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46022 Valencia SPAIN.

Abstract

This paper focuses on the improvement of known algorithms for maximum

likelihood soft-output detection. These algorithms usually have large computa-

tional complexity, that can be reduced by using clipping. Taking two well-known

soft-output maximum likelihood algorithms (Repeated Tree Search and Single

Tree Search) as a starting point, a number of modifications (based mainly on box

optimization techniques) are proposed to improve the efficiency of the search.

As a result, two new algorithms are proposed for soft-output maximum like-

lihood detection. One of them is based on Repeated Tree Search (which can

be applied with and without clipping). The other one is based on Single Tree

Search, which can only be applied to the case with clipping. The proposed algo-

rithms are compared with the Single Tree Search algorithm, and their efficiency

is evaluated in standard detection problems (4x4 16-QAM and 4x4 64-QAM)

with and without clipping. The results show that the efficiency of the proposed

algorithms is similar to that of the Single Tree Search algorithm in the case 4x4

16-QAM; however, in the case 4x4 64-QAM, the new algorithms are far more
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efficient than the Single Tree Search algorithm.

Keywords: MIMO; Soft-Output Maximum Likelihood Detection.

1. Introduction

Digital communications using Multiple-Input Multiple-Output (MIMO) sys-

tems have nowadays been receiving considerable attention. These systems are

included in current and future wireless communication standards, such as IEEE

802.11ac [1], Wimax [2] and 3GPP Long Term Evolution Advanced [3].

In MIMO systems, the use of soft-output detectors that are concatenated

with a soft-input channel decoder can significantly improve the performance

of wireless communications. A soft-output detector provides the reliability in-

formation of the received coded bits expressed as log-likelihood ratios (LLRs).

These soft values are used by the channel decoder to carry out the final decision

on the values of the received coded bits. However, the use of soft detection

techniques involves a considerable increase in the computational cost compared

with hard detection techniques, especially at low signal-to-noise ratios (SNR).

This is so because soft detection methods require many more metric computa-

tions than hard detections methods. Practical applications of this technology

will only be possible if efficient algorithms are developed.

The MIMO detection algorithms that compute the maximum likelihood so-

lution of the problem are known as maximum likelihood (ML) algorithms. In

hard-output detection, demodulators based on the tree search strategy show a

lower complexity than those based on exhaustive search, with the Sphere De-

coding (SD) variants being the family of algorithms that is most commonly used

[4, 5, 6, 7, 8, 9]. Recently, a new hard-output SD ML algorithm was proposed in

[10], where the SD algorithm was combined with box optimization. The results

obtained were remarkably faster than other known hard-output ML detectors.

There exist several soft-output detection algorithms that use hard-output

SD (or variations of it based on tree search) to compute the LLRs. Some of

these soft-output algorithms are Repeated Tree Search (RTS) [11], a modified
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RTS algorithm [12], Single Tree Search (STS) [13, 14], the List-based SD (LSD)

scheme [15], Soft-output Fixed-complexity SD (SFSD) [16], the Smart Ordering

and Candidate Adding (SOCA) algorithms [17], and Soft-output K-Best [18,

19]. There are other soft-output detection methods that are not based on tree

search, such as the method based on partial marginalization [20], the SUMIS

method [21], soft-output detection based on Minimum Mean Square Error–

Parallel Interference Cancellation (MMSE–PIC) [22], soft-ouput based on belief

propagation and on factor graphs [23], and a conjugate-gradient method for

precoding [24]. Another soft-output ML detector (similar to STS) including

several optimizations was proposed in [25]. Some of these algorithms provide

exact max-log LLRs (STS and RTS among them), while others (like the LSD

or the SFSD algorithms) provide approximations to the max-log LLRs (this

entails a certain loss of performance). Since the computational complexity of

soft-output algorithms that compute exact max-log LLRs (soft ML algorithms)

is too high, in practical applications the complexity must be reduced further

through the use of clipping [26].

It must be mentioned that max-log LLRs are approximations to exact LLRs,

and some methods may compute LLRs more accurately than with the max-log

approximation. However, the max-log approximation is still the most popular

form of computing LLRs. In the following we will speak of soft-output ML al-

gorithms as algorithms that compute exactly max-log approximations to LLRs.

The RTS and STS algorithms are the best known soft-output ML algorithms.

These algorithms are thoroughly discussed in [13, 14], including the application

of clipping to both algorithms. These papers show that STS is more efficient

than RTS, thus making it one of the most efficient algorithms for soft-output

ML MIMO detection (the version without clipping has been included in the

Matlab communications toolbox [27]).

The work described in this paper has as its main goal the improvement

in efficiency of soft-output ML detection algorithms, while at the same time

preserving the ML property. We have obtained several possibilities for enhancing

the RTS and STS algorithms. We propose three alternative implementations:
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two based on RTS (for the cases with and without clipping) and another one

based on STS which is only valid for the case with clipping. Some of the

modifications proposed are based on the hard ML detector described in [10],

while others can be implemented using any hard ML detector.

The algorithms obtained will be compared with the RTS and STS algorithms.

The comparison of detection algorithms would usually be carried out in terms

of efficiency and accuracy. However, since we are comparing soft-output ML

algorithms, the accuracy comparison is not needed. This is because any soft-

output ML algorithm implemented without clipping (such as STS, RTS or the

algorithms proposed in this paper) will obtain the same exact max-log LLRs.

The accuracy of MIMO detection methods is usually assessed through plots of

Bit Error Rate (BER) against SNR. Therefore, since any two soft-output ML

methods obtain the same max-log LLRs, the BER plot of both methods would

be exactly the same line.

The same occurs when two soft-output ML methods implemented with clip-

ping are compared (using the same clipping parameter). Since the max-log

LLRs obtained are exactly the same, any plot for evaluation of accuracy would

produce exactly the same line for both methods; such a plot would not convey

any interesting information. The accuracy comparison is relevant when non-ML

soft-output methods are compared with ML soft-output methods. However, this

would be out of the scope of this paper and has been studied in other papers

such as [13] and [17]. In this paper, we concentrate only on comparing different

soft-output ML detection methods, and, therefore, we focus on comparing the

efficiency of the methods.

