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Abstract

This paper gives simple proofs of Sylvester (` = 2) and Frobe-
nius (` = 3) inequalities. Moreover, a new sufficient condition for the
equality of the Frobenius inequality is provided. In addition, an ex-
tension for ` > 3 matrices and an application to generalized inverses
are provided.
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1 Introduction

Two famous inequalities in Matrix Analysis are Sylvester inequality:

rank(AB) ≥ rank(A) + rank(B) − n,

and Frobenius inequality:

rank(ABC) ≥ rank(AB) + rank(BC) − rank(B),

where the complex matrices A, B, and C have adequate sizes to be accord-
ingly multiplied and n is the number of columns of A and rows of B.



This paper is devoted to revisited proofs of Sylvester and Frobenius in-
equalities and conditions for their equalities. It is shown that the basic setting
needed to obtain our main results is the rank normal form. In addition, an
extension of these results to a finite number of matrices and an application
of them to generalized inverses are given.

2 Sylvester’s inequality and equality

We first prove the Sylvester inequality [4].

Theorem 1. Let A ∈ C
m×n and B ∈ C

n×p. Then

rank(AB) ≥ rank(A) + rank(B) − n. (1)

Proof. Let consider a rank normal form of B, that is

B = P

[

Ir Or×(p−r)

O(n−r)×r O(n−r)×(p−r)

]

Q,

where P ∈ C
n×n and Q ∈ C

p×p are nonsingular. Partitioning AP according
to the sizes of blocks in B we can write

A =

[

A1 A2

A3 A4

]

P−1,

where A1 ∈ C
r×r, A2 ∈ C

r×(n−r), A3 ∈ C
(m−r)×r, and A4 ∈ C

(m−r)×(n−r).
Some simple computations give

AB =

[

A1 O

A3 O

]

Q,

and so

rank(AB) = rank

([

A1

A3

])

.

Since

rank

([

A1 A2

A3 A4

])

≤ rank

([

A1

A3

])

+ rank

([

A2

A4

])

≤ rank

([

A1

A3

])

+ (n − r),
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it then follows

rank(A) + rank(B) ≤ rank

([

A1

A3

])

+ n

= rank(AB) + n.

The inequality is then proved.

Now, we proceed with the equality. We denote by N (A) and R(A) the
null space and the range space of a complex matrix A, respectively.

Theorem 2. Let A ∈ C
m×n and B ∈ C

n×p. Then

rank(AB) = rank(A) + rank(B) − n (2)

holds if and only if N (A) ⊆ R(B).

Proof. Continuing with the same notation as in the proof of Theorem 1, it
is clear that the equality in (1) is equivalent to

R

([

A1 O

A3 O

])

∩R

([

O A2

O A4

])

= {0} and rank

([

A2

A4

])

= n−r.

(3)

On the other hand, it is easy to see that N (A) ⊆ R(B) is satisfied if and
only if

N

([

A1 A2

A3 A4

])

⊆ R

([

Ir O

O O

])

=

{[

z

0(n−r)×1

]

: z ∈ C
r×1

}

. (4)

Now, in order to prove this theorem we must show that (3) is equivalent to
(4). In fact, assume that (3) holds and let

[

x1

x2

]

∈ N

([

A1 A2

A3 A4

])

.

Then
[

A2

A4

]

x2 = −

[

A1

A3

]

x1.

So,

R

([

A2

A4

]

x2

)

= R

([

A1

A3

]

x1

)

⊆ R

([

A1

A3

])

∩R

([

A2

A4

])

= {0},
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from where
[

A2

A4

]

x2 = 0.

The linearly independence of the columns of

[

A2

A4

]

leads to x2 = 0. It then

follows that
[

x1

x2

]

=

[

x1

0

]

=

[

Ir O

O O

] [

x1

0

]

∈ R

([

Ir O

O O

])

.

Assume now that (4) holds. This condition can be rewritten as follows:

If

[

x1

x2

]

satisfies

[

A2

A4

]

x2 = −

[

A1

A3

]

x1 =⇒ x2 = 0. (5)

Now, let

y ∈ R

([

A1 O

A3 O

])

∩R

([

O A2

O A4

])

.

Thus,

y =

[

A1 O

A3 O

] [

u1

v1

]

=

[

A1

A3

]

u1

and

y =

[

O A2

O A4

] [

u2

v2

]

=

[

A2

A4

]

v2.

