involves to manipulate models in different manners.
An overview of the steps involved in our method is provided below.

4.1.2 Steps of the method

The development method proposed in this work supports the design,
simulation and execution of physical mobile workflows. The method
defined involves three development roles: Business Analysts, Designers
and Developers. Each one makes decisions at different abstraction levels.
Following BPM principles, we propose modeling a workflow before a
software system is developed for it. In the design stage, the aspects that
are considered relevant for the final system are captured and they are
used to guide the implementation. Figure 4.2 details the tasks involved

66 A design method for physical mobile workflows

Define maspﬁ\(;lfzwth
conditions for pPing
N architecture
adaptation
components

Select the Define

N . Select

interaction . deployment
N technologies "

technique configuration

Detect Specil
Model user . pe fy
s physical obtrusiveness
activities
elements level

Any task performed at
multiple obtrusiveness
levels?

Figure 4.2: The different tasks in the design method proposed.

during the design of physical mobile workflows. The steps performed
during design and how the obtained design provides feedback to the
simulation and execution phases are detailed below:

1. Business process specification. Business Analysts are in charge
of modeling the business process in a technological-independent
fashion. Business Process Modeling Notation (BPMN) (OMG,
2006) is used to capture the user activities involved in the pro-
cess and their temporal dependencies in a business process dia-
gram. In addition, the analysts must detect the physical ele-
ments that are involved in each task and specify their properties.

Once tasks and physical elements are identified, the requirements
for physical interaction are captured. Since we want business pro-
cess descriptions to be high-level representations of process re-
quirements, technological detail regarding the particular mecha-
nism used for identifying physical elements is avoided. In order to
determine the degree of automation for each task in the process,
the obtrusiveness level required by each task is specified.
By considering the desired obtrusiveness level, an adequate in-
teraction technique is selected for each physical element that
participates in a task. The above aspects constitute physical mo-
bile workflow requirements that are independent of any particular
technology. More detail regarding the specification of these as-
pects is provided in Section 4.2.

In the case that a task could be performed at different obtrusive-
ness levels, designers must specify the conditions for each level

4.1 Design method overview 67

to be used at run-time and the effect of the adaptation in
the architecture. The run-time adaptation aspects are covered
in Chapter 6.

2. Technological selection. Designers are in charge of deciding
the technologies to be used in the support of the business process.
Since many different technologies can be applied for supporting
the participation of physical elements in business processes, the
different technologies are analyzed. By studying their capabilities
and limitations, designers can select the technologies that best
fit with the requirements of the business process.

The deployment configuration defines which computing re-
sources (e.g. mobile devices, sensors, etc.) are used for each task
in the process. In a mobile business process, each mobile device
could be used for supporting from one single tasks to a whole pro-
cess. Depending on this, the technologies required for each device
can be determined.

Further detail regarding the linkage between the business process
requirements and the definition of the technological setting where
the process is deployed is provided in Section 4.3.

3. Workflow simulation. Designers perform several design itera-
tions to obtain feedback from end-users and improve the workflow
design. Before efforts are put into development, fast-prototyping
is applied to validate the workflow defined. Feedback is gathered
from end-users in order to determine whether the proposed work-
flow improves the existing business processes in terms of user ex-
perience and process performance. Section 4.4 provides the guide-
lines to perform the workflow simulation.

4. System implementation. The models obtained at this point are
the input to the next stages of the BPM cycle. Once the models
have been adjusted to fit with the user needs, a final software
solution can be obtained. The derivation of a software solution
from the system specification is described in Chapter 5.

68 A design method for physical mobile workflows

Decisions made on upper planes
(e.g., use a specific device) sometimes
force a reevaluation of decisions on
lower planes.

Deployment
configuration

Technological
analysis

Requirements for
physical interaction

—x— User activities

2] |9 (=] [

The choices made at each plane
affect the choices available on the
next plane above it.

Figure 4.3: Design decisions across the different modeling layers.

The following sections provide further detail on the concepts (depen-
dent and independent from identification technologies) that are cap-
tured to specify physical mobile workflows. These concepts are later
used to guide the execution and adaptation of the workflow at run-time.

4.1.3 Guidance through the process

The steps proposed in the method go from the abstract description of
the workflow to the concrete system that supports it. However, the
design of a system does not normally follow a linear sequence of steps
but it is produced in different iterations.

Figure 4.3 illustrates a possible decision process performed through
the different modeling layers considered in this work. Decisions in one

4.1 Design method overview 69

layer affect the choices available on the next level. For example, by
selecting a particular technology for a task, only devices that are com-
patible with the technology can be used. Nevertheless, designers are not
forced to follow a linear process. Since modeling layers are connected,
decisions made on upper planes force the reevaluation of decisions made
on lower planes to keep the system consistent. For example, if a mobile
device must be used for a particular system (e.g., due to vendor lock-in),
the technology used to identify physical elements may be changed to fit
the device capabilities.

The design method introduced has been defined to guide the de-
signers in their activities. We have applied model-based technologies to
provide support to the different tasks involved in the process. The tasks
supported and the automation degree achieved are detailed below.

Support for specification. Modeling technologies have been used to
formally define the concepts involved in our design method. Ba-
sic edition capabilities have been provided for designers to define
workflow specifications. Most of the edition capabilities provided
have been obtained directly from the specification of the method
concepts. This constitutes a no-frills approach with the goal of
providing the editing support that is required for applying the
application of the proposal. Nevertheless, the use of standard
modeling techniques allows these edition capabilities to be ex-
tended with graphical or textual editors for some subset of the
specification, model completion and other usability aspects.

Consistency checking. As it has been illustrated in Fig. 4.3, mod-
eling decisions made at a given level have an impact at different
parts of the workflow specification. Thus, it is essential to provide
designers with mechanisms to keep their specifications consistent.
We have provided tool support for the validation of physical mo-
bile workflows.

The formalization of the modeling concepts defines a modeling
language. Modeling technologies provide us with syntactic vali-
dation for any modeling language that is formally defined (i.e., it

70

A design method for physical mobile workflows

can be determined whether a description conforms to the mod-
eling language). We have extended these capabilities to detect
inconsistencies in the system specifications that are specific for
physical mobile workflows. This enables designers to automati-
cally determine the impact of a change in the system and
the feasibility of supporting the workflow in practice.

This validation is provided automatically each time the system
specification is manipulated either by designers or by other tools,
and descriptive messages are provided to inform designers. More
detail on the definition and validation of workflow specifications
is provided in section 4.5.

Infrastructure for rapid-prototyping. In order to apply a work-

flow defined with end-users, prototyping techniques are applied.
Non-functional mock-ups of the user interfaces are developed to
illustrate the workflow in practice. In this case, guidelines have
been provided for implementing the prototypes. Proto-
types are defined by using conventional tools such as visual HTML
editors that are easy to learn and operate. Section 4.4 introduces
the guidelines defined.

Automating the implementation. An architecture that fits with the

specific needs of physical mobile workflows has been defined. This
architecture has been defined in a technological independent man-
ner. In this way, components in this architecture can be mapped
to different technological platforms.

Our approach provides support to automatically obtain an archi-
tecture design for a given workflow specification. This architecture
design is normally complemented with additional services that are
required to support aspects that fall out of the scope of our design
method (e.g., adding authentication).

Code generation is also provided to produce from a model based
in our abstract architecture the implementation assets that are
required for the technological infrastructure in a given technology
platform. In particular we have defined code generation support

4.2 Capturing technology-independent requirements 71

for the Android platform that frees developers from dealing with
Android-specific components and focus on implementing the re-
quired business logic in Java.

4.2 Capturing technology-independent require-
ments

When users participate in a workflow, they are under a constrained free-
dom. They can choose which tasks to perform, but they are limited in
their decisions by the rules of the business process (e.g., a book can be
borrowed by a library member only if he/she has not been sanctioned).
Business process modeling promotes the definition of such rules in an
explicit manner. This is usually done graphically by means of a busi-
ness process diagram. A business process diagram defines the activities
that are performed in the process and their temporal dependencies, the
roles that participate in the process, the events that can occur and the
different decision points that determine the flow of the process.

A graphical diagram is a good tool for designers to discuss the dif-
ferent ways a business goal can be achieved. Designers can agree on who
participates in the process, as well as when and how. In this work BPMN
is used for capturing such aspects in a graphical diagram. BPMN has
been selected since it provides a standard graphical notation for describ-
ing service orchestration that is easy to understand for analysts and it
is independent form the underlying implementation technology. Our
approach enriches business process diagrams to capture the particular
requirements for the integration of physical elements. In particular, it is
specified (1) the obtrusiveness level for each task in the process and (2)
the interaction mechanism used for connecting the physical and digital
spaces.

One of the aspects that must be considered when a physical mobile
workflow is modeled is the participation of physical elements in
the process. When relevant elements of interest for the process have
presence in both digital and physical worlds our approach can be ap-
plied to improve the physical-virtual linkage in the process. Thus, it is

72 A design method for physical mobile workflows

important to detect the physical elements involved in the process and
their properties.

Modeling notations usually provide primitives to indicate the income
resources or the outcome for tasks, as is the case with the Data Object
element in BPMN. However, as its name indicates, this primitive only
deals with digital aspects. Thus, requirements regarding the integration
of physical elements can only be informally stated in BPMN by means
of documentation annotations.

In this work, we annotate Data Object elements with new properties
in order to cover its connection with the physical space. Different infor-
mation is defined for physical elements in addition to the ones such as
name or documentation attributes, which are inherited from the Data
Object element as indicated by the BPMN specification. The informa-
tion to be captured for each object is the following;:

Information structure. A Class Diagram can be used to capture rel-
evant entities, their information and the relationships that connect
this information. The data model should not include any artificial
attribute for identification. In this way, information is decoupled
from the way in which it is identified.

When modeling real-world elements it is important to decide at
which granularity level information is defined. For example, if
the products of a supermarket are labeled on an individual basis
they could have an individual price potentially different from other
products of the same type (e.g., based on expiration date). In this
case, the price should be defined as an attribute of the product.
However, if all the products of the same type have the same price,
price attribute should be considered as part of the product type.
Even more, if all the relevant information is about the product
type, is the product type identifier what should be present in each
product label.

Use for correlation. A physical element can be used to find the cur-
rent process instance. In this way, the process becomes more flu-
ent since the detection of a given element is used to determine the

4.2 Capturing technology-independent requirements 73

book [N
bOOk . scanning
pointing book available?
Return book
= Book loan
[
e
S
[}
= Pick up
reserved
% book
S bOOKDX
| touching
O
s Lo pointing Place the
5 book in the .
S shelf
-

Figure 4.4: Excerpt of the BPMN model for the book loan workflow in a
library.

task being performed. Each Physical Object primitive includes a
Boolean attribute to indicate whether the physical element is used
for correlation in the process.

Physical elements that can participate only once in a process in-
stance (such as a book in a loan) are good candidates for correla-
tion. In the library example, when returning a book it is clear to
which process instance it belongs since one book can be involved
in only one loan at a time.

Figure 4.4 shows an excerpt of the BPMN diagram that represents
the loan process for the Smart Library scenario. The participation of
physical elements in a task is represented by means of a small square.
Physical elements can either be required or generated by a task, which
is depicted with an association between the object and the task that is
defined in one direction or another. When a task needs the information
associated to a physical element, the direction of the association is from
the object to the task. In contrast, when a physical element is generated
by a task, the association is defined in the opposite direction. The
correlation role is represented using a thick border.

In the example, books are detected using different identification

74 A design method for physical mobile workflows

technologies and interaction techniques depending on the automation
level required. Identifiers printed on paper (e.g., barcodes) can be ac-
cessed by the mobile devices of much of the potential library members.
Users can make use of an implementation of the pointing interaction
technique to access barcodes by means of their phone camera. In this
way, users can carry out the book loan and pick up reserved book tasks.
These tasks are performed autonomously by library members without
the assistance of the librarian.

In order to allow an autonomous return of books, books should be
detected when they are placed inside the return box without further
human intervention in their identification. Since a greater degree of
automation is desired for this task, radio frequency-based identifica-
tion (i.e., using the scanning interaction technique) is used for book
identification in this task. This task also illustrates the use of physical
elements for process correlation. Books are used to determine which
process instance is associated with the return book task.

In order to determine the adequate interaction technique to be used
in each task, the automation level required for the task and the available
identification mechanisms are studied in an abstract manner. Each task
in the workflow is analyzed to determine to which extent the interactions
involved must intrude the user mind (the obtrusiveness level). In this
way, the degree of automation of the process can be adjusted to the
requirements of each particular task and the appropriate interaction
technique can be selected from the ones available. Some tasks could
require implicit interaction in order to allow the process to be more
fluent, while others would require the users to be completely aware of
the system actions.

The following subsections provide more detail on the specification of
the obtrusiveness level and the selection of the appropriate interaction
technique.

4.2.1 The obtrusiveness concept

With more devices being added to our surroundings, users increasingly
seek simplicity (Maeda, 2006). Since user attention is a valuable but

4.2 Capturing technology-independent requirements 75

7
|

direct manipulation - alerts
command interfaces : direction ﬁ

initiative msp
T e
1S

abstraction ' ambient
automation agents

Figure 4.5: Framework for characterizing implicit interactions (Ju & Leifer,
2008).

limited resource, an environment full of embedded services must behave
in a considerate manner, demanding user attention only when it is re-
quired (Gibbs, 2004). In a business process, the user must be aware of
the relevant information only. It is the task of the designer to determine
which tasks the system can perform automatically and which ones must
the user be aware of.

We make use of the conceptual framework presented in (Ju & Leifer,
2008) to determine the obtrusiveness level for each task in a physical
mobile workflow. This framework defines two dimensions (see Fig. 4.5)
to characterize implicit interactions: initiative and attention. According
to the initiative factor, interaction can be reactive (the user initiates the
interaction) or proactive (the system takes the initiative). With regard
to the attention factor, an interaction can take place at the foreground
(the user is fully conscious of the interaction) or at the background of
user attention (the user is unaware of the interaction with the system).

Other frameworks exist for the definition of implicit interactions (Bux-
ton, 1995; Horvitz et al., 2003). However, we found it very useful to
consider initiative and attention as independent concepts. In the case of

76 A design method for physical mobile workflows

(Business process
model

Figure 4.6: Tasks from a business model are associated to a region of the
obtrusiveness space.

physical mobile workflows, automation and user awareness are factors
that usually vary independently from task to task.

According to our proposal, once a business process is defined, the
designers must indicate the possible obtrusiveness levels for each task.
The conceptual framework used in this work defines two axes to repre-
sent obtrusiveness. For each task, we take this space and make different
divisions for each axis. Designers can divide the obtrusiveness space
into many disjoint fragments to provide specific semantics to each frag-
ment. The only rule that must be followed when dividing an axis is
that the ordering must be preserved in each axis for the defined values.

Figure 4.6 illustrates the linkage between different tasks and the ob-
trusiveness space for the interactions that support each task. The initia-
tive axis in this case is divided into two parts: Reactive and Proactive.
The attention axis is divided into three segments, which are associated
with the following values: invisible (there is no way for the user to per-
ceive the interaction), slightly-appreciable (usually the user would not

4.2 Capturing technology-independent requirements 77

perceive it unless he/she makes some effort); and awareness (the user
becomes aware of the interaction even if he/she is performing other
tasks). Designers can divide each axis in as many parts as they require
for describing the obtrusiveness level for the process. This division is
later considered for selecting the appropriate interaction mechanisms
for each element involved in the process.

These divisions allow designers to classify the different interaction
techniques available. In this way, designers can later chose the inter-
action technique that best fits with the requirements captured. More
detail on physical interaction is provided below.

In some cases the most adequate obtrusiveness level for a task de-
pends on some context conditions and cannot be determined at design
time. For example, tasks such as remember hospital patients to take
their medication can be performed at different obtrusiveness levels de-
pending on the delay from the moment each patient was supposed to
take the medication. Chapter 6 provides mechanisms to adapt the work-
flow to changes in the obtrusiveness level.

4.2.2 Physical interaction

Users can interact with a physical element in different manners. For
example, users can access the services that are associated with an ele-
ment either by pointing to the element, touching it, or scanning nearby
elements with their mobile device. These are only an example of the in-
teraction techniques that have been defined for the interaction between
users and their surroundings in the literature (Ballagas et al., 2004;
Broll et al., 2008; Iftode et al., 2004; Rukzio et al., 2006). However,
there is not a universal interaction technique that is well suited for any
situation. The selection of an adequate interaction technique depends
on (1) the user activities and (2) the feasibility for its application.

The analysis of user activities and the physical elements that are
involved in each task is part of the design method proposed and is
useful to determine the most appropriate techniques for each task in the
workflow. Designers can found in the literature guidelines to determine
the pros and cons of each technique (Rukzio et al., 2007, 2006). For

78 A design method for physical mobile workflows

radio paper

- scanning
- touching

numbers on paper image on paper

- human-mediated - pointing

Figure 4.7: An example of different mediums and specialization relation-
ships.

example, the scanning interaction technique has been selected for the
return of books in the example since it allows books to be detected
automatically with minimal user intervention. However, the interaction
technique selected also depends on the identification technology used
for the physical element. For example, touching cannot be applied if
the physical element is only identified by means of a barcode.

This section introduces the medium concept in order to represent
which interaction techniques can be applied in each kind of identification
technology. In order to handle the technology heterogeneity in Auto-
ID, the medium concept is useful to represent technologies with similar
properties.

Applications in the IoT lay on top of a heterogeneous collection
of ubiquitous devices (Rellermeyer et al., 2008). As a consequence,
physical elements can be identified in a myriad of different ways (e.g.,
using a sequence of bars on a paper or a radio wave emitted by an
RFID tag). Mediums are defined in this work as physical supports
for identifiers. Business Analysts can define mediums to represent a
kind of technologies in an abstract manner. For example, the Business
Analyst can define the paper medium (see Fig. 4.7) in order to describe
in an abstract manner a set of identification technologies that have some
requirements in common: (1) the technologies must be cost-effective
by using identifiers that are cheap to produce and that require simple
devices for their capture; and (2) the technologies require direct line-
of-sight since identifiers are recognized optically.

4.2 Capturing technology-independent requirements 79

For each medium we consider (1) which regions of the obtrusiveness
space it supports and (2) the interaction mechanisms that can be used
to access them. The regions of the obtrusiveness space are defined ac-
cording to the framework introduced in Section 4.2.1. The interaction
mechanisms for interacting with the real world through a mobile device
are based on those defined by Rukzio (Rukzio et al., 2006). Some exam-
ples are the selection of a real world object by touching it with a mobile
device, pointing at it with the device, scanning the environment for
nearby objects, or applying user-mediated object interaction (the user
types in information provided by the object to establish a link).

The medium concept is a technological-independent mechanism for
describing identification requirements. This concept is useful for guiding
the later technological decisions. For the Business Analyst, the paper
medium is related to an identification mechanism that requires direct
line-of-sight and that is cheap to process. This information is useful to
determine that the paper medium is appropriate for supporting the par-
ticipation of the library members in the process. However, the analyst
does not need any knowledge about the technologies that support this
medium (e.g., using fiducials with a video camera or QR Code with a
photo camera from a mobile device). Alternative identification mech-
anisms (e.g. enclose the machine processable identifier with a more
human-usable one) are expressed by indicating multiple mediums for a
Physical Object. By combining different mediums their weaknesses can
be palliated. Later, any technology that supports those requirements
can be used for the system implementation.

Business Analysts can organize mediums in a hierarchy in order to
better capture their commonalities and variability. In the example, the
paper medium is specialized in two mediums which are considered as
sub-types. These sub-types distinguish between an identifier that is ex-
pressed by means of numbers from one that is expressed by means of
an image. In the example of the figure, image on paper and numbers on
paper are paper-based mediums but the interaction mechanisms they
support are different. The image on paper medium supports the point-
ing mechanism, while the numbers on paper medium requires users to
perform the identification and type the associated identifier (i.e., user-

80 A design method for physical mobile workflows

mediated interaction).

This study of the commonalities and variability of medium proper-
ties is also useful for supporting process evolution. When business
processes are re-engineered new technologies can be considered for their
support. By classifying the new technologies according to the existing
medium hierarchy, it can be determined whether these new technolo-
gies are really adding value to the process or not. For example, fidu-
cials (Bencina & Kaltenbrunner, 2005) are visual markers that can be
detected in real-time with a video camera. One particular aspect of this
identification technology is that multiple elements can be detected at
the same time. Thus, the scanning interaction technique could be used
for elements identified by means of fiducials. From this analysis we can
conclude that using fiducials to replace QR Codes is only worth it if
the use of the scanning interaction technique is really required by any
process task currently supported by QR Codes. For any other case fidu-
cials fall in the same medium category as QR Codes (image on paper
medium), and there is no need for re-tagging all the physical elements
involved in the process.

4.3 Technological requirements

The modeling primitives introduced in the section above allow the speci-
fication of business processes where physical elements are involved. Us-
ing these primitives, requirements for the integration of the physical
and the digital spaces are defined in an abstract manner. In order to
determine the technological resources for supporting the business pro-
cess, Designers should take different implementation decisions. These
decisions are also captured by means of models in order to (1) explicitly
state their rationale and (2) to use this knowledge for automating the
development in later steps.

The aspects that are captured in this technological perspective of
the system specification are (1) the Auto-ID technologies selected for
supporting the business process, and (2) how the system functionality
is distributed in different computing devices. the following subsections

4.3 Technological requirements 81

Technology | Medium/Technique Function Resource
Type
RFID radio/scanning, capture, RFID
touching produce antenna
QR Code paper/pointing capture photo
camera
produce printer
Text Label paper/user-mediated capture keyboard,
keypad
produce printer, pen

Table 4.1: Technologies, mediums and resources for the Smart Library sce-
nario.

provide more detail on these aspects.

4.3.1 Technological analysis

The different mediums considered in the business process define a set
of requirements for identification (such as being machine-processable,
cost-effective, etc.). The available technologies should be analyzed in
order to determine which one best fits the medium requirements. The
mediums supported by each technology are indicated in Table 4.1 for
supporting the example based on a library workflow.

For the Smart Library scenario, the considered technologies are
RFID, QR Code, and Text Label (text printed on a label that can be
read by a human). RFID provides identification capabilities that sup-
port the radio medium. QR Code and Text Label provide identification
capabilities by means of the paper medium, but both have specific re-
quirements. QR Code technology uses images, while the Text Label uses
numbers to represent identifiers.

Books in the Smart Library scenario are required to be identified
in such a way that (1) minimal human intervention is required for the
library staff and (2) mechanisms in the average mobile devices of the
library members can be used. To respond to these requirements, two

82 A design method for physical mobile workflows

technologies are used for book identification: RFID and QR Code. On
the one hand, RFID provides the highest level of automation from the
considered technologies. Thanks to this, when returning a book, tech-
nology is completely transparent for the user. In comparison to RFID,
QR Code offers a lower level of automation since the user interaction is
more explicit. However, QR Code results in a cost-effective identifica-
tion mechanism that can be used by much of the average mobile devices
available today.

Once the technologies are selected, the required resources for their
implementation should be determined. Table 4.1 defines the possible re-
sources that can be used for each technology and interaction technique
supported for a medium. RFID technology requires an antenna for both
producing and capturing identifiers. RFID is capable of supporting two
interaction techniques (touching and scanning). Image capturing de-
vices are required for QR Code. While input devices are required for
Text label capturers (for the example, a keyboard or a numeric key-
pad are considered). Printing resources are required for the identifier
production of paper-based technologies.

4.3.2 Deployment configuration

Functionality in support for a mobile business process is normally dis-
tributed across different computing resources. In order to support the
integration of physical elements in the different tasks from a business
process, the identification functionality should be organized. This in-
volves defining the setting of the different resources for the system. For
example, in the Smart Library case study, each return box should be
equipped with an RFID antenna to enable the detection of books when
they are returned. We use the concept of deployment unit to encap-
sulate the functionality required for the support of different tasks by
means of a set of technologies that is deployed in a particular device.

To provide an abstract view of the Smart Library setting, the dif-
ferent deployment units should be specified. Figure 4.8 represents a
diagram for the Auto-ID-related deployment units for the Smart Li-
brary case study. The following are defined for each deployment unit;

4.4 Validating the design with users 83

(0) (. A (. . R (A
Member Mobile Return Box Librarian Mobile Shelf Detector
Tasks Tasks Tasks Tasks
- Book loan - Return book - Place the book in - Place the book in
- Pick up reserved the shelf the shelf
book
Technol Technologi ' i
QR Code echnologies RFID echnologies REID Technologies RFID Technologies
- J - J - J k J

Figure 4.8: Auto-ID services involved in the Smart Library.

the task that it supports, the physical elements that are involved and
the technologies that are used. The Member Mobile deployment unit
represent a set of software components that support the book loan and
pick up reserved book tasks by making use of QR Code technology for
their completion. The software solution for this deployment unit is ac-
cessed by the library members from their mobile devices. The Return
Boxz deployment unit, is in charge of automatically detecting the re-
turned books by means of RFID. Thus, each return bor requires one
or several RFID antennas capable of detecting its content. The Mo-
bile Librarian deployment unit is accessed by the librarians from their
RFID-equipped mobile devices in order to transfer the returned books
from the return boz to their shelf. The Shelf Detector deployment unit
is also supporting the place the book in the shelf task. In this case, it
detects whether a book is placed in a wrong shelf.

4.4 Validating the design with users

The previous sections introduced a design method for the definition of
physical mobile workflows. However, when a workflow is designed, there
is no guarantee that the resulting system could meet the user expecta-
tions. The BPM cycle suggests to perform simulations of a business
process before it is finally executed. For the digital space, current busi-
ness process design tools provide simulation capabilities. These tools
can be used to determine whether the flow defined for tasks is the ap-
propriate or not. They provide capabilities for simulating the messages
that are exchanged during the business process. In this way, external

84 A design method for physical mobile workflows

services are not required to be actually implemented. However, when
these business processes take also part in the physical world different
issues arise for their evaluation.

This section provides techniques based on User Centered Design
(UCD) (Mao et al., 2001) for the evaluation of the impact for users
of a physical mobile workflow when it is performed in the real world.
UCD techniques are common to evaluate systems in the Internet of
Things domain (Carter & Mankoff, 2004). Thus, we applied some of
these techniques for the simulation of business processes that take place
in the Internet of Things. This section introduce a technique for the
early-stage evaluation of physical mobile workflows by means of fast-
prototyping. Our research results show that even though the proposed
prototypes can be built quickly, they are capable of reproducing a level
of user experience that is considered to be very close to what users
expect from a final system. Thus, flaws in the workflow design can be
detected before efforts are put into the development of the final system.

4.4.1 Requirements for the evaluation

Researchers have shown that evaluating ubiquitous systems can be dif-
ficult (Neely et al., 2008). Many factors required for the evaluation
of a system cannot be reproduced in a lab, but in-situ evaluation is
also challenging and not feasible in many cases. Since a one-size-fits-all
approach for evaluating ubiquitous systems is unrealistic (Neely et al.,
2008), we have analyzed the specific application domain we are targeting
and propose an evaluation model that fits the detected requirements.
We detected the following challenges for the evaluation of physical mo-
bile workflows:

Fast evolution. Business processes are fast-changing. We must be
sure that the implementation of the corresponding software solu-
tion is worth it. This requires performing an evaluation of the
system at an early stage of the development process that is
both accurate (it provides a good estimation of the benefits to be
obtained) and easily developed (it requires minimal effort).

4.4 Validating the design with users 85

Concurrent environment. The evaluation of a ubiquitous system
must take into account the integration with the rest of the ac-
tivities that the user is involved in (Neely et al., 2008). This is
especially relevant for physical mobile workflows since users are
normally involved in many business processes at the same time.
Thus, a workflow must be evaluated considering the interleaving
tasks in which the user participates.

Evaluation from the user and the process perspectives. Usability
and process efficiency are the key factors that determine the mo-
bile business service experience (Vuolle et al., 2008). These as-
pects are affected by different factors such as the kind of mobile
device used or the way in which the service is presented. When
evaluating physical mobile workflows, both perspectives should be
considered: user perception of the process and the productivity
increase for the system.

To fulfill the above requirements, we propose the use of early stage
prototypes. Early-stage evaluation techniques, such as paper prototyp-
ing, typically require little effort, time and money (Vredenburg et al.,
2002). These techniques enable iterative design, and providing frequent
feedback about the potential of the designs.

4.4.2 Fast-prototyping for physical mobile workflows

The overall approach for the fast-prototyping of physical mobile work-
flows is illustrated in Figure 4.9. The goal of our evaluation method
is to immerse the user in an environment that makes the user feel
as if he/she is using the final system despite the fact that a non-
functional prototype is being used. The first step in the evaluation is to
define a scenario according to the workflow that is being designed. The
scenario should consider the concurrent nature of business pro-
cesses. According to this scenario, users are provided a script to guide
their actions. For the library example, we combined book loan tasks
with other tasks related to book information gathering (e.g., finding
similar books).

86 A design method for physical mobile workflows

) Develop Evaluate the
Define
. screen mock- user
scenarios)
experience

Figure 4.9: The different tasks in the development method proposed.

The operator
triggers context
changes

nnq is over

e The user follows the
process according
to a script

Figure 4.10: In-situ evaluation applying Wizard of Oz and HTML proto-
types.

An HTML mock-up is designed for each task in the BPMN diagram.
These mock-ups provide the user with the expected response for each
task in the process (e.g., a form, a confirmation message, etc.). Since
the users have to follow a script that conforms to the business process,
it is easy to anticipate the results that can be obtained. In addition, the
availability of powerful editors for HTML documents and multimedia
content makes this approach quick to apply.

The interaction with the real world is simulated using Wizard of
Oz techniques (Dahlbéck et al., 1993). An operator provides the cur-
rent physical context using another mobile device (see Fig. 4.10). The
operator is in charge of providing the correct context information (e.g.
triggering the book detection when a user “touches” the corresponding
book). In this way, the user is immersed in an environment that behaves
like a working system with Auto-ID capabilities, but it is much easier
to produce.

4.4 Validating the design with users 87

In order to obtain fast-prototypes for physical mobile workflows, we
have followed the steps described below.

1. Define a scenario according to the process definition. A
specific instance of the workflow is defined to illustrate a relevant
use case. For example, we can define a scenario consisting in a
user that tries to borrow a specific book which is blocked and then
tries to find a similar one.

2. Detect the physical objects that participate in the sce-
nario. An interface must be provided to the operator that exposes
the possible detection events. This requires to analyze the relevant
states for the physical elements that are involved in the scenario.
Since prototypes are handling static information, a change in an
object state is easily handled as a different object. For example,
the operator can be provided two different events: one for trig-
gering the detection of a book when it is blocked and another
for triggering the detection og the book when it it is released.
In this way, the associated mock-up screen can better reflect the
appropriate information for the element.

3. Define the screen mock-ups for each step of the process.
Depending on the obtrusiveness levels considered, the elements
can be represented in a different manner (e.g., as taskbar notifi-
cation). Links between screens must be provided in a decoupled
manner. The screen to be shown depends on the physical context
and the action to be performed.

4. Provide complementary options and error messages. The
screen mock-ups support the interaction that is required for the
scenario defined. However, to provide more realism links to addi-
tional functionality can be provided. If the user access this links,
a warning would be shown instead. This can be useful to monitor
in which situations the users are missed in the script provided.

For the development of HIT'ML mock-ups two opposed requirements
are faced. We want mockups to be realistic but we also want them

88 A design method for physical mobile workflows

to be very easy to develop. To face both requirements we considered
the use of a set of HTML utilities for the development of Mobile Web
applications. In particular, we used the iUT framework ' which provides
javascript and CSS style sheets in order to achieve a look-and-feel for
HTML that is similar to mobile applications in the iPhone. Listing 4.1
shows an excerpt of an HTML prototype developed.

Listing 4.1: Excerpt from the HTML protoype.

<ul id="home" title="Tasks" selected="true" hideBackButton=
"true">
<1li id="pending_group" class="group">Pending tasks
<1li id="ret-1link">Return two books</1i>
<div id="p-task"></div>
<1li id="actions_group" class="group">Actions</1i>

Borrow book</1li>
<a href="#decode" onclick="setAction (’reservation’);"
>Fifteen minute reservation

User comments</1li>

Similar books</1i>

<ul id="pending" title="Return books">
<li id="by">Start at the end with smart requirements
<1li id="bx">Visual C++ user guide

The code illustrated above includes two screen mock-ups. The iUI
framework shows only an HTML fragment at a time from the many
that can be defined in an HTML file. Depending on the user navigation
iUI performs the appropriate transitions among screens. Two fragments
are defined in the listing above. The first one defines the initial pending
tasks and actions. When an action is selected, a variable is set to indi-
cate the action. The second one defines the information associated with

"http://code.google.com/p/iui/

4.5 Tool support for the method 89

F—

Return two books

Borrow book

Fifteen minute reservation

User comments Start at the end with smart
requirements

Similar books
Visual C++ user guide

Figure 4.11: HTML prototype.

the “Return two books” pending task. Figure 4.11 shows the rendering
of these HTML mock-ups.

The proposed technique makes it easy to apply the workflow defined
in an environment that is close to the real one since it does not require
much infrastructure. To apply this approach we only need WiFi connec-
tivity, a mobile device with a Web browser and a physical environment
that is similar to the real one. For example, we use our department
library to simulate the business process designed for the faculty library.

In order to obtain valuable feedback from users the MoBiS-Q ques-
tionnaire (Vuolle et al., 2008) has been used. MoBiS-Q is a questionnaire
that evaluates user experience for mobile business services combined
with enhancements in work productivity. An example of the applica-
tion of the evaluation technique can be found in Chapter 7.

4.5 Tool support for the method

The design method proposed in this chapter defines a set of concepts
that are used to describe physical mobile workflows at different abstrac-
tion levels. Designers can combine these concepts to specify the user

90 A design method for physical mobile workflows

activities, the requirements for physical interaction, the technologies
used and the deployment configuration for supporting a given business
process. A well-defined language must be used for this specification to
avoid ambiguities.

This section formalizes the concepts used for describing physical mo-
bile workflows into a Domain Specific Language (DSL). A DSL describes
concisely problems of a certain domain (van Deursen et al., 2000). Some
examples of DSLs are WS-BPEL for Web Service orchestration, SQL
to query data in a relational database or the Graphviz language for
defining graphs.