In the following, we first describe the problem at hand and the algorithms

to be applied or modified, and then we evaluate the resulting algorithms nu-

merically, comparing their efficiency with the STS algorithm.
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Figure 1: BICM system

2. Problem Description

Let us consider a MIMO-Bit Interleaved Coded Modulation (BICM) system

(described graphically in Fig. 1) with m transmit antennas and n receive an-

tennas (n ≥ m). In this system, the sequence of information bits is encoded

using an error-correcting code and is passed through a bitwise interleaver before

being demultiplexed into m streams. In each stream, the bits are mapped into

a complex symbol si, which is taken from a constellation Ω ⊂ C of size |Ω| = L

and hence carrying q = log2 L code bits each. The transmit symbol vector is

given by s = (s1, . . . , sm)T , and the associated complex baseband model for the

received vector can be written as

y = H · s+ v. (1)

Here, H ∈ C
n×m is the MIMO channel matrix with independent elements

hij ∼ CN (0,1) and v denotes a white-Gaussian noise (AWGN) complex vector

with elements vi ∼ CN (0, N0

2
).

The MIMO detection problem can then be stated as:

sML = argmin
s∈Ωm⊂Cm

‖H · s− y‖2 . (2)
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The hard ML solution to the MIMO detection problem is the vector sML.

Throughout this paper, given a possible transmit symbol vector s, we will denote

its associated Euclidean distance as:

d(s) = ‖y −H · s‖2. (3)

2.1. Hard-Output Sphere Decoding

The ML solution is usually computed using tree search techniques such as

the Sphere Decoding algorithms. To apply an algorithm of this type, it is

necessary to transform problem (2) into an equivalent problem using the QR

decomposition of the channel matrix:

sML = argmin
s∈Ωm⊂Cm

‖R · s− z‖2 , (4)

where H = Q ·R, Q is a unitary matrix, R is upper triangular and z = QH ·y.

The solution is obtained by traversing a tree of partial solutions, where the

maximum depth of the tree is m and each node can have at most L descendants.

A full search of the tree would generate all the possible codewords, which would

be very inefficient.

The number of solutions to be visited in the tree can be reduced by selecting

a radius r so that the solutions that do not fulfill the condition

‖R · s− z‖2 ≤ r2 (5)

are discarded. The selection of an appropriate initial radius is a difficult problem

in SD detection. The optimal radius would be the distance given by ML solution

sML, computed as:

dML = ‖y −R · sML‖2. (6)

However, dML is known only when sML has been computed. If the selected initial

radius is smaller than dML, there will be no solutions fulfilling (5). On the other

hand, a large radius may cause that there are too many solutions fulfilling (5)
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and the computational cost may be too large. This problem is most influential

in low SNR scenarios.

(In the following we will use the standard Matlab notation to denote an

integer vector, k : m, where this denotes the vector of integers (k, k + 1, ...,m).

Accordingly, sk:m denotes the subvector (sk, sk+1, · · · , sm); and Ra:b,c:d denotes

the submatrix of R obtained by selecting rows a, a+ 1, ..., b and columns c, c+

1, ..., d.)

All of the SD detectors use the upper triangular structure of the matrix R

to detect the symbols starting from the level (or antenna) m up to the level

1. In the level k of the tree (1 < k < m), a partial transmit vector will have

been obtained, which implies that the components k+1, ...,m have already been

assigned values belonging to the constellation. Components 1, .., k − 1 do not

have values assigned yet, and a decision must be taken regarding component k.

Therefore, in level k, expression (5) is rewritten as:

‖R · s− z‖2 =

‖R1:k−1,1:k−1 · s1:k−1 +R1:k−1,k:m · sk:m − z1:k−1‖
2
+

‖Rk:m,k:m · sk:m − zk:m‖2 ≤ r2 .

(7)

Given a partial transmit vector sk:m, we will denote its partial Euclidean

distance (PED) as:

d(sk:m) = ‖Rk:m,k:m · sk:m − zk:m‖2 . (8)

Recall that components s1:k−1 do not have values assigned yet, while, on

the other hand, the components sk+1:m have already been assigned values. The

standard practice in SD detection is to neglect the first term in (7), and to use

as pruning condition for the component sk the following expression:

d(sk:m) = ‖Rk:m,k:m · sk:m − zk:m‖2 ≤ r2 . (9)

The ordering in which the symbols are tested severely affects the performance
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of the Sphere Decoding algorithms. The best known symbol ordering is the one

proposed by Schnorr and Euchner [6]. The different proposals discussed in this

paper are based on the Schnorr-Euchner Sphere Decoder (SESD).

2.2. Box Optimization for MIMO Detection

The main proposal in this work and in paper [10] is to use continuous con-

strained optimization techniques to help SD-based detection algorithms in hard

detection (described in [10]) and in soft-output detection (the target of this

work). The auxiliary problem to be solved is:

ŝr = argmin
s∈Cm

‖R · s− z‖2 ,

min(Re(Ω))≤Re(si)≤max(Re(Ω)) ,1≤i≤m

min(Im(Ω))≤Im(si)≤max(Im(Ω)) ,1≤i≤m

(10)

where si, 1 ≤ i ≤ m are the components of the vector s. This problem is derived

from (2), discarding the condition that the components of the solution belong

to the constellation Ω.

Compared to problem (2), this is a continuous problem. The components

of the solution vector do not need to belong to Ω; the only restriction is that

the search zone be bounded. The search zone has the form of a box, hence the

name of box optimization.

The actual algorithm used to solve (10) was fully described in [10], assum-

ing a real-valued formulation. Here, we will describe in less detail (directly

over the complex-valued formulation) how this problem was used to speed up

hard-output sphere decoding, but still providing enough detail so that the mod-

ifications to soft-output algorithms can be easily understood. Throughout the

paper, we will assume that there exists a set ΩR such that the constellation Ω

can be obtained as a cartesian product ΩR×i·ΩR. This is the most habitual case

and simplifies the notation; however, if the constellation cannot be expressed as

cartesian product (such as 8-PSK), or if different constellations were used by

different antennas, it would not be a serious problem because the algorithms

can be easily adapted to such cases.
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2.2.1. Box Optimization to obtain an initial point and an initial radius for SD

To start the search, some versions of SD require an initial feasible point, an

initial radius, or both. It is quite common to solve the continuous unconstrained

least squares problem:

ŝ = argmin
s∈Cm

‖R · s− z‖2 . (11)

All the components of ŝ are then rounded to the nearest element of the

constellation Ω (this process is called quantization). The vector obtained after

this process is ŝq, which is known as the Zero-Forcing (ZF) estimator. This

estimator may be a good approximation to sML when the SNR is high, but it

is known to give poor results if the SNR decreases.