Hence, the vector

[

−u1

v2

]

satisfies
[

A2

A4

]

v2 = −

[

A1

A3

]

(−u1).

By (5), it then follows v2 = 0. Consequently, y = 0.
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Lastly, in order to prove that

rank

([

A2

A4

])

= n − r,

suppose that x ∈ C
(n−r)×1 satisfies

[

A2

A4

]

x = 0.

It is clear that
[

0

x

]

∈ N

([

A1 A2

A3 A4

])

.

By (4) we get x = 0.

On the other hand, it is well known that

AB = O ⇐⇒ R(B) ⊆ N (A),

for any A ∈ C
m×n and B ∈ C

n×p. What can we conclude when the opposite
inclusion holds?

Corollary 3. Let A ∈ C
m×n and B ∈ C

n×p such that N (A) ⊆ R(B) holds.
Then

AB = O ⇐⇒ rank(A) + rank(B) = n.

Comparing Corollary 3 to Proposition 17.5 in [6] (for square matrices), we
can see that Corollary 3 gives us an extension of that version of the Cochran’s
Theorem without assuming A + B = I. Indeed, for squares matrices A and
B of the same size, it is easy to see that A + B = I implies N (A) ⊆ R(B).
However, not always N (A) ⊆ R(B) implies A + B = I; it sufficient to

consider A = B = I. Our Corollary 3 can be applied to A =

[

0 1
0 0

]

B =

[

1 0
0 0

]

but A + B 6= I.

A simple proof can be also given for the known upper bound of the rank
of a matrix product.
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Lemma 4. Let A ∈ C
m×n and B ∈ C

n×p. Then

rank(AB) ≤ min{rank(A), rank(B)}. (6)

Proof. Simple computations give
[

Im −A

O In

] [

O A

B In

] [

Ip O

−B In

]

=

[

−AB O

O In

]

.

Since the first and the third matrices on the left side are nonsingular,

rank

([

−AB O

O In

])

= rank

([

O A

B In

])

= rank

([

O O

B O

]

+

[

O A

O In

])

≤ rank(B) + n.

Then, rank(AB) + n ≤ rank(B) + n, that is, rank(AB) ≤ rank(B) holds.
On the other hand, denoting by AT the transpose of A we get

rank(AB) = rank(AB)T = rank(BTAT ) ≤ rank(AT ) = rank(A).

Hence, the result follows directly.

3 Frobenius inequality and equality

In the following result we provide a simple proof also for the Frobenius in-
equality [2].

Theorem 5. Let A ∈ C
m×n, B ∈ C

n×p, and C ∈ C
p×q. Then

rank(ABC) ≥ rank(AB) + rank(BC) − rank(B). (7)

Proof. Let consider a rank normal form of B, that is

B = P

[

Ir Or×(p−r)

O(n−r)×r O(n−r)×(p−r)

]

Q,

where P ∈ C
n×n and Q ∈ C

p×p are nonsingular. Partitioning AP and QC

according to the sizes of blocks in B we can write

A =
[

A1 A2

]

P−1 and C = Q−1

[

C1

C3

]

,
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where A1 ∈ C
m×r, A2 ∈ C

m×(n−r), C1 ∈ C
r×q, and C3 ∈ C

(p−r)×q. Some
simple computations give

AB =
[

A1 Om×(p−r)

]

Q,

BC = P

[

C1

O(n−r)×q

]

,

and

ABC = A1C1.

By the Sylvester inequality and using the invariance of the rank of a product
by a nonsingular matrix we get

rank(ABC) = rank(A1C1)

≥ rank(A1) + rank(C1) − r

= rank
([

A1 Om×(p−r)

]

Q
)

+ rank

(

P

[

C1

O(n−r)×q

])

− r

= rank(AB) + rank(BC) − rank(B).

Next result provides a new (as far as we know) sufficient condition to
obtain the equality in the Frobenius inequality. Notice that condition (8)
below is a natural extension of that for the equality in the Sylvester inequality
(see Theorem 2).

