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Abstract

The Non-Negative Matrix Factorization (NNMF) is a recent numerical tool
that, given a non-negative data matrix, tries to obtain its factorization as the
approximate product of two nonnegative matrices. Nowadays, this factorization
is being used in many science fields; in some of these fields, real-time compu-
tation of the NNMF is required. In some scenarios, all data is not initially
available and when new data (as new rows or columns) becomes available the
NNMF must be recomputed. Recomputing the whole factorization every time is
very costly and not suitable for real time applications. In this paper we propose
several algorithms to update the NNMF factorization taking advantage of the
previously computed factorizations, with similar error and lower computational
cost.
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1. Introduction

The Non-Negative Matrix Factorization (NNMF) is a very popular tool in
fields such as document clustering, data mining, machine learning, image anal-
ysis, audio source separation or bioinformatics [1, 2, 3, 4, 5]. The goal of the
NNMF of a nonnegative data matrix A ∈ Rm×n, (ai,j ≥ 0 ∀i, j) is to obtain two
nonnegative matrices W ∈ Rm×k and H ∈ Rk×n with k ≤ min(m,n), such that
A ≈WH. The problem can be described as the minimization of the Frobenius
norm based target function: ‖WH −A‖F subject to W,H ≥ 0.

In certain science fields, the NNMF is computed minimizing other target
functions, based on alpha-divergence, beta-divergence, Kullback-Liebler diver-
gence, etc. [6, 7, 8, 9, 10]. However, in this paper we will use as target function
the Frobenius norm.
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There are situations where the matrix whose NNMF is needed, changes
slightly but very often. As an example, this may happen in real time Automatic
Music Transcription (a technique that obtains the music score of a piece that is
being played) or in real time automatic source separation. The different notes in
the incoming sound recordings can be detected through a NNMF factorization,
and the data matrix receives new data items (sound recordings in a concrete
time) very fast.

If the NNMF is recomputed from scratch after each new data item is received,
the computational cost becomes excessive. On the other hand, since new data
items are being added, the data matrix grows with time (and so does the cost
of any computation associated with the matrix). Therefore, it makes sense that
the oldest data items may be discarded, so that the computational cost remains
under control.

This example shows the need of studying two problems related to NNMF:
the updating of the NNMF (recalculating the NNMF when a new column or row
is added to the data matrix) and the downdating of the NNMF (recalculating
the NNMF when a column or row of the data matrix is discarded).The paper is
focused on dense matrices.

The idea of updating numerical factorizations is not new; indeed, the dif-
ferent updatings of the QR factorization [11] are routinely used in many fields,
most often in Signal Processing. There are also other factorizations whose up-
date has been proposed and studied. However, as far as we know, the study of
the update of the NNMF has been proposed first by the authors [12]. In this
paper we extend and complete the study started in there.

The most popular method of computing the NNMF is the Multiplicative
Algorithm of Lee & Seung (MLSA) [13, 14, 15, 16]. This algorithm has many
advantages: its simplicity, it is easily parallelizable and there are many im-
plementations readily available (there is an implementation in MATLAB [17]).
However, there are other algorithms for this problem, mainly based on the Al-
ternating Least Squares technique (ALS). There are several variations of the
ALS technique [18, 19]. One of the most successful seems to be the Hierarchical
Alternating Least Squares method (HALS), proposed in [15, 16, 20], and more
precisely, the fast HALS (FHALS) implementation proposed in the Algorithm 2
of [20]. This method obtains an important reduction of the factorization error,
with a small computational cost. In [21] a modification of HALS method, de-
noted Greedy Coordinate Descent (GCD) is presented. GCD method is based
on a variable selection scheme that uses the gradient of the objective function
to arrive at a new coordinate descent method. In this paper we include the
FHALS method and the GCD method in the experiments. It will be shown
that these methods can be combined to construct some updating algorithms.

The structure of the paper is as follows: first we will describe in detail
the mathematical problem, in its different forms, and the basic algorithms for
NNMF that are used also for the updating. Then we describe the basic idea
to obtain an updated factorization, along with different possibilities of imple-
mentation. Last, we evaluate our proposals empirically, and discuss the results.
As anticipated, the results show clearly that an updated factorization can be
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obtained in a small fraction of the time required for a full factorization.