The DSL defined for the specification of physical mobile workflows
is named Parkour. Parkour describes in a formal manner the concepts
involved in the design method and the specific ways in which these
concepts can be combined to create a valid workflow definition. Since
Parkour has been defined to be machine-processable, the descriptions
made using this language can be automatically handled by different
tools. In particular, workflow specifications can be edited, validated
and used to guide the development of a final software solution.

The following sections provide detail on the definition of the Parkour
DSL and the support for validating different aspects of the specifications
defined with the language. The derivation of a software solution that
implements a workflow described with Parkour is detailed in Chapter 5.

4.5.1 The Parkour metamodel

This work follows a model-based approach for the development of phys-
ical mobile workflows. A model is a simplification of a system, built
with an intended goal in mind, that should be able to answer questions
in place of the actual system (Bézivin & Gerbé, 2001). Some examples
of models are a scale plane in a wind tunnel, a plan of a house or a
business process described in a paper. In this case, we are dealing with
descriptions of physical mobile workflows to guide their development. A
modeling language can be defined as a set of models (Favre, 2004a). For
example, a modeling language such as BPMN includes all the business
process descriptions (i.e., models) that can be obtained by following the

4.5 Tool support for the method 91

set of rules defined by the BPMN specification.

A metamodel is the description of a modeling language. A meta-
model defines which models are part of this language. Plenty of models
have been produced without metamodels or at least without making
explicit metamodels (e.g., in the form of a hand drawing in a mat).
Nevertheless, metamodels are useful to formalize and exchange models.
By defining a metamodel that formalizes the concepts presented in our
design method, we provide clear rules about how to model a physical
mobile workflow according to our approach.

The Parkour metamodel defines in a formal manner the modeling
concepts from our design method. A detailed description of this meta-
model is provided in the Appendix A. Some of the concepts in the Park-
our metamodel were extensions on modeling elements from the BPMN
metamodel. BPMN constructs are used to describe the business pro-
cess in an abstract manner. These concepts are extended to include
specific information about the physical-virtual linkage supported in the
workflow. The Parkour metamodel integrates the BPMN metamodel in
a non-intrusive manner. Since the BPMN metamodel is used as-is, we
can make use of the existing tools for business process definition and
only complement the required information for the extended elements.

For the specification of business process models we took the BPMN
metamodel defined in the SOA Tools Platform Project (STP) as a basis.
The STP metamodel has a very complete support for the specification
covering almost all BPMN shapes, connections and markers except the
layouts and appearance of the lanes inside a pool and the group-artifact.
The STP project provides a functional editor for BPMN diagrams (see
Fig. 4.12, top) which is integrated with other modeling tools. For exam-
ple, Object Constraint Language (OCL) can be used to define queried
over the model (see Fig. 4.12, bottom-left).

The BPMN support in our approach relies on the BPMN metamodel
defined by STP. Figure 4.13 shows the different concepts in the BPMN
metamodel and the relationships among them. The metaclass BpmnDi-
agram normally is used as the root element of BPMN models. We can
distinguish four kinds of metaelements in the metamodel. Some meta-

92 A design method for physical mobile workflows

& openArchitectureWare - SmartLib/smartlib.bpmn_diagram - Eclipse Platform

File Edit Diagram Mavigate Search Project Run S04 Window Help
smartlib,bprn_diagram &3 =0
&y
Returr
T
= Borrov book
£
T
=
=
&
= 2
® —
£ .
= wait for the boak? Waiting is over
= w
< b3
El consale 52 = O|[h Metamodel Explorer &3 =0
Interactive QL = SN =N E‘B fi
#% Ecore * Mz < BE® = E2-r%- = 8 hpmn (http:f)stp. eclipse.orgibprmn) ~
- . E activity -» Vertex, MessageVertesx [org.
Evaluating:) 2 activityType
Aotivity.allInstances () -»select(a| a.activityTy B activity Typebiect [org. eclipse.stp.bpmi
B artifact - Identifisble, MamedBpmnObje
Results: B artifactsContainer -» NamedBpmnObject
4 ¥ E association - > EMadelElement [org. eclips
£ > [associationTarget -> Identifisble [org.ec
Activity, allnstances()- =select(a| a.activity Type=Activity Type: i Task)- »size() E BpmnDiagram - > 1dentifiable, ArtifactsCe
E pataobiject -> Artifact [org.ecipse.stp, b v
2 — >
P 0¥ I :

Figure 4.12: Eclipse-based tools for editing and querying business process
models

classes are used to represent the underlying graph structure of BPMN
diagrams such as Verter and SequenceEdge. Other metaclasses are used
for the purpose of classification. These classes are not instantiated by
final models but used for defining an inheritance hierarchy. This is the
case of NamedBpmnObject, Identifiable and IdentifiableNode. Other
elements are designed to support the main primitives of BPMN (see
Section 2.1.1 for more detail) such is it the case of Activity, Subprocess,
Lane and Pool. The Activity metaelement represents different atomic
elements from BPMN such as a task, a gateway or an event depending
on its type. Finally, different kinds of artifacts can be associated with
model elements as it is the case of DataObject as a particular subtype
of Artifact.

4.5 Tool support for the method 93

BpmnDiagram

IdentifiableNode

g ge
\1 O
SequenceEdge

e

MessagingEdge Identifiable <

Figure 4.13: BPMN metamodel used as a basis for the business process di-
agram

The Parkour metamodel extends Activity and DataObject from the
BPMN metamodel in order to specify the particularities of the physical-
virtual linkage. The Parkour metamodel was defined in a separate
metamodel in order not to couple the proposal with a specific workflow
modeling language. We follow the same approach for the non-intrusive
extension of the metamodel we applied in previous works dealing with

94 A design method for physical mobile workflows

’ H Task ‘ H PhysicalObject | medium E ObtrusivenessSpace
ask bject
11 1.1

initiativeLevel attentionLevels

tasks

El Physicallnteractio

attention
0.1

interdctionTechniques

technique| 1 1

H InteractionTechnique [E TechSupport
J 1.1 technique l

supportx 0. f
E Deploymentunit]__technologies0..* El Technology

’Q ObtrusivenessElement|

Figure 4.14: Excerpt from the Parkour metamodel

the BPMN metamodel (Torres et al., 2007c).

Figure 4.14 illustrates an excerpt of the Parkour metamodel that
formalizes the concepts used in our design method. The Parkour meta-
model defines the building blocks for describing physical mobile work-
flows. For example, our design method defines a hierarchy of mediums
to analyze the possible interaction mechanisms. In the Fig. 4.14 the
Medium concept is represented and a relationship is established with
the InteractionTechnique element. The Medium concept is defined with
a reflexive parent relationship to allow a hierarchy of inheritance when
mediums are defined. However, some of the rules that determine how
to build a Parkour model cannot be expressed in the diagram. For
example, the medium hierarchy must be acyclic since it represents a
taxonomy. In order to enforce this constraint we made use of the mod-
eling validation facilities provided by the Eclipse Modeling tools. In this
case we make use of Check language. This language has been specif-
ically defined for the specification of constraints and it can be easily
integrated with other Eclipse-based tools (such as the XPand templates

4.5 Tool support for the method 95

used for code generation in Chapter 5).

Listing 4.2: Check constraint example

import es::upv::pros::parkour
extension parkour::Extensions;

context Medium ERROR "The medium hierarchy must be acyclic.
Medium """+ name + "’ cannot be set as a child of " +
parent.name +".":
this.isAcyclic();

The code listing 4.2 shows the definition of a constraint. First it is
defined the kind of elements to which the constraint applies by means of
the context keyword. In addition, the severity (e.g., error or warning)
and the message to be provided to the user when the constraint fails is
also defined. Finally, the expression to be validated is specified. The
expression in the example makes use of the isAcyclic auxiliary func-
tion that is defined as an extension of the metamodel. The extension
statement in the example is in charge of importing the extension of the
metamodel that implements the isAcyclic operation.

Listing 4.3: Excerpt from the metamodel extension file

import parkour;

Boolean isAcyclic(Medium this):

(this.parent != null && this.parent!=this && this.parent.
isAcyclic({this})) || this.parent==null;

Boolean isAcyclic(Medium this,Collection[Medium] found)
if found.contains (this) then false
else if this.parent==null then true
else this.parent.isAcyclic (found.add(this));

The isAcyclic operation traverses the parent relationship to find
whether there are any ancestor that is found more than once. This
extension is shown in the listing 4.3. Two overloaded operations are
defined to support the search for cycles. The first represents the base
case for the first node explored. This function analyzes the current node
and relies on the other function to analyze their ancestors. The second
one takes into account the previous results and propagates the execution

96 A design method for physical mobile workflows

to the next ancestor until some child element is found or there are not
more ancestors. If there is a repeated element, a cycle has been found
in the inheritance hierarchy. This implementation ensures the detection
of cycles in a finite number of steps.

More detail on the Parkour metamodel is provided in the Appendix A.
The formalization of the concepts defined in our design method allows
to face the development of physical mobile workflows from a higher
abstraction level. We can make use of modeling tools to define valid
workflow specifications according to our method. The following section
defines the mechanisms to translate these specifications into a model
based on Presto architectural concepts.

4.5.2 Model-based validation

One of the most important uses of models is to reason about the
system they describe. Model-based verification can ensure that some
aspects of the system are valid prior to its construction. This section
introduces some of the validation capabilities provided during system
specification.

The method proposed for the design of physical mobile workflows
promotes separation of concerns. Different aspects are specified in differ-
ent models in order to better handle complexity. However, this requires
to apply validation techniques in order to guarantee that the different
aspects specified are consistent.

We have implemented different validations that can be applied auto-
matically to Parkour models. The validation mechanisms are supported
by Eclipse-based tools. The properties to be checked in models are ex-
pressed by means of different constraints. The constraint specification
is detailed in the Appendix A. This section provides an overview of the
questions that can be answered thanks to these constraints:

Can the physical-virtual linkage be supported in practice? Given
a workflow specification it is essential to determine whether the
technologies selected can support the physical-virtual linkage in
the way it has been described. Designers can determine whether

4.5 Tool support for the method 97

a particular interaction technique can be applied for a task by
considering the technologies used for identifying the elements in-
volved.

Designers can foresee the impact of removing, adding or changing
a specific identification technology by simply modifying the model.
For example, by describing a new identification technology in the
medium hierarchy it is immediately detected which tasks can be
supported by this technology in terms of interaction techniques
and obtrusiveness levels.

Can the workflow be optimized? In addition to the detection of
inconsistencies, it is important to detect situations of potential
improvement. Constraints have been defined to detect identifiers
that are produced by a technology that produce an identifier by
using a technology that is not used by any other reader, or medi-
ums that do not support any interaction technique.

The above examples do not necessarily constitute an inconsistency
since (1) the identifiers produced can be consumed by third parties
and (2) mediums can be used with the purpose to organize the
medium hierarchy. Nevertheless, is it good to make the designer
consider whether a specific modeling element (especially in non-
common situation) is really useful.

Is the workflow suitable for generation? When abstract concepts
are projected into concrete software components they must respect
the platform rules. For example, redundant elements can result
in a name clash in the system (e.g., two Java classes in the same
package with the same name). For each element in our models it
is verified that the names given do no produces any problem when
components are generated.

The possible conflicts among components depend on the specific
elements considered. For example, two mediums with the same
name cannot be defined. But tasks can be defined with the same
name provided that they are supporting different processes (i.e.,
associated with different Deployment Units). This kind of vali-

98 A design method for physical mobile workflows

dation is essential to make the underlying platform transparent
to developers. Otherwise, designers are required to take some
platform-specific rules into account when they are modeling.

These constraints have a twofold goal. On the one hand, they are
used during design to provide modelers with immediate feedback about
inconsistencies in their specifications. On the other hand, they simplify
the definition of the model transformations since transformations can
be specified by assuming that the models are consistent.

Figure 4.15 shows a Parkour instance model where the editor has
detected some inconsistencies. The editor verifies the constraints each
time the model is saved (or by user demand). The errors and warnings
detected are integrated in the standard error view provided by Eclipse.
In this case, the model contains one error and one warning. The error
is produced because the deployment unit is supporting the borrow book
task by means of RFID while the book was only tagged with a paper-
based identifier in the example. Thus, the task cannot be supported
with the technology defined.

It is the task of the designer to evaluate whether to solve this is-
sue by changing the technology used in the task, to replace the current
identifier by RFID, or use RFID in addition to the current technology.
Validation support becomes also useful in this process since the impli-
cations of each technology can be explored in the model. Fig. 4.15 also
shows a warning because the paper medium was not associated with
any interaction technique. In this case, the specification is correct since
the paper medium is used as an abstract medium in order to organize
the medium hierarchy.

4.6 Conclusions

This chapter introduces a design method to specify physical mobile
workflows. The introduced approach is connected with other stages
from the BPM cycle and allows physical mobile workflows to enter the
BPM cycle from the beginning. It has been illustrated how to capture

4.6 Conclusions 99

1 examplexmi £ =0

@ Generic Editor - example X¥mi The technology sel..it 'Member Mobile' = ¥

Model Properties

4 [X| platforre/resource/workflows/src/parkour/es ;
il p ! & /srep ! Mame Member Mobile

a 4 Parkour System Smart Library

<4 Medium paper Tasks Task Borrow book B
< Medium radio

< Medium numbers on paper

m

Technologies Technology RFID
<+ Medium image on paper g & B

» < Obtrusiveness Space
< Interaction Technique peinting
< Interaction Technique scanning
< Interaction Technique user-mediated
< Physical Object book
4+ Task Borrow book
4+ Task Return book
<+ Deployment Unit Member Mobile
<= Deployment Unit Return Box
4 Capture book for Borrow book task
4 Capture book for Return book task
4 < Technology RFID
< Support for scanning on radio

=

.4 Technology Camera
[Zl Problems &2 ¥ =08

1 error, 1 warning, 0 others
Description ‘ Resour
@ Errors (1 item)
@ The technology selected cannet support the tasks in the deployment unit 'Member Mobile' examp
& Warnings (1 iterm)
& Medium 'paper’ is not supporting any interaction technique, examp

4 m 2

Figure 4.15: Validation for the deployment unit constraint.

the requirements for the physical-virtual linkage in a gradual manner
by means of modeling techniques. The use of models has been useful
to centralize the knowledge about the workflow and organize it in a
way that it is easy to handle for designers (e.g., work with technology-
independent concepts, detect inconsistencies, etc.).

The designs defined according to the method can be easily put into
practice. Fast prototyping techniques have been used to validate the
mechanisms used for supporting the physical-virtual linkage for each
task in the workflow. The feedback obtained from the evaluation can

100 A design method for physical mobile workflows

be used to better adjust the models defined at design-time.

The design method provided relies on proven techniques and frame-
works for business process modeling, implicit interaction design and
physical interaction patterns. The following chapters make use of the
models defined to provide execution and adaptation capabilities for the
final software solution.

CHAPTER 5

Automating the development

Modeling techniques describe a system by handling abstractions of
the problem space. This allows to express designs in terms of
concepts from the application domain instead of concepts from the
technical space (Schmidt, 2006). By raising the level of abstraction,
systems can be developed without taking into account much of the im-
plementation details of the underlying platform. Models are used to
organize the knowledge about the problem domain in order to guide
the development. Furthermore, when models are machine-processable
and precise-enough, they can be used to automate the production of a
software system (Pastor & Molina, 2007).

This chapter applies Model Driven Engineering (MDE) principles (Favre,
2004b) to automate the development of physical mobile workflows. Thanks
to MDE techniques, it has been possible to traverse the gap between
the high-level concepts used at design and the technical details of the
particular mobile platform that is used for the system implementation.

Figure 5.1 illustrates how our approach connects the concepts used
at design (e.g., task, obtrusiveness level, physical interaction, etc.) with

102

Automating the development

abstraction

Design concepts

Formalization
Design concepts are expressed
as a modeling language

Parkour Transformation

The system is defined in terms
- of an abstract architecture
Presto Generation
Code is generated for a specific
<! platform
Android, JavaFX, SCA, etc.

Hardware platform

Figure 5.1: Strategy for covering the abstraction gap in the development of

physical mobile workflows.

a particular implementation platform. Owur approach introduces two
layers to cover the abstraction gap between the design concepts and the
software platform:

Parkour. The design concepts defined are formalized into a model-

ing language named Parkour in Chapter 4. Designers can define
the requirements for a workflow by following our design method
and use the system specification during the development process.
By formalizing design concepts, system descriptions can be pro-
cessed to validate their consistency and automate some steps in
the development. This chapter provides mechanisms to transform
workflow specifications based on Parkour into a final software so-
lution.

Presto. Presto is an architecture specifically defined to support ap-

plications in the physical mobile workflow domain. Presto is a
sustainable software architecture, that is, an architecture
that can evolve over time throughout several technological cycles.
The architecture elements are defined in a technology-independent
fashion and code generation techniques are used to translate the
generic architecture into components for each particular mobile

5.1 The architectural process 103

platform targeted for development.

Model transformation technologies have been used in this work to
translate system specifications based on Parkour into Presto-based mod-
els. Since both, the design and architecture concepts have been defined
using modeling technologies, a mapping can be applied between them.
We developed a model transformation that takes a Parkour specifica-
tion as input and produces a first version of the architecture (defined
by a Presto model). Then, developers can complete the Presto model
and generate the corresponding code to different mobile platforms.

This chapter defines the automation support provided for the devel-
opment of physical mobile workflows. Our proposal follows an architecture-
centric approach: the different modeling layers are defined following a
bottom-up approach by starting from the system architecture. First,
Presto is defined as a model-based architecture that is capable to gen-
erate code. Then the abstraction level is raised by Parkour. Parkour
was defined on top of Presto to provide a language that captures the re-
quirements for Presto-based systems. Although Parkour and Presto are
used in conjunction in this work, they are not tightly coupled since map-
pings among them are externally defined. Thus, Presto architecture can
be also used in other development methods and Parkour descriptions
could be mapped to a different architectures if necessary.

The remainder of the chapter is structured as follows. Section 5.1
introduces the architecture process followed in our approach. Section 5.2
defines the architecture by decoupling the architectural concepts from
the mapping to a specific technology. Section 5.3 describes the way
in which the development process is automated for the architecture
defined. Finally, Section 5.4 concludes the chapter.

5.1 The architectural process

In order to offer support to business processes that involve real-world
elements, many technological aspects should be considered. These as-
pects are related to business process management, Auto-1D technologies

104 Automating the development

and mobile platforms. Some examples include Business process execu-
tion engines (based on different specifications like WS-BPEL or XPDL),
interoperability solutions (such as Web Services or Advanced Message
Queuing Protocol) to integrate different systems, middleware to control
Auto-ID events (such as Fosstrack! or Sun RFID? middleware), and
mobile operating systems (such as Android, iPhone OS, or Symbian).
The involved technologies are many in these fields, and new ones are
expected to appear.

In order to avoid the impact of this technology diversity during de-
velopment, abstraction is used to cope with technological details. Based
on the foundations of MDE it is proposed the use of models (abstract
technology-independent description of systems) to face the automatic
construction of this kind of systems. In order to define an architecture
that supports this automatic development paradigm, the architectural
process introduced by Vélter (Volter, 2005) is followed. Volter proposes
an architectural process (see Fig. 5.2) that is composed of the following
steps:

1. Elaboration phase. The architecture is defined by decoupling
the technology independent concepts from the actual technological
solutions. The elaboration of the architecture defines the architec-
ture first at a conceptual level. This constitutes a technology-
independent architecture. Then, usage guidelines for the de-
fined concepts are established in a programming model. The
technology mapping defines how artifacts from the program-
ming model are mapped to a particular technology. A mock
platform facilitates testing tasks to developers. Finally, the de-
velopment of a vertical prototype helps to evaluate the archi-
tecture and provide feedback about non-functional requirements
such as testability, maintainability, scalability, etc.

2. Iteration phase. This phase consists in putting the architecture
to work in order to consolidate the architecture. By iterating

"http://www.fosstrak.org/
http://sun-rfid.dev.java.net/

5.1 The architectural process 105

Phase 1: Elaborate

S E——
"""" P Technology-
----9{ Independent V.
Architecture RN
S~. provides QoS
%H \\ for
makes nice \‘\
T S ——— S EE—
> <|—
Programming | M [Technology
Model Mapping
<.---.
' AN |
] N\, 1
i R i
' \\ verifies 1 verifies
i N i
] \ (ﬁ
] \\
formalizes i . Vertical
v . ertica Mock Platform
! improves Prototype
\\\ ---------
Ny | —
A Phase 3:
\\ tomat Automate
\ DSL-based automates
AN Programming
i Model
Architecture)
Metamodel Glue Code
----------------- Generation
H f_\\%
1
E Model-Based
R Architecture
Validation
- J

Figure 5.2: Phases of the architectural process (Vélter, 2005).

through the steps of the first phase, feedback is received from its
use that can help to make the architecture more mature.

3. Automation phase. Finally, the use of the architecture can
be improved by avoiding repetitive programming tasks with au-
tomation. Normally developers cannot completely focus on the

106 Automating the development

domain concepts because they have to consider the conventions
and the execution model followed in the architecture. By applying
model-driven technologies, a system description can be automati-
cally verified to be consistent with the architecture principles and
the code that is required to enforce these principles (e.g., defin-
ing getters and setters for the domain objects, descriptors for the
components, etc.) can be automatically generated. In this way,
software development for the architecture becomes more effective
since developers can avoid to deal with low-level details.

The different steps that form the elaboration and automation phases
are detailed in the following sections. Chapter 7 provides detail on the
application of the architecture according to the iteration phase.

5.2 Elaboration of the architecture

This section introduces the steps followed for the elaboration of the
architecture. These steps go from the abstract to the concrete in a
gradual manner. First, the aspects to be supported by the architecture
are detected. Then, the architecture is defined at the conceptual level
and mappings to a specific technology are established. The details on
the elaboration are provided below.

5.2.1 Architecture requirements

Most of the current solutions for bridging the physical and the digital
spaces lack flexibility required to support physical mobile workflows. A
common approach for augmenting physical elements with digital ser-
vices is to include links to the digital services (e.g., URLs or e-mail
addresses) in the tags that are attached to physical elements. Since
this information is embedded in the tag of the element, it is difficult to
add, modify, or customize services without altering this tag (Broll et al.,
2008). This coupling between identifiers and services can be assumed in
many application contexts where the physical-virtual linkage is static,
but it becomes a problem when dealing with physical mobile workflows.

5.2 Elaboration of the architecture 107

In a physical mobile workflow, physical elements are augmented with
services provided by different actors (manufacturers, maintenance com-
panies, retailers, etc.). Users that participate in the process are nor-
mally only interested in a subset of these services, which depends on
the business process context (i.e. user’s role in the process and the ac-
tivities in which the user is engaged). Each user has a particular point
of view about the real world that is influenced by their role in the pro-
cess. For example, a shelf in a library can raise different questions in
a library member (Is my book there?), the librarian (Is any book mis-
placed here?) or the maintenance technician (Is any repair required?).

According to these requirements we defined Presto, an architecture
to support physical mobile workflows. Our design goal for Presto was
to support the physical-virtual linkage in a modular and ex-
tensible manner. Our approach decouples identification of elements
from the services that are provided to each user. In our approach,
the physical-virtual linkage is considered to be a subjective relationship
that depends on the observer. The services provided to the user depend
on the user’s role in the business process and his/her pending tasks.
Presto provides a set of components with a well-defined functionality
that can be composed in a pluggable manner for customizing the way in
which the physical-virtual linkage is established. More detail on these
components is provided below.

5.2.2 Technology-independent architecture

In this section we present a technology-independent description of the
Presto architecture. For the definition of the architecture, we rely on
the component concept since this is a well-understood concept that can
be implemented in most of the implementation technologies available.
Components are the basic software pieces that conform the system.
Component functionality is described by means of interfaces, and the
communication among components is performed asynchronously. We
have opted for asynchronous communication since the business processes
considered are usually long-running and involve human participation.

Presto has been designed to guide users when fulfilling their tasks

108 Automating the development

Digital services

@" o) Perso_nal ol
tasks lists | 12 |

Business Process

Execution Engine Calendar
Data Providers

y 2} é | Auto-ID technologies

- provide access to
) Controller |gH—— \physicaﬂ elements
Pending tasks | Task Manager Component
arrive @

Presto platform

| External services are accessed
for completing tasks

Pluggable components

Identification
Components

2D barcodes
—

A o=

RFID Magnetic éfrips

Physical environment

Figure 5.3: Architecture component overview.

in a workflow by starting from the physical or the digital world. That
is, users can discover the possible tasks to be performed when a given
object is detected in the real-world but they can also decide their next
task to perform from the information provided at the digital space.
To support this behavior Presto provides two general operation modes:
object-driven mode and task-driven mode.

In the object-driven mode, the physical context is sensed first and the
related tasks are then proposed to the user. For example, a user touches
a book with a device and the services associated with this book (such
as borrowing it) are presented to the user. In this way, the user finds
out what can be done in a given physical context. In the task-driven
mode, the user explicitly indicates which task he/she is performing.
The physical context is then accessed for the purpose of completing this
specific task. For example, the user by looking at their pending tasks
decides to return a book and then he/she is provided indications to find
this book.

In order to support the above operation modes, the system func-

5.2 Elaboration of the architecture 109

tionality is organized in components that can be composed in a different
manner depending on the operation mode used. Presto architecture is
composed of a Task Manager, a Controller Component, and several Task
Processors, Identification Components and Data Providers. Fig. 5.3 il-
lustrates the components involved in the Presto architecture and their
connection to digital and physical spaces. More detail about these com-
ponents is given below.

Task Manager. This component acts as a buffer where pieces of pend-
ing work are waiting to be completed. It receives messages from
external services such as the information system of a library and
waits for components to process them. The Task Manager can be
queried in order to retrieve messages according to certain criteria
(e.g., tasks of a certain type, involving a given physical element
or targeted to a specific user).

The Task Manager has a central role in offering a flexible physical-
virtual linkage since the information handled by this component
(i.e., the business process context) is used to determine the ser-
vices to be offered to each user. In desktop-based workflow sys-
tems, task management is centralized for all the processes under
the control of a single organization. Conversely, in a mobile envi-
ronment users change from task to task (across different organiza-
tions) on the go. Thus, it is desirable to allow users to access their
pending task from a single application point. The Task Manager
component provides a unified view for the pending work for all the
processes in which the user participates. This distributed schema
is common in mobile workflow approaches that keep part of the
process state information locally in the mobile device (Hackmann
et al., 2006; Pajunen & Chande, 2007).

Task Processors. These components are in charge of supporting the
extensibility of the platform in terms of business functionality.
A Task Processor is defined to handle a particular type of task
(e.g., borrowing a book from the library). Task Processors provide
the users with the required information, services and interaction
mechanisms for completing the task.

110 Automating the development

Task-based Uls allow users to arrange their machine’s interface
architecture to present only those functionality required for a par-
ticular purpose (Goth, 2009). In our approach, Task Processors
are the basic pieces to build a task-based interface that is pre-
sented to the user according to the physical elements detected
and the workflow state. Considering that a mobile device is nor-
mally used by a single user as a personal proxy (Want, 2008), it
is feasible to include all and only the functions that each user is
required to perform in a workflow. In this way, it is possible to
anticipate what users can do at each moment by activating the
corresponding Task Processor.

Identification Components. These components are in charge of sup-
porting the extensibility of the platform at the technological
level. Identification Components provide mechanisms for access-
ing the physical environment and transferring identifiers between
physical and digital spaces by means of some Auto-ID technology.
These components provide facilities for capturing and generating
identifiers with a specific technology. Identification Components
provide support to one or several interaction patterns between
the mobile device and the real-world such as touching, pointing or
scanning (Rukzio et al., 2006).

Data Providers. Data Providers are in charge of transforming the
identifiers provided by Identification Components into informa-
tion that is relevant for the user. Data Providers are in charge
of dynamically establishing the connection between physical ele-
ments and their virtual counterparts. Thus, they are the basis
for achieving a flexible physical-virtual linkage. Each Data
Provider represents a possible projection of a physical element in
the digital world. For example, a physical element such as a book
can offer the access to services provided by the library, the au-
thor who wrote it or its publishers. Each of these perspectives is
offered by a different Data Provider.

Controller Component. The controller is in charge of handling the
extensibility of the platform by coordinating the above com-

5.2 Elaboration of the architecture 111

Library member
Librarian perspective

<

Place into Temporal S2a0" book ™ -

the shelf reservation Pro
sk

User

Store client
perspective

BUy product

comments Ta

)
P
selling pdraiuct M ésouk Data
Book item Oneﬂ
m
/ \dRFID éBarcode ID co

Physical element

\ /
\/“m (e.g., a book)

Figure 5.4: Example of the role of identification components, data providers
and task processors.

ponents. The Controller Component transfers the information
among the different components in the architecture. The way in
which information is transferred depends on the operation mode
considered.

The controller determines which perspectives are valid for a given
business and physical context. A perspective is defined in this work
by the set of Task Processors that are associated with a digital
counterpart of a physical element which is provided by some Data
Provider. For example, the library perspective can include Task
Processors that enable users to manage their loans, while an on-
line shop perspective of the book would be associated with Task
Processors for buying a copy of the book.

As Fig. 5.4 illustrates, the physical-virtual linkage is performed by
Presto through different layers. A different perspective can be sup-
ported by selecting an appropriate subset of the components of the
figure. In the example, two Identification Components provide different
identifiers by means of RFID and barcode technologies. These identi-
fiers are mapped by Data Providers into different digital counterparts.
One data provider considers the physical element as a particular book

112 Automating the development

copy that can be borrowed at item level. The other data provider con-
siders the physical book as a representation of a literary work for which
different copies exist. Each of these counterparts can be associated with
a particular Task Processor. A Task Processor can either complete a
pending task associated with the object or initiate a new task.

The introduced components represent the building blocks that com-
pose any system based on Presto. These components define the tech-
nologies to use (Identification Components), the mapping with digi-
tal counterparts (Data Providers), and the associated supported tasks
(Task Processors). The next section introduces usage guidelines for
combining these components in the development of Presto-based solu-
tions.

5.2.3 Programming model

Having defined the technology-independent architecture, we now de-
fine how this architecture can be used from the software developer’s
perspective. Since we have followed a pluggable model for the archi-
tecture, building a system consists in the assembling of the required
plug-ins together. Thus, the construction of a Presto-based solution
consists in (1) determining the plug-ins to be developed (or reused if
they are already available) and (2) define how they are integrated in
the platform.

Depending on the operation mode followed, the components are co-
ordinated in a different manner during execution. Each Presto plug-in
includes some descriptive information that determines how it is inte-
grated in the platform. The Controller Component uses this informa-
tion to determine the behavior of the system when multiple plug-ins
coexist. Figure 5.5 illustrates the different execution strategies that the
Controller Component follows depending on the operation mode used.
The Activate Task Processor sub-process which is common for both op-
eration modes is also detailed in the figure. The information required
to determine which path to follow in these process diagrams is provided
by each plug-in. For example, each Task Processor indicates whether
it provides a user interface or not. This information is expressed in a

5.2 Elaboration of the architecture 113

Object-driven mode

Q__{ Select ID H Query Data Obta_ilp related
i ask
Component Providers
Processors
Task-driven mode

Activate Task
Select task Processor
Obtain Retrieve task
pending tasks information
Obtain Activate Task
initiable Task Select task Processor
Processors

Activate Task Processor

Any specific
perspective?

Select
perspective

&3

Query
physical
context

Provides
user interface?

no

Perform task

Generate new
identifier

Gather
information
from user

Figure 5.5: Different execution strategies depending on the operation mode
used.

declarative manner by means of a set of attributes that is specific for
each kind of component.

In the current architecture, Task Manager and the Controller Com-
ponent are generic; therefore, they can be used for any application in
the domain. For determining the rest of the components, the analysis
of the business process is required. The following aspects should be
determined: the tasks that compose the business process, the Auto-ID
technologies required for identifying the physical elements that are in-
volved in the process, and the information of interest for these objects
(see Chapter 4 for more detail on how to capture these aspects). Each
of these aspects is supported by a different kind of plug-in in Presto. A
Task Processor is developed to support each of the tasks that requires
user intervention. Identification Components are developed for the sup-
port of Auto-ID technologies. Finally, Data Providers are defined for

114 Automating the development

each information repository required. The properties that are used to
describe each kind of plug-in are introduced below.

Defining Task Processors

Task Processors are normally activated by the Controller Component
as a response to some existing pending task. However, it is also possible
to activate them for starting new tasks. In this case, the presence of
a pending task is not required for offering functionality of the Task
Processor to the user. A Task Processor is considered to be an initiator
if it can be activated at any moment for the creation of a new piece of
work. The task-driven execution mode illustrated in Figure 5.5 handles
Task Processors differently depending on the initiator property. This
has also has an impact in the way Task Processors are presented to the
user as it is illustrated below.

The Task Manager makes use of a dynamic to-do list metaphor
to provide access to the different workflows that are supported by the
system. Figure 5.6 shows a possible implementation of the dynamic to-
do list. The dynamic to-do list represents the user pending tasks and
the possible actions in a list:

Pending tasks. Pending tasks are pieces of work that must be per-
formed by the user. Each pending task is associated to a Task
Processor and contains part of the information that the Task Pro-
cessor needs for handling it (e.g., the physical objects involved in
the task). Figure 5.6 (left) shows two pending tasks that corre-
spond to the same Task Processor (return book) but are associ-
ated with different physical books. When the user is performing
a task, the corresponding Task Processor is provided the pending
task information and the remaining information is provided by
the user.

New actions. Task Processors that can be executed regardless of the
existence of an associated pending task (i.e., those qualified as
initiators) are presented to the user. In the library example, the

5.2 Elaboration of the architecture 115

NS
\ Smart Library b 4 J

The Book of Illusions

Return Don Quijot™®

by Paul Auster
Return AmI-08 Proceedings New actions
New actions Borrow book
Temporal reservation
eservation =
Comments

Comments

Buy on Amazon

Figure 5.6: A possible implementation for the dynamic to-do list metaphor
used in Presto.

return book task can only be accessed if the involved book is pend-
ing return. However, the book borrowing task is not performed in
response to any pending work; it is performed by user initiative.
Task Processors that can initiate a new workflow are shown in the
“new action” section in the dynamic to-do list. As it is illustrated
in Fig. 5.6, the actions that can be performed depend on the user
perspective of the process.

