
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/82821

Alonso-Jordá, P.; Ibáñez González, JJ.; Sastre Martinez, J.; Peinado Pinilla, J.; Defez
Candel, E. (2017). Efficient and accurate algorithms for computing matrix trigonometric
functions. Journal of Computational and Applied Mathematics. 309(1):325-332.
doi:10.1016/j.cam.2016.05.015

http://dx.doi.org/10.1016/j.cam.2016.05.015

Elsevier



See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303533824

Efficient and accurate algorithms for computing matrix trigonometric

functions

Article  in  Journal of Computational and Applied Mathematics · January 2017

DOI: 10.1016/j.cam.2016.05.015

CITATIONS

11
READS

205

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Riccati Matrix Equations View project

Soundcool: Smartphones, tablets and Kinect for collaborative creation View project

Pedro Alonso

Universitat Politècnica de València

96 PUBLICATIONS   392 CITATIONS   

SEE PROFILE

Jacinto Javier Ibáñez

Universitat Politècnica de València

51 PUBLICATIONS   204 CITATIONS   

SEE PROFILE

Jorge Sastre Martínez

Universitat Politècnica de València

77 PUBLICATIONS   524 CITATIONS   

SEE PROFILE

Jesús Peinado

Universitat Politècnica de València

33 PUBLICATIONS   90 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jesús Peinado on 29 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/303533824_Efficient_and_accurate_algorithms_for_computing_matrix_trigonometric_functions?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303533824_Efficient_and_accurate_algorithms_for_computing_matrix_trigonometric_functions?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Riccati-Matrix-Equations?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Soundcool-Smartphones-tablets-and-Kinect-for-collaborative-creation?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Alonso4?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Alonso4?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Valencia?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Alonso4?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jacinto_Ibanez?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jacinto_Ibanez?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Valencia?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jacinto_Ibanez?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge_Sastre_Martinez?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge_Sastre_Martinez?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Valencia?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge_Sastre_Martinez?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jesus_Peinado3?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jesus_Peinado3?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Valencia?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jesus_Peinado3?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jesus_Peinado3?enrichId=rgreq-ccfeedb4e4f47494bb136e0261098f43-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMzgyNDtBUzozNjcwMDgwMzA5Njk4NTZAMTQ2NDUxMjk0MTk0MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Efficient and accurate algorithms for computing matrix

trigonometric functions ✩

Pedro Alonso‡, Javier Ibáñez\, Jorge Sastre†, Jesús Peinado\, Emilio Defez?

‡ Dept. of Information Systems and Computation.
\ Instituto de Instrumentación para Imagen Molecular.

† Instituto de Telecomunicaciones y Aplicaciones Multimedia.
? Instituto de Matemática Multidisciplinar.

Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, España.
palonso@dsic.upv.es, jjibanez@dsic.upv.es, jorsasma@iteam.upv.es, jpeinado@dsic.upv.es,

edefez@imm.upv.es

Abstract

Trigonometric matrix functions play a fundamental role in second order dif-
ferential equations. This work presents an algorithm based on Taylor series
for computing the matrix cosine. It uses a backward error analysis with
improved bounds. Numerical experiments show that MATLAB implemen-
tations of this algorithm has higher accuracy than other MATLAB imple-
mentations of the state of the art in the majority of tests. Furthermore, we
have implemented the designed algorithm in language C for general purpose
processors, and in CUDA for one and two NVIDIA GPUs. We obtained
a very good performance from these implementations thanks to the high
computational power of these hardware accelerators and our effort driven to
avoid as much communications as possible. All the implemented programs
are accessible through the MATLAB environment.

Keywords: matrix cosine, matrix sine, scaling and squaring method,
Taylor series, backward error, parallel implementation, GPUs, CUDA.

✩e-mail: jpeinado@dsic.upv.es. This work has been supported by Spanish Ministerio
de Economı́a y Competitividad and European Regional Development Fund (ERDF) grant
TIN2014-59294-P.