2. Problem description

The first problem to solve is the updating of the NNMF. Given two matrices
W ∈ Rm×k and H ∈ Rk×n which are a solution for the NNMF problem A ≈
WH, and a new column b ∈ Rm×1, we want to compute two new matrices
W1 ∈ Rm×k and H1 ∈ Rk×(n+1) which are a solution for the following NNMF
problem:

V = [A b] ≈W1H1 (1)

Note that Matlab notation [22] will be used throughout the paper to describe
matrices.

This problem can be solved from scratch factorizing matrix V , but our al-
gorithms take advantage of the knowledge of W and H (such that A ≈ WH)
to solve problem (1) with a lower computational cost, and thus in less time.

A generalization of this problem can be obtained adding, instead of a single
column, a group of new data columns B ∈ Rm×r where r is the number of new
columns. We can rewrite the block problem as:

V = [A B] ≈W1H1 (2)

The second problem is the downdating of the NNMF. In this case we need
to solve the following problem:

V2 = A(:, r + 1 : n) ≈W2H2 (3)

where V2 ∈ Rm×(n−r), W2 ∈ Rm×k and H2 ∈ Rk×(n−r). Again, this problem
can be addressed without the need of compute the NNMF of V2 from scratch.

We present both problems in terms of adding and removing columns because
is the most natural form of update. The problem of adding/deleting rows can
be addressed with the same techniques, just by transposing the data matrix.

A natural extension of this problem happens when new columns are added
and old columns are removed from the data matrix; we named this a ”window”
problem. This problem needs an update and a downdate, but both operations
can be processed at the same time to save computational resources.

3. Organizing the updating / downdating algorithms

The main idea behind the different update algorithms is to process the re-
sultant matrices of the initial factorization and then use these matrices as ini-
tialization of a low iteration factorization. These algorithms aim to obtain the
minimum error with the lowest computational cost. Thus, two stages can be
established in every updating algorithm. In a first preprocessing stage some
operations are carried out on the W and H input matrices. Then, a few itera-
tions of a base algorithm are performed to compute the new factorization in the
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postprocessing stage. There are several options for perform both stages. We
analyse some possibilities.

As stated in the introduction, there are several algorithms to compute the
NNMF. In this section we compare the multiplicative Lee & Seung algorithm
(MLSA), the fast HALS algorithm and the GCD algorithm, by analyzing the
theoretical costs of all three algorithms.

The MLSA has a cost of 4mnk+4k2(m+n) flops per iteration, and FHALS
algorithm has a cost of 4mnk+4k2(m+n)+O(k(m+k)) flops per iteration.These
costs are theoretically calculated from the implementations found in equations
(4) and (5) from [13] and Algorithm 2 in [20] respectively. A similar counting of
flops can be found in [19]. Despite the fact that FHALS has a greater cost per
iteration, it has a faster convergence than MLSA. In comparison, 10 iterations
of FHALS algorithm obtain lower error than 100 iterations of MLSA. That is
why FHALS is much faster that MLSA in practice.

However, MLSA remains one of the most widely used algorithms in many
applications, for example in the field of music processing. See references [8, 9,
10, 23].

A similar cost in terms of superior order, can be found in [21] for GCD
Algorithm, although it uses a different strategy. FHALS conducts a cyclic coor-
dinate descent, and it first updates all variables in W in a cyclic order, and then
updates variables in H, and so on. Thus, the number of updates performed for
each variable is exactly the same. However in GCD, variables are updated with
frequency proportional to their importance, choosing to update the coordinate
that can reduce more significantly the objective function value. A convenient
election of stop criterion can decrease the number of times (denoted as inner
iterations) that the updating of variables is carried out [21]. Thus, GCD al-
gorithm has a cost of 4mnk + 4k2(m + n) + O(kt) flops per iteration, where t
represents the average number of inner updates.

All algorithms exposed in the previous paragraph (and several more) are
suitable to be used in both stages of the proposed methods. For example,
MLSA algorithm was used as base in [12]. As FHALS algorithm has a faster
convergence, in this paper we use the FHALS algorithm as base algorithm. GCD
method will be used in the preprocessing stage.

The convergence of the updating algorithms presented in this paper is a
direct consequence of the convergence of the base algorithms, that is proved in
[13] for MLSA, in [15] for FHALS algorithm and in [21] for GCD algorithm.