When one or more of the components of the vector ŝ have real or imaginary

parts outside of the interval [min (ΩR) , max (ΩR)], we say that the vector ŝ is

“out” of the constellation. Accordingly, we say that ŝ is “in” the constellation

when all its components have their real and imaginary parts inside the interval

[min (ΩR) , max (ΩR)].

With large SNR, the estimator ŝ should be “in” the constellation, or at

least very close to it. In this case, the ZF estimator ŝq should be reasonably

close to the ML solution. However, for small SNR, the estimator ŝ will usually

be “out” of the constellation, and the ŝq estimator may no longer be a good

approximation to the ML solution. In that case, the estimator ŝrq, which is

computed by quantizing the result of the box optimization ŝr, will surely be a

better approximation to the ML solution sML. Therefore, ŝrq may be used as

an initial point for sphere decoder or even as a non-ML estimator of sML.

Another possibility proposed in [28] is the use of ŝrq to compute an initial

SD radius:

rŝrq = ‖H · ŝrq − y‖ . (12)

As reported in [28], in large noise situations, the radius estimate rŝrq is usually

a closer estimation to dML than the standard radius estimate computed using
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the ZF estimator:

rŝq = ‖H · ŝq − y‖ . (13)

Therefore, as a conclusion for this section, box optimization can be used to

obtain a better starting point for the search as well as a initial radius closer to

dML.

2.2.2. Radius Bound for SD Search using box optimization

The second technique where box optimization is involved tries to obtain a

tighter radius estimation before the expansion of each node. This technique was

first proposed and described in [29]; the proposal was to obtain a bound that is

tighter than (9) by also using the remaining term in inequality (7),

‖R1:k−1,1:k−1 · s1:k−1 +R1:k−1,k:m · sk:m − z1:k−1‖
2
. (14)

This can be done by obtaining a lower bound c of this term, so inequality

(7) can be written as:

‖Rk:m,k:m · sk:m − zk:m‖2 ≤ r2 − c , (15)

which is a tighter pruning condition than (9). This should provide a reduction

in the number of feasible values of sk, and, consequently, a reduction in the

number of visited nodes. If c is indeed a lower bound of (14), equation (5)

holds. Then, if the initial radius is selected so that there is at least a solution

fulfilling (5), the resulting method will still be ML.

In [29], several methods to compute lower bounds of (14) were proposed,

discussed, and evaluated. One of the proposals in [29] was to use box optimiza-

tion to compute a lower bound of (14). This can be done considering (14) as a

deflated MIMO detection problem. If the continuous least squares problem is

solved:

ŝk−1 = argmin
s1:k−1∈Ck−1

‖R1:k−1,1:k−1 · s1:k−1 +

R1:k−1,k:m · sk:m − z1:k−1‖
2
,

(16)
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the estimator ŝk−1 is obtained, which is analogous to the estimator ŝ computed

as in (11) but for the deflated problem. It must be noted that problem (16) is

actually a standard triangular system of linear equations, whose solution ŝk−1

is computed exactly and fulfills:

∥

∥R1:k−1,1:k−1 · ŝ
k−1 +R1:k−1,k:m · sk:m − z1:k−1

∥

∥ = 0 . (17)

If ŝk−1 is out of the constellation, then the estimator ŝrk−1 (which is analo-

gous to ŝr for the deflated problem) is computed solving the box optimization

problem for the deflated problem:

ŝrk−1 = argmin
s1:k−1

‖R1:k−1,1:k−1 · s1:k−1 +R1:k−1,k:m · sk:m − z1:k−1‖
2

min(ΩR)≤Re(si)≤max(ΩR);1≤i≤k−1

min(ΩR)≤Im(si)≤max(ΩR);1≤i≤k−1 .

(18)

Problem (18) is analogous to (10) and can also be solved using box opti-

mization techniques. For all s1:k−1 ∈ Ωk−1, the solution ŝrk−1 fulfills that:

∥

∥

∥
R1:k−1,1:k−1 · ŝr

k−1 +R1:k−1,k:m · sk:m − z1:k−1

∥

∥

∥

2

≤ ‖R1:k−1,1:k−1 · s1:k−1 +R1:k−1,k:m · sk:m − z1:k−1‖
2
.

(19)

Hence, the proposal is to use the lower bound c:

c =
∥

∥

∥
R1:k−1,1:k−1 · ŝr

k−1 +R1:k−1,k:m · sk:m − z1:k−1

∥

∥

∥

2

(20)

in inequality (15).

Of course, if ŝk−1 is in the constellation, ŝk−1 = ŝrk−1. Thus, as in (17), the

bound would be useless since

∥

∥

∥
R1:k−1,1:k−1 · ŝr

k−1 +R1:k−1,k:m · sk:m − z1:k−1

∥

∥

∥

2

= 0 . (21)

In this case, it would be better to use other bounding techniques, (e.g., the
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technique based on the minimum singular value described in [29]) or simply not

to use any additional bound, since the standard SESD algorithm performs quite

well in this case.

Paper [10] presents the implementation of a SESD hard detector including

the techniques described above, plus a number of improvements and algorith-

mic optimizations. We will refer to the hard ML detector described in [10]

as the Box Optimization Hard Detector (BOHD). The BOHD algorithm is or-

ders of magnitude faster than standard ML SD detectors when applied to large

problems (large modulation or large number of antennas), especially in the low

SNR range. Furthermore, the practical results show that the performance of

the BOHD algorithm is virtually constant across any SNR range (even for im-

practical SNRs). The key for the performance of this algorithm is that the box

optimization (proposed in [29] and later improved in [10]) provides an extremely

tight bound on the search radius. This causes a drastic decrease both in the

number of nodes that must be explored to obtain the ML solution and in the

required execution time.

2.3. Soft-Output Detection

In soft-output detection schemes, the demodulator computes the soft infor-

mation about the bits in terms of LLRs at the receiver side. Given the received

signal y and the channel matrix H, the LLR of the b-th bit of the j-th entry

sj,b is defined as

LLRj,b = ln
P (sj,b = 1|y,H)

P (sj,b = 0|y,H)
, (22)

where P (sj,b = c|y,H) is the probability of the bit sj,b having the value c,

given the actual values of the received signal y and the channel matrix H. The

implementation of this formula would require an exhaustive search. In order

to reduce the computational complexity, we apply the max-log approximation

[15]. Therefore, the max-log LLR of the b-th bit of the symbol of the j-th entry
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is denoted Lj,b and is computed as:

Lj,b =
1

σ2

[

min
s∈X

(0)
j,b

‖y −H · s‖2 − min
s∈X

(1)
j,b

‖y −H · s‖2
]

, (23)

where X
(c)
j,b denotes the set of symbol vectors for which the b-th bit in entry j

equals c.