Preprint submitted to Journal of Computational and Applied Mathematics. . .November 27, 2015



1. Introduction

Many engineering processes are described by second order differential
equations, whose exact solution is given in terms of trigonometric matrix
functions sine and cosine. For example, the wave problem

v2 ∂2ψ

∂x2
=

∂2ψ

∂t2
, (1)

plays an important role in many areas of engineering and applied sciences.
If the spatially semi-discretization method is used to solve (1), we obtain the
matrix differential problem

X ′′(t) + AX(t) = 0 , X(0) = X0 , X ′(0) = X1 , (2)

where A is a square matrix and X0 and X1 are vectors. The solution of (2)
is

X(t) = cos
(√

At
)
X0 +

(√
A
)−1

sin
(√

At
)
X1, (3)

where
√

A denotes any square root of a non-singular matrix A [1, p. 36]. More
general problems of type (2), with a forcing term F (t) on the right-hand side
arise from mechanical systems without damping, and their solutions can be
expressed in terms of integrals involving the matrix sine and cosine [2].

Numerous methods have been proposed for computing f(A), where f(.)
is a scalar function defined on the spectrum of the matrix A ∈ Cn×n. Many
of them have a dubious numerical stability [3]. A complete theoretical
study of matrix functions and their computational methods and algorithms
can be found in [1], in particular the computation of matrix trigonomet-
ric functions. The main methods are based on matrix decompositions and
on polynomial and rational approximations. Since polynomial and rational
approximations are accurate only near the origin, scaling and recovering tech-
niques [4, 5, 6] are usually used. Moreover, to reduce computational costs
Paterson-Stockmeyer method [7] is used for evaluating the polynomials which
appear in these approximations.

In this work we present sequential and parallel algorithms based on Tay-
lor series that use Theorem 1 from [8] for computing matrix trigonometric
functions.

Throughout this paper Cn×n denotes the set of complex matrices of size
n×n, I the identity matrix for this set, ρ(X) the spectral radius of matrix X,

2



and N the set of positive integers. In this paper we use the 1-norm to com-
pute the actual norms. Sections 2 and 3 present sequential and parallel Taylor
algorithms for computing matrix trigonometric functions, respectively. Sec-
tion 4 deals with numerical tests and and finally in Section 5 the conclusions
are presented.

2. Sequential algorithms for computing matrix cosine and sine

The matrix cosine can be defined for all A ∈ Cn×n by

cos(A) =
∞∑

i=0

(−1)iA2i

(2i)!
,

and let

T2m(A) =
m∑

i=0

(−1)iBi

(2i)!
≡ Pm(B), (4)

be the Taylor approximation of order 2m of cos(A), where B = A2. Since
Taylor series are accurate only near the origin, in algorithms that use this
approximation the norm of matrix B is reduced by scaling the matrix. Then,
a Taylor or Padé approximation is computed, and finally the approximation
of cos(A) is recovered by means of the double angle formula cos(2X) =
2 cos2(X)− I.

Using the same notation as in [5], we have that Taylor matrix polynomial
approximation (4), expressed as Pm(B) =

∑m
i=0 piB

i, B ∈ Cn×n, can be
computed with optimal cost by Paterson-Stockmeyer’s method [7] choosing
m from the set

M = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . . } , (5)

where the elements ofM are denoted as m1, m2, m3, . . . (see [1, pp. 72–74] for
a complete description). The algorithm computes firstly the matrix powers
B2, B3, . . . , Bq being q =

⌈√
mk

⌉
or q = b

√
mkc, and integer divisor of mk.

As stated in [1, p. 74] using those values for q results in the same cost. Thus,

3



the evaluation formula (23) from [9, p. 6455] is computed as

Pmk
(B) = (6)

(((pmk
Bq + pmk−1B

q−1 + pmk−2B
q−2 + ∙ ∙ ∙+ pmk−q+1B + pmk−qI) ∙ Bq

+ pmk−q−1B
q−1 + pmk−q−2B

q−2 + ∙ ∙ ∙+ pmk−2q+1B + pmk−2qI) ∙ Bq

+ pmk−2q−1B
q−1 + pmk−2q−2B

q−2 + ∙ ∙ ∙+ pmk−3q+1B + pmk−3qI) ∙ Bq

. . .

+ pq−1B
q−1 + pq−2B

q−2 + ∙ ∙ ∙+ p1B + p0I.

We define the boxing size as the largest polynomial degree which appear
in (6), i.e. the value q. Table 1 shows the values of q for different values of
m. Taking into account Table 4.1 from [1, p. 74], then the cost of evaluating
(4) with (6) in terms of matrix products, denoted by Πmk

, for k = 1, 2, . . .,
is

Πmk
= k . (7)

The difficulty of the algorithms based on Taylor series is to find appropri-
ate values mk and the scaling factor s such that cos(A) is computed accurately
and with minimal computational cost.