All algorithms presented in this article have parts that could be implemented
efficiently on multicore computers using high performance libraries or parallel
multithread programming environments. In particular, the most costly opera-
tions in these algorithms are matrix-matrix products, easily parallelizable using,
for example, a LAPACK with trheads. In addition, also are presented in this
article implementations of block algorithms, in which by using the OpenMP pro-
gramming environment, the runtime can be decrease with parallel programming
techniques.
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4. Proposed solutions

In the experiments, the initial factorization will be computed using the
FHALS algorithm with 10 iterations over matrix A. This algorithm proto-
type is [W,H] = FHALS(M,k,maxIters,W0, H0) where M is the matrix to
factorize, k is the inner dimension of the factorization, maxIters is the number
of iterations to be computed and W0, H0 are the initialization matrices.

In the postprocessing stage, 2 iterations of FHALS will be executed because
it is the minimum number of iterations to get a better error than the initial 10
iteration factorization.

The base problem against which we compare our solutions, is the factoriza-
tion of V (or V2) using the FHALS algorithm with 10 iterations too and the
solution of the initial factorization as initialization matrices (W0 = W , H0 = H).
The cost of one iteration of FHALS algorithm shown in section 3 will be referred
to as cIterHals, so the base factorizations will have a cost of 10 ∗ cIterHals.

4.1. Updating problem

We propose 4 algorithms to solve the updating problem:

1. rand FHALS: The first approach is to add a randomly generated column to
matrix H and use that new matrix H0 = [H x] (x ∈ Rk) as initialization
matrix of a 2 iteration FHALS of V . The cost of this method is 2 ∗
cIterHals which is clearly lower than the cost of the base factorization. If
we discard the cost of generating the random columns, the block version of
this algorithm (H0 = [H X] (X ∈ Rk×r)) keeps the same cost, depending
only on the size of the column block r.

Algorithm 1 Update rand FHALS

1: X = rand(k,r)
2: [W1, H1] = FHALS(V, k, 2,W, [H X])

2. LSQ FHALS: The second algorithm seeks to start the FHALS iterations
with a better initial approximation for the new column added to H. So,
instead of using a random column, we obtain the new column x as the
solution of an unconstrained Linear Least squares problem, where in order
to preserve the non-negativity, the negative components of x are set to
zero:

x = max(0, argmin
x∈Rk

‖Wx− b‖2). (4)

Then it uses H0 = [H x] and W as initialization matrices of a 2 iteration
FHALS of V . The cost of this algorithm is 2k2(m−k/3)+k2+2∗cIterHals
flops which is the highest of the proposed algorithms but still lower than
the base cost of 10 ∗ cIterHals.
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Algorithm 2 Update LSQ FHALS

1: [Q,R] = qr(W ) . Economy size QR
2: c = Q′ ∗ b
3: x = R(1 : k, 1 : k)\c(1 : k) . Solve a triangular system of linear equations
4: [W1, H1] = FHALS(V, k, 2,W, [H x])

3. Block LSQ FHALS: The third algorithm solves problem (2). This algo-
rithm is useful when more than one column is available in each update.
The cost of this algorithm is 2(k+r)2(m−k/3)+rk2+2∗cIterHals which
is more efficient than doing the updates one by one. But the main advan-
tage of this algorithm is that the solving of the system of linear equations
with multiple right had sides (line 3) and its previous matrix-matrix prod-
uct (line 2) can be computed in parallel. Solving this in parallel, the time
needed to compute the LSQ part of the algorithm decreases, in a ideal
scenario, to the time needed to compute the LSQ for a single column.

Algorithm 3 Update Block LSQ FHALS

1: [Q,R] = qr(W )
2: C = Q′ ∗B
3: X = R(1 : k, 1 : k)\C(1 : k, :) . Solve a triangular system of linear

equations with multiple right hand sides
4: [W1, H1] = FHALS(V, k, 2,W, [H X])

4. GCD FHALS: In this case, GCD algorithm is used in the preprocessing
stage, only over one column of H without updating W. Then, 2 iterations
of FHALS are performed in post processing stage. The GCD algorithm
is very efficient when used on a single column of the matrix H, because it
gets the maximum possible reduction in the objective function with few
iterations.
In this case, the cost of preprocessing is 2k2n+2mnk+O(kt) flops, where
t represents the average number of inner updates on matrix H. Hence, the
total cost of the algorithm will be 2k2n + 2mnk +O(kt) + 2 ∗ cIterHals.
Note that B ∈ Rm×r, when r > 1 the algorithm performs one GCD
iteration for each new column added.