In (23), one of the minima is the ML distance (dML) corresponding to the

hard ML solution sML, computed as in equation (6).

The other minimum in (23) has to be calculated for all coded bits (∀j, b).

All these minima are called counter-hypothesis distances, and are computed as

d̄j,b = min

s∈X
(sML

j,b )
j,b

‖y −H · s‖2, (24)

where sML
j,b denotes the b-th bit of the symbol sML

j and sML
j,b denotes the comple-

ment of bit sML
j,b .

Using (23) and (24), the max-log LLRs are now calculated as

Lj,b =
1

σ2

(

dML − d̄j,b
) (

1− 2sML
j,b

)

. (25)

Therefore, the soft-output ML algorithms must compute the hard ML solu-

tion sML, its associated ML distance dML, and the counter-hypothesis distances

d̄j,b for all j = 1, . . . ,m, b = 1, . . . , q. (In the following we will use the term

LLRs meaning max-log LLRs).

Clipping [26] can be applied to reduce the complexity of the search. Given

a clipping parameter Lclip, it is assumed that any counter-hypothesis distance

larger than dML+Lclip does not need to be computed exactly and can be set to

the value dML+Lclip. When clipping is applied to a soft-output ML method, the

resulting method cannot strictly be called ML because the LLRs are no longer

exact. However, it is important to note that any ML soft-output algorithm that

is applied with a given clipping parameter Lclip, must compute exactly the same

LLRs as any other ML soft-output method that is applied with the same clipping
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parameter. In other words, all of the counter-hypothesis distances that are

larger than dML +Lclip are set to dML +Lclip, and all of the counter-hypothesis

distances that are smaller than dML+Lclip are computed exactly. Therefore, the

accuracies obtained by any two ML soft-output algorithms that use the same

clipping parameter are the same, and, as mentioned in the introduction, the

BER obtained by these algorithms would be the same. Therefore, in this sense,

we can speak of “clipped” ML soft-output algorithms.

As stated above, there are other soft-output methods (LSD, SFSD) that

do not guarantee finding the exact distances. (Some accuracy is usually lost

in order to obtain better computational complexity.) The LSD and the STS

algorithms are compared in [13], while SOCA, LSD, and STS are compared in

[17].

2.4. Soft-Output Detection Algorithms

In this section, we will describe the soft-output ML algorithms that we would

like to improve, that is, the RTS and STS algorithms in their original versions

with and without clipping. All the descriptions given in this section are based

on [13].

2.4.1. RTS

The RTS algorithm starts by computing the hard ML solution (sML and dML)

through a ML SD algorithm. The adaptive radius SESD is usually selected for

this purpose. Then, the LLRs are obtained by computing the counter-hypothesis

distances (24). These are obtained by running a ML SESD for each bit in the

symbol vector, as described in [11, 13]. Therefore, the SESD algorithm must

be executed m · q + 1 times. The drawback of this procedure is clearly the

increased complexity, especially for low SNR. However, it must be mentioned

that once the hard ML solution has been obtained, the computation of each

LLR is independent from the others, so the computation of the LLRs can be

parallelized.
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2.4.2. RTS with Clipping

Clipping is easily included in the RTS strategy. Since sML and dML have

been computed previously, the SD runs needed for each distance d̄j,b are started

by using the clipping distance dML + Lclip as the initial maximum radius. This

reduces the number of nodes explored and the computation time considerably.

2.4.3. STS

The STS algorithm proposed in [13] is a sophisticated method that is de-

signed to compute the hard ML solution and the soft information at the same

time, traversing the tree of possible solutions only once. In [13], the STS algo-

rithm was proved to be more efficient than the RTS algorithm. STS has the

standard SESD structure. However, in order to detect dML and all the distances

d̄j,b simultaneously, the radius must be larger (it must be kept at least as large

as max
(

d̄j,b
)

), and the radius is recomputed previously to the computation of

any node or leaf.

Here we will give a brief overview of the distinguishing features of the STS

algorithm, which are the update rules and the method for recalculating the

radius. This overview is based on the description given in [13]. Variables sopt

and dopt will be used to store the best signal and distance found at the present

moment. Before starting the algorithm, the variables dopt and d̄j,b are initialized:

dopt = d̄j,b = ∞, ∀j, b .

Algorithm 1. The update rules to be applied when a feasible leaf is found

1. If a leaf s is found such that d(s) < dopt, Then

2. ∀j, b such that the bit sj,b = sML

j,b

3. Set d̄j,b to the value dopt.

4. Set dopt = d(s).

5. Set sopt = s.

6. End If

7. If a leaf s is found such that d(s) ≥ dopt, Then

8. ∀j, b such that the bit sj,b = sML

j,b and d(s) < d̄j,b,

9. Set d̄j,b to the value d(s).
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10. End If

Algorithm 2. The method for recalculating the radius (which is applied in ev-

ery explored node) in order to determine whether the node is expanded or pruned.

Let sk:m be a partial transmit vector (node) at level k:

1. Set d1 = max
(

d̄j,b
)

, ∀b, for j = 1 . . . k − 1

2. Set d2 = max
(

d̄j,b
)

, ∀b, for j = k . . .m

and (sk:m)j,b = sML

j,b

3. If d(sk:m) > max(d1, d2) Then, sk:m is pruned

4. Else sk:m is expanded

5. End If

When the STS concludes, sopt = sML, dopt = dML, and d̄j,b holds the

counter-hypothesis distances. All the nodes (and leaves) with a PED in the in-

terval [dML,max(d̄j,b)] will have been visited. If the difference between dML and

max(d̄j,b) is large, then the number of visited nodes can become prohibitively

large. Since this happens frequently, clipping is needed for any practical imple-

mentation.

2.4.4. STS with Clipping

Clipping is included in STS by modifying the updating Algorithm 1, adding

the final update: d̄j,b = min
(

d̄j,b, dopt + Lclip

)

∀j, b after line 10. When the

search concludes, all of the nodes whose partial Euclidean distance is contained

in the interval [dML, dML + Lclip] have been visited.