By accessing pending tasks or triggering new actions, users make use
of the task-driven operation mode. Users can access the object-driven
operation mode to obtain only the tasks and actions that are associated
with the current physical context. The sense button in Fig. 5.6 updates
the physical context and filters the to-do list in order to show only rele-
vant items. When a physical element is part of several perspectives (i.e.,

116 Automating the development

several Data Providers provide information regarding a single object)
the user can select the desired perspective to be only aware of the tasks
that are relevant according to this perspective.

In addition, Task Processors can provide a user interface or not
provide one. When a Task Processor is qualified as silent, the actions
required for carrying out a task are performed automatically without
demanding interaction with the user (see the “gather information from
user” step in Fig. 5.5). Silent Task Processors can access the physical
environment in an unobtrusive manner without disturbing the user.

Defining Identification Components

Identification Components are classified as capturers or minters accord-
ing to their function. This classification is based on the identifier reso-
lution mechanisms defined by Kindberg (Kindberg, 2002).

Capturer. Capturers are in charge of transferring identifiers from the
physical space to the digital space. Barcode readers, or RFID
receivers, are some examples. Capturers can offer identification
on demand or by subscription. Thus, they should support both
kinds of detection when implemented.

Minter. Minters are in charge of transferring identifiers from the dig-
ital space to the physical one. The creation of identifiers can
be performed using the same technology used for capturing (e.g.,
RFID antenna is used for capturing and minting tags) or a differ-
ent one (e.g., a barcode printer).

Identification Components can support one or both of the above
functions depending on the limitations of the underlying technology
and the different design decisions. This information is used to provide
the user only with the Identification Components that can be used for
each task in the process according to the identification needs of the task
(detecting or producing identifiers).

In addition, Identification Components plug-ins indicate the tech-
nologies that they support. When locating Identification Components,

5.2 Elaboration of the architecture 117

the search can be constrained to a specific technology for tasks where
the identification mechanism to be used is already known. This is useful
for processes where the labeling technologies used are known in advance
and not supposed to evolve in time.

Defining Data Providers

A Data Provider is in charge of (1) determining whether an identifier
corresponds to an element of a certain kind, and (2) providing related
information about this element. Digital services (e.g. EPC Information
Services, product databases, etc.) can be accessed for both purposes,
for checking that the identifier belongs to a list of elements of a certain
kind and/or for retrieving related information.

Data Providers provide digital information associated with some
physical elements that correspond to a given perspective. Data Providers
indicate the namespace (i.e., a unique name for the particular view they
are providing) for which they offer their services. In this way, collisions
are avoided when multiple Data Providers are present. In the case of
multiple Data Providers covering the same namespace, all of them are
queried until one of them provides results.

5.2.4 Technology mapping

Having defined the technology-independent concepts that conform the
architecture and the programming model that defines how to use this
architecture, we now explain the technology mapping. The technology
mapping defines how artifacts from the programming model are mapped
to a particular technology. More detail about the target technology
selected and how architectural concepts can be mapped to the
technological solution is provided below.

Technology selection

To select an adequate target platform, we analyzed the most relevant
aspects that are required for the support of physical mobile workflows

118 Automating the development

according to our architecture: support for user interaction, the exten-
sion model provided, and the data abstraction capabilities. For the sup-
port of smart workflows, devices of a different nature must be capable
of providing rich user interaction (i.e., integrating mobile resources such
as touch screens, GPS information, etc.). The implementation platform
is required to provide an extension mechanism to describe the compo-
nents and allow them to be (un)installed at run-time for the system
to be adapted. Finally, mechanisms must be provided to interoperate
among components and between components and external systems at
data level.

We have selected Android as a technological platforms that fit these
requirements. Android is an Operating System and application frame-
work that is targeted to mobile devices. We have chosen the Android
platform since it provides an open application framework that can be
extended in different ways. In addition, several Android devices are
available today, and new ones are announced. These devices include mo-
bile phones, netbooks, eBook readers and digital picture frames among
others. Thus, physical mobile workflows that span across many kinds
of devices are possible with Android. More detail about the reasons for
selecting Android as a target technology is provided below.

User interaction. Android provides support for advanced interaction
techniques such as gestures or text-to-speech synthesis and easy
mechanisms to integrate functionality from different applications.
The communication mechanism defined among Android compo-
nents is based on Intents. An Intent is an abstract description of a
desired action (e.g., obtaining an image) regardless of the compo-
nent that provides this functionality. Presto makes use of intents
to integrate the functionality of applications such as the Barcode
Reader that decodes different kinds of barcodes by means of the
camera of the device.

Extension model. The Android platform provides loosely-coupled com-
ponents such as Service, Activity, and Content Provider. A Service
in Android provides functionality that is executed in the back-
ground, and an Activities provides the user interfaces from which

5.2 Elaboration of the architecture 119

service functionality can be accessed. A Content Provider offers
data to other components. This component model allows compo-
nents that share a common function to be easily replaced.

The Android Manifest is an XML file where the different Android
components of an application are declared. For each component
different attributes can be set such as the permissions it has, the
intents to which it responds to, etc. In addition, the information
for each component can be extended with new metadata.

Data abstraction. Content Providers are used for sharing data among
Android components. Content Providers offer their data as a
simple table on a database model where each row is a different
record. This uniform API allows to access information regardless
of the internal mechanism used for storing them (file, database,
web service, etc.). For the interaction with external services, a
REST-based approach is followed. Presto makes use of JSON
serialization capabilities in order to exchange information with
external services such as business process execution engines.

The above aspects show that the Android platform fits well with the
requirements defined for physical mobile workflows at technology level.
Other mobile platforms such as the iPhone OS or JavaFX also provide
advanced capabilities for the support of physical mobile workflows, but
fail to completely cover all the above requirements. On the one hand,
the iPhone OS is a closed platform where mechanisms for component
interoperability and background processing are very limited. On the
other hand, JavaFX mobile is mostly focused on the user interface level
(e.g., not considering any extension model). In addition, the mobile
profile for JavaFX is at a very early stage of development at the moment
with no devices supporting it in the market.

Defining a mapping

In this section it is described how the Presto concepts are projected
into the Android platform. Android provides an application framework
with different components, and mechanisms to communicate them. This

120 Automating the development

Activity —O Intent filter
—> Intent launch

—*5 Intent broadcast
—2) Broadcast receiver

Content Service
provider

Figure 5.7: Graphical notation used to represent components of the Android
application framework.

section presents the mapping between the abstract components defined
in Presto and the components from the Android application framework.
The mapping is described in this section in a visual and textual manner
and it is later formalized in Section 5.3.3 in order to automate the
development.

Figure 5.7 illustrates the notation used in this section to describe the
way in which each Presto component is mapped into Android. The main
components from the Android application framework are represented
in a graphical manner. The notation is aligned with other common
notations such as BPMN or UML for the sake of intuitiveness.

The intent-based communication mechanism is also represented in
our notation (see Fig. 5.7, right) to indicate their possibilities for the
components to interact. The way in which components handle intents is
depicted in a different manner depending whether we are describing the
capabilities of a component to either launch or receive a certain kind of
intent. When the broadcast mechanism is used, the previous notations
are slightly modified to indicate so. The capability of a component to
launch an intent is depicted by means of an arrow. If the broadcast
mechanism is used, the arrow is decorated with an asterisk to indicate
that it can reach multiple receivers. Since intents are used as abstract
descriptions of an action, the target component is not always known at
design time. When an arrow connects two components, it describes an
explicit intent. However, arrows are not forced to be connected with
a target element. In order to indicate that a component can respond
to a given intent we make use of the lollypop primitive (used in UML
for declaring an exported interface). When the component is a broad-
cast receiver the lollypop is decorated to resemble an antenna that can
receive the broadcast.

5.2 Elaboration of the architecture 121

Sense

() Create task
() Complete task

Pending
tasks
New action
Orchestration Data Provider
component Controller discovery

Figure 5.8: Implementation of the Task Manager and Controller Component.

The Android implementation of Presto includes two generic compo-
nents (Task Manager and Controller Component) that are present in
any system developed according to our architecture. Figure 5.8 shows
the Android components used for their implementation.

Task Manager. The Task Manager is implemented by means of an
Android Activity and a Content Provider. The Task List is the
Activity that provides a user interface to the pending tasks and
the new actions that users can perform for the different workflows
supported. The Task List activity represents the tasks in a list
that is divided in two sections (pending tasks and new actions).
Users can filter the Task List (see the Sense intent in the figure)
in order to access only the pending tasks and new actions that are
relevant in the current physical context. When the user selects to
perform some task (either pending or a new one), the correspond-
ing intent is launched. This intent (labeled as new action in the
figure) is created at run-time and the domain-specific information
of the task determines the intent parameters.

Pending tasks can be added and removed from the Task List
by the Create task and Complete task intents. Thus, the Task
List Activity from Fig. 5.8 includes two intent filters. A Content
Provider is used for storing the pending tasks and exposing them
to other components such as the Controller Component.

Controller Component. The Controller Component is implemented
as a service that is in charge of coordinating the execution of the

122 Automating the development

different actions in Presto. When a pending task or a new ac-
tion is selected by the user, the Controller Component launches
an intent (new action intent). The actions that the user can per-
form depend on the existing perspectives on the physical context.
For supporting a flexible physical-virtual connection, the differ-
ent Data Providers are queried by means of a broadcast. The
responses obtained for an identifier represent different perspec-
tives on the element. In addition, a service named Orchestration
Component is introduced to enable external services (such as or-
chestration engines) to inform the Controller Component about
changes in the process state (e.g., new pending tasks).

The listing 5.1 shows an excerpt of the Android manifest, an XML
file that describes the core package of Presto. In particular, the Task
List activity is described by declaring the corresponding intents. In
addition to the create and complete intent filters, the main intent filter
is used to indicate to Android that this activity is an entry point for
the application.

Listing 5.1: Task List Activity described in the Android manifest.

<activity android:name=".Presto" android:label="@string/
app_name" android:launchMode="singleTask">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.
LAUNCHER" />
</intent-filter>
<intent-filter android:label="Complete Task">
<action android:name="es.upv.pros.presto.COMPLETE"></
action>
<category android:name="android.intent.category.DEFAULT
"> </category>
</intent-filter>
<intent-filter android:label="Create Task">
<action android:name="es.upv.pros.presto.CREATE"> </
action>
<category android:name="android.intent.category.DEFAULT
"> </category>
</intent-filter>

5.2 Elaboration of the architecture 123

Identification Components Task Processors Data Providers
[Identifi:ation] [IdentificationJ

feedback i i

eedbac conflguratlon Task O

Task Processor SN
- \
Action X O B A

Sense Additional
. Sense/Mint ~ services
Mint
Complete/Create task

Identifier,
listener

Data Provider Information
repository

IDComponent

Figure 5.9: Implementation of the Presto pluggable components.

</activity>

Much of the controller logic for the Android version of the platform
is simplified thanks to the flexibility in the intent processing mecha-
nisms provided by Android. Different components can be used in an
interchangeable manner as long as they can respond to the same intents.
The way in which the pluggable components of Presto (Identification
Component, Task Processor, and Data Provider) are mapped to An-
droid components is illustrated in Fig. 5.9 and it is described below.

Identification Component. Identification Components in Presto are
implemented by means of an Android Sevice. An Identification
Component is in charge of minting identifiers, capturing identi-
fiers or both. The capabilities for identification are determined
by the intent filters defined in the service. Two activities are op-
tionally complementing the identification functionality when user
interaction is required to operate or configure the Identification
Component. On the one hand, some feedback is usually required
for guiding the user in the identification process (e.g., showing
the video captured in real-time for QRCode detection). On the
other hand, some identification mechanisms may accept different
configuration parameters.

Task Processor. Task Processors provide specific processing for a given
task in a business process. They are implemented by means of an

124

Automating the development

Android Activity. The activity is defined to react to a specific in-
tent (Action X in the figure) that represents its purpose depending
on the domain (e.g., borrow book). Task Processors can invoke
functionality that is provided by different Identification Compo-
nents in order to access the physical world. They can also alter
the process state by completing and creating tasks by means of
the corresponding intents. In addition, other services can be also
accessed in order to offer a better interaction with the user. For
example, the notification manager service can be accessed to in-
form the user about a relevant event by means of the notification
bar.

In order to distinguish which Android components are supporting
each Presto component, we label Android components with their
role according to the Presto architecture. We extend the Task Pro-
cessor activities with the task intent filter. This intent indicates
that the associated activity is a Task Processor. In addition, the
category parameter of the intent can be used to determine whether
this Task Processor can be initiated by the user or it only handles
pending tasks.

Data Provider. Data Providers are implemented as Android Services

that react to the detection of a physical element by providing the
information (if any) that they have regarding this element. This
is achieved by means of a broadcast receiver. In order to provide
the information associated to the detected element, a Content
Provider is queried by the service.

By defining the technological mapping as a separate process, it is
possible to project the architecture concepts defined into different tech-
nologies. In addition, the use of modeling technologies allows to auto-
mate the application of this mapping (see Section 5.3.3) and face the
development of physical mobile workflows by capturing its requirements
(see Section 4.5).

5.2 Elaboration of the architecture 125

PheneApplication.androidmodel_diagram &% =08
= | 53 Palette

PCRC]

= Components £
Dialer —call O Activity
O Service

| 8 Content Provider
—5end SMS (© Broadcast Receiver

Contact List View Contact
—O View Groups —*Send email (= Intents e

Contacts 'L — Intent Launch
Gall Explicit
New/Edit Contact =¥ Intent Launch

Implicit

=0 Intent Filter
= Intent Broadcast

Figure 5.10: Graphical editor for Android-based applications.

5.2.5 Mock Platform

Having decided the technology for the architecture, we now define a
mock platform for developers. With a mock platform, developers can
run tests locally as early as possible.

The use of loosely-coupled components for the definition of the plat-
form allows for the easy definition of mock-ups that can be later replaced
with the functional components. The mock components must respond
to a set of intents depending on their function. For example, a mock
Identification Component based on user input can be later replaced
with a component that makes use of a more advanced identification
technology such as RFID.

A graphical editor was provided for describing the components of
different Android-based applications. As Fig. 5.10 shows, the notation
used is the one introduced in section 5.2.4. With this tool develop-
ers can determine how an application interoperates with third party
components (e.g., the contact list of the mobile device) or mock compo-
nents defined to be later replaced with the final ones. Eclipse Graphical
Modeling Framework® was used for developing the tool.

Android also offers different testing capabilities that can be lever-

3http://www.eclipse.org/modeling/gmf/

126 Automating the development

aged when developing Presto-based solutions. Android includes a ver-
sion of the JUnit framework for the definition of unit tests. The an-
droid.test.mock package provides mocks of various Android framework
building blocks. For testing user interfaces, Android provides an instru-
mentation framework. The instrumentation framework allows to send
key events, and make assertions about various Ul elements. In addi-
tion, the Android Monkey tool is capable of generating pseudo-random
streams of user events such as clicks, touches, or gestures, as well as a
number of system-level events. The Monkey tool can be used to stress-
test applications in a random yet repeatable manner.

The use of JSON as the data serialization format to communicate
with external services also makes it easy to define mock web services.
A static text file can be used to simulate a external service without
requiring a formal definition of the data schema (as it usually happens
with XML). Later, the static text file can be replaced with a functional
version of the service that generates the result in a dynamic manner.

5.2.6 Vertical prototype

To validate the Presto architecture, we have implemented part of the
Smart Library case study (more detail on the case study in Chapter 7).
This case study is used throughout this work for illustration purposes
and describes different business processes in a library. We chose a library
context since it is well understood and it was easy to find people that
were familiar with it.

In the development of the prototype we followed the guidelines for in-
frastructure design and evaluation defined by Edwards (Edwards et al.,
2003). According to these guidelines we focused on the core infrastruc-
ture features, leaving out secondary aspects. While, secondary features
such as security, distribution, replication and so on are all key to certain
scenarios and even necessary for a “real world” deployment, they are not
central to the value that Presto promised to deliver. Thus, we focused
on the applicability of the architectural concepts of Presto and its oper-
ation modes. In particular, we evaluated to which extent the platform
extensibility and the flexibility in the physical-virtual linkage offered by

5.2 Elaboration of the architecture 127

[AID Component
[Data Provider \

(D Task Processor

A member The librarian

bOMTOWS “detects books
_ when they
=a book = are returned
Member device Librarian device
Catalogue)(_Borrow) (Return)
(QR Code]f Comments ;(Comment) (il J(Catalogue)(_Place)
(Presto platform] (Presto platform]
Library ﬂ 2 .The alarm at the
Services library exit goes off
only for the books
OSGi Server IA that are not on loan

Figure 5.11: Components for the Smart Library mobile clients.

Presto improved the support for book loan process in a library.

In the Smart Library case study, library members can borrow books
directly from the shelves where the books are physically located. In
addition, we provide users with access to comments about the book
and related information.

Figure 5.11 shows an overview of the library scenario. Two mobile
devices interact with the library Information System. Both clients are
based on the Presto platform but they extend it with specific plug-ins.
These plug-ins support the specific perspective of each participant in
the process. The library services are based on OSGi and we make use
of KNX devices to support the detection of books at the exit of the
library and the alarm system in a scale environment. An HTC Magic
was used as the client device. This is an Android-based mobile device
that provides access to WiFi, barcode decoding capabilities using the
camera, support for user gesture detection on the touch screen and
different embedded sensors (digital compass, GPS, accelerometer, etc.).

The extensibility of the platform enabled the creation of custom
clients for the different roles in the process just by combining plug-ins.

128 Automating the development

The mobile client for the library members includes a Task Processor
plug-in for each of the tasks that members perform in the process (e.g.,
borrowing a book and commenting on books) as well as an Identification
Component plug-in to support QR Code-based identification. QR Code
detection was based on the barcode reader component provided by the
ZXing project. The ZXing library provides decoding capabilities for
different kinds of one-dimension barcodes and QR Codes. For the QR
Code generation the Google chart API was used. This API provides
support for the generation of QR Code tags. In order to make the
recognition as fluent as possible, we selected the “H” error correction
level, which is the highest correction level defined by the QR Code
standard (it allows the recognition of a code that is damaged up to a

30%).

Librarians make use of the Identification Component that supports
RFID technology to support a different set of tasks (e.g., notify the
return of books and place them on their shelves). Due to the lack
of RFID capabilities of the mobile device used, Wizard of Oz tech-
niques (Dahlbéck et al., 1993) were applied to simulate the reading of
RFID tags for librarians. An operator provided the identification events
when a mobile device touched a specific item. If an Android-based
mobile device with RFID capabilities were available, RFID capabili-
ties could be leveraged just by replacing the Identification Component
without affecting the rest of the system.

The book lending process is complemented by services enabling
members to share book-related comments. While book lending con-
cerns books at the item level, comments are not specific to the book
itself but rather to its content. Thus, two different Data Provider plug-
ins were defined to represent these views in order to offer flexibility in
the physical-virtual linkage.

Figure 5.12 illustrates the interaction with a physical book for a
scenario based on the loan process of books in a library. First, Presto
shows the tasks that the user can initiate and complete depending on
the available Task Processors. This list can be filtered using differ-
ent technologies. In the example, three Identification Components are
available. Each Identification Component supports a different physical

5.3 Automating the development process 129

Filter tasks

Pending and new tasks are filtered)
according to an Identification Component /I Perspectives
from those available in the system /" The user can select

different perspectives
for the current
physical context

@ QR Code Reader

7 RFID Reader

| - —
Return book
When the book is returned,
the library member receives
a notification

Figure 5.12: Book loan process supported by Presto.

mobile interaction (Rukzio et al., 2006) by means of a different technol-
ogy: QRCode for pointing, RFID for scanning, and a virtual keyboard
for user-mediated interaction. Once a physical element is detected, the
user can select a perspective (e.g., “Smart Library”, “Amazon Store”,
etc.) to access the appropriate functionality (e.g., borrow the book)
according to the perspective. Later, the user is notified when the book
is returned (the librarian performs the return book task).

5.3 Automating the development process

One of the main reasons for following the current architectural process is
that it is focused on automation. Business process requirements change
quite often, and systems need to evolve accordingly. By automating
the development process, the system can adapt to requirement changes
without losing quality. With the adequate tool support, changes in
requirements can be mapped automatically to the particular technology
the system relies on, facilitating its evolution.

Provided that modeling concepts are defined in a precise way, mod-
els can be transformed automatically into new models or code by means

130 Automating the development

Workflow Spgclfy Implement
N additional . .
design " business logic
services
. Map to .
Validate ap Validate Generate
} architecture .
design architecture code
concepts

Figure 5.13: Automated and manual steps in the model-driven process.

Manual

Automated

of model transformation techniques. This enables automation in sys-
tem development since software artifacts can be derived in a systematic
way. Many technologies and standards give support to this develop-
ment paradigm. The Object Management Group (OMG) defined Model
Driven Architecture (MDA) (Miller & Mukerji, 2003) to provide sup-
port to these ideas with standards for metamodeling and the definition
of model transformations. Either following MDA or any other paradigm
based on MDE ideas, software development can be improved by the raise
in the abstraction level that the use of models provides.

Figure 5.13 illustrates the tasks that have been automated for the
development of physical mobile workflows. The model-driven process
defined begins with the specification of the workflow by means of the
design concepts defined in Chapter 4. Then, this system specification
is automatically validated and transformed into the Presto architecture
concepts. Designers can modify the obtained model to specify addi-
tional digital services that are required to support a certain task in
the workflow. The architecture model is validated and code generation
techniques are applied to obtain an initial implementation of the sys-
tem for a given platform. Finally, the implementation is completed to
include business logic and link services with the external entities that
provide them.

The following sections describe the definition of the architecture
metamodel, how Presto specifications can be obtained from the work-
flow descriptions and the mechanisms applied for obtaining a software

5.3 Automating the development process 131

enabledBy 0.*

[l AdaptableElement disabledBy 0.+ El ContextCondition|

JAY

’ E channel '&;:27 Hl Service

’ E IDComponent H TaskProcessor

omain
E] DataProviderrTT H Domain

domainsOfinterest

Figure 5.14: Excerpt of the metamodel for Presto architecture.

solution.

5.3.1 Architecture metamodel

MDE proposes the use of metamodels to formalize concepts and their
relationships. A metamodel defines the constructs that can be used to
describe systems and the ways in which these concepts can be combined.
Using a metamodel, system descriptions become unambiguous at least
at syntactic level. This makes the descriptions machine-processable.

The architecture metamodel of Presto captures the concepts de-
fined in Section 5.2.2 such as the Identification Component or the Task
Processing Component, and the constraints for their composition. Fig-
ure 5.14 shows a diagram for the architecture metamodel. The complete
metamodel can be found at the Appendix A.

The metamodel includes the definition of the pluggable components
(TaskProcessor, IDComponent, and DataProvider), some concepts to
group them (Domain and Process) and some concepts to describe adap-
tation of the workflow (AdaptableElement and ContextCondition). The
pluggable components represent the basic building blocks of any Presto-

132 Automating the development

based system. The metaelements defined allow designers to specify the
properties that characterize each component as it was introduced in
Section 5.2.3. For example, Task Processors can be declared as initia-
tors.

Metaelements such as Domain and Process have not a direct repre-
sentation in the final software system. The domain represents a partic-
ular group of physical elements that is provided by one or more Data
Provider components. The Process element was introduced to organize
Task Processors according to their support to a specific workflow. This
is also expressed as plug-in properties in the corresponding elements.
For example, Task Processor plug-ins can indicate the supported pro-
cess as a text string. Representing these concepts at the modeling level
provides benefits in terms of knowledge centralization. Changing the
name of a given process is performed in a single place instead of modi-
fying all the Task Processors associated to it.

Presto systems normally access different kind of services to provide
functionality to the user. Services are connected by means of Chan-
nel elements and can be adapted according to some context conditions.
These elements are defined to support the approach introduced in Chap-
ter 6 to adapt the workflow at run-time. We have defined the Service
metaelement to represent these services. We defined the Identification
Component as a particular kind of Service since it can make use of other
services to achieve identification tasks. The Identification Component
follows the composite pattern. Thus, Identification Components can be
used by other Identification Components. This is useful for handling
containment relationships (e.g., books contained in a return box that
can also be identified).

By using the constructs defined in the metamodel, different Presto-
based systems can be modeled. Since the concepts used for this de-
scription have been formalized, the resulting models can be processed
automatically by different MDE tools. For the definition of the archi-
tecture metamodel, concepts have been formalized using Ecore. Ecore,
part of the Eclipse Modeling Framework® (EMF), is a language targeted

“http://www.eclipse.org/modeling/emf/

5.3 Automating the development process 133

at the definition of metamodels with precise semantics. EMF provides
tool support for the definition of metamodels and the edition of models.

We have defined the Presto metamodel as the first step towards the
automation of the development process. The use of EMF enables meta-
models to be machine-processable. This allows other EMF-compliant
tools to manipulate Presto specifications with different purposes (check
properties, define graphical editors for the specification, etc.). Thus,
Presto becomes also an extensible platform at tool-level. In par-
ticular, we make use of code generation techniques in this work to auto-
mate the technology mapping as it is illustrated in the following sections.

5.3.2 Using design concepts for development

According to the architecture process followed in this work, once the
architecture concepts are mapped to a specific technology, another ab-
straction step is required to simplify the use of the architecture. The
architecture should be programmable by using concepts that are close
to the problem domain. In this way, experts in the domain can un-
derstand, validate, modify, and define the software solutions by dealing
with concepts that are familiar to them.

With the definition of the design method concepts in a metamodel,
we can express the problem of obtaining a Presto-based solution as the
mapping between the Parkour and Presto metamodels. This section
provides a mapping between both metamodels that produces a prelim-
inary architecture model. This Presto model contains the basic compo-
nents that are required to support the workflow that has been described
in the Parkour model. The architecture model can be refined and used
as an input for code generation techniques in order to obtain a final
software solution.

The mapping between the Parkour metamodel and the Presto meta-
model is defined by means of a model-to-model transformation. Differ-
ent model-to-model transformation languages exist such as QVT (OMG,
2005), ATL (Jouault & Kurtev, 2006) or RubyTL (Cuadrado & Molina,
2007) . For this transformation Atlas Transformation Language (ATL)
was used. ATL is a declarative language with Eclipse-based tools sup-

134 Automating the development

port for the edition and execution of model transformations.

In contrast to the use of general purpose languages for the manipula-
tion of models, model-to-model transformation languages offer different
advantages for this purpose:

Domain specific concepts. Transformation languages are defined with
the purpose of manipulating models in mind. They provide prim-
itives that fit the need for querying and creating model elements.
Most of the model-to-model languages are based on OCL for navi-
gating through models. In the case of ATL, rules can be defined in
order to express a mapping between elements of input and output
metamodels.

Dependency control. The model resulting from a transformation must
be conformant to the output metamodel. This imposes many con-
straints in terms of the order in which each element can be created.
For example, if we are creating a binary association, the elements
that are connected by the association must already exist when the
association between them is created. If transformations are im-
plemented by means of general-purpose programming languages,
the existing dependencies for model creation must be taken into
account. Languages such as ATL take care of these dependencies
automatically. In ATL, transformation rules are defined regard-
less of the application order. In order to support this behavior,
ATYL forbids the input models to be written and the output mod-
els to be read. In this way, transformation rules are free from
side-effects.

Traceability support. The mapping between elements usually requires
information about how other elements were mapped. Model trans-
formation languages allow to be aware of the origin for the gen-
erated elements. For example we can determine which Android
activity is created as a result of a Task Processor component and
which ones are created as a result of an Identification Component.

Flexible type system. As it happens with model-to-text transforma-
tions, we can extend the type system with metamodels and create

5.3 Automating the development process 135

Business generates Process
process executable
specification definition
part-of
Physical
object BPMN model
declaration
uses T part-of
Physical uses uses Obtrusiveness
. N Tasks
interaction level

uses

uses
DepLI;)i/lr;’\ent Technologies

generates

generates

generates
generates

Parkour
specification

generates

Presto model

Presto

System

part-of

| L.

Identification ‘ ‘ Digital ‘

Task

Processor

Components Services

Data
Providers

Figure 5.15: Mapping between the design concepts and the architecture com-
ponents

virtual extensions of the metamodels to simplify the transforma-
tion process. In the case of ATL, these extensions are named
helpers.

The overall strategy for the mapping is illustrated in Fig. 5.15 by
means of a megamodel (Favre, 2006) (i.e. a model that represents mod-
elinging languages and their relationships). The figure shows the rela-
tionship between some of the modeling concepts used in this work in
terms of dependencies (see the uses relationships), inclusion (see the
part-of relationships) and generation(see the generates relationship).
The mapping is an unidirectional mapping from Parkour concepts to
Presto concepts. The mapping illustrated is implemented by means of

136 Automating the development

two model-to-model transformations. The first transformation gener-
ates an executable version of the business process diagram. This trans-
formation takes a BPMN definition and generates an executable WS-
BPEL specification that interacts with the Task Manager component of
the Presto architecture. The other transformation is in charge of gen-
erating the different model elements that form a Presto-based system.

WS-BPEL is a common choice for the implementation of BPMN
models. Although the BPMN specification defines a mapping between
BPMN and WS-BPEL some details are lacking for obtaining an exe-
cutable description since BPMN is a more abstract language. Different
proposals exist for transforming BPMN into WS-BPEL. These propos-
als embed certain design decisions in the transformation in order to
automate the mapping. We make use of the approach used to develop
business process-supporting web applications in a previous work (Torres
et al., 2007c). This mapping generates a WS-BPEL specification that
delegates the tasks that require user participation to a Task Manager
component. In the original approach, these tasks are handled by the
user through a web interface while in our approach we are using Presto
to enable the completion of these tasks by means of the interaction
between the user and the physical environment. The use of business
process execution engines with BPMN support such as Intalio Busi-
ness Process Management Suite is a valid alternative to the previous
transformation.

In order to complete the transformation process another transforma-
tion is defined. This transformation describes the Presto-based system
that supports the user participation in the workflow. The mapping for
obtaining the different Presto elements is described below:

Presto System. Different systems are normally involved in a business
process. A Presto System is defined for each Deployment Unit
that is detected during design. Each unit is implemented in a
different device and supports a particular set of tasks. Each Presto
system has its own Controller Component and Task Manager. The
pluggable components can be obtained from the Parkour model.
The Presto System is complemented with Task Processors, Data

5.3 Automating the development process 137

Providers, Identification Components and Services according to
its participation in the workflow as it is indicated below.

Task Processor. Each task in the BPMN diagram is supported by
means of a Task Processor. The tasks that define the beginning of
a business process in the BPMN diagram result in Task Processors
with the initiator attribute set to true. The obtrusiveness level
for a task also determines the Task Processor properties. If the
task takes place at the background of user attention, the Task
Processor is qualified as silent.

Data Provider. In order to determine the Data Providers required,
the physical elements that are involved in each deployment unit
are considered. This is calculated by obtaining the tasks sup-
ported by the deployment unit and the different objects that par-
ticipate in these tasks. The schema attribute is initially set from
the business process domain. Thus, all the physical elements in
the process are initially considered to be from the same domain.
Later, designers can modify this for specific objects in order to
determine which elements are provided by which perspective.

Identification Component. Identification Components are defined
according to the technologies used in each task. In addition, the
interaction pattern used and the function (capturing or minting)
are considered for the mapping. The direction of the connec-
tion for each physical element and the task is used to determine
whether a minting or capturing functionality is required.

Services. The different components involved in a Presto system make
use of auxiliary services. Most of these services cannot be antic-
ipated from the information captured in the design models, but
others can. In particular we define services for interacting with
the user. The tasks that are located in the same region of the ob-
trusiveness space will use the same service for interacting with the
user. Later, designers can provide each service with an appropri-
ate functionality. For example the service used by non-disturbing

138 Automating the development

tasks can be associated with a notification system of the underly-
ing architecture.

Listing 5.2: Transformation rule for generating the PrestoSystem element

module Parkour2Presto;
create OUT : Presto from IN : Parkour;

rule depUnit2PrestoSystem{
from
d: Parkour!DeploymentUnit
to
p:Presto!PrestoSystem (
name <- d.name,
taskProcessors <- d.tasks,
dataProviders <- Parkour!PhysicalInteraction.
allInstances () —>select (x|d.tasks—>includes (x.task))
—->collect (e|e.object)->asSet (),
idComponents <- d.technologies

)

The code listing 5.2 shows the rule that defines the mapping between
the Deployment Unit and the PrestoSystem metaelements. The exam-
ple code includes the header definition of the ATL module. An ATL
module (see the module keyword) defines a mapping between metamod-
els and can contain several transformation rules. In the example, Park-
our metamodel is defined as the input and Presto metamodel is defined
as the output metamodel. The rule depUnit2PrestoSystem transforms
a Deployment Unit from the Parkour metamodel into a PrestoSystem
element. When the transformation is applied to a Parkour-based model,
the rule matches any DeploymentUnit element in the model and pro-
duces a PrestoSystem element according to the assignment instructions
described below.

The assignment instructions determine how to generate the different
attributes of an element in a model-to-model transformation. For sim-
ple types (e.g., the name attribute is copied), ATL copies the value to
the resulting module. For complex types, ATL applies a transformation
rule defined that matches this kind of elements (e.g., tasks will be trans-
formed into Task Processors before they are assigned to the deployment

5.3 Automating the development process 139

unit). ATL provides an OCL-like language to navigate elements. In the
example, Data Providers are generated from the physical objects that
are associated to the tasks supported by the current deployment unit.

The expression defined for the definition of the Data Providers nav-
igates the Physical Interaction elements from the Parkour metamodel
(Parkour !Physicallnteraction.allInstances ()) Then, the interac-
tions that support tasks which are part of the current Deployment Unit
d are selected (select (x|d.tasks—>includes (x.task))). Finally, the
Physical elements involved in thee interactions are gathered in a set
to avoid duplicates (collect (e|e.object)->asSet ()). Actually this ex-
pression was defined in a helper but we have included it in the previous
example for illustration purposes.

By applying the defined transformations, designers can obtain a
preliminary version of the Presto system from the requirements captured
at design-time. Although many components require further fine-tuning,
the overall structure of the application is automatically obtained. In
this way, designers are not required to define the Presto components
and connect them together in a way that is consistent with the process
defined. They can just focus on configuring the obtained services and
declaring extra functionality that complements them.

The purpose of the transformation implemented was to illustrate
the feasibility of facing the development of Presto-based systems from a
higher abstraction level. The purpose was not to provide a full-featured
modeling tool since it falls out of the scope of the present work. In or-
der to provide complete tool support, many model-management aspects
must be considered such as round-trip engineering support, end-user ed-
itors, and model versioning management.