Algorithm 4 Update GCD FHALS

1: Hg = upGCD(V, k,B,W,H)
2: [W1, H1] = FHALS(V, k, 2,W,Hg)

All these algorithms can be easily modified to admit the addition of the column
or group of columns not only at the right side of the matrix, but also at any
position in the matrix.
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4.2. Downdating problem

Following the same conventions of the updating problem, we compute 2
iterations of the FHALS algorithm for V2 (3) using W and H(:, r + 1 : n) as
initialization matrices. This approach has a cost of 2 ∗ cIterHals.

This algorithm can be easily modified to admit the removal of the column or
group of columns not only at the left side of the matrix, but also at any position
in the matrix.

4.3. Window problem

As stated in the introduction, the main use of the downdating problem is
to keep the problem size fixed as we increase the initial problem with new
columns. Solving an updating and then a downdating is a waste of computa-
tional resources, since both can be done at the same time. We named window
NNMF to the combination of both updating and downdating in one problem:

V3 = [A(:, r + 1 : n) B] ≈W3H3 (5)

where V3 ∈ Rm×n, B ∈ Rm×r,W3 ∈ Rm×k and H3 ∈ Rk×n.
Combining the downdating with each updating approach we obtain four

algorithms:

1. Window rand FHALS: In this algorithm the initialization matrices for the
V3 FHALS iteration are W and H0 = [H(:, r + 1 : n) X] where X ∈ Rk×r

is a set of randomly generated columns. The cost of this algorithm is
2 ∗ cIterHals, the same cost of a single downdate or update.

2. Window LSQ FHALS: In this algorithm the initialization matrices are
W and H0 = [H(:, r + 1 : n) x] where x ∈ Rk is the solution of the LSQ
problem. Here we keep the same cost of second update algorithm, avoiding
again the cost of the downdate.

3. Window Block LSQ FHALS: Same as in the update case, if more than one
column are added we use the Block LSQ algorithm to compute X = W\B.
So the initialization matrices for this case are W and H0 = [H(:, r + 1 :
n) X] where X ∈ Rk×r.

4. Window Block GCD FHALS: In this algorithm we use the matrix Hg(:
, r + 1 : n) as initialization matrix, where Hg is the result of our GCD
preprocesing algorithm.

To sum up, in Table 1 and Table 2 the theoretical costs of the algorithms
presented in this section are shown.

5. Result analysis

In this section we show the results obtained from our experiments and explain
them. We compare both the error obtained and the computation time needed
to solve them.
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Table 1: Theoretical cost summary (flops)

Algorithm 1 column
cIterHals update 4mnk + 4k2(m + n) +O(k(m + n))
update form scratch 10 ∗ cIterHalsUp
update rand FHALS 2 ∗ cIterHalsUp
update LSQ FHALS 2k2(m− k/3) + k2 + 2 ∗ cIterHalsUp
cIterHals downdate 4m(n− 1)k + 4k2(m + (n− 1)) +O(k(m + (n− 1)))
downdate from scratch 10 ∗ cIterHalsDown
downdate FHALS 2 ∗ cIterHalsDown

Table 2: Theoretical cost summary (flops)

Algorithm r columns
cIterHals update 4m(n + r)k + 4k2(m + n + r) +O(k(m + n + r)
update form scratch 10 ∗ cIterHalsUp
update rand FHALS 2 ∗ cIterHalsUp
update LSQ FHALS 2(k + r)2(m− k/3) + rk2 + 2 ∗ cIterHalsUp
cIterHals downdate 4m(n− r)k + 4k2(m + n− r) +O(k(m + n− r)
downdate from scratch 10 ∗ cIterHalsDown
downdate FHALS 2 ∗ cIterHalsDown

In the experiments we used the following error measure:

Err = ‖WH −A‖F /
√
m ∗ n (6)

Regarding computational time, we executed each algorithm 10 times registering
the time needed to solve the problem. Then we averaged the times obtained in
order to avoid outliers and obtain a more accurate measurement. Each execution
was computed with different initial matrices but the same initial matrices were
used in all the algorithms tested.