We investigated several possibilities for improving the RTS and STS algo-

rithms using the box optimization techniques. As a result, we have obtained

three alternative methods: two for the case with clipping and one for the case

without clipping.
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3. Proposal of Soft-Output Decoding Algorithms without Clipping

A simple and effective proposal for the case without clipping is to perform

a straightforward replacement in the RTS algorithm, replacing the standard

SESD hard detector by the BOHD algorithm. The large reduction in time and

in visited nodes shown in [10] for hard detection is immediately reflected in a

large reduction in complexity for the new RTS algorithm, which we will denote

as Box Optimization Repeated Tree Search (BORTS).

The STS algorithm without clipping cannot be easily combined with the

box optimization techniques. The reason is that the box optimization obtains

extremely tight bounds for the radius, while the STS must keep a radius that

is large enough to obtain all of the counter-hypothesis distances in a single tree

traversal.

4. Proposals for Soft-output Detection with Clipping

The case with clipping is more relevant from a practical point of view, be-

cause the complexity of the algorithms without clipping is still too high for

practical implementations. The BORTS algorithm described above is easily

adapted for the case with clipping (exactly as described in 2.4.2), and it is pos-

sible to refine and improve it further in different ways (for example, through

parallel computing, like the RTS algorithm).

As mentioned above, the STS algorithm without clipping does not fit very

well with the box optimization aids. However, the situation is different when

clipping is applied; there are several techniques that can be applied. We have

found the following modifications to the STS algorithm to be quite influential.

4.1. Precomputation of dML, sML

This modification is an attempt to take advantage of the availability of the

fast BOHD algorithm. Note that when the STS with clipping ends, all of the

nodes with a PED contained in the interval [dML, dML+Lclip] have been visited.

The minimum number of nodes to be visited should clearly be the number of
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nodes with a PED contained in this interval. However, the STS proceeds like

the Schnorr-Euchner detector, that is, it starts with the initial best distance as

+∞ and updates it whenever STS finds a feasible leaf. When the STS finds a

leaf with a smaller PED, it updates the best distance. However, these first leaves

may have a PED that is larger than dML. As long as the STS does not find the

ML solution, it must expand nodes with PED that are larger than dML +Lclip.

This means that some (possibly many) extra nodes may have to be expanded.

A technique that can be applied to reduce the number of nodes is simply to

first compute sML and dML using BOHD (or any other hard detector). Then

the STS is modified so that it does not search sML since it has already been

computed, and so that the maximum value for the counter-hypothesis distances

d̄j,b is set to the value dML + Lclip.

This is quite easy to implement. Since sML and dML have already been

computed, the update rules no longer have to consider updates of sML or dML.

Therefore the first update rule (Algorithm 1, lines 1–6) is no longer needed

and all the counterhypothesis distances d̄j,b can be initialized with the value

dML + Lclip. This will avoid the expansion of any node with a PED that is

larger than dML + Lclip. With this modification, the number of visited nodes

should decrease.

4.2. Avoiding Radius Recalculations

In our experiments, we have observed that the radius recalculation (Algo-

rithm 2) is quite an expensive process, especially because it is carried out on

every visited node. In terms of computing time, we have found it very beneficial

to avoid this recalculation. However, if no recalculation is made, the number

of visited nodes can be too high. To alleviate this problem, as in the previous

proposal, we try to take advantage of the fast BOHD algorithm by computing

the hard ML information in a previous step, then we can use the following as

a pruning condition: Given sk:m a partial transmit vector (node) at level k, if

d(sk:m) > dML + Lclip, this node is pruned; otherwise the node is expanded.
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The outcome of this modification (compared with the original STS algo-

rithm) should be that the number of visited nodes increases and the average

time complexity decreases, because a large number of radius recalculations is

avoided.

Since this algorithm first uses the BOHD to obtain sML and dML and then

carries out a second tree search to obtain the counterhypothesis distances d̄j,b,

we will refer to this algorithm (including the two modifications proposed) as the

Double Tree Search algorithm (DTS).

Actually, these two modifications to the STS algorithm could be applied

using any ML hard-output detector for the first search. However, the speed of

the BOHD makes the whole method competitive.

5. Numerical Experiments and Discussion

In order to evaluate our proposals, we have compared the proposed algo-

rithms with the STS algorithm through numerical experimentation. The Matlab

implementation of our proposed algorithms can be found at http://www.inco2.

upv.es/box-optimization.php. For the comparison, we used the code made

available by Dr C.Studer (http://www.nari.ee.ethz.ch/commth/research/

downloads/siso_sts-sd.html), which implements the soft-input soft-output

STS algorithm described in [14]. This code can easily be used as just a soft-

output STS algorithm by setting the a-priori LLRs to zero, and it can also be

used to perform soft-output detection without clipping by setting Lclip to +∞,

or (as we have done in our experiments) skipping the sections of the code where

clipping is performed.

In Figure 2, we reproduce the BER obtained by all the methods for all the

configurations considered. As mentioned in the introduction, the BER of two

ML soft-output algorithms (sML, dML and d̄j,b) without clipping is the same.

The same occurs when two ML soft-output algorithms with clipping (using

the same clipping parameter) are compared. This has always been verified

in the simulations performed. As mentioned above, since the accuracy of the
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Figure 2: BER obtained with soft-output ML detectors, with 16 and 64-QAM modulations.
Results obtained without clipping and with clipping parameter Lclip equal to 0.1, 0.2 and 0.4.

methods considered is the same, we will concentrate our efforts on comparing

the complexity of these algorithms.

The computational complexity of MIMO detectors can be evaluated through

different metrics: number of nodes expanded, computing time, and number of

floating point operations (flops) are the metrics that are most commonly used.

For most tree search MIMO detectors, the number of expanded nodes would be

chosen as the main metric because it is independent of the computing platform.

However, our experiments show that the algorithms that we are comparing can

have large variations in the cost of the expansion of a single node. Therefore,

even though the number of expanded nodes is an important factor, it cannot be

used alone to evaluate the efficiency of the methods.

The number of flops is another metric that is often used, however, in this

case, it can be somewhat misleading. The reason is that these algorithms per-

form a large number of comparisons, which in some cases is larger than the
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Table 1: Average time (seconds), expanded nodes, flops, and comparisons for soft-output
detection of a signal with the STS and BORTS methods in a 4 × 4 complex MIMO system
with constellation 16-QAM without clipping.