5.3.3 Glue code generation

The technology mapping defined in Section 5.2.4 involves several repeti-
tive tasks. For our target technology, the definition of each Identification
Component requires the definition of two Android Activities to interact
with the user, an Android Service that implements the code to process
sensing and/or minting intents, and the communication mechanisms to

140 Automating the development

Presto Specification Mapping Rules Platforms

5 Smarttibraryomi 3 =8 A
Generic Editor - SmartLibrary.xmi B4 v

Model

= [platform: resourcejpresto.generatorsrc/SmartLibrary. smmi
B 4 Pre

android

[Support the return of books in the library.
Intistor ~ []
Name [Return Baok
Nomespace. | es.upy.dsic brery -
ser D ~ N iPhone
Technology-independent Specific Technology

Figure 5.16: Glue code generation strategy.

tight this components together according to the execution strategy de-
fined by Presto. This boilerplate code can be automatically generated
by the information captured in system models. In this way, developers
can focus on implementing only relevant business-logic.

We provide code generation capabilities for the mapping described
in the present work. This mapping considers Android as the target tech-
nology, but the approach followed allows developers to define different
mappings to target other technological platforms. As it is illustrated in
Fig. 5.16, the same Presto-based specification of a system can be used
as the target for different platforms depending on the mapping rules
applied.

From the description of a system based on Presto metamodel, source
code can be generated with model-to-text transformation techniques.
Model-to-text generation tools provide mechanisms to traverse models
and generate the code associated with them. We applied model-to-
text transformations to formalize the mapping defined in Section 5.2.4.
Glue code generation has been implemented using XPand templates
from the Model-to-Text (M2T) project®, which is part of the Eclipse

http://www.eclipse.org/modeling/m2t/

5.3 Automating the development process 141

Modeling Project. The application of templates to models is similar
to the way templates are used to generate dynamic web pages in the
web application development area. Model elements can be iterated and
pieces of code can be produced instantiating them with values obtained
from the model. XPand is a statically-typed template language with
several features that simplify the code generation:

Polymorphic template invocation. Inheritance relationships in the
source metamodels can be leveraged when templates are defined.
Given a set of modeling elements that are involved in inheritance
hierarchy, specific behaviors can be easily defined for the different
sub-types. When multiple templates are available for an element,
the code generation engine applies the template variant that is
more specific to the current kind of element.

Functional extensions. Metamodels can be extended in a non obtru-
sive manner to obtain derived information easily. This information
is accessed as if it were part of the metamodel. However, these
extensions do not affect the metamodel since they are only acces-
sible during the transformation. Thus, generation rules are more
readable and less dependent on the metamodel structure, which
improves the generator maintenance.

A flexible type system abstraction. XPand provides support for some
built-in types including simple types (String, Boolean, Integer,
and Real) and collections (List and Set). In addition to built-in
types, the type system can be extended with the concepts defined
in the different metamodels. Thus, if Presto metamodel is im-
ported we can use a list of a Task Processors as if these elements
were part of the type system.

Model transformation and validation facilities. In order to ensure
that the models that are used for the generation meet certain con-
ditions, they can be analyzed prior to the transformation is ap-
plied. By validating the input, we can ensure that the generator
does not find unexpected information (e.g., components with the

142 Automating the development

same name that would lead to a nameclash when code is gen-
erated). Furthermore, facilities are provided to transform these
models in order to fix the problems detected.

Listing 5.3: Excerpt of the code generation template that produces the
Android Manifest file.

« DEFINE manifest FOR PrestoSystem »
« FILE name+"/AndroidManifest.xml" »
<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res
/android"
package="« domain.name »"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:
label="@string/app_name">
« EXPAND manifest FOREACH getComponents () »
</application>
<uses-sdk android:minSdkVersion="3" />
</manifest>
« ENDFILE »
« ENDDEFINE »

The listing 5.3 shows the code of one of the templates that is used
for generating the Android Manifest. The previous excerpt of the trans-
formation declares the manifest rule by means of the DEFINE keyword.
The manifest transformation rule is a polymorphic rule that it is used
to generate the fragment of the Android Manifest that is associated to
each Presto component. In the example, we show the rule that is ap-
plied to the whole Presto system. The rule named manifest is defined
for the PrestoSystem element of the Presto metamodel. Generation
rules control the creation of new files (e.g., source code, configuration
files, resource descriptions, etc.) and the generation of their correspond-
ing content. The FILE statement defines the output file for the code
generation (in the example, an AndroidManifest.zml file is generated
into a folder named after the PrestoSystem).

The rest of the rule is a code template with static and dynamic
parts. The static pats of code are transferred to the generated code

5.3 Automating the development process 143

directly. In the example template, the static parts represent aspects
that are common to any Android manifest, such as the XML header or
the application declaration. The dynamic code is calculated for each
instance to which the rule is applied. Dynamic expressions (defined
between angle quotes) are used for capturing the required information
and expressing it according to the target technology. For example, the
package name for the Android Manifest is obtained from the domain
attribute defined for the Presto application (e.g., es.upv.pros.smartlib).

For the generation of the rest of the Android Manifest the manifest
rule is applied to the different components (see the EXPAND command)
in a polymorphic manner. In this way, each component contributes to
the manifest as the technology mapping of Section 5.2.4 indicates. List-
ing 5.4 illustrates the definition of the manifest rule when it is applied
to Task Processor components.

Listing 5.4: Generation rule that produces the Android Manifest frag-
ment corresponding to Task Processors.

« DEFINE manifest FOR TaskProcessor »
<activity android:name=".« name.normalize () »" android:
label="@string/app_name">
<intent-filter android:label="« name »">
<action android:name="« task ».« process.name.normalize
() »">
</action>
<category android:name="android.intent.category.DEFAULT
">
</category>
</intent-filter>
<intent-filter android:label="task">
<action android:name="es.upv.pros.presto.TASK »"></
action>
« IF initiator »
<category android:name="es.upv.pros.presto.LAUNCHER"
></category>
« ELSE »
<category android:name="android.intent.category.
DEFAULT"></category>
« ENDIF »
</intent-filter>
</activity>

144 Automating the development

« ENDDEFINE »

The rule defined in the previous example declares the activity in the
manifest and their intent filters according to the mapping defined for
Task Processors in Section 5.2.4. Two intent filters are defined for the
activity. The first intent filter is named after the Task Processor (e.g.,
“Borrow Book”) and it represents the main action for the task. The
second intent filter marks the current Android activity as a Task Pro-
cessor. This intent is defined to be part of either the default category or
the es.upv.pros.presto. LAUNCHER category, depending on the initia-
tor attribute of the Task Processor element. This determines whether
the current activity can be launched by the user directly or it is exe-
cuted in response to a pending action. The template of the previous
example makes use of conditional statements (see the IF, ELSE, ENDIF
instructions) to determine the category for the generated intent.

The code generation support in Presto automates the definition of
the Android Manifest and the Java classes that are required for the
implementation of the different components according to the mapping
defined in Section 5.2.4. Intent processing code and method declara-
tion is also generated. Although full code generation is not provided for
component implementation, the provided code skeletons let developers
focus on the implementation of the business-logic behavior, avoiding to
deal with particular details of the target technology. Since the Android
specific artifacts are generated, the use of Android application frame-
work is made transparent to the developer, who only has to deal with
Java programming.

5.4 Conclusions

This chapter provides mechanisms for automating the development of
physical mobile workflows. By applying MDE principles, the require-
ments captured in the design stage are transformed into a final software
solution. In this way, developers do not have to deal with technological
details of the target platform. In addition, the definition of the architec-

5.4 Conclusions 145

ture at modeling level, allows the presented approach to be sustainable
since it can support the evolution of the system to new technologies.

Much of the complexity in software development is due to the rules
that the different computing frameworks require but are not enforced by
the programming language in use. Platforms such as Android, OSGi,
Java ME, Enterprise Java Beans, or Google Web Toolkit, make use
of the Java language but they require to follow different programming
models that are not always simple to understand. By avoiding de-
velopers to deal with these technological constrains they can focus on
business logic. Hiding this complexity is the main goal of our approach
for the automation of physical mobile workflows. For example, the de-
velopers completing the generated code in our approach do not require
to know how the intent mechanisms works in Android, since the intent
processing code is already generated for them.

In order to experiment the easy projection of the architecture con-
cepts into different technologies we developed some prototypes based on
JavaFX and Service Component Architecture. The concepts defined for
Presto-based solutions were proven easy to express in these technologies.

146 Automating the development

CHAPTER 6

Adapting obtrusiveness at
run-time

magine a future in which your fridge announces to you the recipes

that can be prepared with the available goods, your TV tells you
that your favorite program is beginning, the book you want to start
reading is suggesting you try other similar books; and all of this is
happening at the same time. Clearly living in such an environment on
a daily basis would be annoying. On the other hand, if services behave
in a completely automatic manner (without requiring human input or
informing the user), users can feel that their environment is out of their
control, which is also undesirable.

According to the Considerate Computing vision (Gibbs, 2004), user
attention is a primary resource to be considered by software systems.
Although any kind of software system can benefit from being aware
of the user attention level, this is especially relevant in the Internet of
Things (IoT) paradigm which promotes a natural interaction between
the user and the environment (which is full of embedded services). The
design method proposed in Chapter 4 takes the obtrusiveness aspect

148 Adapting obtrusiveness at run-time

1. Window blinds
are opened

3. Sound signal
is used

Figure 6.1: Example scenario where the obtrusiveness level is adjusted grad-
ually.

into consideration for the design of physical mobile workflows. In this
chapter we also consider this aspect for driving the workflow adaptation
at run-time. In this way, the services that are involved in the workflow
can be executed in a way that is considerate to the users according to
their changing context.

In Chapter 4 we considered the implications of the obtrusiveness de-
sign for the development of physical mobile workflows. By considering
this aspect at design-time, support can be provided for executing each
task in the workflow at a different level of automation. As it has been
argued, it is important to consider obtrusiveness aspects early in the de-
velopment process since changes in the obtrusiveness level usually have
a deep impact on the system architecture (they require actions such as
object re-tagging, technology replacement, etc.). In our approach, the
obtrusiveness requirements are considered when selecting the appropri-
ate technologies and deployment options for a given business process.
However, sometimes the obtrusiveness level cannot be completely de-

149

termined at design-time and it must change during run-time. For some
tasks the obtrusiveness level varies dynamically according to changes in
the context. For example, waking up a hotel guest can be done in a
gradual manner® (see Fig. 6.1). To achieve this, the attention demand
can be increased as the user remains in bed: first, the blinds are opened
to increase the level of light in the room, a subtle blinking of lights is
performed, music is played; and finally, a loud sound is produced by the
guest’s mobile device if the guest is still in bed.

In terms of obtrusiveness the previous scenario can be defined as a
weak up activity that is performed in a proactive manner by the system.
Each time it is performed, it requires a different degree of user attention.
As a consequence, each time the task is executed a different set of
resources are used to support the task at the appropriate obtrusiveness
level. These resources provide the same functionality but at a different
level of obtrusiveness.

This chapter describes how run-time reconfiguration techniques can
be used to address this kind of scenarios. In particular, we have applied
model-based reconfiguration techniques to allow the obtrusiveness level
of a physical mobile workflow to be dynamically adapted to context con-
ditions. Model-based techniques are applied to (1) describe by means
of models the way in which the obtrusiveness level depends on context
conditions and (2) propagate the changes in the obtrusiveness level into
the system architecture components.

The remainder of the chapter is structured as follows. Section 6.1
introduces the technique used to describe the obtrusiveness adaptation
for physical mobile workflows. Section 6.2 defines the mechanisms used
to update the architecture according to what is described in the adapta-
tion models. Section 6.3 describes the requirements that our technique
has for the developers. Finally, Section 6.4 concludes the chapter.

1 This scenario is based on techniques such as “dawn simulation” which are used for
Seasonal Affective Disorder treatment, but also for increasing the comfort of waking
up in general (Terman & Terman, 2006).

150 Adapting obtrusiveness at run-time

6.1 Adapting the obtrusiveness level

As we have shown in our approach, thanks to the use of models, software
for supporting physical mobile workflows can be defined by working with
abstract concepts. We can deal in a centralized way with aspects such
as obtrusiveness that are much harder to deal with in the final software
system since they are spread across different parts of the code. In this
chapter we make use of modeling techniques to drive the obtrusiveness
adaptation of a process.

Changes in the obtrusiveness level of a workflow require the rapid
reorganization of the system resources. For providing software systems
with these capabilities in this work we have applied the principles of
Autonomic Computing (Kephart & Chess, 2003). Autonomic Com-
puting envisions computing environments that evolve without the need
for human intervention. A system with autonomic capabilities installs,
configures, tunes, and maintains its own components at runtime. In par-
ticular, we have provided physical mobile workflows with self-adapting
capabilities. The adaptation capabilities provided in our approach are
based on the models used at design for specifying obtrusiveness. In
this way, the modeling effort made at design time is not only useful
for producing the system but also provides a richer semantic base for
autonomic behavior during execution.

Since the deployment of a system in the IoT requires set-up actions
that cannot be changed at run-time (such as labeling objects with a
certain technology or installing readers in certain places) our approach
for adaptation consists on selecting from the available resources the
ones that provide an obtrusiveness level that is as close as possible to
the one desired. When the obtrusiveness level varies the architecture
is re-targeted to make use of these resources in an automated fashion.
Our proposed approach has two main aspects:

Reuse of design knowledge to achieve adaptation. We reuse the
knowledge captured at design to describe the evolution of the
system in terms of obtrusiveness. In response to changes in the
context, the system itself can query these models to determine the

6.1 Adapting the obtrusiveness level 151

necessary modifications to its architecture.

The conceptual framework that is used for describing obtrusive-
ness at design has been extended to allow the specification of
adaptation rules that define the way in which obtrusiveness is
affected by context changes.

Reuse of existing model-management technologies at runtime.
In order to guide the adaptation of the system, we leverage mod-
els at runtime without modification (i.e., we keep the same model
representation at runtime that we use at design time). This avoids
the need for technological bridges, making it possible to apply the
same technologies used at design-time to manipulate models at
run-time.

We used the Model-based Reconfiguration Engine (MoRE) (Cetina
et al., 2009a) to implement model-management operations. These
operations determine how the system should evolve and the mech-
anisms for modifying the system architecture accordingly. Thus,
systems use the knowledge captured by obtrusiveness models as if
they were the policies that drive the system’s autonomic evolution
at run-time.

Different initiatives exist to make use of models for driving system
adaptation. Several research efforts have successfully produced self-
adapting systems using Petri-net-based (Zhang & Cheng, 2006) models
and adaptation models (Morin et al., 2008). Due to the fact that these
approaches generate decisions algorithmically and only on demand, they
may give rise to undesirable behavior, impede users to understand sys-
tem behaviors, and also, reduce the predictability of the system. Con-
versely, our approach takes the entire development process into account.
Since the system specification is available at design time, we are able
to conduct thorough analysis of the specifications for the purpose of
validation. In this way, we are able to guarantee deterministic reconfig-
urations at runtime, which is essential for reliable systems.

The following subsections introduce the use of the obtrusiveness
concept as the adaptation space for a system, the techniques used to

152 Adapting obtrusiveness at run-time

manage the contextual information that can impact on the obtrusive-
ness level, and the modeling concepts used to describe the response to
context changes when the system is adapted.

6.1.1 The obtrusiveness adaptation space

Adaptive systems adjust their behavior to different situations. The
adaptation space for a system is defined by all the possible system vari-
ants into which the system can evolve. The adaptation space is normally
defined in terms of some relevant properties for the system. For exam-
ple, some user interface adaptation approaches define their adaptation
space in terms of the environment and the platform properties (Calvary
et al., 2001). When these criteria are followed, different variants of the
system are provided to the user depending on whether a desktop or a
mobile device (platform) is used; or the system is used in a noisy or
a quiet room (environment). When some of these conditions change
(e.g., the user enters into a noisy environment), the appropriate system
variant is provided to the user. Our approach defines the adaptation
space for the system in terms of obtrusiveness.

The notion of obtrusiveness used for run-time adaptation in our
approach is the implicit interaction framework that was used in the
design method that was introduced in Chapter 4. The difference is that
in the case of adaptation, tasks in the workflow can be defined at two or
more different obtrusiveness levels. Figure 6.2 shows a scenario based
on the Smart Library case study, where different tasks are performed
at different attention levels. The borrow book task is always performed
at the same attention level, but the return book task can dynamically
adapt the attention level. When the return of books is performed at the
foreground of user attention the notification mechanism is used. When
the return of books is performed at the background of user attention,
the system silently registers the return of the loan without notifying the
user.

The conceptual framework used in our approach considers initiative

and attention as the orthogonal aspects that define obtrusiveness and
defines mechanisms to move from one point of the space to another.

6.1 Adapting the obtrusiveness level 153

+

the interaction is performed at

The user is notified only when
the foreground of attention.

= ===

September 19,2009 ffl] @ 10:39 AM

Notifications

Foreground

@ Return book
The Book of Illusions' has been retu 10:38 AM

Background

Return boo

Figure 6.2: Example scenario where books are loaned and returned by means
of different technologies at different obtrusiveness levels.

The adaptation space is defined by formalizing the initiative and at-
tention concepts as the axes that define a two-dimensional space. For
supporting self-adaptation, we introduce an order in the values that de-
fine these factors. In this way, the system can compute the initiative
and attention levels required for adapting the system that is at a specific
obtrusiveness level to a new one.

The ordering in the obtrusiveness axes is defined as follows. On
the one hand, the extreme values for the attention axis are Background
and Foreground. Since this axe represents user attention demands, we
could order these values as Background < Foreground to indicate that
Foreground interactions require more attention than Background inter-
actions. On the other hand, the initiative axe is related to automation,
so we consider that the Reactive value provides a lower degree of au-
tomation than the Proactive value (i.e., Reactive < Proactive).

Since we are using the same conceptual framework to define adap-
tation, the analysis performed at design to describe the obtrusiveness
space can be reused for specifying adaptation. The only additional

154 Adapting obtrusiveness at run-time

requirement is to define each level with a particular order and avoid in-
tersections. This is not a strong limitation, and much of the divisions of
the obtrusiveness space such as the ones used in this work already meet
these requirements from the beginning. As a consequence of introduc-
ing this ordering, it is possible to express changes in the obtrusiveness
level as increments and decrements in the different axes. This idea is
exploited in next sections.

6.1.2 Defining context conditions

Mobile information systems are characterized by frequent changes in the
context of the user. Different kinds of context can be considered when
a mobile system is developed (Krogstie et al., 2004): spatio-temporal
context, environment context, personal context, task context, social con-
text, and information context. The spatio-temporal context describes
aspects such as time, location, direction and speed. The environment
context captures the entities that surround the user. The personal con-
text describes the user state by considering information such as pulse,
blood pressure and weight, as well as mood, expertise, and preferences.
The task context describes what the user is doing (either defined as
explicit goals or the tasks and task breakdown structures). The social
context describes information about friends, neighbors, coworkers and
relatives. The information context describes the information space that
is available at a given time.

According to the previous classification of contextual information,
physical mobile workflows deal directly with information related to the
environmental context and the task context. However, the adaptation
of the obtrusiveness level can be the result of changes in other sources
of contextual information. For example, the presence of a close friend
(social context) in the nearby area (spatial context) can be notified to
the user at a foreground level of attention compared to the presence of
other people with a further distance in their social network which can
be queried on demand by the user (i.e. reactive behavior is used). An
ontology is used to capture and reason with a broad kind of context
information.

6.1 Adapting the obtrusiveness level 155

L AutonomicHom% LU @ AutonomicHomd

ol Thing (1) prosEventRFID (3) [pros:action [pros:crestor
pras:Action (1] pros:Locstion (5) (M pros:adiacency | e aeoein
pros:Condition (3 @ pros:Operation (3) [proz:apuredates| p eosscurrentTag
pros: Current Tag pros:Paremeteryalue (1) [pros:apply [pros:isFrom
pros:DeviceEvers pros: Inhakitant (1) [pros:automatical] gy pros:isLocated
pras:Enviranmen pros:Palicy [pros:changesER) o pros:isRelstedwith
pros:Environmen prozService (11 [pros:changesSP| oy pros:mokility

> pros:Event pros: ServiceProperty (1) [pros:condition [pros:parameter
pros: ServicePropertyalue (1] [pros:parent

QO dlass

(n) #instances
@ Property

Figure 6.3: OWL Ontology for Smart Environments.

In the Artificial Intelligence literature, an ontology is a formal, ex-
plicit description of concepts in a particular domain of discourse. It pro-
vides a vocabulary for representing domain knowledge and for describing
specific situations in a domain. The ontology-based context model used
in this work is based on the Web Ontology Language’ (OWL). OWL
is an ontology markup language that was defined by the World Wide
Web consortium (W3C) to support the Semantic Web approach that
envisions a web where all their resources are precisely described in a
machine-processable format.

An ontology-based approach for context modeling lets us describe
context information semantically and share common understanding of
the structure of contexts among users, devices, and services. The main
benefit of this model is that it enables a formal analysis of the domain
knowledge, such as performing context reasoning using first order logic.

The ontologies used in this work are described in OWL as a collection
of triples based on the Resource Description Framework (RDF). Each
statement is in the form of (subject, predicate, object). The subject
and object are the ontology objects or individuals and the predicate

http://www.w3.org/standards/techs/owl

156 Adapting obtrusiveness at run-time

is a property relation defined by the ontology. For instance, (John,
Location, Garden) means that John is located in the garden. Figure 6.3
shows the ontology defined to handle context information in a Smart
Home environment. Different services are provided in the Smart Home
of the example and some of them can be coordinated to support physical
mobile workflows.

Information regarding the process execution state, the physical el-
ements detected and the state of different devices and sensors around
the user environment are represented in the ontology. For a detailed
description of this ontology see (Serral et al., 2008).

The context processing mechanism that is in charge of keeping con-
textual information consistent with the real world, is based on rules.
These rules aggregate and filter low level information and generate
meaningful events. For example, the detection of an RFID tag (pros:RFIDEvent
class in Fig. 6.3, left) can trigger the change of the location informa-
tion of another entity (pros:isLocated in Fig. 6.3, right). By aggregating
and filtering context events we can obtain context events that are rele-
vant for adaptation. The next section defines the mechanism used for
adapting the obtrusiveness level in response to context changes.

6.1.3 Defining transitions

During execution workflow tasks are performed in only one of the obtru-
siveness levels that are defined in the obtrusiveness space. Nevertheless,
this obtrusiveness level can be modified in response to changes in the
context information. Designers can define transitions that link con-
text events with changes in the obtrusiveness level. Each transition is
composed by a condition and an action. When a condition is fulfilled,
the obtrusiveness level is modified by changing the attention level, the
initiative level, or both, as defined by the action.

The transitions define the changes to be performed in the obtru-
siveness space. More detail regarding the definition of conditions over
the context information and the actions performed for adaptation is
provided below.

6.1 Adapting the obtrusiveness level 157

Conditions on context information

When a task from a workflow can be performed at different obtrusive-
ness levels, it is important to consider the factors that determine such
decision. Conditions are specified in order to indicate which context
events require the system to behave at a specific obtrusiveness level.
Conditions are expressed as queries for context information. In order
to detect a change in the context information SPARQL is used.

SPARQL is a query language based on (triple) patterns. Using
SPARQL the user may issue a query of the form (John isA ?role) where
?role denotes a variable. The query engine checks through the data
and retrieves the value of Librarian as a possible value for #role which
constitutes a possible answer to the query. The dataset may also contain
the triple (Jonh isA Person) (e.g., as a result of an inference); in this
case Person is also a possible value for ?role. By providing several triple
patterns, complex queries can be created and used by the application.

In order to allow the definition of transitions, the corresponding con-
text information must be included in the context ontology. Information
can be either provided as explicit data or as derived data. The inclusion
of explicit data requires the creation of new classes and instances in the
ontology. However, for the definition of derived information, deriva-
tion rules must be defined. Depending on the information management
needs, designers can chose the most appropriate mechanism.

Adaptation actions

Adaptation actions produce an impact on the obtrusiveness level of the
system. When a context condition of a given transition is fulfilled, the
corresponding action is performed. An action can change the obtru-
siveness level in either a relative or absolute manner. A relative action
is specified as an increment or decrement of the obtrusiveness level for
one or both axes (e.g., an increment of two levels for attention and a
decrement of one level for initiative). An absolute action represents the
transition to a particular value for one or both axes. Relative mod-
ifications are specified by indicating the increment either positive or

158 Adapting obtrusiveness at run-time

negative while absolute actions are specified by indicating the destina-
tion level.

The use of relative or absolute actions depends on the specific se-
mantics that designers are using. Nevertheless, the relative actions al-
low to specify changes in the obtrusiveness level that are sensitive to
the current obtrusiveness level. In the wake-up example, we can define
a relative action that produces an increment in the attention axis each
time the hotel guest is required to wake up. If the workflow is defined
in such a way that the wake up task is activated repeatedly at certain
intervals until the guest finally gets up, services demanding a greater
degree of user attention will be used each time.

In the case that multiple conditions are fulfilled at the same time,
contradictory actions may be triggered, i.e., a movement in the ob-
trusiveness space performed in different (possibly opposite) directions.
To resolve this conflict, actions are aggregated before they are applied.
This process involves the following steps:

1. Absolute actions are expressed as relative actions. This is done
by calculating the increment that is required to reach the desired
destination from the current obtrusiveness level. For example, if
the attention axis is divided in three parts and the current task is
performed at the Background level, an action that requires atten-
tion to be at the Foreground level is represented as an increment
of 2 units for this axis.

2. Actions are aggregated. The median is calculated for all the rel-
ative increments of the different actions for each axis to obtain
an average increment. The rationale behind this is to obtain the
average movement in the obtrusiveness space. We use the median
instead of the mean in order to avoid extreme results to affect the
changes in the obtrusiveness level.

3. The resulting action is applied. The current initiative and at-
tention levels are modified according to the increment obtained
by aggregating the different actions. In this way, only a single
obtrusiveness change is propagated to the system architecture.

6.2 Reconfiguring architecture components 159

Once the transitions among certain obtrusiveness levels are defined,
the obtrusiveness levels are mapped to the architecture components
that support the underlying system. This is illustrated in the following
section.

6.2 Reconfiguring architecture components

The set of transitions defined for the obtrusiveness space capture the
criteria to be followed during adaptation. Once these criteria have been
defined by means of models, we need to establish links between these
models and the underlying architecture that supports the system. When
a change is produced in the obtrusiveness level, the architecture must
be updated accordingly. In order to enable the obtrusiveness level of
a system to be changed at run-time, we make use of the Model-based
Reconfiguration Engine (MoRE).

MoRE is a reconfiguration engine that is based on the principles
of Autonomic Computing. Designers can provide adaptation rules to
MoRE in order to indicate when the architecture should be reconfig-
ured. If there is a context change that triggers a rule, MoRE performs
a set of changes to the architecture. Then, MoRE computes which com-
ponents must be disabled and which ones must be enabled. Finally, it
performs the corresponding actions to obtain the desired state. The
reconfiguration is performed in a transactional manner, enabling the
rollback of actions if the reconfiguration fails.

We chose MoRE since it is a generic engine that can be customized
by means of models. This make it feasible to integrate it in our approach
by leveraging existing models of the system. In order to use MoRE for a
particular application, designers must provide the adaptation rules and
the architecture description by means of models. The reconfiguration
infrastructure defined by MoRE and the technique used for defining the
adaptation rules are described below.

160 Adapting obtrusiveness at run-time

Model-based Reconfiguration Engine

Analyze Plan

Evaluating the Ontology
to trigger conditions

{ SPARQL

Querying run-time models
to generate a plan

Inserting Executing
context events Knowledge the actions

into the Ontology Models at Run-Time of reconfiguration
___________________ OWL-Ontology/ e

EMF Models

Monitor

Autonomic
Computing

Technique

—
Lﬁj Technology

Figure 6.4: Components for supporting model-based reconfiguration.

6.2.1 Model-based reconfiguration

To achieve autonomic computing, MoRE is based on the IBM reference
model for autonomic control (IBM, 2003). The overall reconfiguration
steps performed by MoRE are outlined in Figure 6.4. A Context Moni-
tor uses the run-time state as input to check context conditions. If any
of these conditions is fulfilled, then MoRE queries the models at run-
time about the necessary modifications to the architecture. Given the
model response, MoRE elaborates reconfiguration actions which mod-
ify the components of the system architecture and maintain the con-
sistency between the architecture models and the actual architecture
components.

The above model-based version of IBM’s reference model for auto-
nomic control makes an intensive use of models. Context events and
system architecture are represented by models. Context events are rep-
resented by means of OWL ontologies, and system architecture is also
captured by means of models. For performing the system reconfigura-
tion, information is extracted from these models. Different model query
technologies are used at run-time by MoRE. MoRE uses SPARQL for
OWL manipulation and Eclipse Model Query (EMFMQ) for variabil-

6.2 Reconfiguring architecture components 161

)

(" Generalized Activate B
Reconfiguration
Statechart

Reactivate

Active R N
Passivate [Waiting

For Neighbor
Response]

Passivate
[Processing

Transaction] Transaction

Started

Transaction Passivating Waiting For

Ended [All Acknowledgement
Neighbors Transaction Ended
Passive [At Least One

Neightbor Active]

Transaction

Passive Aborted

Passive Ack From
All Neighbors

Quiescent

-)

Figure 6.5: Reconfiguration state machine model (Gomaa & Hussein, 2007).

ity model manipulation. SPARQL was already introduced for defining
conditions on context information. EMFMQ provides an API to con-
struct and execute query statements in a SQL-like fashion. These query
statements can be used for discovering and modifying model elements
that are based on the Eclipse Modeling Framework (EMF).

The reconfiguration of the system is performed by executing recon-
figuration actions that deal with the activation/deactivation of compo-
nents. The component life-cycle followed during reconfiguration is based
on a Decentralized Control System Reconfiguration pattern (Gomaa &
Hussein, 2007). This model defines different states for a component in
order to activate and deactivate components gradually without break-
ing the transactions in which they are involved. The states defined are
Active, Passive, Quiescent, Passivating and Waiting. Figure 6.5 show
a state machine to represent the life-cycle of a component according to
this pattern. By following this approach the following properties are

162 Adapting obtrusiveness at run-time

achieved for the resulting architecture: (1) Non interference with those
parts of the application that are not impacted by the reconfiguration,
and (2) during reconfiguration, impacted components must complete
their current computational activity before they can be reconfigured.

MoRE makes use of the OSGi framework for implementing the re-
configuration actions. The managed system is manipulated by MoRE in
order to update its components according to the desired configuration.
For the purpose of the present work, the managed system is a system
that supports physical mobile workflows by following our approach and
receives signals from MoRE when some components must be updated.

6.2.2 Reconfiguration policies specification

In order to allow a flexible reconfiguration, architecture models in MoRE
are based on different components and communication channels that
connect them. We classify these components into two categories: Ser-
vices and Resources. Architectures following this pattern provide easy
reconfiguration since communication channels can be established dy-
namically between the components, and these components can dynami-
cally appear or disappear from configurations (Hallsteinsen et al., 2008).

Figure 6.6 shows the part of the system architecture that supports
the wake up and prepare coffee tasks from the example scenario. Ser-
vices are represented by a circle, and resources are represented by a
square. Finally, the channels among services and resources are repre-
sented by lines. The components that are required for supporting a task
in the different obtrusiveness levels are indicated in the figure. For ex-
ample, the blinds that regulate the light for the wake up task are used
when the task is performed at the lowest level of the attention axis.
The wake-up task is obviously performed in a proactive manner with
regard to the initiative axis since the user is sleeping when this action is
started. This mapping between the blinds and the obtrusiveness levels
for the wake-up task can be expressed as WakeUp(invisible, proactive),
where the first coordinate refers to the attention and the second one to
the initiative axis (numerical values have been used in Fig. 6.6 for the
sake of brevity).

6.2 Reconfiguring architecture components 163

PrepareCoffee(2,*)

ovement
o
N

Figure 6.6: Mapping between architecture components and obtrusiveness as-
pects.

In order to specify which components and channels support a certain
task for a given obtrusiveness level, the Superimposition operator (®)
is defined. The Superimposition operator takes a task and an obtru-
siveness level and returns the set of components and channels required
for the task. Some examples of the relationship between the obtru-
siveness level for the prepare coffee task and its mapping with system
components (see Fig. 6.6) are as follows®:

3Communication channels among components are also defined in the superimpo-
sition operator, but they are omitted in the example for clarity.

164 Adapting obtrusiveness at run-time

©PrepareCof feequare,x) = {notification_service,
mobile_display, cof fee_preparation,

cof fee_machine, mobile_sound}
©PrepareCof fee s proactive) = {Mmotion_sensors,

cof fee_preparation, cof fee_machine}

As the above example illustrates, the wildcard * can be used to
match any value for a given axis. This is convenient for indicating
that some components will be active for a specific level on a given axis,
regardless of the value of the other axis. If the prepare coffee task is pro-
vided in a proactive manner (the user-awareness level defined above) at
the foreground of user attention, both of the above superimposition op-
erations (PrepareCof fee(gpares) and PrepareCof fee, proactive)) are
composed. According to this configuration, motion sensors are used to
trigger the coffee preparation automatically and the mobile device is
used for notification purposes in order to make the user aware of the
interaction.

MoRE is in charge of updating the system components as a reaction
to the adaptation rules defined. MoRE keeps a model of the system ar-
chitecture (the system components are described by means of services,
channels, and resources). When a certain context condition is met, some
architecture fragments can be enabled or disabled. MoRE is in charge of
querying the architecture model to determine the resulting architecture
and update the actual components from the underlying architecture.
MoRE does not impose restrictions in the definition of particular crite-
ria for specifying the architecture fragments or the context conditions.
In our approach, adaptation rules and the architecture fragments are
specified according to the desired obtrusiveness level.

6.3 Development of reconfigurable components

MoRE is a generic reconfiguration engine that manipulates an external
system to augment it with reconfiguration capabilities. MoRE deter-

6.3 Development of reconfigurable components 165

mines how the architecture of an operated system must be updated in
any moment according to some adaptation policies described by models.
However, the system that is being operated by MoRE must fulfill a set
of properties in order to interoperate with MoRE.

From the developer perspective several considerations must be taken
into account when the workflow that is being developed requires adap-
tation capabilities. These considerations are related to the functionality
to be adapted, the provision of context information sources for trigger-
ing the adaptation, the infrastructure required for the communication
between MoRE and the system, and some efficiency considerations. The
following subsections provide detail on all of these aspects.