To evaluate the performance of the algorithms presented, we use two types
of matrices. One type of matrices correspond to a real case of Automatic Music
Transcription. The other matrices were generated using Algorithm 5, they are
random matrices but incorporating some relationship between data to simulate
a more realistic behaviour.

Algorithm 5 Matrix generation

1: W = rand(m, k)
2: H = rand(k, n + r)
3: V = WH + 0.01 ∗ rand(m,n + r)
4: A = V (:, 1 : n)
5: B = V (:, n + 1 : n + r);

The specifications of the machine where the experiments were executed are:

1. Hardware:
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a) CPU: Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.70GHz
b) CPU physical cores: 26
c) RAM: 128 GB

2. Software:

a) S.O: Ubuntu 14.04
b) MATLAB: MATLAB 2014b

5.1. Updating experiments

The evaluation of algorithms related to NNMF is never easy because the
performance of the algorithms depend strongly on the size of the matrices and,
most importantly, on the parameter k. For the evaluation of the updating
problem with a single column, we have chosen 4 experiments where the matrices
have been generated using algorithm 5, and the size of the matrices and the
parameter k grows proportionally. The chosen sets of values of m, n, k are as
follows: 1) (m=10000, n=4000, k=1000); 2) (m=20000, n=8000, k=2000) ; 3)
(m=30000, n=12000, k=3000); 4) (m=40000, n=12000, k=4000).

The execution times of the base FHALS algorithm for a single column update
are shown in Table 3.

Table 3: Base execution times with r=1
Base times (s) 10000 20000 30000 40000
FHALS 21.772 295.646 1101.299 2967.827

We want to compare visually the execution times of the updating algorithm
against those of the base FHALS algorithm; however, since there are figures of
very different magnitude, it is not appropriate to display them as raw data. In-
stead, we will present the results as relative to the base FHALS execution times;
that is, the execution times of the 4 experiments displayed in Figure 1 have been
divided by execution times of the corresponding base FHALS experiment.

In Figure 1(a) we show the computation time needed to update the data
matrix adding one column, with the proposed algorithms and with the NNMF
from scratch. The errors obtained in these experiments are shown in Table 4.

Table 4: Approximation errors of updating algorithms with r=1

Algorithm
Approximation errors

10000 20000 30000 40000
FHALS 2.488 6.102 10.562 15.722
update rand FHALS 2.459 6.053 10.509 15.651
update LSQ FHALS 2.450 6.032 10.473 15.599
update GCD FHALS 2.448 6.032 10.470 15.593

It can be seen that the proposed algorithms require around 30% of the
computational time of the complete NNMF, and rand FHALS (Alg. 1) is the
fastest. Its simpler initialization renders this algorithm faster, but also less
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Figure 1: Execution times of updating experiments with synthetic matrices relative to FHALS
base algorithm

accurate. The error of the proposed algorithms is slightly lower than the error
of the complete NNMF and all proposed algorithms have almost the same error.

We repeated the experiment but now adding 200 columns and using the
Block LSQ FHALS (Alg. 3). Execution times and errors are shown in Figure
1(b) and Table 6.The execution times of the base FHALS algorithm for a 200
columns block update are shown in Table 5.

Table 5: Base execution times with r=200
Base times (s) 10000 20000 30000 40000
FHALS 22.440 310.253 1127.891 3020.869

Table 6: Approximation errors of updating algorithms with r=200

Algorithm
Approximation errors

10000 20000 30000 40000
FHALS 2.497 6.111 10.563 15.730
update rand FHALS 3.601 8.863 15.357 22.895
update LSQ FHALS 2.464 6.060 10.480 15.611
update GCD FHALS 2.695 6.429 11.229 16.689

As shown in the figures, in this experiment computation times keep the same
ratio as in the experiment with one column, but the error measures indicate that
rand FHALS algorithm (Alg. 1) offers greater errors than the full factorization
that grow with the problem size and the block size. The GCD FHALS algorithm
(Alg. 4) keeps showing a higher performance than the LSQ FHALS algorithm
(Alg. 2) but now its error is greater than the base FHALS algorithm error.