Eb/N0
5 7 9 11 13 15 17

(dB)

Time
STS 1.0e-1 9.5e-2 1.0e-1 8.5e-2 8.8e-2 8.5e-2 8.4e-2

BORTS 1.2e-1 1.2e-1 1.2e-1 1.1e-1 1.1e-1 1.1e-1 1.1e-2

Nodes
STS 5.2e2 5.6e2 5.6e2 4.7e2 4.4e2 4.2e2 4.2e2

BORTS 4.1e2 4.1e2 4.2e2 3.8e2 3.8e2 3.5e2 3.5e2

Flops
STS 1.5e5 1.4e5 1.5e5 1.2e5 1.3e5 1.2e5 1.2e5

BORTS 2.2e5 2.1e5 2.1e5 2.1e5 2.0e5 2.0e5 1.9e5

Comps.
STS 4.0e5 3.7e5 3.9e5 3.2e5 3.4e5 3.2e5 3.2e5

BORTS 4.2e4 4.1e4 4.2e4 3.9e4 3.9e4 3.8e4 3.8e4

number of flops (as will be shown below). We modified the codes in order to

record both the number of flops and the number of comparisons.

Finally, we have also recorded the computing times. The computing times

depend on the computing platform, the implementation, and, in some cases, on

the operating system. However, since the final goal is to obtain methods that

can execute faster, the computing times help to identify the actual complexity.

We estimated the average number of expanded nodes, flops, comparisons,

and execution time by means of Monte Carlo simulation. The experiments were

carried out varying Eb/N0 (or bit-normalized SNR; Eb is the transmitted energy

per uncoded bit) from 5 to 17 dB. This is equivalent to a SNR variation from

8.01 to 20.01 dBs for 16-QAM and from 9.77 to 21.77 dBs for 64-QAM. We

also used a rate 1/2 convolutional encoder of codeword size 2304 bits (generator

polynomials [133O, 171O] and constraint length 7) and max-log BCJR channel

decoder. We simulated 4x4 complex MIMO systems with 16-QAM and 64-QAM

constellations. The tests were carried out running Matlab R2014 using a single

core of an Intel Xeon CPU X5680 processor with the Ubuntu operating system.

5.1. The Case without Clipping

In the case without clipping, we compare the complexity of the BORTS

algorithm with the STS algorithm. The numerical results are summarized in

Tables 1 and 2. The results show that the STS is faster for 16-QAM modulation;
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Table 2: Average time (seconds), expanded nodes, flops, and comparisons for soft-output
detection of a signal with the STS and BORTS methods in a 4 × 4 complex MIMO system
with constellation 64-QAM without clipping.

Eb/N0
5 7 9 11 13 15 17

(dB)

Time
STS 6.2e0 6.7e0 8.0e0 6.8e0 7.5e0 6.6e0 4.9e0

BORTS 3.8e-1 4.3e-1 4.7e-1 4.2e-1 4.9e-1 4.0e-1 3.6e-1

Nodes
STS 1.3e4 1.2e4 1.2e4 1.1e4 1.1e4 1.0e4 1.0e4

BORTS 2.1e3 2.1e3 2.1e3 2.1e3 2.1e3 2.1e3 2.0e3

Flops
STS 9.6e6 1.0e7 1.2e7 1.0e7 1.1e7 1.0e7 7.3e6

BORTS 8.9e5 1.0e6 1.1e6 1.1e6 1.2e6 9.9e5 9.2e5

Comps.
STS 6.0e7 6.2e7 7.5e7 6.4e7 7.0e7 6.2e7 4.5e6

BORTS 3.1e5 3.8e5 4.3e5 3.9e5 4.7e5 3.8e5 3.4e5

however, the BORTS algorithm is around ten times faster in time, and around

five times faster in terms of expanded nodes for 64-QAM. It is also clear that

there is a substantial difference in the number of comparisons. In the 64-QAM

case the difference is of two orders of magnitude.

The BORTS requires a previous run of the BOHD algorithm; the times,

flops, comparisons, and number of nodes recorded include the times, flops, com-

parisons, and nodes expanded in the previous BOHD execution. However, the

extra cost of this first BOHD run is quite small; in terms of computing time

in the 16-QAM case, around 3− 5% of the time (on average) is devoted to the

extra BOHD run. In the case of 64-QAM, the percentage of computing time

taken by the extra BOHD run is around 1− 3%.

5.2. The Case with Clipping

In this case, we compare STS (with clipping) with BORTS (with clipping)

and DTS. These experiments were repeated with three different clipping pa-

rameter values (0.1, 0.2 and 0.4). The results are summarized in Tables 3 and

4. We have also chosen to display the complexity results (computing times and

expanded nodes) for the smallest (4x4 16-QAM, Lclip = 0.1) and the largest

(4x4 64-QAM, Lclip = 0.4) problems in Figs. 3 and 4.

BORTS and DTS require a previous run of the BOHD algorithm, whose

computing times and expanded nodes were recorded and added. Again, the
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extra cost of this first BOHD run turns out to be smaller than 5% in all the

cases.

In the 16-QAM case, the performances of STS and DTS are similar in terms

of computing times and flops. STS carries out more comparisons (due to the ra-

dius recalculations in algorithm 2) while it expands fewer nodes. Both methods

(STS and DTS) exhibit a better performance when compared with BORTS.

There is a clear change in performance when the order of the modulation

changes. In the 64-QAM case, DTS is substantially faster than STS in terms

of computing times. However, DTS expands more nodes than STS, as shown in

Figure 4. Clearly, the computing time per node of DTS is much smaller than for

STS. The reason for this behaviour has been traced (through profiling) to the

large number of radius recalculations (hence the large number of comparisons)

carried out in algorithm 2. The large difference in the number of comparisons

between DTS and STS can be seen in table 4.

The behaviour of BORTS is also worth analyzing. Table 4 shows that the

complexity of BORTS (under any of the metrics considered) has a small or mod-

erate variation when the clipping parameter changes. On the other hand, STS

and DTS have comparatively large complexity variations when the clipping pa-

rameter varies. Therefore, BORTS becomes comparatively more efficient when

the clipping parameter increases. For the largest clipping parameter in the

64-QAM problem, BORTS is faster than STS in all the metrics, while it is

somewhat slower than DTS in computing time. It must be remembered that

BORTS can be accelerated further using parallel computing (which was not

done in the experiments described in this paper).