Next theorem will be used to bound the norm of the matrix Taylor series.

Theorem 1 ([5]). Let hl(x) =
∞∑

i=l

pix
i be a power series with radius of con-

vergence w, h̃l(x) =
∞∑

i=l

|pi|xi, B ∈ Cn×n with ρ(B) < w, l ∈ N and t ∈ N

with 1 6 t 6 l. If t0 is the multiple of t such that l 6 t0 6 l + t− 1 and

βt = max{b1/j
j : j = t, l, l + 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l + t− 1}, (8)

where bj is an upper bound for ||Bj||, ||Bj|| 6 bj, then

||hl(B)|| 6 h̃l(βt). (9)

The error analysis for Taylor approximation of the matrix cosine, similar
to that on Sec. 2.2 of [6] for Padé approximation, yields analogous results
making it very restrictive. Instead of that we use an analysis based on the
backward error of the matrix exponential computation by Taylor algorithm
from [8], similar to that for Padé Sec. 2.3 of [6], overcoming the difficulty
that the backward error for Taylor approximation is not odd as that for Padé.

4



Table 1: New values of Θmk
for [5, Table 2] and matrix powers B2,

B3,∙ ∙ ∙ , Bqk used to compute (4) by Paterson-Stockmeyer method.

k mk qk Θmk
k mk qk Θmk

1 1 1 6.661338018806219e-16 5 9 3 1.189983654063290
2 2 2 1.154075612730971e-07 6 12 4 4.924177884630485
3 4 2 2.491236564385514e-03 7 16 4 16.06054585896760
4 6 3 8.976968236812591e-02 8 20 5 35.62660483639449

If we denote T̄2m(X) =
∑2m

i=0
Xi

i!
, X ∈ Cn×n, the truncated Taylor series

of order 2m of eX and R̄2m(X) = ex − T̄2m(X) its remainder, by [8, Sec. 2],
if ρ

(
e−X T̄2m(X)− I

)
< 1, then taking s = 0 in (3) from [8], by (4) and (7)

also from [8], it follows that

T̄2m(X) = eX+ΔX ,

where the backward error of the matrix exponential Taylor approximation is

ΔX = h2m+1(X) = log
(
e−X T̄2m(X)

)
=

∑

k≥2m+1

c
(2m)
k Xk, (10)

where log is the principal logarithm and the coefficients c
(2m)
k depend on the

order 2m. Since [1, Eq. 12.2]

cos(X) =
eiX + e−iX

2
, (11)

we can compute approximately cos(A) as

T2m(A) = (T̄2m(iA) + T̄2m(−iA))/2 =
(
eiA+h2m+1(iA) + e−iA+h2m+1(−iA)

)
/2

6=
(
ei(A+h2m+1(A)) + e−i(A+h2m+1(A))

)
/2, (12)

because calculating symbolically some terms of h2m+1 it follows that it is not
odd for the different m in (5) and h2m+1(−iA) 6= −ih2m+1(A). However,
from (10) the bound

‖h2m+1(±iA)‖ ≤
∑

k≥2m+1

|c(2m)
k |‖A‖k (13)

5



holds for both ‖h2m+1(iA)‖ and ‖h2m+1(−iA)‖, and then, similarly to [8,
Sec. 2], using Theorem 1 it follows that if βt ≤ Θm, where Θm are given in
Table 1 for some values of m = mk from (5), then

‖h2m+1(±iA)‖
‖±iA‖

≤ u.

These new values of parameter Θmk
substitute the values from [5, Table

2]. This does not guarantee that the backward error for the Taylor approx-
imation of the matrix cosine is less than u. Note that we do not compute
the matrix cosine by the computation of both Taylor polynomials in (12),
and therefore there is no cancelation problems because of that. Hence, if the
backward error of the two exponentials is small and then the approximation
of both exponentials is accurate, the error for the matrix cosine computation
will be also small, and experimental results support that (see Section 4).