An interesting experiment is to test empirically what is the difference be-
tween single column updates and block updates. In this experiment we added
2000 columns to the initial matrix (m = 10000, n = 4000 and k=1000). In one
case we updated the initial matrix column by column using the LSQ FHALS
algorithm (Alg. 2) and in the other case we updated the initial matrix in groups
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of 200 columns using the Block LSQ FHALS algorithm (Alg. 3).

Table 7: Comparison of single column update and block updates

Algorithm Time (s) Error
single column update 12371.793 0.781
block update 85.481 2.019

Results in Table 7 show that block updates are much faster than single
column updates. But due to the single column updates involves more FHALS
iterations, it achieves a smaller error.

5.2. Downdating experiments

The first downdating experiment is to delete a column from the initial matrix
and to recompute the NNMF, either by applying a full NNMF or by applying
the downdating algorithm. The results are summarized in Table 8. Table 9
shows the results of a similar experiment, where 200 columns are removed. The
matrix dimensions maintain the same evolution than in the update experiments.

Table 8: Execution time and approximation error of downdating algorithm with r=1

Algorithm 10000 20000 30000 40000

Times (s)
FHALS 22.260 277.759 1085.258 2943.336
downdate FHALS 5.145 61.082 236.412 625.144

Error
FHALS 12.479 6.101 10.551 15.720
downdate FHALS 2.443 6.040 10.457 15.598

Table 9: Execution time and approximation error of downdating algorithm with r=200

Algorithm 10000 20000 30000 40000

Times (s)
FHALS 21.374 305.390 1122.552 2945.313
downdate FHALS 5.119 64.026 237.727 608.619

Error
FHALS 2.493 6.111 10.561 15.724
downdate FHALS 2.459 6.040 10.465 15.591

As shown by the results, the proposed algorithm obtain a slightly lower error
in a much lower amount of time than the factorization from scratch.

5.3. Window experiments

To check the expected lower cost of the window algorithm we tested it against
an update followed by a downdate. The results are shown in Table 10. Due
to the difference in FHALS iterations between both approaches, the window
algorithm has a little bit more error than the updating + downdating approach.
But its notorious speed advantage compensates it.
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Table 10: Execution time and approximation error of window algorithm

Algorithm 10000 20000 30000 40000

Times (s)
updating + downdating 12.475 151.725 566.963 1451.319
window algorithm 7.303 87.008 312.521 806.234

Error
updating + downdating 2.433 5.983 10.384 15.489
window algorithm 2.468 6.049 10.479 15.618

5.4. Real Application: Automatic Music Transcription

Automatic Music Transcription is an active area of research [24]. Usually,
the audio file to be studied is transformed into an spectrogram (data matrix)V ∈
Rm×n where m is the number of possible frequencies and n is the number of
frames or time instants. Some of the methods of determination of pitches in
V are based on different forms of the NNMF [23, 8, 9]. The main idea is that
a NNMF of X is computed V = W ∗ H, W ∈ Rm×k , H ∈ Rk×n where each
column of W must contain the frequency information of a concrete pitch, and
the i-th column of H contains the information about what pitches (columns of
W) are active in the i-th time instant. The parameter k must be selected as
larger than the possible number of pitches.

One of the main areas in this field is real time music transcription, where the
pitches in the music part must be determined in real time [25, 10]. However,
the computational cost of the NNMF has limited its use as a real time tool.
This has sometimes been tackled through different simplifications, such as using
predetermined sounds for the W matrix, but in general NNMF is considered not
suitable for real time [25].

Nevertheless, the updating/downdating techniques described above may change
this view. Without updating techniques, a NNMF should be computed in each
time instant, or maybe after a few new sounds (columns) have been received
and appended to the spectrogram V . Furthermore, the data matriz or spectro-
gram V and the H matrix would increase their size continuously, therefore the
computational cost of each new NNMF would increase as well.

Through updating we can process the new columns with small cost, and the
computational cost per time step can be kept fixed by downdating the data
matrix, possibly discarding the older columns.