Another phenomenon that requires attention is that, in the largest problem

considered (4x4 64-QAM, Lclip = 0.4), even though BORTS is slower than

DTS, it uses less flops, comparisons and nodes. This phenomenon is due to

the algorithmic structure of BORTS. BORTS needs to perform many calls to

the subroutine where the BOHD detector is implemented. In turn, the BOHD

detector needs to perform calls to other routines (such as the box optimization

subroutine). The algorithmic structure of DTS and STS is quite different from
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that of BORTS, DTS and STS perform just a few subroutine calls. The extra

calls have a significant impact on the computing time of BORTS.

Finally, we would like to comment on some interesting results that indicate

possible future research lines. In MIMO detection, it is very common to reorder

the columns of the channel matrix to improve the efficiency of the tree search.

There are many possible reorderings; those described in [16, 30, 31] are just some

of them. As usual, there is a trade-off between the complexity of the reordering

and the benefits obtained (reduction of number of expanded nodes). Any of

these reorderings can be similarly applied to all of the methods considered in

this paper (i.e., to the original RTS and STS and to the proposed methods

BORTS and DTS). Since the techniques described in this paper are not linked

to any particular reordering, we have chosen to use no reordering to obtain

the results shown in this paper. However, some preliminary experiments show

similar benefits from applying a given reordering to any of the methods. In

other words, the improvement obtained from applying a reordering to STS and

RTS is similar to the improvement obtained from applying the same reordering

to BORTS and DTS. However, there are many reorderings not yet tested, so

that this matter must be explored further.

We have also experimented with larger problems (a larger constellation or an

increase in the number of antennas). It is not easy to perform Monte Carlo simu-

lations with larger problems because the time needed to complete a meaningful

simulation becomes huge. However, we have verified that the new methods

proposed increase their efficiency (compared to STS) when the size of the prob-

lem increases. This is consistent with the increased efficiency of the proposed

methods in the 4x4 64-QAM case compared with the 4x4 16-QAM case.

6. Conclusion

Two new algorithms for soft-output ML detection (DTS and BORTS) have

been presented. These algorithms were obtained by combining the RTS and
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Figure 3: Average computing time (a) and expanded nodes (b) in 4x4 16-QAM, Lclip = 0.1.

STS algorithms with the hard detector proposed in [10], in different forms. The

algorithms were tested in two relevant configurations, 4x4 16-QAM and 4x4

64-QAM. The results are especially good for the 4x4 64-QAM case. In the

case with clipping (which is the most relevant from a practical point of view),

DTS exhibits a smaller computing time, while BORTS expands fewer nodes.

Even though there is some uncertainty about the results because the metrics

show contradictory trends in some cases, the results still clearly show that the
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Figure 4: Average computing time (a) and expanded nodes (b) in 4x4 64-QAM, Lclip = 0.4.

proposed algorithms have an excellent performance in large MIMO detection

problems.

It is important to note that the results can be further improved by using some

techniques that were not considered in this study, such as parallel computing

(which can be applied easily to the RTS and BORTS methods) and reorderings

(which can be applied to all the methods considered). Preliminary results show

that the proposed methods can perform comparatively even better for larger
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Table 3: Average time (seconds), expanded nodes, flops, and comparisons for soft detection
of a signal with the STS, BORTS, and DTS methods in a 4× 4 complex MIMO system with
constellation 16-QAM with clipping.

Eb/N0
5 7 9 11 13 15 17

(dB)

L
c
li
p
=

0
.1

T
im

e STS 8.7e-3 7.6e-3 6.9e-3 5.4e-3 4.8e-3 3.8e-3 3.2e-3
BORTS 7.3e-2 7.1e-2 6.9e-2 6.2e-2 6.0e-2 5.5e-2 5.2e-2
DTS 6.7e-3 6.0e-3 5.5e-3 4.5e-3 4.0e-3 3.3e-3 2.8e-3

N
o
d
es STS 4.7e1 4.2e1 3.8e1 3.0e1 2.6e1 2.0e1 1.7e1

BORTS 2.4e2 2.4e2 2.3e2 2.0e2 2.0e2 1.8e2 1.7e2
DTS 5.5e1 3.3e1 2.9e1 2.4e1 2.0e1 1.6e1 1.4e1

F
lo
p
s STS 1.3e4 1.1e4 1.0e4 8.0e3 7.1e3 5.6e3 4.7e3

BORTS 1.3e5 1.3e5 1.3e5 1.2e5 1.1e5 1.1e5 1.0e5
DTS 1.7e4 1.6e4 1.5e4 1.2e4 1.1e4 9.1e3 7.8e3

C
o
m
p
s. STS 3.3e4 2.8e4 2.6e4 2.0e4 1.8e4 1.4e4 1.2e4

BORTS 2.8e4 2.8e4 2.7e4 2.5e4 2.4e4 2.3e4 2.2e4
DTS 4.4e3 4.2e3 3.8e3 3.2e3 2.8e3 2.3e3 2.0e3

L
c
li
p
=

0
.2

T
im

e STS 1.2e-2 1.1e-2 1.0e-2 8.4e-3 7.8e-3 6.4e-3 5.8e-3
BORTS 7.8e-2 7.8e-2 7.6e-2 6.9e-2 6.8e-2 6.4e-2 6.1e-2
DTS 7.1e-3 6.7e-3 6.1e-3 5.1e-3 4.6e-3 3.8e-3 3.3e-3

N
o
d
es STS 6.8e1 6.2e1 5.8e1 4.7e1 4.4e1 3.6e1 3.3e1

BORTS 2.7e2 2.7e2 2.6e2 2.3e2 2.3e2 2.1e2 2.0e2
DTS 5.7e1 5.5e1 5.1e1 4.3e1 4.0e1 3.3e1 3.1e1

F
lo
p
s STS 1.8e4 1.6e4 1.5e4 1.2e4 1.2e4 9.7e3 8.8e3

BORTS 1.4e5 1.4e5 1.4e5 1.3e5 1.3e5 1.2e5 1.2e5
DTS 2.1e4 2.0e4 1.9e4 1.6e4 1.5e4 1.2e4 1.1e4

C
o
m
p
s. STS 4.6e4 4.2e4 3.9e4 3.2e4 2.99e4 2.4e3 2.2e3

BORTS 3.0e4 3.0e4 2.9e4 2.7e4 2.7e4 2.6e4 2.5e4
DTS 5.7e3 5.5e3 5.1e3 4.3e3 4.0e3 3.4e3 3.1e3