6.3.1 Develop alternative components

MoRE provides adaptation capabilities to a system by activating/deac-
tivating its components. Typically, a system that follows this approach
includes all the components that can be potentially activated when the
system is developed. Thus, multiple variants must be considered dur-
ing the development of certain components in the system. This section
provides clues on how to develop these variants by following our devel-
opment method.

Since the physical mobile workflows developed in this work are based
on Presto platform, components of the system are isolated by the defi-
nition of plug-ins. This makes plug-ins easy to activate and deactivate
at run-time. The simple approach to make components adaptable is to
develop a plug-in for each of the variants of the system. However, it
is usual that plug-in variants share most of their functionality. In this
case services can be defined to represent the common functionality and
different channels can be established between the component variants
that use them.

The degree in which functionality overlaps among component vari-
ants varies from case to case depending on the domain. For example,
in the Smart Library case study the return book task can be performed
at different levels of attention. However, the functionality provided at
the foreground of the user attention is the same that is provided at the

166 Adapting obtrusiveness at run-time

background with the exception that the user is notified about the book
return. Thus, the common functionality that deals with registering the
return and the notification mechanism can be defined as different ser-
vices that are activated independently. The benefit of this approach is
that once code generation is applied, developers only need to provide
the common functionality in a single point.

6.3.2 Connect sources of contextual information

The reconfiguration technique applied provides adaptation capabilities
that are defined in terms of context events. As it has been introduced
in our approach, the context information must be described by means
of an ontology in order to adapt to a certain kind of context changes.
In addition, it is required to keep MoRE informed about the changes in
this information at run-time. Thus, developers should provide mecha-
nisms for integrating the different sources of context information that
are relevant for a workflow.

For the Smart Library case study we integrated contextual infor-
mation from different sources. On the one hand, the task context was
provided by querying the business process execution engine. On the
other hand, environmental context was provided by integrating both
the elements detected by mobile devices and a pervasive system in a
Smart Hotel Room system. The integration of such context sources are
described below.

To support the execution of the business process, we make use of
the business process execution engine provided with the Intalio Business
Process Management Suite’. The Intalio suite supports the definition
of business processes by means of BPMN diagrams (which are internally
transformed into WS-BPEL definitions). The process execution keeps
track of the process context (e.g., pending tasks for each user, priority
of the tasks, etc.). A service was developed to monitor changes in the
business process execution. This service makes use of the API provided
by Intalio for accessing the process execution state (process variables,

“http://bpms.intalio.com/

6.3 Development of reconfigurable components 167

iTunes Control Panel

IZ' Charge and Synchronize

VLC iPod
Pay per Central Dock q Remote Control
view 4 Laptop
Service Multimedia Service Freeze Protection
PDA Cooling Service Service
Contents
Piped 5 Gradual Lighti Temperature Service 12 14 @
radual Lightings
Music Service gnting Temperature
@ Lights Sensor
Presence Service P Heating Service
IIuminétlon | Lighting by Presence
Service
In Room Detection — 21 ——E Bling 18
\ Energy Service Just-in-time
Perimetric Detection Hot Water Service

Door Presence 28
Sensors Ea . 30 | silent Alarm
Outside Detector Alarm
— n .
Siren D
In Room Detection @ 29 31 D evice
@ Security Service — Channel
Sensing Service 32 | visual Alarm Service
26 Infrared 160 O
Degree Detector 33 Blinking Lights

Volumetric 360
Degree Detector In Room Security

Figure 6.7: Smart Hotel architecture model.

result of conditional expressions, etc.). When a change is detected,
this component updates the ontology accordingly. For business process
execution engines that do not provide such capabilities, some additional
tasks can be added to the process to inform external components such
as MoRE.

In addition to Intalio execution engine, a scale environment of a
Smart Hotel Room was integrated to make the system sensitive to ad-
ditional kinds of context events. Figure 6.7 depicts the architecture
components defined for the Smart Hotel. The scale environment in-
cludes different sensors and actuators to provide services such as tem-
perature and illumination control, presence detection, or controlling a
simulated coffee machine. The different devices involved in the system
(e.g., volumetric and infrared detectors) are controlled by the PervML
framework (Munoz & Pelechano, 2005). Since PervML is based on high

168 Adapting obtrusiveness at run-time

level descriptions of pervasive services, the changes that are relevant for
the user can be easily detected and transferred into an ontology (Serral
et al., 2008). The previous approach makes use of the PervML models
to provide updated information of the current system state by means
of an OWL ontology.

6.3.3 Extend the infrastructure

With respect to the operated system, MoRE follows the Dependency
Injection pattern (Fowler, 2004). It sends messages to the different
services in order to enable them, disable them or inject a dependency
(e.g., use service X for notification instead of using service Y'). For inte-
grating each system with the reconfiguration engine, an infrastructure
component is required to perform the operations required by MoRE.
This component acts as a local broker and it must support the follow-
ing operations in behalf of MoRE:

Activation and deactivation of services. If adaptation is de-
sired, it is convenient to select a platform that allows components to be
easily managed. For example, Android allows the dynamic activation
and deactivation of services by means of the PackageManager (from the
android.content.pm package). PackageManager provides general man-
agement capabilities for the components of the framework. Components
can be queried, enabled and disabled. One important aspect to take into
account is that MoRE works with a model of the architecture that does
not have a one-to-one correspondence with the underlying system ar-
chitecture (e.g. in Android). Thus, when the architecture mapping is
defined, a mechanism must be provided to identify the implementation
components that support each service in the architecture model. For
the mapping developed to Android, components are tagged by means of
an intent filter that identifies the abstract component (e.g., a Task Pro-
cessor) they are representing. In this way, component query capabilities
can be used to retrieve all the components supporting this intent.

Dependency changes. In addition to components (de)activation,
communication channels can be also re-organized. Since there is not
direct support in Android for communication channels among compo-

6.3 Development of reconfigurable components 169

nents, we have introduced an indirection mechanism based on intent
routing to support them.

Intents are used in Android as a loosely-coupled communication
mechanism among components. In order to dynamically control which
component is capable of responding to a given intent, we have intro-
duced an intermediate level that handles intents. In this case, the bro-
ker intercepts a given intent and translates it to a more specific one
that matches the architecture configuration model that is handled by
MoRE. For instance, if MoRE indicates that the Lamp Light resource
is used for the purpose of notification by the service S (i.e., the ar-
chitecture model contains a communication channel that connects the
service S with the Lamp Light resource), the intents triggered by S
for notification would be routed to the Lamp Light resource. When
a notification intent is launched by service S, the broker replaces the
general intent with one that contains the same data but a different
action description. This action description would be the action cor-
responding to the Android Service controlling the Lamp Light device
(e.g. “es.upv.pros.lllumination.LampLight”). By applying this tech-
nique, communication among components can be reorganized by MoRE.

6.3.4 Consider efficiency aspects

Adaptation capabilities provide a greater degree of flexibility for work-
flow execution. By following an adaptation approach based on models
we can adapt the system in terms of concepts of a high abstraction level.
The introduced model-based reconfiguration is subject to the same effi-
ciency requirements as the rest of the system because the execution of
the reconfiguration impacts the overall system performance.

As opposed to the application of models at design, the use of mod-
els at run-time incorporates latency in the system that is determined
by (a) the model manipulation frameworks, (b) the model population
and (c¢) the metamodel (which defines the model schema). In this sec-
tion, we evaluate the performance of manipulating models at run-time
using EMF and EMF Model Query. Specifically, we demonstrate the
feasibility of using at run-time the models introduce in our approach.

170 Adapting obtrusiveness at run-time

T T T T T [
i
o

it -

T T T
CurrentConfiguration —+—
Superimposition
400 ApplyResolutionAction ------ L
Architecture Increment & ”Ml!th‘
Architecture Decrement 5]
o
30 - o -

Bl &
w'\l;‘\é\

e
250 |- [Fi .

miliseconds

200 \Lml?l‘ i

150 | B A

50

st
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Model Elements

Figure 6.8: Performance of the model handling operations.

For evaluation, randomly generated models were used. These mod-
els started with one element and they were populated with two hundred
new elements each iteration. After the model population, the following
model operation were performed: Current Configuration, Superimposi-
tion, Architecture Increment, Architecture Decrement, and Apply Reso-
lution Action. These operations are in charge of querying the current
configuration (Current Configuration operation), defining the mapping
with the architecture components (Superimposition operation), calcu-
late which components to update (Architecture Increment and Archi-
tecture Decrement operations) and apply the corresponding reconfigu-
ration actions (Apply Resolution Action).

Our approach requires the model operations to be efficient enough
to gather the necessary knowledge from the models without drastically
affecting the system response. Figure 6.8 shows the milliseconds that
take performing each one of the model operations. Even with a model
population of 45000 elements in each model, the model operations pro-
vide a fast time response (< 200 milliseconds) at least for the kind of

6.4 Conclusions 171

applications we are addressing. Designers should take into account these
results in order to determine whether this technique can be applied in
a particular domain according to its performance constraints.

6.4 Conclusions

In the same way that a musical orchestra requires a conductor to indi-
cate who should play and the tempo to be followed, we consider that
service orchestration in the IoT environment should not only determine
which services must be provided to the user but also how much notice-
able the interaction with them should be.

This chapter makes use of model-based reconfiguration techniques to
adapt the system architecture to cope with high-level directives. With
the increase in the capabilities of computing devices, the bottleneck for
the system can be on the human resources such as attention. Thus,
it is important to manage these resources in an effective manner. The
mechanisms provided for adapting the obtrusiveness level at run-time
allow the system to be considerate with the user. By considering the
user context, users can participate in the IoT in a more comfortable
manner.

172 Adapting obtrusiveness at run-time

CHAPTER 7

Validation of the proposal

his chapter describes the application of our approach in practice.

Our method was applied in order to support different business
processes in the library of our Faculty by improving the physical-virtual
linkage in this context. The number of users of the faculty library
varies very much depending on the year period. In certain periods (e.g.,
during exams) it is very hard for the library personnel to attend the user
demands in a reasonable time. Since most of the tasks of the librarians
require to cross the physical-virtual gap, this becomes a good setting
for applying our approach.

By supporting the library services with physical mobile workflows,
users are able to access library services in a more fluent manner. We
defined the Smart Library case study in order to improve business pro-
cess by means of a better physical-virtual connection. Based on this
case study, we validate whether the method defined in this work can
cope with physical mobile workflow requirements. In particular, in this
chapter we are verifying the following aspects:

Design method. The information captured at design should describe

174 Validation of the proposal

the aspects that are relevant to capture physical mobile workflow
requirements. Our research results show that the models defined
are useful for designers to discuss about system requirements.

Iterative design. Requirements must be captured in a way that it is
feasible to validate them with fast iterations. In this way, continu-
ous feedback can be obtained to improve the designs. Our research
results show that fast-prototyping techniques can be applied in a
way that reproduce the user experience of the final system.

Implementation. It must be feasible to obtain an implementation
that fits with the requirements described. Code generation tech-
niques can be applied to simplify the development.

The approach followed for validating the proposal is focused on the
previous aspects. First, we wanted to verify that the design method
was appropriate for describing physical mobile workflows. In order to
respond to this, we modeled the new workflow for the library. Then,
we make use of fast-prototyping techniques in order to re-design the
process. On the one hand, feedback was gathered from end-users in
order to verify how the design method could deal with the changes iter-
atively. On the other hand, we evaluated to which extent the prototypes
provided are representative of a final system. This determined the use-
fulness of the fast-prototyping technique in providing quality feedback.
Finally, a software solution based on Presto was developed following the
development process defined in Chapter 5.

The remainder of this chapter is structured as follows. Section 7.1 in-
troduces the design of the workflow. Section 7.2 describes the validation
with end-users by means of early stage prototypes and the redesign of
the system to solve the issues detected. Section 7.3 provides information
regarding the implementation of the final software solution. Section 7.4
analyzes the advantages and problems found during the application of
the approach. Finally, section 7.5 concludes the chapter.

7.1 Designing the smart workflow 175

7.1 Designing the smart workflow

For the design of the Smart Library case study we applied the design
method defined in Chapter 4. According to this method, different as-
pects of a physical mobile workflow should be captured in models. The
detail of the information captured in each modeling perspective includes
the user activities detected for the business processes in the library, the
requirements for the interaction with physical elements, the technology
analysis to select the most appropriate technologies, and the deploy-
ment configuration that determines how the system functionality is dis-
tributed in the physical space. All these aspects are detailed bellow.

7.1.1 User activities

Books are the central resource in the library. Most of the activities
that are performed in the library involve books in a certain way. Books
are manipulated by different people in the library context in order to
fulfill their goals. The Smart Library scenario involves people playing
the following roles:

Library user. The members of the library are allowed to borrow books.
Their goal is to find the book they need. This requires to perform
different tasks depending on the situation such as deciding among
several possible alternatives or physically find the book in the li-
brary. The inability to find the appropriate book and the need
for waiting are their main concerns.

Librarian. Their mission is to keep the library organized and to assist
the library users in their tasks. However, the number of librari-
ans is much reduced compared to the number of students. Thus,
the tasks performed by this role are potential bottlenecks for the
process.

Security personnel. Since the system cannot completely control what
is happening in the real world, security is sometimes needed to
enforce a correct use of the physical resources. In the library

176 Validation of the proposal

scenario, security staff is in charge of avoiding books from being
stolen.

The roles defined above perform different activities in order to ful-
fill their goals. For the Smart Library scenario, we focused on defining
services that library users require while they are exploring the library
in-situ. We defined the services using our previous experiences in li-
braries and by observing user behavior at the university library. After
a brainstorming session, the services defined were the following:

Loan process. Users are enabled to directly borrow books in the place
where the books are physically located, without requiring a librar-
ian to be present. For the return, books are just dropped into the
return box to complete the process. The need to return the books
is reminded to the user when the loan is close to expire.

Related information. Given a book, we considered the possibility of
informing the users about similar books and comments from other
users. In this way, users can better determine whether or not the
book is worth reading.

Book blocking. We observed that many users carry books around the
library with them while they are deciding whether or not to bor-
row them. Their intention is to prevent others from borrowing a
book which they might be interested in. We provide the possi-
bility of digitally blocking books for fifteen minutes. During this
time, only the user who blocked the book can borrow it.

Security. Only the books that are on loan can exit the library. The
security service must be provided in a way that does not disturb
the users. Users which performed their loans correctly must be
able to exit the library without stopping at the security control.

By providing library services closer to the place where they are
needed, users can perform their tasks more fluently in comparison to
their experience in the library. In their previous experience, loans were
performed by the librarian in the library desk, information about books

7.1 Designing the smart workflow 177

Return book

T) "
register in waiting list? Pick up

reserved

book available?
il Y
H Book loan
£
2 O

in waiting list

Notify member
about book
availability date

Library

Place the
book in
the shelf O

Librarian

Figure 7.1: Business process mode for the book loan in the Smart Library
case study.

could be only gathered from two computers that were located far from
the shelves and the temporal reservation was only feasible by physi-
cally carrying the books with them. In practice, the physical barriers
for accessing the information affected negatively the user experience.
With the system proposed, users can perform these tasks by interact-
ing directly with the physical object of their interest using their mobile
device. Services are accessed in a more autonomous manner, reducing
the dependency between library users and the other roles.

The book loan process is the process that involves more activities.
Figure 7.1 shows a BPMN diagram that defines the temporal dependen-
cies for the different tasks involved in the book loan process. Initially, a
library member picks up the book in which she is interested and access
the associated information by means of her device. Then, the library
loan application running in her device checks the state of the book and
informs the member about it. If the book is available, then the loan is
performed. If not, the member is notified and asked to register in its
waiting list. At this point, the member decides either to reject regis-
tering in the waiting list or accepting to be included in it. If so, when
the available date is reached, the library loan application notifies the
member and she can pick up the book at the library. If the expiry date
approaches, the member is reminded. Then, within a predefined period,

178 Validation of the proposal

Figure 7.2: Book return mechanisms at the Denver Library.

the member returns the book simply by leaving the book in the library
“return box”. The use of the return box concept is common in many
libraries (see Fig. 7.2). A member (or someone in her behalf) can drop
the book inside the box in order to return it. In this case, Auto-ID
technologies can be user to automatically detect when a book has been
returned.

Thanks to the use of Auto-ID, library members are not required
to directly interact with librarians. Queues are avoided provided that
library members could access the system with their own mobile devices.
Finally, the librarian personnel is in charge of placing again the book
in its corresponding shelf. In this case, the librarian is guided by her
device to the proper location.

7.1.2 Requirements for physical interaction

Books are the only kind of physical element involved in the Smart Li-
brary case study. Books participate in the business process from differ-
ent perspectives. For some services a book is a unique item while other
services are not specific to the particular book instance but the literary

7.1 Designing the smart workflow 179

Shelf
number
Author . Book B 5.1 | location

name - isbn 1

nationality title BookCopy Loan . Member
¥

code o1 date T name

available duration sanctioned

Figure 7.3: Class diagram for the data model used in the Smart Library case
study.

work it represents. For example, the book loan process is performed at
an item level. A member borrows and returns a particular book copy.
Conversely, comments about the book are performed by different users
commenting the same literary work regardless the particular copy they
have.

In order to support the multiple perspectives of the book element, it
is represented in our data model at different abstraction levels. On the
one hand, the BookCopy element is defined to represent the book at the
item level. On the other hand, the Book element is defined to represent
the literary work. Other levels could be considered in order to reflect
the different editions of the book. Since this work is not focused on data
modeling, we opted for a simple model that was capable of supporting
the case study needs. Figure 7.3 illustrates an excerpt of the data model
used for the case study. The model also includes information regarding
the library users and heir loans.

Since books are individually identifiable and they can participate
only once for some of the processes involved in the Smart Library, they
can be used for process correlation. In particular, books are used for
correlation in the book return task, book blocking and security activities.
For example, when a book is returned it can be found the active loan
that contains the book in order to process it.

Once we have defined the participants in the process, the tasks they
perform and the physical elements involved, we define how the process is
integrated in the physical environment. The way in which is performed
the tasks in terms of obtrusiveness and physical interaction is detailed
below.

180 Validation of the proposal

Reactive Proactive

Borrow book

The book is explicitly touched
using a mobile device and the loan Unlock book
is confirmed to the user. User is notified when a book
is no longer blocked.

Completely
aware

k) Find similar
>0 . "BIOCk book Suggestions of similar books are
£ & Users "touch” the book to be o provided to the user by demand but
0 O blocked and information is also when looking for a given book.
= provided to the user
©» o (o]
=
Comment book
T Book valorations are presented to
the user by modifying the colour of
5 @ the book title. The user can access Return book
= =) the detailed comments by demand The user just drops the book in the
< (but comments from friends are "return box". The system registers
=l S proactively announced). the return when the book is
I5| £ detected.

initiative —

Figure 7.4: Obtrusiveness level defined for each task in the Smart Library
scenario.

Obtrusiveness

Each task of the workflow can be provided at different obtrusiveness
levels. Figure 7.4 shows some of the most representative tasks of the
Smart Library case study and their obtrusiveness level. The obtrusive-
ness space in this case was defined by dividing each axis in different
parts as it was illustrated in Chapter 4. The attention axe is divided in
three levels depending whether the interaction should be ¢nvisible to the
user, slightly noticeable, or completely aware for the user. The initiative
axe is divided in two parts that represent interactions initiated by the
user (reactive) and interactions initiated by the system (proactive).

During analysis we decided the appropriate obtrusiveness level for
certain tasks, but several levels were considered for others. The later
would require to be adapted at run-time according to what is discussed
in Chapter 6. The obtrusiveness level for the different processes in the
Smart Library are detailed below.

Loan process. Borrowing books is performed in an explicit manner

7.1 Designing the smart workflow 181

by users. Users initiate the interaction (reactive) and they are
informed about the loan (completely aware). The reminder to
the user is performed in a proactive manner in terms of initiative
but the attention level required is dynamically increased as the
deadline approaches (three days before the date, the functionality
is provided at the completely aware level). The return of books
is performed in a completely unobtrusive manner, the user leaves
the book in the return bor and the system initiates the return
process without notifying the user.

Related information. Not all the information that is associated with
a book is relevant for the library users at anytime. For the tasks
that provide complementary information regarding a book we pro-
vide the information in a noticeable manner when it is considered
to be relevant. We provide the interaction at a different obtru-
siveness level depending on the relevance of the information. User
comments about the book that are made by friends are consid-
ered to be more relevant that those made by people that is not
part of the user social network. Thus, comments from friends
are provided in a proactive manner to the user. When a book
is detected, the user is announced that some friends commented
this book without the user to express the intent of accessing com-
ments. When the user is looking for similar books to a given one,
the books that are physically close to the user position are con-
sidered more relevant. Although the primary criteria for choosing
similar books is the proximity of their content not their position,
by emphasizing the books that are physically closer to the user,
users can make more efficient routes when exploring the library.
For close books, information is provided in a proactive manner,
but it is only shown as a hint (slightly noticeable) (see Fig. 7.4).
Thus, it can be later implemented as a soft vibration or some
non-intrusive mark on the screen to indicate that additional in-
formation exists.

Book blocking. Book blocking is performed explicitly by library users.
When it is performed, it is “suggested” in order to increase fluency

182

Validation of the proposal

(i.e., at the slightly noticeable level of attention). For example,
when a book is blocked, a small number indicating the remaining
minutes appears close to the book title. When a book is no longer
blocked, this is announced to the users that are waiting for the
book in a proactive and more notorious manner.

Security. When the user exists the library. The system checks in a

proactive manner whether the user is carrying any book that is
not on loan. The library personnel are warned if someone is taking
out a book. On the one hand, if the book is on loan the picture
of the member is displayed (slightly noticeable) in order to allow
the personnel to verify whether the user carrying the book is its
legitimate owner. On the other hand, if the book is not on loan
an alarm is raised (completely aware).

In order to support the behavior described above for the tasks per-
formed in the Smart Library case study, different interaction techniques
can be applied. The mechanisms used for interacting with the environ-
ment in the Smart Library are described below.

Interaction technique

According to the previous requirements, different interaction techniques
are used by following the guidelines defined in (Rukzio et al., 2007). The
interaction techniques used to access the services in the Smart Library
are detailed below.

Touching. This technique is used for explicit interactions where the

user is nearby the object. Users can touch the book with their
device and access the services available for this particular book.
This is the case when borrowing a book and gathering related
information explicitly (proactively at the foreground of user at-
tention).

Pointing. For objects that are a bit far from the user, pointing tech-

nique can be applied. In the Smart Library, when the user faces

7.1 Designing the smart workflow 183

a shelf, the relevant books are suggested. In his case the location
of the user is used to determine the shelf to which she is point-
ing. Pointing can also act as a replacement technique in the case
touching is not available.

Scanning. For the tasks that must be performed in an unobtrusive
manner scanning can be used. Tasks such as book return or the
detection of book at the library exit must be as unobtrusive as
possible to avoid queues. Users exiting the library and books that
are left in the return box are automatically processed when they
are detected.

These interaction techniques can be supported by different technolo-
gies. In the Smart Library case study, we selected a set of technologies
that support the appropriate interaction techniques and could be repro-
duced in practice either in a real environment, in a scale environment or
simulating some aspects. The following section provides detail on the
technologies used for supporting each interaction technique.

7.1.3 Technological analysis

In order to choose the most adequate technologies, we first define them
in an abstract manner by detecting the possible mediums used for iden-
tification. The mediums defined are described below.

Radio. Identification by means of radiofrequency enables the appli-
cation of scanning and touching interaction techniques. Since
radio does not require direct-line of sight, no artificial elements
are perceived by the user during interaction. Conversely, since
an augmented item looks identical to a non-augmented one, some
mechanism should be user for announcing that the element has
digital services associated to them.

Image on paper. The use of visual marks is an interaction method
that offers a lower degree of automation than the identification
based on radio but it is less technologically demanding. Much of

184 Validation of the proposal

the mobile devices nowadays have an on-board camera that allow
the recognition of visual markers.

Position. The identification by position is useful for objects that are
in the same place most of the time. In the case of the Smart
Library, each book is assigned to a particular shelf. When the
book is not on loan, its position is static. Thus, the position can
be used as an identifier for services that involve only available
books. For example, it is user to prioritize book suggestions that
are close to the user when the user is exploring the library. For the
support of pointing interaction technique, some technology such
as digital compass may be required to provide the user orientation.
Otherwise, only scanning technique can be applied.

Once we have defined the possibilities for identification that could
support the desired interaction techniques, we select specific technolo-
gies to support them. Multiple identification technologies have been
selected for this case study. The technologies considered in this case are
described below.

RFID. RFID is used for supporting the touching and sensing interac-
tion techniques. Depending on the technique supported a different
range is required. Short range antennas are enough for touching,
but scanning require an antenna with a large range.

QR Codes. QR Codes provide support to the pointing interaction
technique. However, since the visual mark must be orthogonal
in a direct line-of-sight with respect to the device, it cannot be
used to point at several books put on a shelf. QR Codes are
used in the Smart Library as an alternative mechanism to RFID
for touching-based interactions. The technology required for de-
coding QR Codes is more affordable. Thus, most of the current
mobile devices are capable of using it. This allows users to use
their own mobile device when participating in the process. In-
teractions based on scanning cannot be easily supported by QR
Codes.

7.1 Designing the smart workflow 185

Bluetooth. In order to determine the shelf to which the user is close
to, bluetooth is used. Bluetooth was chosen by considering the
limitations of location systems such as GPS for working indoors.
Bluetooth range allows to have enough precision to determine the
library zone where the user is. Positioning is far from perfect,
but knowing a coarse grained position if it is complemented with
orientation information could be good-enough for the task.

According to the previous selection, books are tagged using both
RFID tags and visual markers, and library shelves are tagged with a
bluetooth beacon to broadcast its identity. Table 7.1 shows a summa-
rized view of the technology analysis results performed for the tasks
where the physical-virtual linkage is critical. The table shows for each
task, the obtrusiveness levels at which it can be performed, the inter-
action techniques that can be applied and the technology that must be
used to support them. Some tasks are lacking interaction technique
since they are triggered by some event not related with identification.
Tasks such as the return book reminder and the book released are time-
based. When a certain moment arrives, the system proactively informs
the user.

7.1.4 Deployment configuration

In order to support the different tasks in the smart workflow, the func-
tionality is divided into different deployment units. These deployment
units are supported by a mobile device, although other kind of device
can be also used as it is the case of the return box. Each deployment
unit is operated by a different role to fulfill their tasks. The deployment
units defined for the Smart Library case study are defined below.

Member mobile. Library users can perform most of their tasks in
the library through their own mobile device. They are provided
support to borrow and blocking books, and accessing associated
information. For these tasks, their mobile device must be capable
of supporting either RFID or QRCode technology. Optionally,
bluetooth support would be also desirable in order to prioritize

186 Validation of the proposal

’ Task ‘ Obtrusiveness ‘ Technique ‘ Technology ‘
Borrow book (reactive, aware) touching RFID,
QRCode
Return (proactive, slightly) - -
reminder (proactive, aware)
Return book | (proactive, invisible) scanning RFID
Comments (reactive, aware) touching, — RFID,
(proactive, slightly) QRCode
Similar books (reactive, aware) touching, RFID,
(proactive, slightly) pointing QRCode,
Bluetooth
Block book (reactive, slightly) touching RFID,
QRCode
Book released (proactive, aware) — -
Security check | (proactive, invisible) scanning RFID

Table 7.1: Technology analysis for the Smart Library.

the related information depending on the books that are physically
close to the user. In addition, library users use their mobile device
to receive different notifications (return reminders and available
books) in their mobile device.

Librarian mobile. Librarians make use of RFID to determine where
must be placed a book that has been returned. RFID is the pre-
ferred mechanism for librarians to interact with books since it
supports better the touching interaction. Librarians are notified
when books are returned in the return box. They can also explic-
itly return books if the user prefers interacting with the librarian
or the return box is not available.

Return box. RFID capabilities are required to detect the books that
have been returned in an unobtrusive manner. In order to reduce
the risk for a book not being detected, the return box can make use
of additional sensors (e.g., detecting the weight of the content).

7.2 Early-stage evaluation 187

Security door. RFID is used to detect books at the exit of the library.
For users that behave according to the rules, they do not perceive
that the security system is inspecting the books they are carrying.
Security personnel can validate whether the person exiting the
library is the owner of the detected book or not since an image of
the library member is shown to them. An alarm service is accessed
in case, the books detected are not on loan.

Library shelf. Library shelves are provided a digital identity that is
broadcasted by means of Bluetooth. This is useful to provide
location-aware information to the library participants. Librarians
can be warned if they approach the wrong shelf when returning a
book, and users can organize their books of interest according to
their location.

The requirements captured following our method describe the phys-
ical mobile workflow to support the Smart Library scenario. Since the
design method was followed, the different decisions are organized in dif-
ferent layers and consistency is guaranteed among them. Although the
workflow defined is consistent, this does not guarantee that the sys-
tem described is well accepted by users. Once the system is designed,
the following section detects whether the design decisions taken were
appropriate.

7.2 Early-stage evaluation

The MDE techniques defined in Chapter 5 can be applied to the previ-
ous requirements to obtain a software solution to support the system.
However, there is still place for fast-prototyping. In the case of physical
mobile workflows, deployment efforts are high if real hardware is used.
Designers need certain guaranties that the business process defined will
work when it is finally deployed.

Fast-prototyping techniques have been applied in order to immerse
the user in the workflow designed without actually implementing it.
HTML interface mock-ups and Wizard of Oz techniques are used to

188 Validation of the proposal

simulate the process. From the device perspective, the only require-
ments for applying the technique are wireless connectivity and HTML
rendering capabilities. Since we had access to our department library
the physical context was easy to reproduce.

Once the user is immersed in the simulated environment, the user
experience in terms of usability and productivity is evaluated.
To evaluate these aspects, we use MoBiS-Q (Vuolle et al., 2008), a
questionnaire to measure mobile business service experience. MoBiS-Q
evaluates user experience combined with enhancements in work produc-
tivity. Three dimensions are evaluated with the questionnaire: perceived
usability of a mobile business service, fit for mobile working context, and
perceived impact on mobile work productivity. The first dimension fo-
cuses on the functionality provided to the user; the second one focuses
on the use of the service through the mobile device; and finally, the
third dimension is about improvements in the fluidity of work.

For the evaluation of the Smart Library prototype, we defined dif-
ferent scenarios that users must follow and put into practice at the
department library. In-situ evaluation was possible since the technique
does not require a complex infrastructure (e.g., tagging books or in-
stalling RFID readers) is not required. An iPhone was used to interact
with the Smart Library services. We chose this device because of its
HTML rendering capabilities and the availability of frameworks such
as iUI' for the development of native-like web applications. The use
of these capabilities helps to obtain a realistic look and feel with little
effort .

The prototype developed for the evaluation took a single student
two days to prepare. Even though the development required little effort,
the user immersion that was achieved was excellent. When the users
evaluated the prototype, they were not told that it was a non-functional
prototype. After the evaluation, when they were told that it was not a
final functional system, more than a third of the participants confessed
that they thought that it was. This means that it is possible to
anticipate the feedback that could be obtained from the final

"http://code.google.com/p/iui/

7.2 Early-stage evaluation 189

system with minimal effort.

The experiment was performed by 34 users (26 men, 8 women; be-
tween the ages of 20 and 60), 7 were familiar with the mobile device
used. We applied a Likert scale (from 1 to 5 points) to evaluate the
items defined in the MoBiS-Q questionnaire in different scenarios that
comprised several alternate, simultaneous and repetitive tasks. They
were required to borrow books (waiting for them to be available in the
case they were reserved), make temporal reservations while looking for
similar books with a better rating. Figure 7.5 shows a summarized table
of the obtained results”.

More than 80% of the people highly (4 points) or totally agreed (5
points) about each of the service-related questions. The offered func-
tionality was perceived as useful and the way of presenting it to the
user (following the dynamic to-do list metaphor) was considered intu-
itive for navigating and accessing the desired functionality. One user
described the service as being a “universal remote control providing the
information needed at each moment”.

With regard to the fit for mobile working context, the results were
also positive, but more dispersion was found in them. This was due to
the different levels of expertise in the use of mobile devices for accessing
applications that go beyond the typical phone capabilities. Specifically,
using the device with only one hand (question 21 of MoBiS-Q) was
considered hard to do by 14.6% of the users, while the rest found it
highly (32.4%) or totally (50%) feasible.

With regard to the perceived impact on mobile work productivity,
more than 90% of the users positively rated the increase of productivity
experienced when they compare the service provided with the libraries
they normally access. The users indicated a strong belief that tasks
could be performed more quickly (questions 30, 33 and 37). However,
despite the general improvement in process efficiency, 11.7% of the users
considered that tasks were not actually simplified since they were as-
suming some tasks that are traditionally performed by librarians.

Finally, we included in the evaluation some questions to determine

2The complete results can be found in the Appendix B

190 Validation of the proposal

Totally disagree
mEmL

Totally agree

MoBiS-Q questionnaire

4. Easy to learn |155:9% 41.2%
5. Easy to become skilful
7. Suitable for work tasks on the move 47.1% 09

9. Quick enough 6
10. Functions are necessary 0
11. Ease of navigation

Perceived usability of a
mobile business service

16. Ease of use with a device

o X > - —
= £ 17.Screen size is not a limit Wl353% 47.1%
£ S 19.Suitable for working on the move 76.5%
5 & 21.Using a device with one hand B32:4% s0%
P % 24.Ease of use while on the move 67.6%
“ 2 25.Ease of use in a hurry

o > 26. Satisfaction with efficiency at work 38.2% 55.9%
S 2 30.Useimproves fluidity of work 52.9% 41.2%
€ 8 33. Able to perform tasks in less time | 76.5%

S S 34.Able to complete tasks easier B382% s0%
E S 37. Less time to go through tasks 76.5%
g g 38. Less additional traveling [3274% s58.8%

39. Better access to information needed | AN EYAEL

Figure 7.5: Summarized results.

the relevance of the feedback obtained (see Fig. 7.6). One of the ques-
tions was related to how much the prototype provided a detailed idea
of the final system. All the participants considered the prototype to
be helpful for developing the final system. Of these, 55.88% considered
that it provided a very detailed view of what the system should be, and
35.29% reported that they even believed that it was the final system.
We also asked how often they would use the service if it were available
in their library. A total of 88.23% of the users were willing to use the

7.2 Early-stage evaluation 191

Realism achieved with the prototype
.| An idea of how the
/ml final system could be
is provided

55.88%

A detailed idea of
how the final
system would be
is provided

I thought it was
the final system

Frequency of use for the service
(if it were available)

Rarely Never

2.94% 2,94%
Normally
5.88%

55.88%

Very often Always

Figure 7.6: Relevance of the feedback obtained.

service always or very often, with the only complaints being the limited
availability of Auto-ID-enabled devices to properly access the service.