Let mk be the maximum order allowed. If ||B|| 6 Θmk0
for some mk0 6

mk, where B is the matrix from (4) and mk are defined by Table 1, then the
scaling of matrix B is not necessary and the order mk0 is selected. Otherwise
we scale the matrix B by selecting a positive integer s such that 4−sβmk

≤
Θmk

, where βmk
can be obtained from Theorem 1 as

βmk
= max

{∥
∥Bk

∥
∥

1
k : k ≥ mk

}
= max

{∥
∥Bk

∥
∥

1
k : mk ≤ k ≤ 2mk − 1

}
.

Analogously to [10, p. 374], we take for βmk
the approximation

β̄mk
= max

{
‖Bmk‖

1
mk ,
∥
∥Bmk+1

∥
∥

1
mk+1

}
, (14)

and then s =
⌈

1
2
log2

(
β̄mk

Θmk

)⌉
. Approximation (14) is justified since

∥
∥Bk

∥
∥

1
k →

ρ(B) as k →∞, and then for the majority of matrices the values
∥
∥Bk

∥
∥

1
k tend

to be decreasing and tend to have less variations for higher matrix powers.
Algorithm 1 computes the matrix cosine based on the ideas above with the
objective of simplicity for a parallel implementation.

By using the fact that sin(A) = cos(A − π
2
I), Algorithm 1 can be easily

used to compute the matrix sine. The computational cost of Algorithm 1 is
2k0n

3 flops provided ||B|| 6 Θmk
, or 2(k + s)n3 flops if ||B|| > Θmk

. The
storage cost is (2 + qk0)n

2 if ||B|| 6 Θmk
, and (2 + qk)n

2 otherwise.

6



Algorithm 1 Given a matrix A ∈ Cn×n and mk, this algorithm computes
C = cos(A) by scaling and using (4) with m lower than or equal to mk.

1: B1 = A2

2: if ||B|| 6 Θmk
then . (see Table 1 for the values Θmk

)
3: Compute the first positive integer mk0 such that ‖B1‖ ≤ Θmk0

4: Compute the matrices B2 = B2
1 , B3 = B2B1, ∙ ∙ ∙ , Bqk0

= Bqk0
−1B1

(see Table 1 for the values qk)
5: Compute C = Pmk0

(B) from (4) by using Paterson-Stockmeyer
method (6) and the matrices Bi (see Step 4)

6: else
7: Compute the matrices B2 = B2

1 , B3 = B2B1, ∙ ∙ ∙ , Bqk
= Bqk−1B1

8: Compute β̄mk
from (14)

9: s =
⌈

1
2
log

2

(
β̄mk

Θmk

)⌉

10: for i = 1 : q do
11: Bi = 4−isBi

12: end for
13: Compute C = Pmk

(B) from (4) by using Paterson-Stockmeyer
method (6) and the scaled matrices Bi (see Steps 10-12)

14: for i = 1 : s do
15: C = 2C2 − I
16: end for
17: end if

3. The implementation of the parallel algorithms

Algorithm 1 has also been implemented in C language such that is called
using the MATLAB interface through the corresponding “mex” file [11]. For
the most demanding computational kernel, which is the matrix multiplication
appeared in different places of the algorithm, we used the Intel Math Kernel
Library (MKL) version 11.0.2.

Algorithm 1 was also implemented in CUDA [12] to exploit the high
computational capabilities of NVIDIA GPUs (Graphics Processing Units).
We implemented two versions, for one or two GPUs, since currently it is
very common to find workstations with up two GPUs attached and available
to accelerate computations. The computation of matrix powers in Steps 4
and 7, and the matrix multiplications in Steps 5, 13 and 15 on only one
NVIDIA GPU is quite straightforward thanks to the CUBLAS library [13],

7



a library that contains an implementation of the BLAS [14] routines for
NVIDIA GPUs. In particular, the matrix multiplication is very optimized
for this device, and it allows to improve the performance of Algorithm 1.
However, the computations on several GPUs are usually penalized by the
fact of being attached to the node through a PCIe connector. The need of
transferring data through this bus adds an overhead that must be accounted
for in order to obtain a good implementation. Given that, we implemented
our algorithm so that once a matrix is transferred to the device or it has been
computed there, it must be kept into the device memory as long as possible
to avoid data thrashing between host and device memory.

The case with two GPUs is also conceptually easy to solve but difficult
to implement. The matrix multiplications in two GPUs are basically carried
out by splitting the matrices into two halves, each one stored into a different
GPU device. Algorithm 2 describes the Steps 4 and 7 of Algorithm 1 in
two GPUs. In fact, the input variable q can be qk0 (Step 4) or qk (Step 7)
depending of whether the scaling is applied or not.