L
c
li
p
=

0
.4

T
im

e STS 2.0e-2 1.9e-2 1.8e-2 1.6e-2 1.5e-2 1.4e-2 1.3e-2
BORTS 8.8e-2 8.8e-2 8.6e-2 8.1e-2 8.0e-2 7.7e-2 7.5e-2
DTS 9.0e-3 8.7e-3 8.0e-3 6.9e-3 6.4e-3 5.5e-3 5.1e-3

N
o
d
es STS 1.2e2 1.1e2 1.0e2 9.3e1 9.1e1 8.0e1 7.6e1

BORTS 3.0e2 3.0e2 3.0e2 2.8e2 2.7e2 2.6e2 2.5e2
DTS 1.2e2 1.2e2 1.2e2 1.1e2 1.0e2 9.3e1 9.0e1

F
lo
p
s STS 3.0e4 2.9e4 2.8e4 2.4e4 2.4e4 2.1e4 2.0e4

BORTS 1.6e5 1.6e5 1.6e5 1.5e5 1.5e5 1.4e5 1.4e5
DTS 3.2e4 3.1e4 2.9e4 2.6e4 2.5e4 2.2e4 2.1e4

C
o
m
p
s. STS 7.8e4 7.5e4 7.2e4 6.2e4 6.1e4 5.3e4 5.1e4

BORTS 3.3e4 3.3e4 3.3e4 3.1e4 3.1e4 3.0e4 2.9e4
DTS 9.1e3 9.1e3 8.7e3 7.7e3 7.5e3 6.6e3 6.3e3

constellations or for systems with more antennas.
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Table 4: Average time (seconds), expanded nodes, flops, and comparisons for soft detection
of a signal with the STS, BORTS, and DTS methods in a 4× 4 complex MIMO system with
constellation 64-QAM with clipping.

Eb/N0
5 7 9 11 13 15 17

(dB)

L
c
li
p
=

0
.1

T
im

e STS 2.1e-1 2.1e-1 1.9e-1 1.7e-1 1.8e-1 1.6e-1 1.5e-1
BORTS 2.8e-1 3.3e-1 3.0e-1 2.9e-1 2.8e-1 2.7e-1 2.5e-1
DTS 1.7e-2 1.8e-2 1.7e-2 1.6e-2 1.6e-2 1.4e-2 1.3e-2

N
o
d
es STS 2.9e2 2.9e2 2.7e2 2.5 2.5e2 2.3e2 2.1e2

BORTS 1.0e3 1.2e3 1.1e3 1.1e3 1.1e3 1.0e3 9.6e2
DTS 2.7e2 2.9e2 2.8e2 2.8e2 3.0e2 2.7e2 2.5e2

F
lo
p
s STS 3.1e5 3.1e5 2.9e5 2.5e5 2.6e5 2.4e5 2.2e5

BORTS 7.4e5 8.6e5 8.1e5 8.0e5 7.9e5 7.5e5 7.2e5
DTS 2.1e5 2.2e5 2.1e5 2.0e5 2.1e5 2.0e5 1.8e5

C
o
m
p
s. STS 1.9e6 1.9e6 1.8e6 1.6e6 1.6e6 1.5e6 1.4e6

BORTS 2.9e5 3.5e5 3.3e5 3.3e5 3.2e5 3.1e5 2.9e5
DTS 9.4e4 1.0e5 9.7e4 9.2e4 9.6e4 8.9e4 8.3e4

L
c
li
p
=

0
.2

T
im

e STS 4.5e-1 4.9e-1 4.7e-1 4.5e-1 4.6e-1 4.5e-1 4.0e-1
BORTS 3.1e-1 3.7e-1 3.4e-1 3.3e-1 3.2e-1 3.1e-1 2.9e-1
DTS 3.7e-2 4.1e-2 4.0e-2 3.9e-2 4.2e-2 3.9e-2 3.6e-2

N
o
d
es STS 6.3e2 6.8e2 6.6e2 6.2e2 6.4e2 5.2e2 5.6e2

BORTS 1.2e3 1.3e3 1.2e3 1.2e3 1.2e3 1.1e3 1.1e3
DTS 1.0e3 1.1e3 1.1e3 1.2e3 1.3e3 1.2e3 1.1e3

F
lo
p
s STS 6.9e5 7.4e5 7.2e5 6.8e5 7.0e5 6.8e5 6.1e5

BORTS 8.1e5 9.3e5 8.9e5 8.9e5 8.7e5 8.4e5 8.1e5
DTS 5.3e5 6.0e5 5.9e5 5.8e5 6.2e5 5.9e5 5.6e5

C
o
m
p
s. STS 4.2e6 4.6e6 4.4e6 4.2e6 4.3e6 4.2e6 3.7e6

BORTS 3.1e5 3.8e5 3.6e5 3.6e5 3.5e5 3.4e5 3.2e5
DTS 2.3e5 2.7e5 2.6e5 2.6e5 2.8e5 2.7e5 2.5e5

L
c
li
p
=

0
.4

T
im

e STS 1.2e0 1.3e0 1.3e0 1.3e0 1.3e0 1.3e0 1.1e0
BORTS 3.5e-1 4.1e-1 3.8e-1 3.7e-1 3.6e-1 3.5e-1 3.3e-1
DTS 1.3e-1 1.5e-1 1.5e-1 1.5e-1 1.6e-1 1.5e-1 1.5e-1

N
o
d
es STS 1.6e3 1.8e3 1.7e3 1.7e3 1.7e3 1.7e3 1.5e3

BORTS 1.3e3 1.5e3 1.4e3 1.4e3 1.4e3 1.3e3 1.2e3
DTS 5.6e3 6.3e3 6.2e3 6.6e3 7.1e3 6.8e3 6.6e3

F
lo
p
s STS 1.8e6 2.0e6 2.0e6 1.9e6 1.9e6 1.9e6 1.7e6

BORTS 8.9e5 1.0e6 9.9e5 9.8e5 9.7e5 9.3e5 9.0e5
DTS 1.8e6 2.0e6 2.0e6 2.1e6 2.2e6 2.1e6 2.0e6

C
o
m
p
s. STS 1.1e7 1.3e7 1.2e7 1.2e7 1.2e7 1.2e7 1.0e7

BORTS 3.4e5 4.1e5 3.9e5 4.0e5 3.8e5 3.8e5 3.5e5
DTS 8.2e5 9.5e5 9.4e5 9.3e3 1.0e6 9.8e5 9.3e5
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