Theorem 6. Let A ∈ C
m×n, B ∈ C

n×n be an idempotent matrix, and C ∈
C

n×q. If

N (AB) ⊆ R(BC) (8)

then

rank(ABC) = rank(AB) + rank(BC) − rank(B) (9)

holds.
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Proof. Assume that N (AB) ⊆ R(BC). Following the same notation as
in the proof of Theorem 5, it can be taken Q = P−1 since B ∈ C

n×n is
idempotent. Thus, it is easy to see that condition (8) is equivalent to

N (
[

A1 Om×(n−r)

]

) ⊆ R

([

C1

O(n−r)×q

])

.

Now, if x1 ∈ N (A1) then A1x1 = 0 and so

[

A1 Om×(n−r)

]

[

x1

0

]

= 0,

from where
[

x1

0

]

∈ R

([

C1

O(n−r)×q

])

,

that is, x1 = C1y1 for some vector y1. Thus, N (A1) ⊆ R(C1). This
last inclusion is equivalent to the equality in the inequality rank(A1C1) ≥
rank(A1)+rank(C1)−r. Hence, from the proof of Theorem 5, we can deduce
that equality (9) holds.

Remark 7. Condition (8) is sufficient to get (9) but, in general, the opposite
is not necessarily true, in the same way that occurs with [7, Theorem 2]. This
is due to the fact that N (A1) ⊆ R(C1) in general does not imply

N (
[

A1 Om×(n−r)

]

) ⊆ R

([

C1

O(n−r)×q

])

. (10)

Using the condition for the equality of (2.1) in [2] we obtain the following
consequence.

Corollary 8. Let A ∈ C
m×n, B ∈ C

n×n an idempotent matrix, and C ∈
C

n×q such that N (AB) ⊆ R(BC) holds. Then

(a) ABC = O if and only if rank(AB) + rank(BC) = rank(B).

(b) there exist matrices X ∈ C
q×n and Y ∈ C

n×m such that

BCX + YAB = B.
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Remark 9. The factorizations used in Theorem 5 allow us to give the explicit
general solution of BCX + YAB = B for A ∈ C

m×n, B ∈ C
n×n, and

C ∈ C
n×q. Indeed, by using the expressions of A, B, and C given in Theorem

5 it is not hard to show that BCX+YAB = B is consistent (in the unknowns
X and Y) if and only if (I − C1C

−
1 )(I − A−

1 A1) = O (see [1, 3]). Here,
A− denotes a {1}-generalized inverse of A (that is, AA−A = A). The
general solution is then obtained by solving C1X1 −Y1(−A1) = Ir, C1X2 =
O, and Y2A1 = O simultaneously where X =

[

X1 X2

]

Q and Y =

P
[

Y1 Y2

]T
. It then follows that

X =
[

C−
1 − C−

1 ZA1 + (I − C−
1 C1)W (I − C−

1 C1)M
]

Q

and

Y = P

[

(I − C−
1 C1)A

−
1 + Z − (I − C1C

−
1 )ZA1A

−
1

N(I − A1A
−
1 )

]

for arbitrary matrices Z, W, M, and N. Notice that matrices of smaller
sizes are used in our computations compared to that given in [1].

By means of generalized inverses theory, Tian and Styan showed the fol-
lowing result.

Theorem 10. [7, Theorem 2] Let A ∈ C
m×n, B ∈ C

n×n an idempotent
matrix, and C ∈ C

n×q. If

[

A∗ C
]

has full row rank (11)

and

AC = O (12)

then

rank(ABC) = rank(AB) + rank(BC) − rank(B) (13)

holds.

It can be noticed that, when all matrices are square of the same size, if A

and/or C are nonsingular, equality (13) holds vacuously and both sides are
equal to zero. Now, condition (8) in Theorem 6 also gives a vacuous equality
but both sides are rank(BC) provided that A is nonsingular and rank(AB)
provided that C is nonsingular.
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Proposition 11. Let A ∈ C
m×n and C ∈ C

n×q. If (11) and (12) hold then
(8) is also satisfied for B = In.

Proof. Indeed, from (11) we get n = rank
([

A∗ C
])

≤ rank(A)+rank(C).
And, from (12) we obtain R(C) ⊆ N (A) and then rank(A) + rank(C) = n.
Comparing to rank(A) + dim(N (A)) = n we have dim(N (A)) = rank(C).
Thus, R(C) = N (A) and hence (8) is satisfied.

4 The inequality and equality for ` > 3 ma-

trices

Next, we give the following generalization.