First of all, we notice that the algorithm is described as an OpenMP [15]
“parallel loop”. This loop has only two iterations. Since the loop has been
parallelized through the suitable OpenMP directive, both iterations will be
performed concurrently, i.e. iteration g will be executed by GPU g (GPUs are
numbered with 0 and 1). This is an implementation detail that allows both,
easiness in the actual CUDA implementation and clarity in the exposition.
Thus, we write only once the code that will be executed by both devices,
parametrized by the different values of g and its derived variables.

The algorithm receives hB as input, which is hB = B1 = A2 (Step 1
of Algorithm 1), where letter h preceding the matrix name denotes that is
stored into the host memory. Each GPU hosts the following three objects
upon return: the whole matrix B1, an array X of matrices,

X = [X i]i=1,...,q−1 =
(

X1 X2 X3 . . . Xq−2 Xq−1
)

,

and matrix Bq of order n that stores the whole factor Bq (Bq = Bq). Each
component of the array of matrices X is a matrix of size n × n/2. (For
simplicity and without loss of generality, we assume in this discussion that
n is even). We use the superscript as the array index in the components
of X to denote the correspondence between the component and the power
of B1, since each GPU stores the first and second half, respectively, of the
n columns of each power of B1. In other words, Bi

1 =
[

X i
0 X i

1

]
, for

8



Algorithm 2 Algorithm for computing the q matrix powers of B1 with two
GPUs.

1: function compute powers2( n, q, hB ) return (B1, X, Bq)
2: i0 = 0, j0 = n/2− 1, i1 = n/2, j1 = n− 1
3: #pragma omp parallel for

4: for g ← 0, 1 do
5: B1 ⇐ hB
6: X(1)← B1(:, ig : jg)
7: for k ← 2, q − 1 do
8: X(k)← B1 ∙X(k − 1)
9: end for

10: Bq(:, ig : jg)← B1 ∙X(q − 1)
11: Bq(:, iḡ : jḡ)⇐ B̄q(:, iḡ : jḡ)
12: end for
13: end function

i = 1, . . . , q − 1, where the subscript denotes the GPU id (g). On one hand,
it is clear that, in order to form the array X (Step 8), it is necessary that
the two GPUs have the complete matrix B1. This matrix is uploaded to
the GPU in Step 5, and the operation is denoted with ⇐. On the other
hand, both GPUs need the whole matrix Bq so that the evaluation of the
polynomial by means of the Paterson-Stockmeyer method (6) can be carried
out concurrently by the two devices. Each GPU computes its correspondent
half of Bq (Step 10) and stores it in submatrix Bq(:, ig : jg), being index ig
and jg the first and last columns, respectively, where the resulting matrix will
be stored in GPU g. Finally, Step 11 denotes the data exchange necessary
to complete the construction of matrix Bq in both GPUs, since each device
calculates only one half of this factor. To understand this movement of data,
it must be taken into account that ḡ is 0 if g = 1, or 1 otherwise. In the same
way, we used B̄q to denote the half of factor Bq owned by the “other” device.
The transference from one GPU to the other one is also denoted here by
symbol⇐. We used specific CUDA routines which allow to interchange data
between the two GPUs through the PCIe bus without host intervention, thus
avoiding to temporarily store data into the host memory, and also exploiting
the bidirectionality feature of the PCIe bus, i.e. both halves of factor Bq

travel concurrently by the bus in opposite directions to their corresponding

9



Algorithm 3 Recursive algorithm to evaluate a matrix polynomial using (6)
in two GPUs.

1: function ps( d, q, i, p̄, X, Bq ) return P
2: #pragma omp parallel for

3: for g ← 0, 1 do
4: if d = i then
5: P ← eval( q, p̄d:d−q, X )
6: else
7: Q1 ← ps( d, q, i + q, p̄d:i, X, Bq )
8: Q2 ← eval( q − 1, p̄i−1:i−q, X )
9: P ← Q1 ∙ Bq + Q2