7.2.1 Workflow re-design

The feedback from the users was used to re-design the smart work-
flow iteratively. Some concerns resulted in minor modifications of the

192 Validation of the proposal

mock-up interfaces (e.g., using graphical metaphors and bigger but-
tons). Other suggestions were more relevant to the process redesign
since they involved changing the level of obtrusiveness for some tasks
or the inclusion of new tasks in the process.

More detailed capabilities were requested for book blocking. Initially,
the user was informed by means of notifications. However, users wanted
to take the initiative and access this information on demand. Some
concerns were also raised about the possibility of vandal users abusing
the block feature. As a consequence, a limited-size list of blocked books
was provided for users to manage.

Book location was the functionality most demanded. When looking
for similar books, users wanted to physically locate them. Thus, we
extended the process model to include this task as the next step for the
similar book finding task.

The obtrusiveness level for the return of books was also problematic.
In the first iterations of the design, the return of books was completely
unobtrusive for the users (just dropping a book into a return box). How-
ever, users were not sure whether the return had actually taken place
or not. Thus, we adapted the return book task to provide a notification
message. Therefore, the interaction is still reactive in terms of initiative,
but it is performed in the foreground of user attention.

7.3 Obtaining a final implementation

After redesigning the business process, the case study was finally im-
plemented using the Presto platform. The requirements captured in
Section 7.1 were specified according to the Parkour metamodel. In this
way, requirements become machine-processable and can be used to guide
the development by automating some tasks. From these requirements,
the initial version of the system was obtained. This version defines a
different Presto system for each deployment unit defined above.

Each deployment unit resulted in a Presto system that includes a
Task Processor to support each tasks of the user, Identification Com-
ponents to support the different identification technologies, and Data

7.3 Obtaining a final implementation 193

Providers to represent the different perspectives provided over books.
More detail regarding the process for obtaining a functional software
solution is provided in Chapter 5. This section provides detail on the
manual development that was required to obtain the Smart Library
prototype based on Presto.

7.3.1 Task support

The tasks supported by the smart workflow are not complex in their
business logic. Task Processors are in charge of presenting some in-
formation to the user that they extract from the pending task, and
complete this information with some input from the user. Due to the
intrinsic I/O limitations of mobile devices, user interfaces have been de-
signed to be simple and provide predefined options when it is possible
since selection is preferred to text input.

In order to support different obtrusiveness levels, additional services
have been added to the original system. In particular the notification
service is defined to support proactive notifications by the system. It
is implemented by wrapping the Notification Manager component from
Android. This is used for notifications such as the return reminder and
the book released.

Alternative Task Processors have been developed for tasks that can
be performed at multiple obtrusiveness levels. For example, the similar
books task is supported by two alternative plug-ins. One makes use
of the notification service and the other does not. These components
can be activated and stopped at run-time without problems since both
support the same intents and the application state is mainly kept in the
Task Manager.

In order to validate the functionality provided by the Task Proces-
sors developed, the scenarios defined for the non-functional prototypes
were used as a reference. Since the non-functional prototype defined for
the early-stage evaluation obtained positive results in terms of usabil-
ity and process performance, the Task Processors were implemented to
define a user experience as close as possible. We validated that the ob-
tained system could reproduce the scenarios supported by the prototype

194 Validation of the proposal

in the same way.

7.3.2 Integrating identification technologies

The HTC Magic mobile device was used for supporting each Presto
system. The device lacks RFID capabilities but it is provided with
QRCode decoding capabilities based on the ZXing library. The Identi-
fication Component developed, wraps the functionality provided by the
barcode application from the ZXing project. Thanks to the use of in-
tents in the Android platform, functionality from different applications
can be easily integrated.

For the QRCode generation, the Google Chart API was used for the
production of tags. This API provides support for the generation of QR
Code tags. In order to make the recognition as fluent as possible, we
selected the “H” error correction level, which is the highest correction
level defined by the QR Code standard (it allows the recognition of a
code that is damaged up to a 30%).

Since no current android device was provided with RFID capabil-
ities, we provided some alternatives for its simulation. Two different
Identification Components were defined to support RFID. One plug-in
receives the identification events from a remote web service to simulate
RFID behavior. This allows Wizard of Oz techniques to be applied.
The other plug-in receives the events from an external RFID reader.
Since Identification Components can be easily replaced, once it were
available an Android device with RFID an appropriate Identification
Component could be developed to make use of it.

For bluetooth identification, the bluetooth device name was used as
an identifier. Different bluetooth-enabled devices were put in different
shelves to provide a coarse-grained notion of user location. Since library
shelfs are normally located at different sides of the user, the orientation
of the device was used to filter the detected shelves to consider only the
ones in front of the user. Since this feature is only intended to prioritize
additional information, it was not implemented to provide a high level
of precision.

7.3 Obtaining a final implementation 195

For tasks that require a the scanning interaction technique was re-
quired, an external Caen A828DKEU RFID reader was used. These
tasks require a completely autonomous detection of multiple physical
elements. This RFID reader allows multiple tags to be read but the
reading distance is shorter than half a meter which avoids its use in a
real environment. Thus, the library exit and the return box were sup-
ported on a scale environment. For a real deployment, RFID readers
with a larger range will be required. For the library alarm, the system
makes use of KNX devices that were controlled by means of an OSGi
server.

7.3.3 Communication among systems

Intalio BPMS was used to orchestrate the different services in the Smart
Library scenario. The orchestration engine provided the pending tasks
to each participant in the system according to the process definition.

MoRE supported the reconfiguration aspects. Different kinds of
context were supported for adaptation: temporal, social and spatial.
The context ontology was designed to represent the remaining time for
loans, the frienship relationships of users and the position of the shelves
and users in the library. Depending on these factors, MoRE activates
and deactivates the appropriate Task Processors.

Information in the Smart Library was supported at the server level
by means of Restlet®. Restlet is a framework for providing and accessing
REST-based services. Restlet is designed by following the principles of
the web and provides support to flexibly represent digital resources.
Restlet is available for Java and Android platforms among others. Data
Providers exposed this information to the Presto application. A custom
Content Provider was defined in Android to expose information in a
homogeneous manner for each Data Provider. In particular, two Data
Providers were developed. One provides information about books at the
item level (e.g., used to control loans). The other provides information
regarding books at the literary level (e.g., used to provide comments).

Shttp://www.restlet.org

196 Validation of the proposal

7.4 Experience applying the approach

This section analyzes the experience of applying the method introduced
in this work from the designer and developers perspective. Different
case studies were developed in order to identify the advantages and
limitations when applying our approach. We evaluated both, the use
developers made of the architecture defined and the experience of the
designers with the design method proposed. On the one hand, for the
architectural evaluation support was developed for several case studies
using different software platforms. We chose from existing case study
descriptions in the literature in order avoid bias. On the other hand,
the design method was applied by external developers to better identify
whether the concepts and step proposed were easy to learn and follow.

The following sections introduce the case studies defined and the
benefits and limitations found while applying our approach.

7.4.1 Case studies

This section introduces the different case studies where our approach
has been applied. We have applied our approach with the goal of deter-
mining whether (1) the architecture components provided the function-
ality required for supporting the needs of the physical mobile workflow
domain, (2) the abstract architecture definition could be supported by
different technologies, and (3) the design method was adequate to rep-
resent and manage the knowledge involved in the design of a physical
mobile workflow.

Depending on the level of maturity of our approach, when support-
ing each case study different stages of the development process could
be applied. The Smart Toolbox and the incidence management pro-
cess were developed with the purpose of exploring the physical mobile
workflow domain in order to detect common functionality that could be
expressed in a generic architecture. These case studies were in-house
developments that were carried out by the author of this work with the
help of some students from our research group.

Once we explored different technologies for implementing our archi-

7.4 Experience applying the approach 197

tecture, we developed the Android version of the platform for the Smart
Library case study. For the Smart Library case study all the steps in
our method were applied for the design, simulation and implementation
of this workflow (Section 7.1 provides a detailed description of this case
study).

In order to validate the development process proposed without bias,
our method was applied in two external projects. These projects were
part of two master theses carried out by two students that did not
belong to our research group. Since both students were not familiar
with physical mobile workflows it was a good opportunity to analyze
the advantages and limitations when applying the method from scratch.

A brief description of the case studies and the technologies involved
in their development is provided below.

Smart Toolbox

The Smart Toolbox (Lampe et al., 2004) case study consists of mon-
itoring the tools used for the process of aircraft Maintenance, Repair,
and Overhaul (MRO). During this process, the system should prevent
tools from being lost and causing potential damage. To do this, Auto-
ID mechanisms are applied to sense the content, the location and the
mechanic of each toolbox.

Each step in the MRO process (e.g., preparing the toolbox, perform-
ing maintenance and repair tasks, etc.) requires a specific functionality
for the mechanics. When a mechanic is preparing the toolbozx, he/she is
provided (1) a list of the tools that are required for the planned repairs,
and (2) services for ordering new tools. For the repair tasks, mechanics
can use their mobile devices to retrieve a list of the repair actions to
be taken for a particular plane. Once the plane tag is detected by the
mobile device, it indicates the specific repairs required and the general
maintenance protocol.

This case study was implemented following the Service Component

198 Validation of the proposal

B BEE
& Teol
/ Tool: Senzrl
Wrench ; ; — = 53
- /[Tookox ... ¢ \[7) Tookax ... % <2
Machanic
i"gva‘z;x @ rinoe L) C || % panic » O~ F-
Mechanic Reader
», To
& Hammar ., Location
Flane 101 415

Figure 7.7: Smart toolbox prototype.

Architecture? (SCA). Apache Tuscany® which is a SCA implementation
was used to implement Presto components. Figure 7.7 shows some of
the interaction mechanisms supported by the prototype. Web interfaces
were defined for interaction carried at the digital world and the reac-
TIVision framework® was used for the real-time detection of specially
designed 2D barcodes using a video camera. The prefuse toolkit” was
used to visualize the real world elements detected.

*http://www.oasis-opencsa.org/sca
Shttp:/ /tuscany.apache.org/
Shttp://reactivision.sourceforge.net/
"http://prefuse.org/

7.4 Experience applying the approach 199

|£] Presto = | G i

tasks Selectresource

nd the

Change member

¢
Al

Pau Giner

Add resource >

g iPod classic
. Multimedia player

Figure 7.8: Incidence management prototype.

Incidence Management Process

This case study (Torres et al., 2007a) defines a business process that
describes the protocol followed by a company in order to manage the
infrastructure incidences reported by company members. It defines the
set of activities that need to be performed and how these are organized
among the different participant roles. In this case, the involved roles are
members, the infrastructure manager and the technicians. We modified
the original case study to consider that (1) department members are
identified by an identity card and (2) material requests are labeled by
the provider.

For example, when something is broken, it is reported by a company
member. Then, the infrastructure manager contacts the provider to get
the required materials to fix the incidence. Finally, members of the
technical staff are in charge of the repair. Auto-ID mechanisms are
used for the tasks where requested materials and members participate.

200 Validation of the proposal

For this case study JavaFx® was used to implement the different
components from the Presto architecture. Figure 7.8 shows the user
interface defined for the prototype. At the bottom-side, three icons
allow to (1) access the to-do list, (2) sense the physical environment
and (3) configure the different plug-ins. Different Java libraries were
used to extend the capabilities of JavaFX. In particular, Java Plug-in
Framework” was used to support plug-in management, lti-civil'’ was
used for capturing images from a video source and the ZXing'! library
was used to decode different kinds of barcodes.

This case study was deployed in a Samsung Q1 Ultramobile PC.
However, the lack of a mobile profile for JavaFX at that time, make that
the performance level obtained was not appropriate for experimenting
with end-users.

T-Guide

The T-Guide case study was based on the support of geo-located tasks.
The T-Guide system was defined to provide indoor guidance to the users
when fulfilling their tasks. For tasks that require the user to be present
at a specific place, the T-Guide system provides a set of intermediary
steps to indicate the user how to arrive to this place. This case study
was based on the incidence management process case study. Different
resources are handled by technicians in order to perform reparations
and loans.

Figure 7.9 illustrates the linkage between tasks and physical loca-
tions in T-Guide. As opposed to the Smart Library scenario, in this
case, loans are managed by technicians. Department members request
some material or reparation and it is the technician the one in charge of
finding the one who has registered the loan. In order to find the place
where a task must be performed, RFID and QR codes were used. Lo-
cations are based on a symbolic model which is appropriate for indoor

Shttp://javafx.com/
http://jpf.sourceforge.net/
Ohttp:/ /lti-civil.org/
"http://code.google.com/p/zxing/

7.4 Experience applying the approach 201

Tareas Disponibles

REPARACIONES

Proceso de gulado Proceso de guiado
5 A

: I -
Lab. b3 A Lab. b3
5.0 5.0

o+ Hallegado al destino
solicitado 'CENTRO DE Ao,
COMPUTO". Primer piso DOCUMENTACION

LABORATORIO DE INGENIERIA DE
SOFTWARE

LABORATORIO DE INTELIGENCIA
ARTIFICIAL

Figure 7.9: T-Guide prototype.

positioning.

The design and implementation of T-Guide were supported by ap-
plying the method introduced in this work. The student involved in the
project was provided with the Presto architecture and the guidelines
to apply our design method. At the time the project was started, our
method was lacking tool support to automate the development. Thus,
the implementation of the system was faced at a lower level of abstrac-
tion using the Android SDK.

As a result of this work a conference paper (Serna et al., 2009) was

published in the Congreso Internacional sobre Innovacién y Desarrollo
Tecnolégico (CIINDET 2009) conference.

202 Validation of the proposal

Obtrusiveness adaptation

The goal of the Obtrusiveness Adaptation case study was to apply the
development method in a scenario where services were performed at
multiple obtrusiveness levels. For this case study services were defined in
a library context and they were implemented in a mobile device. Taking
the services defined for the Smart Library case study as a reference, the
design method was applied to define multiple versions of each service at
a different obtrusiveness degree. The design and implementation stages
of our method were applied in his case study. The simulation stage was
not performed since we took into account the user feedback obtained
from the evaluation of the Smart Library case study.

We were interested in re-thinking the Smart Library services by
exploring the possibility of providing them at different obtrusiveness
levels. The different interaction mechanisms provided by Android (no-
tifications, vibration, sound or text-to-speech synthesis) were used to
achieve different levels of obtrusiveness. In this way we could define
multiple alternatives for users to confirm, receive feedback or assistance
by librarians, and identify possible contexts where each one was more
appropriate. The model-based tools provided were used during the de-
velopment, and the final version of the system was deployed in a HTC
Magic device.

This project was part of a master thesis entitled “Método para dis-
enar procesos de negocio moviles adaptados a la obtrusividad”. The
student involved in the project had no previous knowledge about devel-
opment of mobile applications, business process modeling or the Internet
of Things. The design and implementation stages took three months
each.

7.4.2 Benefits obtained

The development of physical mobile workflows involves some aspects
that are not usually considered in software development such as the
physical interaction and the obtrusiveness of the process. The appli-
cation of our development method has been useful in the development

7.4 Experience applying the approach 203

of physical mobile workflows at different levels. We have applied the
approach by varying different factors such as the degree of control over
the process, the underlying technologies used and the business process
to be supported. In this way, we could experience whether the pro-
cess was appropriate for supporting physical mobile workflows under
different circumstances.

Considering the great number of variables that affect a develop-
ment process in a real environment and the limitations of applying our
approach in an academic environment it was not possible to provide
quantitative data. Nevertheless, qualitative information observed from
the application of the approach can be useful to determine whether our
method could be appropriate for a specific context. The main benefits
observed during the application of our approach are introduced below.

Fit for the physical mobile workflow domain

The concepts proposed in our approach for describing physical mo-
bile workflows have resulted useful both at design and implementation
stages. At design-time, the concepts introduced were useful for describ-
ing either new and existing case studies. The design method helped
designers to explore the design space for defining innovative services
(e.g., by considering different obtrusiveness levels, technologies, etc.)
but also for specifying services already described in existing scenarios.
The former was relevant since designers can benefit by obtaining new
solutions thanks to the way in which the method organizes the knowl-
edge. The later is relevant since by specifying existing case studies that
are representative of the physical mobile workflow domain (e.g., Smart
toolbox or the incidence management process), we can verify that the
method and architecture proposed is well suited for this kind of appli-
cations.

The architectural concepts provided in this work resulted useful for
the implementation of physical mobile workflows since they provide a
clear separation of the aspects involved in this kind of workflows. Dur-
ing the development of the different case studies, when an increment
in the functionality was required for the system it was easy to identify

204 Validation of the proposal

which kind of component must be created or modified. For example, in
the Smart Toolbox scenario, the reacTIVision framework used for iden-
tifying tools allowed the detection of multiple tags at the same time.
This allowed the fast detection of several tools in a toolbox. However,
the need for a direct line-of-sight required when dealing with 2D bar-
codes limited the performance of the process. To cover this limitation,
a new Identification Component plug-in was developed that supports
RFID technology, making the process more fluid. The migration was
achieved just by replacing the old plug-in with the new one, and both
plug-ins were later used for different prototypes.

Avoid technology heterogeneity

The definition of a technology-independent architecture made it easy
to develop prototypes in different platforms. Service Component Archi-
tecture, JavaFX and Android are different technological platforms that
have been used to support our generic architecture. We leveraged the
facilities provided by each platform in the implementation of the differ-
ent components of the architecture, but the fact that the architecture
was described independently from any specific technology make the ex-
ecution strategy followed easy to reproduce with different technologies.

From our experience in implementing on those platforms we learned
that the execution model defined for Presto fit better the component
communication mechanism defined in Android which is based on In-
tents (descriptions of the functionality desired regardless of the com-
ponent that provides it). On the other hand, the declarative language
provided by JavaFX for the definition of rich user interfaces simplified
the development of Task Processors in this platform since changes in
data were automatically propagated to the corresponding UI elements.
Finally the interoperability capabilities provided by SCA at data and
functionality level simplified the communication with external services
(e.g., web services, orchestration engines, etc.) but lack support for
mobile application development.

7.4 Experience applying the approach 205

Error reduction

One of the conclusions from applying our method is that it is difficult
for developers to keep an overall view of the system while focusing on
a specific part of the workflow. When we introduced the tool support
for our approach it was useful since it assured general consistency for
the workflow. At design time, model-based validation ensures that the
pieces defined fit together. At implementation, code generation is in
charge of producing the code that is required for the components defined
to communicate by respecting the underlying platform rules.

The first case studies were developed without tool support for the
method. It was common for designers to propose solutions that were not
feasible in practice due to contradictory decisions produced at different
parts of the model. In addition, most of the implementation problems
were due the lack of knowledge of the underlying technology frame-
work used. By avoiding inconsistencies in the model and hiding the
infrastructure aspects, errors were reduced and developers could better
master complexity by focusing on a system part at a time.

7.4.3 Limitations detected

Since the approach has been applied during its definition, we tried to
adjust it as we detected different limitations. However, two complaints
commonly found in model-based methods were to some extent also
present in our approach. In particular, difficulties for learning some
aspects of the method and more friendly tools were the main demands.
More detail about the issues detected is provided below.

Learning curve

Although the proposed concepts for describing physical mobile work-
flows were useful to cover the needs of the physical mobile workflow do-
main, they were not easy to understand for people that were not familiar
with the Internet of Things. During the formative part of the different
case studies some examples were required to illustrate the rationale be-

206 Validation of the proposal

hind each conceptual construct in non-desktop-based applications. To
overcome the difficulties of people in understanding the particularities
of the domain we have developed a catalog of implicit interaction ex-
amples'?. This catalog allows designers to understand the implications
of the physical-virtual linkage in physical mobile workflows.

Another factor that made some concepts to be counterintuitive was
the complexity of the scenario defined. Some of the concepts in our
development method have been defined to organize complex knowledge
about the physical-virtual linkage and they provide not much value
in simple scenarios. For example, defining a medium hierarchy for a
scenario where a single technology would be used is something designers
can find annoying. In this case, extending the tool support for providing
default models can be useful for designers to raise the abstraction level
of their designs as complexity increases. The fact that some of these
models can be reused from project to project can make this effort worth
it when the approach is applied to more than just one project.

Usability in tools

Tool support provided for the method was developed with the main
goal of increasing automation. Nevertheless, providing a user-friendly
frontend for these tools fall out of the scope of the present work. When
applying the proposal in the different case studies, being familiar with
the Eclipse modeling tools was a must when using the tools provided.
The development of graphical editors and support partial views of work-
flow models could facilitate the specification, validation and generation
operations.

Another problem introduced by existing tools was due to the in-
tegration with the business process execution engine. The use of an
external orchestration engine requires to expose the device functional-
ity to be orchestrated. For some scenarios it was desired orchestration
to be produced in a more fine-grained manner. It was desired to orches-
trate the local services (either provided by infrastructure or third-party

2http:/ /bit.ly /Tmplicit

7.5 Conclusions 207

default.bpmn_diagram £3 | default.bpmn =0

P)| =¥ Palette b
| @ Qi
| k& Qi

| | = Basic BPMN Shapes

: (= Start Events.

| | (= Intermediary Eve...
N e N || = End Events
|

| | > Gateway Shapes.

] — .~ '
o - e r CIEN| | SE

Group Data
Object

ion1 on Contacts(DEFAULT ALTERNATIVEY
fon2 on Contacts(ALTERNATIVE)

Action3 on Songs(ALTERNATIVE)

fon4 on Contacts(DEFAULT)

o3 on Pics(DEFAULT)

Figure 7.10: Android-based BPMN editor.

applications) in the mobile device. For this purpose, we developed a
local orchestration engine based on Android '* (see Fig. 7.10). The or-
chestration engine defined supports only a basic subset of the BPMN
constructs but allows to take advantage of the Android capabilities. In
this way, designers can decide between being generic or specific to the
platform in the workflow definition while still using the BPMN stan-
dard.

7.5 Conclusions

Modeling is about abstractions and the conceptualization of the sys-
tem to be built. However, for a problem to be completely understood
analysis hypotheses must be validated with the end-users of the sys-
tem. René Thom, a French mathematician, stressed the relevance of
connecting abstraction with reality:

Y3http://code.google.com/p/android-orchestration/

208 Validation of the proposal

“If you want to know what happens when you throw a stone
into a pond, it is infinitely better to make a trial and film it
than to attempt to theorize about it.”

In this chapter, we put in practice the design method defined. Our
research results show that the method is capable of producing systems
with a high level of user acceptance, the evaluation method provides
valuable feedback and a final software solution can be obtained from
what it is captured at requirements level. We also analyzed the expe-
rience of the designers and developers when applying the approach and
discussed the benefits and limitations obtained.

CHAPTER 8

Concluding remarks

he present work has introduced a model-driven development method

for the construction of business process supporting systems in the
context of the Internet of Things. Facing the development of such sys-
tems from a specification perspective has resulted innovative and dif-
ferent contributions were produced from this work. In addition, the
research line in which this work is aligned is by no means completed
here. Further work can complement and extend this thesis.

This last chapter introduces the conclusions of the work developed
in this thesis. First, Section 8.1 presents the main contributions to both
the Business Process Management and the Internet of Things commu-
nities. Section 8.2 provides an overview of the publications that have
emerged from this work. Finally, Section 8.3 outlines the ongoing and
future work that can extend this research line.

210 Concluding remarks

8.1 Contributions

The main contribution of this work is a development process for the
construction of business process supporting systems that integrate the
digital and the physical worlds. The development process comprises
from architectonic to methodological aspects. Thus, the work provides
the following contributions:

Architecture for implementation. An architecture supporting the
integration of real-world elements in business process has been
defined. In order to obtain a sustainable architecture, architec-
tonic concepts have been detected in a technologically-independent
fashion. Mappings to a particular technological solution
have been also established to obtain a system that meets the de-
manded requirements.

DSL for specification. Modeling primitives have been defined to fa-
cilitate the specification of identification aspects in business pro-
cesses. BPMN has been extended to cope with the integration of
physical elements in process definitions. Separation of concerns
and metamodeling techniques have been applied to capture and
organize formally the concepts that conform this specification
language.

Method for development. A development method has been defined
to guide the developer in the construction of business process-
supporting solutions for physical mobile workflows. The method
comprises from specification to the final implementation. To pro-
mote separation of concerns, different development roles are de-
fined for applying the method.

8.2 Publications

The research activity presented in this work has resulted in a total
of 23 research publications. Table 8.1 compiles all the published

8.2 Publications 211

works indicating the author position, the type of publication and the
conference or journal where it was published. The author position is
used as an indicator of the degree of contribution made by the author
of the present work in each one of the publications.

In addition, three senior theses were co-directed in the context
of this work to explore some concepts and related technologies. A more
detailed description of the different contributions in these works is ex-
posed below.

8.2.1 Detail of the publications

One of the key points of this work is to identify the aspects to be mod-
eled when a physical mobile workflow is designed. A formal framework
to define the concepts that are involved in the physical-virtual link-
age was introduced in (Giner et al., 2008a). More detail about how
to connect these aspects with architecture components and tool sup-
port is provided in (Giner et al., 2009¢). Metamodeling techniques have
been used to capture the concepts that define a physical mobile work-
flow (Giner et al., 2008c) and their integration with business process
engineering approaches (Torres et al., 2007a). Methodological aspects
were considered in several works (Giner & Torres, 2007; Giner et al.,
2007b, 2008d) where the requirements for the development of business
processes in the Aml area are detected.

Considering the conceptual foundations described above, our ap-
proach for the development of physical mobile workflows was devel-
oped. The techniques applied for the development of physical mo-
bile workflows and the results from their application were reported in
IEEE Pervaive Computing (Giner et al., 2010). An overview of the
proposal that included the obtrusiveness adaptation at run-time was
introduced in (Giner et al., 2009b). Most of the run-time reconfigura-
tion mechanisms that are applied in our approach were introduced with
MoRE (Cetina et al., 2009a).

Regarding the technical infrastructure that supports our approach,
it has been published the mechanisms used for integrating with busi-
ness process execution engines (Giner & Pelechano, 2008; Giner et al.,

212

Concluding remarks

Publication Type Published at
Pos.
(Giner et al., 2010) 1st Int. Journal IEEE Pervasive
Computing
(Giner et al., 2008d) | 1st Int. Journal IEEE Latin America
Transactions
(Giner et al., 2009b) | 1st Int. Journal ERCIM News
(Giner et al., 2009¢) | 1st | Int. Conference | Mobiquitous 2009
(Giner & Pelechano, | 1st | Int. Conference AmlI 2008
2008)
(Giner et al., 2008a) | 1st | Int. Conference ICEIS 2008
(Giner et al., 2008b) | 1st | Int. Conference UCAmI 2008
(Giner et al., 2009a) | 1st | Int. Workshop IWAAL 2009
(Giner et al., 2008c) | 1st Workshop DSDM 2008
(Giner et al., 2007b) | 1st Conference JISBD 2007
(Giner & Torres, 1st | Int. Workshop IDEAS 2007
2007)
(Giner et al., 2007c) | 1st | Demo Session JISBD 2007
(Giner et al., 2007a) | 1st | Int. Workshop MDWE 2007
(Cetina et al., 2009a) | 2nd Int. Journal IEEE Computer
(Cetina et al., 2009b) | 2nd | Int. Conference ICAS 2009
(Cetina et al., 2008a) | 2nd | Int. Workshop MRT 2008
(Torres et al., 2007a) | 2nd | Int. Workshop CAIiSE Forum
2007
(Cetina et al., 2008b) | 2nd Workshop WASELF 2008
(Torres et al., 2008) | 2nd Workshop JSWEB 2008
(Torres et al., 2007b) | 2nd Workshop PNIS 2007
(Torres et al., 2007d) | 3rd Int. Journal IEEE Latin America
Transactions
(Torres et al., 2007c) | 3rd Int. Journal ERCIM News
(Torres et al., 2006) | 3rd Conference JISBD 2006

Table 8.1: Summary of publications.

8.2 Publications 213

2007a), the integration with a reconfiguration engine (Giner et al.,
2008b, 2009a), and the access to physical mobile workflows through
mobile devices (Giner et al., 2009c; Torres et al., 2007a).

The present work, build upon a previous research that had the goal
of automatically building business process supporting applications (not
integrating physical elements). The research results and tools obtained
resulted in four publications (Torres et al., 2007b, 2006, 2007¢,d). Es-
sential knowledge for the development of the present work in business
process-related languages (BPMN and WS-BPEL) and modeling tech-
niques was obtained from this collaboration.

8.2.2 Relevance of the publications

This sectionprovides some information about the relevance of some of
the journals and conferences where different aspects of this work have
been published.

IEEE Pervasive Computing. It is recognized as one of the most im-
portant journals in pervasive and ubiquitous computing area. It is
included in the top quartile of JCR (impact factor 2008: 2.615, po-
sition 12/99 in the “Computer Science/Information System” cat-
egory). According to its mission statement:

IEEE Pervasive Computing delivers the latest peer-reviewed
developments in pervasive, mobile, and ubiquitous com-
puting to developers, researchers, and educators who
want to keep abreast of rapid technology change. With
content that’s accessible and useful today, the quarterly
publication acts as a catalyst for realizing the vision of
pervasive (or ubiquitous) computing, described by Mark
Weiser nearly a decade ago.

The article “Developing Mobile Workflow Support in the Internet
of Things” published in this journal is part of an special issue
entitled “Labeling the World” which is focused on topics that are
central to this thesis. The guest editors for this special issue were

214 Concluding remarks

Tim Kindberg, Thomas Pederson and Rahul Sukthankar, relevant
researchers in the Internet of Things area.

IEEE Computer. It is recognized as one of the most important jour-
nal in computer science, and it is edited by the IEEE Computer
Society since 1970. It is included in the top quartile of JCR (im-
pact factor 2008: 2.093, position 16/86 in the “Computer Sci-
ence/Software Engineering” category). According to its mission
statement:

Computer, the flagship publication of the IEEE Com-
puter Society, publishes peer-reviewed technical content
that covers all aspects of computer science, computer
engineering, technology, and applications. Computer
is a resource that practitioners, researchers, and man-
agers can rely on to provide timely information about
current research developments, trends, best practices,
and changes in the profession.

The article “Autonomic Computing through Reuse of Variabil-
ity Models at Runtime: The Case of Smart Homes” published in
this journal is part of an special issue entitled “models@run.time”
which is focused on techniques for leveraging modeling techniques
at run-time. These techniques are applied in Chapter 6.

Mobiquitous. The International Conference on Mobile and Ubiqui-
tous Systems: Computing, Networking and Services provides a
forum for practitioners and researchers to interact and exchange
experiences about the design and implementation of mobile and
ubiquitous systems. According to the CORE conference ranking,
Mobiquitous is a Tier-A conference. This classification defines
tier-A as follows:

Publishing in a Tier A conference would add to the
author’s respect, showing they have real engagement
with the global research community and that they have
something to say about problems of some significance.

8.2 Publications 215

Attending a Tier A conference would be worth travel-
ling to if a paper was accepted. Typical signs of a Tier
A conference are lowish acceptance rates and a program
committee and speaker list which includes a reasonable
fraction of well known researchers from top institutions
(as well as a substantial number from weaker institu-
tions), and a real effort by the program committee to
look at the significance of the work.

The paper “Presto: A pluggable platform for supporting user par-
ticipation in Smart Workflows” presented in this conference was
part of the Work in Progress (WiP) track. The Mobiquitous con-
ference acceptance ratio was 20% (32% including the works in the
WiP track).

Ambient Intelligence. The Aml conference has an important role for
the social cohesion of the Ambient Intelligence community. The
conference is organized by Emile Aarts, who defined the Ambient
Intelligence term (Aarts et al., 2002). The conference has a major
impact in industry with the participation of relevant corporations
in the AmlI area such as Nokia, Philips, NTT DOCOMO or SAP.

International conferences and workshops. In addition to the above
mentioned conferences, different parts of the work have been pub-
lished in international events such as ICEIS (tier-B conference
according to CORE) or ICAS (a reference in the Autonomic Com-
puting area). Initial development of the work have been accepted
in workshops from relevant conferences such as Models, CAiSE
or ICWE. This has helped to achieve diffusion for the work. The
paper introducing the model-to-model transformations for BPMN
has 4 references, and led to a contribution to the Babel tools', a
project from the Queensland University of Technology.

"http:/ /www.bpm.fit.qut.edu.au/projects/babel /tools/

216 Concluding remarks

8.3 Future work

The research presented here is not a closed work and there are several
interesting directions that can be taken to provide the proposal with
a wider spectrum of application. The following list summarizes the
research activities that are planned to continue this work.

End user development. The use of modeling techniques to formalize
concepts allows for the automation of software development. In
the present work, the generation of an initial version of the system
that hides infrastructure issues is obtained automatically. The
next big step is to provide developers and end-users with tools
to intuitively develop their physical mobile workflows easily. In
order to do so, the primitives that capture the requirements for
the system should be provided adequate tool suport not only to
make feasible the development but also to provide an optimal user
experience for developers.

Location-based services. Automatic identification is central in con-
necting the physical and virtual spaces. Many of the applications
that take advantage of this connection are also sensible to the user
location. Our current proposal can cope with the identification of
places but some relationships between places could be taken into
account such as their proximity, inclusion and connectivity which
are not explicitly considered by the method. Thus, future exten-
sions can further explore these aspects.

Adaptive interactions. Run-time adaptation has been considered in
the present work at architectural level. Components are enabled /dis-
abled to provide services at the appropriate obtrusiveness level. A
more fine-grained adaptation at interface level can be convenient
in order to better adapt to the user needs and reduce duplica-
tion of efforts during development when multiple platforms are
targetted.

Bibliography

Aarts, E., Harwig, R., & Schuur-
mans, M. (2002). Ambient intel-
ligence. The invisible future: the
seamless integration of technol-
ogy into everyday life, (pp. 235—
250).

Abowd, G. D., & Mynatt, E. D.
(2000). Charting past, present,
and future research in ubiqui-
tous computing. ACM Trans.
Comput.-Hum. Interact., 7(1),
29-58.