Theorem 12. Let A1,A2, . . . ,A` matrices having n1, n2, . . . , n` columns,
respectively, such that the product A1A2 . . .A` is well-defined. Then,

rank(A1A2 . . .A`) ≥
`−1
∑

i=1

rank(AiAi+1) −
`−1
∑

i=2

rank(Ai) (14)

≥
∑̀

i=1

rank(Ai) −
`−1
∑

i=1

ni,

for all ` ≥ 3.

Proof. The inequality (14) follows by induction on ` using Frobenius in-
equality. Similarly, the second one follows by induction on ` using (14) and
Sylvester inequality.

Corollary 13. Let A1,A2, . . . ,A` matrices such that the product A1A2 . . .A`

is well-defined. If Ai is idempotent for i = 2, . . . , ` − 1 and N (
∏s

j=1 Aj) ⊆
R(AsAs+1) for s = 2, 3, . . . , ` − 1 then the equality in (14) holds.

Proof. It follows by induction on ` and Theorem 6.

Some applications of formulae studied in this work were given in the
recent paper [2]. In what follows, we present another application.
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5 An application

Let S ∈ C
m×n of rank r, M be a subspace of C

n of dimension t ≤ r and N

be a subspace of C
m of dimension m − t. It is well known that there exists

a unique {2}-generalized inverse X ∈ C
n×m having range space M and null

space N [3, 5, 8], that is,

XSX = X, R(X) = M, and N (X) = N,

if and only if
SM ⊕ N = C

m,

where SM = {Sm : m ∈ M}. This unique matrix X is denoted by S
(2)
M,N .

We also remind that, for certain special subspaces M and N , this gener-
alized inverse S

(2)
M,N includes the classical inverses as particular cases: the

Moore-Penrose inverse S†, the weighted Moore-Penrose inverse S
†
L,T (for

L and T being hermitian positive definite matrices of appropriate sizes),
the group inverse S# (whenever it exists), the Drazin inverse SD, and the
weighted Drazin inverse SD

W
, among others.

Proposition 14. Let A ∈ C
p×m, S ∈ C

m×n of rank r, and C ∈ C
m×q.

Assume that M is a subspace of C
n of dimension t ≤ r and N be a subspace

of C
m of dimension m − t such that S

(2)
M,N exists. If

N (ASS
(2)
M,N ) ⊆ R(SS

(2)
M,NC)

then

rank(ASS
(2)
M,NC) = rank(ASS

(2)
M,N ) + rank(S

(2)
M,NC)− rank(S

(2)
M,N ). (15)

Proof. Applying Theorem 6 with B = SS
(2)
M,N and recalling that S

(2)
M,NSS

(2)
M,N =

S
(2)
M,N is valid, we get B2 = B. Again, since S

(2)
M,N is a {2}-generalized inverse

of S we have rank(SS
(2)
M,NC) = rank(S

(2)
M,NC). Analogously, rank(SS

(2)
M,N ) =

rank(S
(2)
M,N ). Replacing these terms in (9) we arrive at equality (15).

Assuming adequate sizes for all matrices and that

N (AS
(2)
M,NS) ⊆ R(S

(2)
M,NSC)

holds, it then similarly follows

rank(AS
(2)
M,NSC) = rank(AS

(2)
M,N ) + rank(S

(2)
M,NSC) − rank(S

(2)
M,N ).
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Corollary 15. Under the same assumptions as in Proposition 14, the expres-
sions of S

(2)
M,N , SS

(2)
M,N , and rank(S

(2)
M,N) in (15) particularized to the classical

generalized inverses can be simplified as shown in the following table:

M N S
(2)
M,N SS

(2)
M,N rank(S

(2)
M,N )

R(S∗) N (S∗) S† SS† rank(S)

R(L−1S∗T) N (L−1S∗T) S
†
L,T SS

†
L,T rank(S)

R(S) N (S) S# SS# rank(S)
R(Sk) N (Sk) SD SSk rank(Sk)

where k is the index of S.
Now, if S ∈ C

m×n, W ∈ C
n×m, k1 is the index of SW, k2 is the index of

WS, k = max{k1, k2} and U := WSW then

SD
W

= U
(2)

R((SW)k),N ((WS)k)
.

If N (AUSD
W

) ⊆ R(USD
W

C) then

rank(AUSD
W

C) = rank(AUSD
W

) + rank(USD
W

C) − rank(USD
W

).
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