10: end if
11: end for
12: end function

destination GPU1.
Algorithm 3 is used to evaluate polynomials Pmk0

(or Pmk
) in Step 5 (or

13) of Algorithm 1, that is, to evaluate (6) provided the powers i = 2, . . . , q
of matrix B1 have already been computed. It is not hard to see that this
polynomial evaluation can be carried out in both GPUs at the same time,
keeping powered matrices split into the two GPUs. The matrix objects: Q1,
Q2, P , and the components of the matrix array X are all half-matrices, and
factor Bq is n square. Obviously, the resulting matrix will be also split into
the two devices and would be necessary to upload it to the host to form the
whole resulting matrix C (Algorithm 1). The algorithm receives the degree
of the polynomial as input (d), which will be mk0 (or mk) when called from
Algorithm 1. Also, the algorithm receives q as defined in (6). The third
argument, i, is an integer that controls the recursion. At the first call to
function ps this parameter must be the same as q. The next argument is the
array of coefficients used in (6), i.e. p̄ =

(
pmk

, . . . , p0

)
. For simplicity,

we have tailored the polynomial evaluation for the particular values of mk

and qk used in Table 1, and it does not work for other different values.
The generalization to the solution of any other matrix polynomial using the
Paterson-Stockmeyer method is not hard but requires to rewrite Algorithm 3.

1Peer-to-peer communication routine cudaMemcpyPeerAsync.

10



Function eval in Step 8 represents the evaluation of a matrix polynomial of
degree q − 1 using the coefficients p̄i−1:i−q. We omit an explicitly exposition
of this algorithm since it is quite straightforward. The evaluation in Step 5
is analogous, taking into account that the polynomial to evaluate has degree
q and coefficients p̄d:d−q. For the evaluation of the largest coefficient in this
last case, it is used the corresponding half of factor Bq.

Other operations like the scaling in Step 11 of Algorithm 1 are carried out
inside the GPU to minimize data communications between host and GPU.
Following the same strategy used in Algorithm 2, the loop in Steps 14-16 is
also carried out by the GPUs.

4. Numerical experiments

4.1. Sequential tests

In this section we compare costaym, a MATLAB implementation of
Algorithm 1, with costay, based on Taylor approximation [5] (http://
personales.upv.es/~jorsasma/software/costay.m), and cosm, based on
Padé approximants [6, Alg. 4.2] (http://github.com/sdrelton/cosm_sinm).
In tests we used MATLAB(R2014b) running on an Intel Core 2 Duo proces-
sor at 3.00 GHz with 4 GB main memory and 105 matrices: 10 diagonalizable
128×128 matrices, with 1-norms increasing from 2.50 to 25.06. 10 non diag-
onalizable Jordan block 128× 128 matrices with eigenvalues whose algebraic
multiplicity vary between 1 and 128 and 1-norms varying from 5.27 to 21.97.
Forty three 128×128 matrices from the function matrix of the Matrix Com-
putation Toolbox [16]. 14 matrices with dimensions lower or equal to 128
from the Eigtool MATLAB package [17], and 28 matrices from the matrix
function literature. The “exact” matrix cosine was computed exactly for the
first two sets of matrices. In the other matrices we used MATLAB sym-
bolic versions of a scaled Padé rational approximation from [6] and a scaled
Taylor Paterson-Stockmeyer approximation (6) both with 4096 decimal digit
arithmetic and several orders m and/or scaling parameters s higher than
the ones used by cosm and costaym, respectively. The relative differences
between both Padé and Taylor approximations for these matrices were be-
tween 1.36 10−23 and 5.52 10−25, except for two matrices where the relative
differences were 7.29 10−10 and 3.08 10−07, but both costaym and cosm gave
relative errors with respect to these “exact” values of orders between 1027 and
1043, so there was no point in increasing the accuracy of these two “exact”

11



values. The algorithm accuracy was tested by computing the relative error

E =
‖ cos(A)− Ỹ ‖1
‖cos(A)‖1

,

where Ỹ is the computed solution and cos(A) is the exact solution. To
compare the relative errors of the functions we plotted the performance profile
and the ratio of relative errors of cosm, costay and costaym (with mk = 16).
In the performance profile (Fig. 1a), the α coordinate varies between 1 and
5 in steps equal to 0.1, and the p coordinate is the probability that the
considered algorithm has a relative error lower than or equal to α-times the
smallest error over all the methods. Fig. 1b shows the ratio of relative errors
of cosm and costay both with costaym, in decreasing order of the ratio
with cosm (the same order was used in Fig. 2). The Matrices 1 to 5 do
not appear in Fig. 1b since costaym error for them is 0 in double precision
arithmetic. Fig. 1 shows that costaym was the most accurate function in
tests, followed by costay. Figures 2a and 2b show the relative number of
flops and the relative execution times (mean of 100 executions). The best
results in terms of computational cost was costay (flop ratio) and costaym

(execution time ratio). This discrepancy may be due because costaym uses
far fewer times one estimator based on [18] for computing the 1-norm of
matrix powers (computational cost O(n2)) than the one used by costay and
the size of the matrices is not so large so that the matrix products (O(n3))
be the main term in cost. We have found that for the Toolbox matrices of
dimension 1000 the execution time of costaym is slightly greater than the
one of costay.