Alves, A., Arkin, A., Askary,
S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland,
Y., Guizar, A., Kartha, N., Liu,
C. K., Khalaf, R., Koénig, D.,
Marin, M., Mehta, V., Thatte,
S., van der Rijn, D., Yendluri,
P., & Yiu, A. (2007). Web Ser-

vices Business Process Execu-

tion Language version 2.0. OA-
SIS Specification.

Ballagas, R., Rohs, M., Sheridan,

J. G., & Borchers, J. (2004).
Byod: Bring your own device. In
In Proceedings of the Workshop
on Ubiquitous Display Environ-
ments, Ubicomp.

Bencina, R., & Kaltenbrunner, M.

(2005). The design and evo-
lution of fiducials for the reac-
tivision system. In Proceedings
of the 3rd International Con-
ference on Generative Systems
in the Electronic Arts (3rd It-
eration 2005). Melbourne, Aus-
tralia.

Bézivin, J., & Gerbé, O. (2001).

Towards a precise definition of
the OMG/MDA framework. In
ASE ’01: Proceedings of the

218

Bibliography

16th IEEFE international confer-
ence on Automated software en-
gineering, (p. 273). Washington,
DC, USA: IEEE Computer So-
ciety.

Bornhovd, C., Lin, T., Haller, S.,
& Schaper, J. (2004). Inte-
grating automatic data acqui-
sition with business processes
experiences with SAP’s auto-
id infrastructure. In wvldb’200/:
Proceedings of the Thirtieth in-
ternational conference on Very
large data bases, (pp. 1182—
1188). VLDB Endowment.

Brock, D. L. (2001). The physi-
cal markup language. Tech. Rep.
MIT-AUTOID-WH-003, Auto-
ID Center.

Broll, G., Haarlinder, M.,
Paolucci, M., Wagner, M.,
Rukzio, E., & Schmidt, A.

(2008). Collect&drop: A tech-
nique for multi-tag interaction
with real world objects and

information. In AmlI, (pp.
175-191).

Budinsky, F., Steinberg, D., &
Ellersick, R. (2003). Eclipse
Modeling Framework : A Devel-
oper’s Guide. Addison-Wesley
Professional.

Buxton, B. (1995). Integrating the
periphery and context: A new
model of telematics. In Proceed-
ings of Graphics Interface, (pp.
239-246).

Calvary, G., Coutaz, J., &
Thevenin, D. (2001). Support-
ing context changes for plastic
user interfaces: A process and a
mechanism.

Calvary, G., Coutaz, J., Thevenin,
D., Limbourg, Q., Bouillon,
L., & Vanderdonckt, J. (2003).
A unifying
work for multi-target user inter-
faces. Interacting with Comput-
ers, 15(3), 289-308.

reference frame-

Carter, S., & Mankoff, J. (2004).
Challenges for ubicomp evalua-
tion. Tech. Rep. CSD-04-1331,
University of California, Berke-
ley.

Cetina, C., Giner, P., Fons, J., &
Pelechano, V. (2008a). A model-
driven approach for develop-
ing self-adaptive pervasive sys-
tems. Models@run.time Work-
shop. Springer LNCS.

Cetina, C., Giner, P., Fons, J.,
& Pelechano, V. (2008b). Us-
ing variability models for devel-
oping self-configuring pervasive

Bibliography

219

systems. Workshop on Auto-
nomic and SELF-adaptive Sys-
tems (WASELF 08).

Cetina, C., Giner, P., Fons, J., &
Pelechano, V. (2009a). Auto-
nomic computing through reuse
of variability models at runtime:

The case of smart homes. Com-
puter, 42(10), 37-43.

Cetina, C., Giner, P., Fons, J., &
Pelechano, V. (2009b). Using
feature models for developing
self-configuring smart homes. In
Fifth International Conference
on Autonomic and Autonomous
Systems (ICAS 2009), (pp. 179
- 188).

Chakraborty, D., & Lei, H. (2004).
Pervasive enablement of busi-
ness processes. In PERCOM
04: Proceedings of the Sec-
ond IFEE International Con-
ference on Pervasive Comput-
ing and Communications (Per-
Com’04), (p. 87). Washington,
DC, USA: IEEE Computer So-
ciety.

Cuadrado, J. S., & Molina, J. G.
(2007). Building domain-specific
languages for model-driven de-
velopment. IEEE Softw., 24(5),
48-55.

Davis, J.

da Silva, P. P., & Paton, N. W.

(2003). User interface modeling
in UMLi. [EEE Softw., 20(4),
62-69.

Dahlbdck, N., Jonsson, A., &
Ahrenberg, L. (1993). Wizard
of Oz studies: why and how.

In 1UI ’93: Proceedings of the
1st international conference on
Intelligent user interfaces, (pp.
193-200). New York, NY, USA:
ACM.

(2009). Open Source
SOA. Manning Publications Co.

de Ipina, D. L., Vazquez, 1., Gar-

cia, D., Fernandez, J., & Gar-
cfa, I. (2005). A reflective mid-
dleware for controlling smart ob-
jects from mobile devices. In
sOc-EUSAI °05: Proceedings of
the 2005 joint conference on
Smart objects and ambient in-
telligence, (pp. 213-218). New
York, NY, USA: ACM.

den Bergh, J. V., & Coninx,

K. (2005). Towards modeling
context-sensitive interactive ap-
plications: the context-sensitive
user interface profile (CUP). In
SoftVis ’05: Proceedings of the
2005 ACM symposium on Soft-
ware visualization, (pp. 87-94).

220

Bibliography

Edwards,

New York, NY, USA: ACM
Press.

DiMarzio, J. (2008). Android a
Programmers Guide. McGraw-
Hill Osborne Media.

Dumas, M., & ter Hofstede, A.
H. M. (2001). UML activity
diagrams as a workflow speci-
fication language. In UML’01:
Proceedings of the 4th Interna-
tional Conference on The Uni-
fied Modeling Language, Mod-
eling Languages, Concepts, and
Tools, (pp. 76-90). London, UK:
Springer-Verlag.

W. K., Bellotti, V.,
Dey, A. K., & Newman, M. W.
(2003). The challenges of user-
centered design and evaluation
for infrastructure. In CHI ’03:
Proceedings of the SIGCHI con-
ference on Human factors in
computing systems, (pp. 297—
304). New York, NY, USA:
ACM.

Fano, A., & Gershman, A. (2002).
The future of business services in
the age of ubiquitous computing.
Commun. ACM, 45(12), 83-87.

Favre, J.-M. (2004a). Foundations
of meta-pyramids: Languages
vs. metamodels - Episode II:

Favre, J.-M. (2006).

Story of Thotus the Baboon.
In J. Bézivin, & R. Heckel

(Eds.) Language Engineering
for Model-Driven Software
Development, vol. 04101 of

Dagstuhl Seminar Proceedings.
Internationales Begegnungs-
und Forschungszentrum fiir
Informatik ~ (IBFI), Schloss
Dagstuhl, Germany.

Favre, J.-M. (2004b). Foundations

of Model (Driven) (Reverse) En-
gineering : Models — Episode I:
Stories of the fidus papyrus and
of the solarus. In J. Bezivin, &
R. Heckel (Eds.) Language En-
gineering for Model-Driven Soft-
ware Development, no. 04101
in Dagstuhl Seminar Proceed-
ings. Dagstuhl, Germany: In-
ternationales Begegnungs- und
Forschungszentrum fiir Infor-
matik (IBFI), Schloss Dagstuhl,
Germany.

Megamod-
elling and etymology. In J. R.
Cordy, R. Lammel, & A. Win-
ter (Eds.) Transformation
Techniques in Software Engi-
neering, no. 05161 in Dagstuhl
Seminar Proceedings.
nationales Begegnungs- und
Forschungszentrum fuer Infor-

Inter-

Bibliography

221

matik (IBFI), Schloss Dagstuhl,
Germany.

Federal Trade Commission (2005).
Radio frequency identification:
Applications and implications
for consumers.

Fleisch, E. (2001). Business per-
spectives on ubiquitous comput-
ing. M-Lab Working Paper No.
4.

Fleisch, E., & Tellkamp, C. (2003).

The challenge of identifying
value-creating ubiquitous com-
puting applications. In Work-
shop on Ubiquitous Commerce,

UbiComp 2003. Seattle.

Floerkemeier, C., Roduner, C.,
& Lampe, M. (2007). Rfid
application development with
the accada middleware platform.
IEEE Systems Journal, Special
Issue on RFID Technology.

Fowler, M. (2004). Inversion
of control containers and the
dependency injection pattern.
http://martinfowler.com/ arti-
cles/injection.html.

Gershenfeld, N., Krikorian, R., &
Cohen, D. (2004). The Internet

of Things. Scientific American,
291(4), 46-51.

Gibbs, W. W. (2004). Considerate
computing. Scientific American,
292(1), 54-61.

Giner, P., Albert, M., &
Pelechano, V. (2008a). Physical-
virtual connection in ubiquitous
business processes. In Proceed-
ings of the 10th International
Conference on Enterprise Infor-
mation Systems, vol. 2, (pp. 266
— 271). Barcelona (Spain).

Giner, P., Cetina, C., Fons, J., &
Pelechano, V. (2008b). A frame-
work for the reconfiguration of
ubicomp systems. In J. M. Cor-
chado, D. Tapia, & J. Bravo
(Eds.) 8rd Symposium of Ubig-
uitous Computing and Ambient
Intelligence 2008, vol. 51 of Ad-
vances in Soft Computing, (pp.
1 —10). Springer Berlin.

Giner, P., Cetina, C., Fons, J., &
Pelechano, V. (2009a). Build-
ing self-adaptive services for
ambient assisted living. In
Distributed Computing, Artifi-
ctal Intelligence, Bioinformat-

ics, Soft Computing, and Am-

bient Assisted Living, IWANN

2009, Part I, vol. 5518 of LNCS

5518, (pp. 740 — 747). Springer.

Giner, P., Cetina, C., Fons, J.,
& Pelechano, V. (2009b). Or-

222

Bibliography

chestrating your surroundings.
ERCIM News, (77), 40 — 41.

Giner, P., Cetina, C., Fons, J., &
Pelechano, V. (2009c). Presto:
A pluggable platform for sup-
porting user participation in
smart workflows. In Proceed-
ings of the Sixth Annual Inter-
national Conference on Mobile
and Ubiquitous Systems: Com-
puting, Networking and Ser-
vices (MobiQuitous). Toronto,
Canada.

Giner, P., Cetina, C., Fons, J., &
Pelechano, V. (2010). Develop-
ing mobile workflow support in
the internet of things. IFFE
Pervasive Computing, 9(2), 18—
26.

Giner, P., Fons, J., & Pelechano,
V. (2008c). A domain spe-
cific language for the internet of
things. V Taller sobre Desarrollo
de Software Dirigido por Mode-
los (DSDM’08).

Giner, P., & Pelechano, V. (2008).
An architecture to automate
ambient business system devel-
opment. In E. Aarts (Ed.) Euro-
pean conference on Ambient In-
telligence (AmlI 08), (pp. 240-
257). Springer LNCS.

Giner, P., & Torres, V.

(2007).
Una propuesta basada en mod-
elos para la construccion de
sistemas ubicuos que den so-
porte a procesos de negocio.
In F. Losavio, G. H. Travas-
sos, V. Pelechano, 1. Diaz,
& A.Matteo (Eds.) X Work-
shop Iberoamericano de Inge-
nieria de Requisitos y Ambi-
entes de Software. Isla Mar-
garita (Venezuala).

Giner, P., Torres, V., & Pelechano,

V. (2007a). Bridging the
gap between BPMN and WS-
BPEL. M2M transformations
in practice. In Proc. of the
3rd International Workshop on
Model-Driven Web Engineering
(MDWE 2007). Como, Italy.
ISSN 1613-0073.

Giner, P., Torres, V., & Pelechano,

V. (2007b). Building ubiqui-
tous business process following
an mdd approach. In XIT Jor-
nadas de Ingenieria del Software
y Bases de Datos. Zaragoza.

Giner, P., Torres, V., & Pelechano,

V. (2007c). Generation of busi-
ness process based web applica-
tions. XII Jornadas de Inge-
nierfa del Software y Bases de
Datos 2007 (Demo).

Bibliography

223

Giner, P., Torres, V., & Pelechano,
V. (2008d). Building ubiqui-
tous business process following
an mdd approach. IEEE Latin

America Transactions, 6(4),
347-354.

Gomaa, H., & Hussein, M.
(2007). Model-based software

design and adaptation. Inter-
national Workshop on Software
Engineering for Adaptive and
Self-Managing Systems, 0, 7.

Goth, G. (2009). The task-
based interface: Not your fa-
ther’s desktop. IEEE Software,
26(6), 88-91.

Greenfield, A. (2006). Everyware:
The Dawning Age of Ubiquitous
Computing. Berkeley, CA: New
Riders Publishing.

Hackmann, G., Haitjema, M., Gill,
C. D., & Roman, G.-C. (2006).
Sliver: A BPEL workflow pro-

cess execution engine for mobile

devices. In ICSOC, (pp. 503—
508).
Hallsteinsen, S., Hinchey, M.,

Park, S., & Schmid, K. (2008).
Dynamic software product lines.
Computer, 41(4), 93-95.

Hansmann, U., Nicklous, M. S.,
& Stober, T. (2001). Pervasive

computing handbook. New York,
NY, USA: Springer-Verlag New
York, Inc.

Heil, A., Moradi, 1., & Weis, T.
(2006). LCARS: the next gener-
ation programming context. In
K. Mihalic (Ed.) CAI, (pp. 29—
31). ACM Press.

Henricksen, K., & Indulska, J.
(2005). Developing context-
aware pervasive computing ap-
plications: models and ap-
proach. In Pervasive and Mobile
Computing, In. Press, Elsevier.

Hofreiter, B., Huemer, C., & Klas,
W. (2002). ebXML: Status, re-
search issues, and obstacles. In
Proc. of 12th Int. Workshop on
Research Issues on Data Engi-
neering (RIDE0Z2), (pp. 7-16).

Horvitz, E., Kadie, C., Paek, T., &
Hovel, D. (2003). Models of at-
tention in computing and com-
munication: from principles to

applications. Commun. ACM,
46(3), 52-59.
IBM (2003). An architectural

blueprint for autonomic comput-
ing. Tech. rep., IBM.

Iftode, L.,
N., Kang,

Borcea, C., Ravi,
P., & Zhou, P.

224

Bibliography

(2004). Smart phone: an em-
bedded system for universal in-
teractions. In 10th IEEE In-
ternational Workshop on Fu-
ture Trends of Distributed Com-
puting Systems, 2004. FTDCS
2004., (pp. 88-94).

Jamali, B., Sharp, E., Thorne, A.,
& Cole, P. (2007). Technology
selection for identification appli-
cations. Tech. Rep. BIZAPP
043, Auto-ID Labs.

Jouault, F., & Kurtev, 1. (2006).
Transforming models with ATL.
In Satellite Fvents at the MoD-
ELS 2005 Conference, LNCS
3844, (pp. 128-138). Springer.

Ju, W., & Leifer, L. (2008). The
design of implicit interactions:
Making interactive systems less

obnoxious. Design Issues, 24 (3),
72—-84.

Kagal, L., Finin, T., & Joshi, A.
(2003). A policy language for
a pervasive computing environ-
ment. In POLICY ’03: Pro-
ceedings of the Jth IEEE Inter-
national Workshop on Policies
for Distributed Systems and Net-
works, (p. 63). Washington, DC,
USA: IEEE Computer Society.

Kanjo, E., Bacon, J., Roberts,
D., & Landshoff, P. (2009).

Mobsens: Making smart phones
smarter. Pervasive Computing,
IEEE, 8(4), 50-57.

Kephart, J. O., & Chess, D. M.
(2003). The vision of autonomic
computing. Computer, 36(1),
41-50.

Kindberg, T. (2002). Implement-
ing physical hyperlinks using
ubiquitous identifier resolution.
In WWW ’02: Proceedings of
the 11th international confer-
ence on World Wide Web, (pp.
191-199). New York, NY, USA:
ACM Press.

Kindberg, T., Barton, J. J., Mor-
gan, J., Becker, G., Caswell, D.,
Debaty, P., Gopal, G., Frid, M.,
Krishnan, V., Morris, H., Schet-
tino, J., Serra, B., & Spasoje-
vic, M. (2002). People, places,
things: Web presence for the
real world. MONET, 7(5), 365—
376.

Kohler, A., & Gruhn, V. (2004).
Analysis of mobile business pro-
cesses for the design of mobile
information systems. In FEC-

Web, (pp. 238-247).

Kramer, J. (2007). Is abstraction
the key to computing? Com-
mun. ACM, 50(4), 36-42.

Bibliography 225

Krogstie, J., Lyytinen, K., Op- Loke, S. W. (2009). Building task-
dahl, A. L., Pernici, B., Siau, able spaces over ubiquitous ser-
K., & Smolander, K. (2004). Re- vices. IEEE Pervasive Comput-
search areas and challenges for ing, 8(4), 72-78.
mobile information systems. Int.

J. Mob. Commun., 2(3), 220~ Maeda, J. (2006). The Laws of
234. Simplicity (Simplicity: Design,
Technology, Business, Life).

Lampe, M., Strassner, M., & The MIT Press.

Fleisch, E. (2004). A ubiquitous
computing environment for air-
craft maintenance. In SAC ’04:
Proceedings of the 2004 ACM
symposium on Applied comput-
ing, (pp. 1586-1592). New York,
NY, USA: ACM.

Mao, J.-Y., Vredenburg, K.,
Smith, P. W., & Carey, T.
(2001). User-centered design
methods in practice: a survey
of the state of the art. In
CASCON 01: Proceedings
of the 2001 conference of the

Langheinrich, M., Coroama, V., Centre for Advanced Studies on

Bohn, J., & Rohs, M. (2002). As Collaborative research, (p. 12).
we may live — real-world impli- IBM Press.

cations of ubiquitous computing. March, S. T. & Smith, G. F.
Tech. rep., Swiss Federal Insti- (1995).

; Design and natural
tute of Technology, ETH Zurich.

science research on information
technology. Decis. Support Syst.,

Li, Y., & Landay, J. (2008). -4y 951 o6

Activity-based prototyping of
ubicomp applications for long- Mayer, R. J., Painter, M. K.,
lived, everyday human activi- & DeWitte, P. (1992). IDEF
ties. In ACM Conference on family of methods for concur-
Human Factors in Computing rent engineering and business re-
Systems (HCI'08), (pp. 1303 — engineering applications. Col-
1312). lege Station, TX: Knowledge

Based Systems, Inc.
Loke, S. W. (2003). Service-

oriented device ecology work- Miller, J., & Mukerji, J. (2003).
flows. In ICSOC, (pp. 559-574). MDA Guide Version 1.0.1. Tech.

226

Bibliography

rep., Object Management Group
(OMG).

Mori, G., Paterno, F., & San-
toro, C. (2002). Ctte: Sup-
port for developing and analyz-
ing task models for interactive
system design. IEFEE Transac-
tions on Software Engineering,

28(8), 797-813.

Morin, B., Fleurey, F., Bencomo,

N., Jézéquel, J.-M., Solberg, A.,
Dehlen, V., & Blair, G. (2008).
An aspect-oriented and model-
driven approach for managing
dynamic variability. In MoDELS
"08: Proceedings of the 11th in-
ternational conference on Model
Driven Engineering Languages
and Systems, (pp. 782-796).
Berlin, Heidelberg: Springer-
Verlag.

Munoz, J., & Pelechano, V. (2005).
Building a software factory for
pervasive systems development.
In CAISE, (pp. 342-356).

Neely, S., Stevenson, G., Kray,

C., Mulder, I., Connelly, K.,
& Siek, K. A. (2008). Evalu-
ating pervasive and ubiquitous
systems. IEEFE Pervasive Com-
puting, 7(3), 85-88.

OMG (2005). MOF QVT Final

OMG (2006).

Pastor,

Adopted Specification. Object
Modeling Group. ptc/07-07-07.

Business Process
Modeling Notation (BPMN)
Specification. OMG Final
Adopted Specification. dtc/06-
02-01.

Ouyang, C., Dumas, M., Ter, &

van der Aalst, W. M. P. (2006).
From bpmn process models to
bpel web services. Web Services,
2006. ICWS °06. International
Conference on, (pp. 285-292).

Pajunen, L., & Chande, S. (2007).

Developing workflow engine for
mobile devices. In EDOC
07: Proceedings of the 11th
IEEE International FEnterprise
Distributed Object Computing
Conference, (p. 279). Washing-
ton, DC, USA: IEEE Computer
Society.

0., & Molina, J. C.
(2007). Model-Driven Architec-
ture in Practice: A Software
Production Environment Based
on Conceptual Modeling. Secau-
cus, NJ, USA: Springer-Verlag
New York, Inc.

Radi, H., & Mayrhofer, R. (2008).

Towards alternative user inter-
faces for capturing and manag-
ing tasks with mobile devices. In

Bibliography

227

Rellermeyer,

Proc. MoMM 2008: 6th Interna-
tional Conference on Advances
in Mobile Computing and Mul-
timedia, (pp. 272-275).

Recker, J., & Mendling, J. (2006).
On the translation between
BPMN and BPEL: Conceptual
mismatch between process mod-
eling languages. In 18th Interna-
tional Conference on Advanced
Information Systems Engineer-
ng..

J. S., Duller, M.,
Gilmer, K., Maragkos, D., Pa-
pageorgiou, D., & Alonso, G.
(2008). The software fabric for
the internet of things. In IOT,
(pp. 87-104).

Roduner, C., & Langheinrich, M.

(2007). Publishing and discov-
ering information and services
for tagged products. In Proceed-
ings of CAiSE 2007, Trondheim,
Norway, 11-15 June, 2007,
LNCS. Berlin Heidelberg New
York: Springer.

Romer, K., Schoch, T., Mattern,

F., & Diibendorfer, T. (2004).
Smart identification frameworks
for ubiquitous computing appli-
cations. Wirel. Netw., 10(6),
689-700.

Roussos, G.,

Tuominen, J.,
Koukara, L., Seppala, O.,
Kourouthanasis, P., Giaglis, G.,
& Frissaer, J. (2002). A case
study in pervasive retail. In
WMC °02: Proceedings of the
2nd international workshop on
Mobile commerce, (pp. 90-94).
New York, NY, USA: ACM.

Rukzio, E. (2007). Physical Mobile

Interactions: Mobile Devices as
Pervasive Mediators for Interac-
tions with the Real World. Ph.D.
thesis, Faculty for Mathematics,
Computer Science and Statis-
tics.

Rukzio, E., Broll, G., Leichten-

stern, K., & Schmidt, A. (2007).
Mobile interaction with the real
world: An evaluation and com-
parison of physical mobile inter-
action techniques. In AmlI, (pp.
1-18).

Rukzio, E., Leichtenstern, K., &

Callaghan, V. (2006). An exper-
imental comparison of physical
mobile interaction techniques:
Touching, pointing and scan-
ning. In 8th International Con-
ference on Ubiquitous Comput-
ing, UbiComp 2006. Orange
County, California.

Rukzio, E., Pleuss, A., & Ter-

228 Bibliography

renghi, L. (2005a). The physi- Schmidt, D. C. (2006). Guest edi-
cal user interface profile (PUIP): tor’s introduction: Model-driven
modelling mobile interactions engineering. Computer, 39(2),
with the real world. In TA- 25-31.

MODIA °05: Proceedings of the

4th international workshop on Sern’a, J G. G., Blasco, P. G'j &
Tusk models and diagrams, (pp. Vizcaino, I. A. (2009). T-Guide:
95-102). New York, NY, USA: sistema contextual de guiado

ACM. y administraciéon de actividades
mediante teléfonos celulares con

Rukzio, E., Wetzstein, S., & sistema operativo android y tec-
Schmidt, A. (2005b). A frame- nologia RFID. In Congreso
work for mobile interactions Internacional sobre Innovacion

with the physical world. In y Desarrollo Tecnolégico CIIN-

Wireless Personal Multimedia pET 2009. Cuernavaca, Mex-
Communication (WPMC) con- 1O

ference. Aalborg, Denmark. Serral, E. Valderas, P., &

Pelechano, V. (2008). A model
driven development method
for developing context-aware
pervasive systems. In UIC 08:
Proceedings of the 5th interna-
tional conference on Ubiquitous
Intelligence and Computing,
(pp. 662-676). Berlin, Heidel-
berg: Springer-Verlag.

Ruokonen, A., Pajunen, L., &
Systa, T. (2008). On model-
driven development of mobile
business processes. Software
Engineering Research, Manage-
ment and Applications, ACIS
International Conference on, 0,
59-66.

Sandner, U., Leimeister, J. M., & Siau, K. (2003). Advances in

Kremar, H. (2005). Business po- Mobile Commerce Technologies.

tentials of ubiquitous comput- Hershey, PA, USA: IGI Publish-
ing. Proceedings of the Falk ing.

Symposium No. 146. Innsbruck,
Austria,. Smith, H., & Fingar, P. (2003).
Business Process Management:
Sarma, S. (2004). Integrating The Third Wave. Meghan-Kiffer
RFID. Queue, 2(7), 50-57. Press.

Bibliography

229

Spief3, P., Bornhévd, C., Lin, T.,
Haller, S., & Schaper, J. (2007).
Going beyond auto-id: a service-
oriented smart items infrastruc-
ture. Journal of Enterprise In-
formation Management, 20(3),
356 — 370.

Strassner, M., & Schoch, T.
(2002). Today’s impact of ubiq-
uitous computing on business
processes. In F. Mattern, &
M. Naghshineh (Eds.) Short Pa-
per Proc. International Confer-
ence on Pervasive Computing,
(pp. 62-74). Pervasive2002.

Tedre, M. (2008).
be automated?
15(5), 47-49.

What should

teractions,

Terman, M., & Terman, J. S.
(2006). Controlled trial of nat-
uralistic dawn simulation and
negative air ionization for sea-
sonal affective disorder. Am J
Psychiatry, 165(12), 2126-33.

Torres, V., Giner, P., & Pelechano,
V. (2007a). Modeling ubiqui-
tous business process driven ap-
plications. In J. Eder, S. L.
Tomassen, A. L. Opdahl, &
G. Sindre (Eds.) CAiSE Forum.
ISSN: 1503-416X.

Torres, V., Giner, P., & Pelechano,
V. (2007b). Web application de-

velopment focused on BP speci-
fications. I Taller sobre Procesos
de Negocio e Ingenieria del Soft-
ware (PNIS 2007).

Torres, V., Giner, P., & Pelechano,
V. (2008). From BPMN to
BPEL4People: A MDE ap-
proach. In A. V. y. A. R.-C.
Jose Manuel Lépez Cobo (Ed.)
1V Jornadas Cientifico-Técnicas
en Servicios Web y SOA, (pp.
29-41).

Torres, V., Pelechano, V., & Giner,
P. (2006). Generacion de aplica-
ciones web basadas en procesos
de negocio mediante transforma-
cién de modelos. In J. Riquelme,
& P. Botella (Eds.) Ingenieria
del Software y Bases de Datos,
(pp. 443 — 452).

Torres, V., Pelechano, V., & Giner,
P. (2007c). Building business
process driven web applications
based on the service oriented
paradigm. FERCIM News, 70,
54-55. ISSN: 0926-4981.

Torres, V., Pelechano, V., & Giner,
P. (2007d). Generacién de apli-
caciones web basadas en proce-
sos de negocio mediante trans-
formacién de modelos. I[EEE

Latin America Transactions, 5,
245 — 250.

230

Bibliography

Urbanski, S., Huber, E., Wieland,
M., Leymann, F., & Nicklas, D.
(2009). Perflows for the com-
puters of the 21st century. Per-
vasive Computing and Commu-
nications, IEEE International
Conference on, 0, 1-6.

Vaishnavi, V., & Kuechler,
W. (2004). Design research
in information systems.

http://desrist.org/design-
research-in-information-
Systems.

van Deursen, A., Klint, P., &
Visser, J. (2000). Domain-
specific languages: an annotated
bibliography. SIGPLAN Not.,
35(6), 26-36.

Volter, M. (2005). Software ar-
chitecture patterns — a pattern
language for building sustain-
able software architectures.
http://www.voelter.de/data/
pub/ArchitecturePatterns.pdf.

Vredenburg, K., Mao, J.-Y.,
Smith, P. W., & Carey, T.
(2002). A survey of user-
centered design practice. In
CHI ’02: Proceedings of the
SIGCHI conference on Human
factors in computing systems,
(pp. 471-478). New York, NY,
USA: ACM.

Vuolle, M., Tiainen, M., Kallio,
T., Vainio, T., Kulju, M., &
Wigelius, H. (2008). Develop-
ing a questionnaire for measur-
ing mobile business service ex-
perience. In MobileHCI ’08:
Proceedings of the 10th inter-
national conference on Human
computer interaction with mo-
bile devices and services, (pp.
53-62). New York, NY, USA:
ACM.

Wang, F., & Liu, P. (2005). Tem-
poral management of rfid data.
In VLDB ’05: Proceedings of
the 31st international conference
on Very large data bases, (pp.
1128-1139). VLDB Endowment.

Want, R. (2008). You are your
cell phone. Pervasive Comput-
ing, IEEE, 7(2), 2-4.

Want, R., Fishkin, K. P., Gujar,
A., & Harrison, B. L. (1999).
Bridging physical and virtual
worlds with electronic tags. In
CHI ’99: Proceedings of the
SIGCHI conference on Human
factors in computing systems,
(pp. 370-377). New York, NY,
USA: ACM Press.

Weinstein, R. (2005). RFID: a
technical overview and its appli-

Bibliography

231

cation to the enterprise. I'T Pro-
fessional, 7(3), 27-33.

Weiser, M. (1991). The computer
for the 21st century. Scientific
American, 265(3), 66-75.

Wieland, M., Kaczmarczyk, P., &
Nicklas, D. (2008). Context inte-

gration for smart workflows. In
PerCom, (pp. 239-242).

Zhang, J., & Cheng, B. H. C.
(2006). Model-based develop-
ment of dynamically adaptive
software. In ICSE ’06: Pro-
ceedings of the 28th interna-
tional conference on Software
engineering, (pp. 371-380). New
York, NY, USA: ACM.

232 Bibliography

APPENDIX A

Metamodels

he metamodels that describe the design concepts and the architec-

ture used for supporting physical mobile workflows are described
in this appendix. The Parkour metamodel formalizes the concepts that
were introduced in Chapter 7.1 and the Presto metamodel presents the
architectural concepts defined in Chapter 5. Each metamodel has been
formalized by means of modeling technologies to describe the concepts
involved the relationships among them and the constraints for their
composition.

The metamodels have been defined by means of Ecore (Budinsky

EClass eAttributes EAttribute eAttributeType EDataType
name:String o 0.% name:String 1
A -\
0.%
EReference
name:String
eReferenceType containment:Boolean

Figure A.1: A simplified subset of the Ecore model (Budinsky et al., 2003)

234 Metamodels

et al., 2003) (see Fig. A.1) which is an implementation of the Essential
MOF specification that is widely used in the Eclipse community. In
this way, these metamodels represent the abstract syntax of a modeling
language that can be used for (1) capturing requirements for physical
mobile workflows and (2) describe the components used for their imple-
mentation. Eclipse-based tools can be used for defining models based on
the previous metamodels and assist the designers to avoid inconsisten-
cies. The following sections presents Presto and Parkour metamodels
in more detail.

A.1 Parkour metamodel

The Parkour metamodel defines a set of concepts that are useful to
characterize how a business process is integrated with physical elements.
Figure A.2 depicts the metaelements defined and their relationships by
means of a class diagram. These elements are briefly described below.

Named Element. This is an abstract metaelement that is extended
by the elements with name.

Parkour System. Represents the system that is supporting a physical
mobile workflow. It represents a single system at the requirements
level but is projected into multiple software systems when it is
translated into the technology domain. This element is normally
the root element of Parkour-based specifications.

Task. This element extend the Activity element from the BPMN meta-
model in order to allow other elements in the Parkour metamodel
to be linked to them. In the metamodel it is defined to inherit the
properties of both Named Element and Obtrusiveness Element.

Physical Object. The physical elements involved in the process are
represented by means of this element. For each element of the
Physical Object kind, it is defined the mediums used for repre-
senting its identifier.

235

A.1 Parkour metamodel

i

ainyded
puIyuoneIR] =
< <uoljesswnua > >

poddnsyda] [

[

[] [
_Eme_mmmmcwzm:_Eo m_ T:w_ce_um._.co_tmhmg E]
WA

10
uonuane

NUMIUBWAO]

mom

+'0

ESENE
0

HEYER VN

anbiuyog; . suunuawkoldap
: X,
- S; 0|ouyd3}
vt woddns} .0 roolouy
T :
PUINUOIDBISIUL : UONIBIIP =
nbiuyssy n
ot Y cmm_oom.u CIDUINSI o UORSERIUIEIRAI [
f "0 sanbiuypa uonoeszyul| Ue00g3 saindeds! o Jualed = - mde
Abejoual B 1°0 QIpawr | JUORE R t% o vﬁ_m% 0
11
¥ 0 N T Y I v NVl
anieul /mwé;uw?o:um_wu:_ * “0 _ * *
«
WNIPAN 5 Sspipgu—1PoldoIediskud | [sel

0
swnipaw

55edSsSaUBAISNIG0 [

aoedsssauanisniigo i

BuLIST : dWeU —
JUBWI[IPaWEN [

waysAsinoyied

Figure A.2: Parkour metamodel

236 Metamodels

Physical Interaction. A physical interaction is defined to represent
the participation of a Physical Object in a process Task. The
direction of the participation is specified to indicate whether the
physical object is minted or captured (see the Interaction Kind
enumeration defined).

Medium. Mediums can be defined in a hierarchy to define a hierar-
chy. Each Medium supports a set of interaction techniques (see
Interaction Technique element).

Technology. The available Auto-ID technologies are described by means
of this element. It indicates its Auto-ID capabilities for captur-
ing, minting or both. The support provided for mediums and
interaction techniques is described by the support feature.

Tech Support. These metaelements are defined to connect Medium
elements with Interaction Technique elements in order to describe
the support provided by each technology.

Deployment Unit. Deployment units represent the support provided
for several process tasks by a set of technologies. Each deployment
unit can be supported by a different software system.

Obtrusiveness Space. This element describes the obtrusiveness space
defined for the process. The ordering is considered for the initia-
tive and attention levels that are represented.