We have designed a simple experiment to illustrate the improvement that
can be achieved. We have chosen a relatively long piano part ([26], that lasts
624 seconds) and obtained its spectrogram. (The data matrix can be down-
loaded from http://www.inco2.upv.es/software.php; the procedure to obtain the
spectrogram from an audio file is the described in [27]). The procedure used to
obtain the spectrogram causes that each second corresponds to 43 new columns.
The full spectrogram V has 401 rows and 26836 columns. As a reference, we
have computed the full NNMF of the data matrix, selecting k as 88 (number of
piano keys, [23]). It must be noted that this computation is quite fast, lasting
only 8 seconds (150 FHALS iterations, obtaining an error of 0.67). However,
this can be done if the whole matrix is available, which is not true in a real time
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environment.
We have used this large matrix to simulate real time processing. In such

environment, we would need to obtain the NNMF of the part of the music
already played in each time instant. We started the computations with the
matrix formed with the first 436 columns of V . We compute the NNMF of this
submatrix, and then add one column (or several columns) at a time, performing
the needed computations.

To use a full NNMF for each new column (using 10 FHALS iterations)
takes 10036 seconds, and therefore is obviously not appropriate for real time
processing. The error in this case is 1.41.

On the other hand, we can use updating/downdating in different ways to try
to decrease the computational time. Given that the LSQ-FHALS has a good
and stable performance either in single column or in block form, we have chosen
this updating procedure for the experiments.

As a first approach we have used the single column window procedure, that
is, in each time instant a new column is added (at the right side of the data
matrix) and an old column is discarded from the left side. Therefore the size
of the matrix is fixed to 436 columns. The results are good from the point of
view of time; the whole computation took 432 seconds, carrying out two FHALS
iterations per column, since the song lasts 624 seconds, this would mean that real
time processing is possible. The evaluation of the error in this case must be done
carefully, because the W matrix varies along the process. We have evaluated
the error column by column; when a column of H, H(:, J), is discarded (it
will not be modified any more), the column vector aux = V (:, j)−WH(:, j) is
computed, using the ”present” W matrix. Then the sum of the squares of the
components of the aux vector is computed. This value will be accumulated to
compute the Frobenius norm of the overall error. The overall error computed
in this way was 0.54, even better than computing the full NNMF.

A block window procedure including/removing blocks of 10 columns is clearly
faster (42.26 seconds), and still it gives a similar error (0.53). Of course, using
a block procedure can create some sort of delay (the first column of the block
will not be processed until 9 more columns have arrived). An appropriate block
size should be determined for each practical application.

Next, we perform similar experiments to those shown in Section 5.1, using
matrices obtained from songs; we repeat the experiments using the base FHALS
method and LSQ-FHALS with two experiments: (m=10000, n=401, k=88)
and (m=20000, n=401, k=88). The results show that the proposed algorithm
perform the same with synthetic and real matrices.

In Figure 2 the execution times of those experiments are shown, while in
Table 11 the corresponding error measures are shown. As in 5.1 the execution
times are relative to execution times of the base FHALS algorithm, the base
FHALS execution times are shown in Table 12.
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Figure 2: Execution times of updating experiments with real application music matrices
relative to FHALS base algorithm

Table 11: Approximation error of updating algorithm with r=1 and r=200 using application
matrices

Algorithm
Approximation errors
10000 20000

r = 1
FHALS 0.540 1.083
update LSQ FHALS 0.523 1.051

r = 200
FHALS 0.513 1.027
update LSQ FHALS 0.497 0.997

6. Conclusions and future work

We can safely conclude that the proposed algorithms solve the problems in
less time that the NNMF from scratch in all cases; and that LSQ versions (Alg.
2 and 3) lower the error measurements in addition to decrease the execution
time.

GCD FHALS algorithm (Alg. 4) performs very well with single column
updates being faster and slightly more accurate than LSQ algorithms (Algs.
2 and 3) but its error increases too much for block column updates. That
compromises its usefulness for practical applications.

If the reduction of computation time is a priority and the update is done
column by column, the rand FHALS update algorithm (Alg. 1) is the fastest
and it obtains a good error value. However it should not be used with block
column updates because its error increases with the number of columns.

The block LSQ FHALS algorithm (Alg. 3) is a good approach when more
than one column is available, and it can benefit of a multicore processor due to
its good parallelism properties.

The window algorithms improve the execution time comparing with a full
update and downdate.

In the future, this algorithms will be implemented in C and optimized for
multicore processors, manycore procesors and GPU. This work will be integrated
into the high performance library NNMFPACK [28].
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Table 12: Base execution times using application matrices

Base times (s) 10000 20000
FHALS r = 1 0.326 0.842
FHALS r = 200 0.245 0.678
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