4.2. Parallel tests

In the next experiments we used a host computer equipped with an Intel
QuadCore i7-3820 (3.6Ghz) processor. Attached to this host there are two
NVIDIA GPU devices K20 (Kepler) generation card. Each GPU has 13
multiprocessors with 192 cores each, resulting in a total of 2496 CUDA cores.
Therefore, we have a total of 4992 CUDA cores for processing. The device
memory of one GPU is 4800 MBytes. In order to evaluate the performance of
the parallel implementations, we computed the matrix cosine for randomly
generated matrices ranging from 1024 to 7168 in steps of 1024 (7168 is the
maximum size allowed in one of our GPUs).

All the results shown in Table 2 where obtained using a MATLAB inter-
face to the algorithms implemented in C or CUDA through the corresponding

12



1 2 3 4 5

p

10

20

30

40

50

60

70

80

90

100

110

cosm
costay
costaym

(a) Perfomance profile.

matrix
10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e 
er

ro
rs

 r
at

io

10-1

0.5

100

2

101

E(cosm)/E(costaym)
E(costay)/E(costaym)

(b) Ratio of relative errors.

Figure 1: Accuracy tests.

matrix
20 40 60 80 100

F
lo

ps
 r

at
io

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
flops(cosm)/flops(costaym)
flops(costay)/flops(costaym)

(a) Ratio of flops.

matrix
10 20 30 40 50 60 70 80 90 100

T
im

es
 r

at
io

0

1

2

3

4

5

6

7

8

9

10

11

12

13
T(cosm)/T(costaym)
T(costay)/T(costaym)

(b) Ratio of execution times.

Figure 2: Computational cost tests.

13



Table 2: Table comparing the execution time (in seconds) and speed up of
CPU, 1 GPU, and 2 GPUs.

Size t. CPU t. 1 GPU t. 2 GPU Sp. 1 GPU/CPU Sp. 2 GPU/CPU
1024 0.79 0.05 0.07 13.66 11.08
2048 6.09 0.37 0.33 16.12 17.95
3072 21.04 1.25 1.08 16.76 19.44
4096 49.30 2.86 2.35 17.24 20.89
5120 95.57 5.50 4.39 17.35 21.75
6144 164.15 9.37 7.37 17.50 22.27
7168 164.70 14.76 11.48 11.15 14.34

“mex” files. The CPU version uses Intel MKL and the four cores since this
package contains BLAS routines threaded, so we can assume that this is the
fastest version of the algorithm for the CPU. Clearly, the GPU versions out-
performs the CPU one as it can be seen in columns 5 and 6 of the table,
where it is depicted the speed up achieved with 1 and 2 GPUs w.r.t. to the
CPU.

Figure 3 shows the performance comparison, measured in Gflops, using
the CPU, 1 GPU, and 2 GPUs. The performance of the implementation using
two GPUs is not completely efficient since some data must be transfered
between both the GPUs through the PCIe communication channel. That
explains that using 2 GPUs we do not achieve two times the performance with
1 GPU. The communication overhead incurred when using two GPUs with
small sizes of the matrix (lower than ≈ 1600) is very large and completely
masks the gain in the computation with two GPUs. Yet for larger sizes, we
obtain the solution in less time with two GPUs than with only one thanks
to the improvements incorporated into the implementation, and which allow
taking advantage of the two-way capability of the PCIe to interchange data.