Obtrusiveness Element. It is an abstract metaclass to represent the
elements that can be mapped to the obtrusiveness space described.

Initiative Level. Levels defined by the designers to describe the differ-
ent degrees in which the system or the user can take the initiative
for interacting.

Attention Level. The levels defined by the designers to describe the
different degrees in which the system can require the user atten-
tion.

A.1 Parkour metamodel 237

The metaelements defined can be used to describe systems in Park-
our terms. The following section introduces the constraints defined on
these elements to limit their possible combinations.

A.1.1 Constraints

The introduced metamodel limits the possible concepts to use, the infor-
mation they contain and the way they can be connected to each other.
However, for some specific conditions the use of the metamodeling con-
structs that Ecore provides is not enough. In this section we introduce
additional constraints to the metamodel. The constraints have been
defined by means of the Check language which complements OCL-like
expressions with descriptive messages. In order to simplify the expres-
sions that define the constraints we defined auxiliary functions by means
of the extension mechanism provided by the Eclipse modeling tools.

Element name unicity

Modeling elements that inherit from NamedFElement must be unique in
their kind. For example, there cannot exist two Mediums with the same
name. In addition, the empty string is not considered a valid name. A
constraint is defined for each metaelement in order to allow the verifi-
cation of their siblings. In order to allow the access from one element
to their siblings, the container for some elements must be accessible.
The listing A.1 shows the extensions over different metaelements in or-
der to access their parent model element. We defined the parentModel
auxiliary function that provides the immediate container of the element
to which it is applied. For all the descendants of NamedElement, the
parent element is a ParkourSystem element. However, this is not the
case for the different obtrusiveness levels defined. Thus, the parent-
Model function is overloaded for the InitiativeLevel and AttentionLevel
elements in order to return the proper type (ObtrusiveneeSpace).

Listing A.1: Extensions for validating name unicity.

ParkourSystem parentModel (NamedElement this)
eContainer;

238 Metamodels

ObtrusivenessSpace parentModel (InitiativelLevel this)
eContainer;

ObtrusivenessSpace parentModel (AttentionLevel this)
eContainer;

Based on the previous extension, constraints that validate the cor-
rect naming for the different elements are defined. Listing A.2 shows
the different constraints defined.

Listing A.2: Constraints for validating name unicity.

context NamedElement ERROR "Invalid name for a "+this.
metaType.name+" element":
name.length >= 0;

context Task ERROR "Task ’"+this.name+"’ name must be
unique":
! (this.parentModel () .tasks.exists (x|x!=this && x.name ==
this.name));

context PhysicalObject ERROR "Physical Object ’"+this.name+
"’ name must be unique":
! (this.parentModel () .physicalObjects.exists (x|x!=this &&
x.name == this.name));

context Medium ERROR "Medium ’"+this.name+"’ name must be
unique":
! (this.parentModel () .mediums.exists (x| x!=this && x.name
== this.name));

context InteractionTechnique ERROR "Interaction Technique '’
"+this.name+"’ name must be unique":
! (this.parentModel () .interactionTechniques.exists (x|x!=
this && x.name == this.name));

context Technology ERROR "Technology ’"+this.name+"’ name
must be unique":
! (this.parentModel () .technologies.exists (x|x!=this && x.
name == this.name));

A.1 Parkour metamodel 239

context InitiativelLevel ERROR "Initiative Level ’"+this.
name+"’ name must be unique":
! (this.parentModel () .initiativelLevels.exists (x|x!=this &&
x.name == this.name));

context AttentionLevel ERROR "Attention Level ’"+this.name+
"’ name must be unique":
! (this.parentModel () .attentionlLevels.exists (x|x!=this &&
x.name == this.name));

The first constraint forbids the definition of empty names. The
rest provide error messages for the different metaelements that require
unique names if this condition is not met. Given a modeling element,
the parentModel function is used to access the container of the current
element and the appropriate association is navigated to reach all the
elements of this kind to find another with the same name as the original
one.

Medium hierarchy must be acyclic

The parent relationship in the Medium metaclass is intended to rep-
resent an inheritance hierarchy. Thus, cycles are not allowed. The
isAcyclic operation is defined in order to validate that a medium is not
found more that once when the parent relationship is traversed. The
isAcyclic operation is defined as an extension of the Medium element
as it is illustrated in the code listing A.3.

Listing A.3: Extensions for validating acyclic hierachy of mediums.

Boolean isAcyclic(Medium this):
(this.parent != null && this.parent!=this && this.parent.
isAcyclic ({this})) || this.parent==null;

Boolean isAcyclic (Medium this,Collection[Medium] found)
if found.contains (this) then false
else if this.parent==null then true
else this.parent.isAcyclic (found.add (this));

The isAcyclic operation traverses the parent relationship to find
whether there is any ancestor that is found more than once. This exten-

240 Metamodels

sion is shown in the listing 4.3. Two overloaded operations are defined
to support the search for cycles. The fist represents the base case for
the first node explored. This function analyzes the current node and
relies on the other function to analyze their ancestors. The second one
takes into account the previous results and propagates the execution
to the next ancestor until some child element is found or there are not
more ancestors. If there is a repeated element, a cycle has been found
in the inheritance hierarchy.

The Check constraint defined in listing A.4 makes use of the isAcyclic
operation to provide an error message.

Listing A.4: Constraint for validating acyclic hierachy of mediums.

context Medium ERROR "The medium hierarchy must be acyclic.
Medium ’"+ name + "’ cannot be set as a child of " +
parent.name +".":
this.isAcyclic();

Interaction techniques supported by the medium

For each interaction with the real world an interaction technique must
be selected. However, we must take into account that the interaction
technique selected must be applicable to the physical element involved
in the interaction. This is determined by the mediums used for the
identification of the Physical Object. Physical interactions defined over
an element should make use of one of the techniques that these medium
supports. For example, it makes no sense to define a pointing-based
interaction over a book that is labeled using the numbers on paper
medium.

Considering that the mediums can be part of an inheritance hier-
archy, determining the supported interaction techniques for a medium
requires to explore the ones supported by their ancestors. Listing A.5
shows the supportsTechnique operation. This operation traverses the
medium hierarchy to gather all the interaction techniques that are as-
sociated with a given medium.

A.1 Parkour metamodel 241

Listing A.5: Extensions for validating that a medium supports the re-
quired interaction techniques.

Boolean supportsTechnique (Medium this, InteractionTechnique

inter) :
this.interactionTechniques.contains (inter) || (this.
parent != null? this.parent.supportsTechnique (inter) :
false);

Based on the previous extension, we define a constraint (see list-
ing A.6). This constraint explores the different mediums that are sup-
ported by the PhysicalObject that is involved in the interaction and
checks whether some of this mediums supports the desired interaction
technique.

Listing A.6: Constraint for validating acyclic hierarchy of mediums.

context PhysicalInteraction WARNING "Interaction technique
not supported by the mediums used for ’"+this.object.
name+"’ object":

this.object.mediums.exists (e|e.supportsTechnique (this.
technique));

We defined this constraint as a warning. The severity of the con-
straint was lower because the business process described can be still
supported despite of the detected problem. The warning tells the de-
signer that it is not possible to apply the particular interaction pattern
he desired and a different one will be used instead. This problem may
be imposed by the use of a certain technology, so we believe that it is a
good design decision to reflect the desired situation in order to detect
whether a new technology can improve the current business process to
be performed as the designers defined.

Technology support for the deployment unit

The technologies that support a deployment unit must be capable of
supporting the tasks that are assigned to this deployment unit. This
constraint is useful to determine whether a given mobile device (consid-
ering the technologies it includes) can be used to support a given set of
tasks from the business process.

242 Metamodels

The listing A.7 defines different auxiliary operations to determine
the compatibility between the tasks and the set of technologies associ-
ated with a DeploymentUnit element.

Listing A.7: Extensions for validating deployment unit consistency.

List [PhysicalInteraction] interactions(Task this):
this.parentModel () .interactions.select (i|i.task==this);

Boolean canBeSupportedBy (PhysicallInteraction this, List][
Technology] techList):
let tech = this.direction==InteractionKind::capture?
techlList.select (e|e.isCapturer): techlList.select (ele.

isMinter)
tech.support.exists (s|this.object.mediums.contains (s.
medium) && s.technique == this.technique);

Boolean canBeSupportedBy (Task this, List[Technology]
techList) :
this.interactions () .forAll (e|e.canBeSupportedBy (techList)
)i

The first operation (interactions) is used to traverse the relation-
ship between the Phisicallnteraction and the Task metaelements in the
opposite direction. The interactions operation defined over the Task
metaelement makes use of the parentModel extension (previously de-
fined in listing A.1) to obtain all the interactions that are associated
with the current task.

The canBeSupported operation is defined over Physicallnteraction
and Task metaelements to determine whether a list of technologies
(received as a parameter) is supported by the element. In the case
of Physicallnteraction elements, technologies are filtered according to
their support for capturing or minting identifiers. Then, the remaining
technologies are evaluated to determine whether the supported medium
and interaction technique match the Physicallnteraction element. in
the case of Task elements, the canBeSupported operation is applied to
all the physical interactions that are involved in the current task (which
is obtained by applying the operations previously defined).

The constraint defined in the listing A.8 is defined for the Deploy-

A.1 Parkour metamodel 243

mentUnit element and makes use of the canBeSupported operation in
order ot validate that the tasks supported by the deployment unit can
be supported by the technologies assigned to the unit.

Listing A.8: Constraint for validating deployment unit consistency.

context DeploymentUnit ERROR "The technology selected
cannot support the tasks in the deployment unit ’"+this
.name+"’"":
this.tasks.forAll (e|e.canBeSupportedBy (this.technologies)
)i

Inconsistencies in the obtrusiveness level

It is desirable that all the interactions that support a given task are
performed with a technology that is capable to provide the obtrusiveness
level required by the task. However, due to technology limitations it
is not possible to reach the desired level of obtrusiveness. Thus, we
qualified this constraint as a warning in order to allow the development
of sub-optimal solutions but keeping explicit in the model the rationale
that enables further improvements. The listing A.9 shows the expression
defined.

Listing A.9: Constraint for validating the consistency for the obtrusive-
ness level.

context Task WARNING "Inconsistencies in the obtrusiveness

level":
this.interactions () .technique.forAll (e]
(e.initiative==null || this.initiative==null || e.
initiative==this.initiative) &&
(e.attention==null || this.attention==null || e.

attention==this.attention));

This constraint makes use of the interactions extension defined in
the listing A.7. In the case that no obtrusiveness level is defined, the
constraint is not enforced.

244 Metamodels

A.1.2 Tool support

The use of Eclipse Modeling technologies for the formalization of the
Parkour metamodel allows the use of different modeling technologies.
The Eclipse Modeling Project provides a customizable editor that allows
to create model instances based on the defined metamodel. The con-
straints can be applied either in a batch mode (to validate an existing
model) or in the editor.

The generic edition capabilities suffer from some usability problems
compared to ad-hoc editors. However, we have defined a set of addi-
tional constraints to improve the tool support for the creation of Parkour
models.

Undefined properties

Some modeling elements are not much useful to the overall system is
some information is lacking. For example, a Medium that does not
support any interaction technique is not very useful for bridging the
physical and virtual spaces. However, it can be useful to organize some
sub-elements in the medium hierarchy as it is the case of the paper
element. Warning the designer about these elements can avoid some
aspects to be left unspecified by mistake.

The listing A.10 shows the supportsTechnique operation defined
for the Medium metaelement. This operation determines whether a
medium is supporting any interaction technique.

Listing A.10: Extensions for validating undefined properties.

Boolean supportsTechnique (Medium this) :
('this.interactionTechniques.isEmpty) || (this.parent !=
null? this.parent.supportsTechnique(): false);

The listing A.11 shows different constrains that detect undefined in-
formation that can potentially represent a mistake. All these constraints
raise a warning to the designer.

Listing A.11: Constraint for validating undefined properties.

A.1 Parkour metamodel 245

context Medium WARNING "Medium ’"+this.name+"’ 1is not
supporting any interaction technique.":
this.supportsTechnique () ;

context Technology WARNING "Technology ’"+this.name+"’ 1is
not supporting any interaction technique.":
! (this.support.technique.isEmpty);

context Technology WARNING "Technology ’"+this.name+"’ is
not supporting any medium.":
! (this.support.medium.isEmpty) ;

The first constraint makes use of the supportsTechnique operation
previously defined in order to detect Mediums that are not supporting
any interaction technique. The second constraint detects a Technology
that is not supporting any interaction technique. Finally, the third con-
straint detects technologies that do not provide support to any medium.

Usability changes

In order to improve the default edition capabilities for Parkour models,
we defined the way in which the element labels are rendered for some
elements. By default, the name is used for all the elements that inherit
from NamedElement. However, other elements represent connections
between elements and their identity depends on the state of related
elements. The listing A.12 shows the expressions used to obtain the
label for TechSupport and Physicallnteraction metaelements.

Listing A.12: Label definition for some elements.

import parkour;

String label (TechSupport this):
if this.technique!= null && this.medium !=null then
"Support for "+this.technique.name+" on "+this.medium.
name
else
"Support for...";

246 Metamodels

String label (PhysicalInteraction this):
let action=
if this.direction==InteractionKind: :capture then
"Capture"
else "Mint":
if this.task!=null && this.object!=null
then action+" "+object.name+" for "+task.namet+" task"
else action;

The TechSupport metaelement represents the support of a given
technology for an interaction technique by using a medium. For exam-
ple, an RFID reader is capable to support the scan interaction mech-
anism over the radio medium. This support is labeled as “Support for
scan on radio”.

For the Physicallnteraction metaelement, the direction of the inter-
action is reflected in the label in addition to the object and the task
being supported. For ecample, the interaction performed for identify-
ing a book for performing a loan is labeled as “Capture book for borrow
book task”.

A.2 Presto metamodel

The Presto metamodel provides a definition of the architectural con-
cepts for supporting the user participation in physical mobile workflows.
Figure A.3 depicts the metaelements defined and their relationships by
means of a class diagram. These elements are briefly described below.

Named Element. This is an abstract metaelement that is extended
by the elements with name.

Presto Model. Represents a set of Presto-based systems that support
different processes. This element is normally the root element of
Presto-based specifications.

Presto System. This metaelement represents a system based on the
Presto platform. It represents a single system that can be de-
ployed to a computing device.

247

A.2 Presto metamodel

buSy : eWAaYdS o UIBWOP 170 B
1opiroideied H urewop 170 a mc_mEmvo
X...O .
1sa.93uOsuleydop
ues|00g3 : U3|ISSI = BuLIST | UOREIYIPOD =
S19 ues|oogq : JOJeIUIS! = Bulisy : anbiuyoey =
BulyST 1 ysey = sjuaugduiodpl bulsy : Abojouyday o
Jj0ssa0Idisel [*0 ues|00g3 : JAIUIASI =
- ueajoogq : Jainydeds! o
En_v_mmm\ 1usuodwodqr B
A s|auueyd ENIETRgE]
7 - 220.4d =
wa3s, woumw& B N soo1n) 0
swayshs, bao1MS LG Agpapoddns "0 27 sad1nes
T
sassgoold
[9POINOISaId [SO sssog B DIMBS [
N | |
m:o_tncouﬂxmyw/
*..O
V

bullsy : dweu —

JUsWs|IpaweN g

buinsy : abenbue| o
BulIsT : uoissaidxe =

k...o

UORIPUODIX3IU0)

< fgperes————

«'0 Agpajqeus

Juswa|33|qerdepy

Presto metamodel

.

Figure A.3

248 Metamodels

ID Component. A pluggable component of the architecture. It repre-
sents Identification Components and describe their capabilities for
identification. Identification Components inherit from the Service
element.

Data Provider. A pluggable component of the architecture. Data
Providers are organized in different domains and provide a ref-
erence to a schema that captures the structure of the data they
provide.

Task Processor. A pluggable component of the architecture. It pro-
vides support to a task from a specific process. Task Processors
can be qualified as silent or initiator depending on the way that
provides its functionality.

Process. Processes are used to group 7Task Processors and organize
Domain elements. the service which is in charge of the process
orchestration is indicated in the supportedBy reference.

Domain. Represents a set of digital elements that are provided accord-
ing to a specific perspective with respect to the physical world.

Service. The service element is included in the metamodel to represent
functionality of any kind that is used by other components in the
system. It is an adaptable element.

Channel. Represents the possible information exchanges between two
Service elements. Services and channels are the basic pieces used
to define reconfigurable architectures.

Adaptable Element. This is an abstract metaclass that is used to
define the elements that can be enabled and disabled depending on
context events. In particular this is the case of Service, Channel,
Task Processor and ID Component elements.

Context Condition. Defines a specific context condition. The con-
text condition is an expression defined in any query language sup-
ported by the underlying platform.

A.2 Presto metamodel 249

The metaelements defined can be used to describe systems in Presto
terms. The following section introduces the constraints defined on these
elements to limit their possible combinations.

A.2.1 Constraints

In this section we introduce additional constraints to the metamodel
defined. The constraints have been defined by means of the Check
language. More detail on the constraints defined is provided below.

Element name unicity

We have enforced the unicity for each kind of elements in the Presto
architecture. The degree in which two elements can overlap varies in
each case. For some elements it is not allowed to have the same name
but others can as long as they meet some constraints (e.g., participate in
separate systems). Since these constraints normally require to navigate
the model, some extensions have been defined over Presto in order to
facilitate this task. In particular, listing A.13 shows the definition of the
parentModel extension to navigate containment relationships for some
of the elements in the Presto metamodel.

Listing A.13: Constraints for validating name unicity.

PrestoModel parentModel (PrestoSystem this)
eContainer;

PrestoModel parentModel (ContextCondition this)
eContainer;

PrestoModel parentModel (Process this)
eContainer;
PrestoSystem parentModel (IDComponent this)

eContainer;

PrestoSystem parentModel (TaskProcessor this):
eContainer;

250 Metamodels

PrestoSystem parentModel (DataProvider this):
eContainer;

PrestoSystem parentModel (Channel this):
eContainer;

PrestoSystem parentModel (Service this):
eContainer;

Process parentModel (Domain this)
eContainer;

Based on the previous extension, constraints that validate the cor-
rect naming for the different elements are defined. For each element,
their siblings are accessed and some properties are verified in order to
find any inconsistency. Listing A.14 shows the different constraints de-
fined.

Listing A.14: Constraints for validating name unicity.

context NamedElement ERROR "Invalid name for a "+this.
metaType.name+" element":
name.length >= 0;

context PrestoSystem ERROR "PrestoSystem ’"+this.name+"’
name must be unique":
! (this.parentModel () .systems.exists (x| x!=this && x.name
== this.name));

context DataProvider ERROR "DataProvider ’"+this.name+"’
name must be unique in a domain":
! (this.parentModel () .dataProviders.exists (x|x!=this && x.
name == this.name && x.domain==this.domain));

context IDComponent ERROR "IDComponent ’"+this.name+"’ name
must be unique for an interaction technique and

technology":
! (this.parentModel () .idComponents.exists (x|x!=this && x.
name == this.name && x.technique == this.technique &&

x.technology == this.technology));

A.2 Presto metamodel 251

context TaskProcessor ERROR "TaskProcessor ’'"+this.name+"’
name must be unique in a process for tasks that are not
context-sensitive":
! (this.parentModel () .taskProcessors.exists (x|x!=this && x
.task == this.task && (x.disabledBy.isEmpty || x.
enabledBy.isEmpty)));

The first constraint forbids the definition of empty names. Since
Presto Systems are identified y two systems with the same name are
not allowed. Conversely, Data Providers are allowed to share the name
provided that they belong to different domains. Identification Compo-
nents are considered to be duplicated when they have the same name
and they use the same technology and identification technique since
this is the information that is used for presenting the components to
the user. Finally, multiple Task Processors can only be defined for the
same task and process if it represents variants for the process adapta-
tion. That is, the defined constraints verify that the Task Processor
variants are associated with a valid Context Condition.

Identification functionality

The Identification Components defined in Presto architecture represent
a communication channel between the physical and the digital world
that can be supported in one or both directions. The constraint defined
in listing A.15 validates that the Identification Component defined pro-
vides at least one identification function.

Listing A.15: Constraint for the Identification Component functionality.

context IDComponent ERROR "Identification Component " +
this.name + " must provide one identification function
at least":

isMinter || isCapturer;

252 Metamodels

Generic and specific services

The Presto metamodel defines the Service metaclass to allow the defi-
nition of generic functionality that other components could require. in
addition, Identification Components are also defined as Services for the
sake of homogeneity. However, it must be checked that the services list
contains only generic services since the generator expects Identification
Components to be in the service list of each Presto System. The list-
ing A.16 shows the extension made to the metamodel to distinguish
generic and specific services.

Listing A.16: Constraint for the Identification Component functionality.

Boolean plainServices (PrestoSystem this):
this.services.forAll (e|le.isPlainService());

Boolean isPlainService (Service this):
true;

Boolean isPlainService (IDComponent this):
false;

The plainService extension makes use of polymorphism to differen-
tiate generic services from those that have a specific role in the Presto
architecture as it is the case of Identification Comonents. Listing A.19
makes use of the previous extension to detect the presence of Identifi-
cation Components on the service list.

Listing A.17: Constraint for the Identification Component functionality.

context PrestoSystem ERROR "The services feature must not
include Identification Components":
plainServices();

A.2.2 Tool support

Presto models are not intended for being built from scratch. Normally
a Presto model is obtained as a result from a transformation that is
applied to a Parkour model. A valid Parkour model will generate a

A.2 Presto metamodel 253

valid Presto model. However, designers can further modify the result-
ing Presto model and introduce some inconsistent information. The
constraints defined in the previous section are useful to avoid these in-
consistencies.

In addition to the previous constraints aid was provided for design-
ers in detecting situations that although possible they are not likely
to occur very often. In this way, designers can decide whether what
they have described is what they intended. In particular we have in-
troduced a constraint for detecting minters that produce identifiers in
a manner for which there is not an appropriate capturer defined. The
listing A.18 defines the existsComplementary extension which is defined
over Identification Components.

Listing A.18: Extension to find incompatibilities among Identification
Components.

Boolean existsComplementary (IDComponent this):
if this.isMinter then

this.parentModel () .idComponents.exists (e| e.isCapturer ==
true &&
e.technology == this.technology &&
e.codification == this.codification)

else true;

The previous extension is applied for minters and looks for some
capturer with the same technology and codifications. Note that cap-
turers do not require a minter to be defined since it is common to find
objects that are tagged from outside of the scope of the workflow de-
fined. Listing A.19 shows the warning message defined for the minters
for which there is no complementary capturer.

Listing A.19: Constraint to find incompatibilities among Identification
Components.

context IDComponent WARNING "There is no capturer that can
access " + this.name + " minter":
existsComplementary () ;

254 Metamodels

APPENDIX B

Experimental results

his appendix provides detail on the experimental results that were

obtained when applying our approach with end-users. The services
defined in the Smart Library case study were evaluated by means of
the MoBiS-Q (Vuolle et al., 2008) which is a questionnaire to measure
mobile business service experience. Chapter 7 provides more detail
regarding the experimental set-up and the case study.

The appendix is structured according to the MoBiS-Q questionnaire
sections: perceived usability of a mobile business service, fit for mobile
working context, and perceived impact on mobile work productivity. For
each of the sections, we present the user answers to each particular
topic and the comments they provided'. Furthermore, an additional
set of questions was included in the questionnaire to evaluate the level
of realism achieved during the experiment and to compare with their
previous experience with similar services. More detail of each of these
topics is provided below.

1 Users provided feedback in Spanish but it has been translated to English for the
publication in this work.

256 Experimental results

Item Strongly Disagree Neither Agree Strongly Total
disagree agree nor agree
disagree
Easy to learn) 2.9%) 55.9% 41.2% 34
(1) (19) (14)
Es? tlo become . i) 47.1% 52.9% 34
st (16) (18)
et T . .
(1) (16) (17)
Quick enough . 2.9% 8.8% 14.7% - 34
(1) (3) (5)
Eizzts';':s are]) 11.8% 35.3% s29% .,
y (4) (12) (18)
Ease of navigation) 29 14.7% 29.4% 52.9% 34
(1) (5) (10) (18)
0,
ISR 0.0% 1.5% 6.4% 38.2% 53.9% 204

Figure B.1: Results for the “perceived usability of a mobile business service”
dimension

B.1 Perceived usability of a mobile business ser-
vice

This dimension of the questionnaire analyzes the functionality provided

to the user. Users were asked to focus on the services provided by

the system. Figure B.1 shows the user answers to the different topics
defined in this section of the questionnaire.

B.1.1 Feedback from users

For each of the sections of the questionnaire, users were allowed to write
some comments. This feedback was useful for redesigning the system in
different iterations. The comments provided by users are listed below.

e Guidance to locate similar books is lacking.

B.1 Perceived usability of a mobile business service 257

e The level of detail for pending tasks could be greater (e.g., the
date of loan and return, as well as to the possibility of extending
the loan period).

e It could be interesting to provide a list of the books that are
on a temporal reservation in order to manage them (e.g., cancel
reservations).

e Some buttons (specially the sense, ok and back buttons) are too
small. Feedback could be provided about the remaining time for
the temporal reservation.

e I would prefer bigger buttons for the user interface. It took me
some time to feel comfortable with the device, maybe it would not
be the case with my own phone.

e | had never used a Smartphone before, but it is simple to do.
Some icons could make the available actions more intuitive.

e [t is difficult to distinguish between actions and pending tasks at
first.

e The temporal reservation feature may not be very useful. A better
location mechanism would be required for finding books.

e There were some connectivity problems at the beginning of the
experiment.

e [think it is a very useful application and it is easy to use. We can
avoid long queues and find books of our interest easily. I found
no problems with it.

e [am not used to this kind of devices. Nevertheless, it seems easy
to start using them and the services provided do not require much
dexterity from the user.

e The navigation was sometimes misleading: 1 was not sure which
book I was working with for moments.

e All I can say about the system is positive. I was impressed, I like
it a lot.

258 Experimental results

Item Strongly Disagree Neither Agree Strongly Total
disagree agree nor agree
disagree

Ease of use with a
2.9% 11.8% 29.4% 55.9%

device - 34
(1) (4) (10) (19)
Screen size is not a
Fmit) . 17.6% 35.3% 47.1% 2
(6) (12) (16)
Suitable for
working on the))) 23.5% 34
move (8)
Using a device with
' g y vice wl 5.9% 8.8% 2.9% 32.4% 50% "
onehan) 3) (1) (12) (17)
Ease of use while
i 2.9% 2.9% 2.9% 23.5% 67.6% 2
on themove (1) (1) (1) (8) (23)
f in
E‘z fyo useina) 5.9% 26.5% 41.2% 26.5% 2
(2) (9) (14) (9)
0,
INETEEE 1.5% 3.4% 10.3% 30.9% 53.9% 204

Figure B.2: Results for the “fit for mobile working context” dimension

B.2 Fit for mobile working context

This dimension of the questionnaire focuses on the use of the service
through the mobile device. Users were asked to focus on the way in
which the use of the mobile device affected the services provided by
the system. Figure B.2 shows the user answers to the different topics
defined in this section of the questionnaire.

B.2.1 Feedback from users

For each of the sections of the questionnaire, users were allowed to write
some comments. The comments provided by users are listed below.

B.2 Fit for mobile working context 259

e | have used the mobile device with one hand since I am an iPhone
user.

e When the book location is shown, the ok button is hard to see.
Maybe the device could be difficult to use for people with fat
fingers.

e I thing that the device is required to be too close to the book
for detecting it, especially when there were many books close to
the one being detected. In my case there were also connectivity
problems that produced some delays.

e Once you have used the service several times it becomes is easy
and intuitive.

e The ability for working in a rush depends on how familiar you are
with the device.

e There are not much affordable phones in the market that are ad-
vanced enough to use the services.

e Screen size is not limiting the functionality. Some buttons are
small.

e It seems very practical. The screen was big enough to interact
with the service without making input mistakes.

e Touch screen was not 100% responsive.

e A better recommending system can be used to offer similar books
to the user.

e [had no previous experience with Smartphones and it has been
difficult in the beginning.

e It is still a small device. Although it could be perfect for the
service, it is impossible to operate fast.

260 Experimental results

Item Strongly Disagree Neither Agree Strongly Total
disagree agree nor agree
disagree

Satisfaction with
5.9% 38.2% 55.9%

efficiency at work - - 2) (13) (19) 34
Use improves 5.9% 52.9% 41.2%
. g . (J . 0 . 0
fluidity of work - - 2) 18 14 34
Able to perform
tasks in less time - 2.9% 2.9% 17.6% 34
(1) (1) (6)
Able to complete
tasks easier 2.9%) 8.8% 38.2% 50% 34
(1) (3) (13) (17)

Less time to go s e
through tasks - - '1 ° 7 ° 34
Less additional
t I B 5.9% 2.9% 32.4% 58.8% 34

raveling) (1) (12) (20)

Better access to

information 5.9% 47.1% 47.1% 31
needed (2) (16) (16)

0,

ISR 0.4% 1.3% 5.0% 35.3% 58.0% 238

Figure B.3: Results for the “perceived impact on mobile work productivity”
dimension

B.3 Perceived impact on mobile work produc-
tivity

This dimension of the questionnaire is about improvements in the flu-
idity of work. Users were asked to focus on the way in which the tasks
they normally perform in the library are improved. Figure B.3 shows
the user answers to the different topics defined in this section of the
questionnaire.

B.4 Additional questions 261

B.3.1 Feedback from users

For each of the sections of the questionnaire, users were allowed to write
some comments. The comments provided by users are listed below.

e The system seems a universal remote control providing the infor-
mation needed at each moment.

e Temporal reservation does not avoid walking since users must go
to the shelf to take the book.

e More simultaneous tasks would be required to really perceive the
productivity increase.

e It would be useful to also integrate pure digital services such as
looking books by author or name.

e I found the possibility of finding similar books very useful. The
only problem I found is that this is only offered for books you can
access from the shelf.

e [found no problems. It is intuitive and fast to operate.

e I have compared the productivity with respect to the usual li-
braries (with computers and librarians to aid in the lending pro-
cess).

B.4 Additional questions

We included in the evaluation some questions to determine the relevance
of the feedback obtained. One of the questions was related to how much
the prototype provided a detailed idea of the final system. In this way
we could determine how close it was the user experience evaluated from
the one that could be obtained by using a final system. The results
obtained are depicted in Fig. B.4. These results show our prototyping
technique was capable of reproducing a level of user experience that is
very close to what users were expecting from a final system.

262 Experimental results

8.82%| An idea of how the final system
could be, is provided

| thought it was

A detailed idea of how the final
the final system

system would be, is provided

Item Count Percent
It seems not to be useful for the development of the final system 0 0%
An idea of how the final system could be, is provided 3 8.82%
A detailed idea of how the final system would be, is provided 19 55.88%
| thought it was the final system 12 35.29%

Figure B.4: Evaluating the realism of the system

The other question was intended to estimate the acceptance for ser-
vices such as the one provided. We asked how often users would use
the service if it were available in their library. The results obtained are
depicted in Fig. B.5. The results show that the service was perceived
as very useful and people showed interest in using it. People highly
appreciate the possibility of accessing services in the place and time
they need them, and our approach can provide adequate mechanisms
to achieve this goal.

B.4 Additional questions 263

Rarely Never
2.94% 2,94%
Normally
5.88%
55.88%
Very often Always
Item Count Percent
Never 1 2.94%
Maybe 1 2.94%
Normally 2 5.88%
Often 11 32.35%
Always 19 55.88%

Figure B.5: Evaluating the acceptance for the services

264 Experimental results

WWW.Pros.upv.es

Centro de Investigaciéon en Métodos

de Produccién de Software

Universidad Politécnica de Valencia
Camino de Vera s/n

Building 1F

46007 Valencia

Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359

UNIVERSIDAD
POLITECNICA
DE VALENCIA

	Introduction
	Motivation
	Problem statement
	Thesis goals
	The proposed solution
	Research methodology
	Thesis context
	Thesis structure

	Background
	Business Process Management
	Business process modeling
	Business process execution
	Analysis and discussion

	The Internet of Things
	Technological support
	Auto-ID frameworks
	Languages for specification
	Analysis and discussion

	Mobile applications
	The Android platform

	Conclusions

	State of the art
	Smart workflows
	Analysis and discussion

	Physical Mobile Interactions
	Analysis and discussion

	Mobile business processes
	Analysis and discussion

	Conclusions

	A design method for physical mobile workflows
	Design method overview
	Why a modeling approach?
	Steps of the method
	Guidance through the process

	Capturing technology-independent requirements
	The obtrusiveness concept
	Physical interaction

	Technological requirements
	Technological analysis
	Deployment configuration

	Validating the design with users
	Requirements for the evaluation
	Fast-prototyping for physical mobile workflows

	Tool support for the method
	The Parkour metamodel
	Model-based validation

	Conclusions

	Automating the development
	The architectural process
	Elaboration of the architecture
	Architecture requirements
	Technology-independent architecture
	Programming model
	Technology mapping
	Mock Platform
	Vertical prototype

	Automating the development process
	Architecture metamodel
	Using design concepts for development
	Glue code generation

	Conclusions

	Adapting obtrusiveness at run-time
	Adapting the obtrusiveness level
	The obtrusiveness adaptation space
	Defining context conditions
	Defining transitions

	Reconfiguring architecture components
	Model-based reconfiguration
	Reconfiguration policies specification

	Development of reconfigurable components
	Develop alternative components
	Connect sources of contextual information
	Extend the infrastructure
	Consider efficiency aspects

	Conclusions

	Validation of the proposal
	Designing the smart workflow
	User activities
	Requirements for physical interaction
	Technological analysis
	Deployment configuration

	Early-stage evaluation
	Workflow re-design

	Obtaining a final implementation
	Task support
	Integrating identification technologies
	Communication among systems

	Experience applying the approach
	Case studies
	Benefits obtained
	Limitations detected

	Conclusions

	Concluding remarks
	Contributions
	Publications
	Detail of the publications
	Relevance of the publications

	Future work

	Bibliography
	Metamodels
	Parkour metamodel
	Constraints
	Tool support

	Presto metamodel
	Constraints
	Tool support

	Experimental results
	Perceived usability of a mobile business service
	Feedback from users

	Fit for mobile working context
	Feedback from users

	Perceived impact on mobile work productivity
	Feedback from users

	Additional questions