5. Conclusions

In this work accurate Taylor algorithms have been proposed to compute
matrix cosine and matrix sine. The algorithms use the scaling technique
based on the double angle formula of the cosine function, the Paterson-
Stockmeyer’s method for computing the Taylor approximation, and bounds
obtained from the relative backward error of the matrix exponential Taylor

14



0

100

200

300

400

500

600

700

1024 2048 3072 4096 5120 6144 7168

G
flo

ps

Matrix size

2 GPUs
1 GPU

CPU

Figure 3: Performance of Algorithm 1 measured in Gflops on the CPU, 1
GPU, and 2 GPUs.

approximation, which allow to calculate the optimal scaling factor. A MAT-
LAB implementation of cosine algorithm (costaym) has been compared with
other state-of-the-art MATLAB implementations. Numerical experiments
show that in general the implementations developed have higher accuracy
than the other functions in the majority of tests.

The most demanding computational kernel in the Taylor algorithms is
by far the matrix multiplication. There exist high performance libraries that
get the best of the most up to today computing resources, either general
purpose processors or graphics accelerators. It is possible to access this high
performance just using the regular matrix multiplication of MATLAB. Even
using the MATLAB Parallel Computing Toolbox it is possible to exploit one
GPU under the very friendly MATLAB interface. However, from the perfor-
mance point of view, it is better to have the whole program that computes
the cosine of a matrix in a mex file, implemented in C language to use the
CPU processor or implemented in CUDA to use the GPU. Furthermore, the
use of two GPUs to solve the problem in an efficient way (e.g. minimizing
data transference through the PCI bus) must be done through a dedicated
implementation in OpenMP+CUDA+mex for the case of the NVIDIA de-
vices.

15



References

[1] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM,
Philadelphia, PA, USA, 2008.

[2] S. Serbin, Rational approximations of trigonometric matrices with ap-
plication to second-order systems of differential equations, Appl. Math.
Comput. 5 (1) (1979) 75–92.

[3] C. B. Moler, C. V. Loan, Nineteen dubious ways to compute the ex-
ponential of a matrix, twenty-five years later*, SIAM Rev. 45 (2003)
3–49.

[4] S. M. Serbin, S. A. Blalock, An algorithm for computing the matrix
cosine, SIAM J. Sci. Statist. Comput. 1 (2) (1980) 198–204.

[5] J. Sastre, J. Ibáñez, P. Ruiz, E. Defez, Efficient computation of the
matrix cosine, Appl. Math. Comput. 219 (2013) 7575–7585.

[6] A. H. Al-Mohy, N. J. Higham, S. D. Relton, New algorithms for com-
puting the matrix sine and cosine separately or simultaneously, SIAM
J. Sci. Comput. 37 (1) (2015) A456–A487.

[7] M. S. Paterson, L. J. Stockmeyer, On the number of nonscalar multi-
plications necessary to evaluate polynomials, SIAM J. Comput. 2 (1)
(1973) 60–66.

[8] J. Sastre, J. J. Ibáñez, E. Defez, P. A. Ruiz, Accurate matrix exponential
computation to solve coupled differential models in engineering, Math.
Comput. Model. 54 (2011) 1835–1840.

[9] J. Sastre, J. J. Ibáñez, E. Defez, P. A. Ruiz, Efficient orthogonal ma-
trix polynomial based method for computing matrix exponential, Appl.
Math. Comput. 217 (2011) 6451–6463.

[10] P. Ruiz, J. Sastre, J. Ibáñez, E. Defez, High perfomance computing of
the matrix exponential, J. Comput. Appl. Math. 291 (2016) 370–379.

[11] Mathworks, MATLAB MEX Files, http://www.mathworks.com/support/tech-
notes/1600/1605.shtml#intro.

[12] NVIDIA, NVIDIA CUDA compute unified device architecture (2009).

16



[13] NVIDIA, CUDA. CUBLAS library (2009).

[14] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, R. C. Whaley, An Updated Set of Basic Linear Algebra
Subprograms (BLAS), ACM Trans. Math. Soft 28 (2) (2002) 135–151.

[15] O. A. R. Board, OpenMP Application Program Interface Version 3.1
(July 2011).

[16] N. J. Higham, The Test Matrix Toolbox for MATLAB, Numerical Anal-
ysis Report No. 237, Manchester, England (Dec. 1993).

[17] T. G. Wright, Eigtool, version 2.1 (2009).
URL web.comlab.ox.ac.uk/pseudospectra/eigtool.

[18] N. J. Higham, Fortran codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation, ACM Trans.
Math. Softw. 14 (4) (1988) 381–396.

17

View publication statsView publication stats

https://www.researchgate.net/publication/303533824

