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Abstract  30 

Rotor-guided ablation has opened new perspectives into the therapeutical treatment for atrial 31 

fibrillation (AF). However, the driving role of rotors in human AF is still controversial. In this review 32 

the current knowledge gained through research models and patient data that supports that rotors 33 

are key players for AF maintenance is summarized. We address the reported divergences 34 

regarding rotor prevalence and stability, which can be attributed to methodological differences 35 

among mapping technologies. Improvement of current clinical mapping technologies will be 36 

crucial for developing mecanistic based ablation strategies that may help in selecting the best 37 

therapeutical strategy in a patient basis.  38 
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1. Introduction 39 

Atrial fibrillation (AF) is the most common arrhythmia seen in clinical practice and is associated 40 

with increased risk of stroke, heart failure and death [Wann 2011]. In spite of the high prevalence 41 

of AF, the success of current therapies for restoring sinus rhythm in AF patients by either 42 

administration of antiarrhythmic drugs, electrical cardioversion or catheter ablation are 43 

suboptimal.  44 

Catheter ablation has been reported to be more effective in maintaining sinus rhythm than 45 

antiarrhythmic drugs [Dobrev 2010, Wilber 2010, Parkash 2011], with reported success rates of 46 

around 70% [Cappato 2010]. After the identification of the critical role of the pulmonary veins in 47 

the initiation of AF [Haïssaguerre 1998], pulmonary vein isolation (PVI) has been established as 48 

the recommended catheter ablation approach [Calkins 2012, Parkash 2011, Dewire 2010] with 49 

overall success rates of up to 87% in paroxysmal AF patients [Tzou 2010, Pappone 2011, Medi 50 

2011]. However, up to 43% paroxysmal AF patients may develop AF recurrence after a single 51 

procedure if antiarrhythmic drugs are discharged [Medi 2011] and long-term evaluation of catheter 52 

ablation outcome reveals a decline in arrhythmia-free survival even after repeated ablations 53 

[Weesasooriya 2011]. Moreover, success rates of catheter ablation in non-paroxysmal AF 54 

patients are disappointing, with AF-free rates for single a procedure as low as 28% or 51% after 55 

multiple repeat procedures [Chao 2012].  56 

As opposed to the anatomical-only PVI isolation strategy, ablation approaches that rely in the 57 

detection of atrial sources have also been proposed. Isolation of atrial sources identified as those 58 

that could initiate AF after stimulation [Dixit 2008] or as those with highest activation rates [Atienza 59 

2014] has been reported to be as efficient as isolation of all PVs. But recent reports on the success 60 

ratio of rotor-based ablation strategies, which outperform PVI isolation [Narayan 2012, Narayan 61 

2013, Haïssaguerre 2014] now put in the spotlight the development of mechanistic-based 62 

strategies for selecting the best therapeutic option in an individual patient basis. 63 
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2. Mechanisms of atrial fibrillation 64 

There is still an open debate regarding the mechanisms that initiate and maintain atrial fibrillation 65 

[Jalife 2011, Waks 2014]. While some authors advocate for the presence of multiple wavelets with 66 

a random propagation as the main mechanism sustaining AF [Moe 1962, Allesie 1985], some 67 

other authors argue that there are spatially localized drivers that maintain the arrhythmia [Vaquero 68 

2008, Jalife 2004, Lee 2013].  69 

Supporters of the multiple wavelet hypothesis have in their favor a strong evidence of a highly 70 

disorganized electrical activity during fibrillation and the unquestionable presence of multiple 71 

simultaneous propagation wavelets that can be observed during AF no matter which mapping 72 

technology is used [Konings 1994, Eckstein 2013, Jalife 2002, Narayan 2012] and whose 73 

complexity is increased in persistent AF patients [de Groot 2010].  74 

However, there is strong evidence of the presence of some spatiotemporal organization of AF 75 

both in animal models and  in humans [Gerstenfeld 1992, Mansour 2001, Sarmast 2003, Kalifa 76 

2003, Sanders 2005, Atienza 2009] that contradicts the multiple wavelet hypothesis and 77 

advocates for the maintenance by localized atrial sources. Maybe the strongest evidence against 78 

the multiple wavelet hypothesis is the consistent finding of localized drivers in the atria [Calkins 79 

2012], predominantly located in the pulmonary veins (PV) [Haissaguerre 1998], but not confined 80 

to the PV area [Schmitt 2002, Weber 2007, Lau 2014, Hsu 2004, Lin 2003], whose driving role 81 

can be confirmed by cessation of the arrhythmia after their isolation from the remaining atrial 82 

tissue [Haissaguerre 1998, Herweg 2003, Atienza 2009, Calkins 2012].  83 

Atrial fibrillatory sources have been hypothesized to be either ectopic foci, or driven by a group of 84 

cells consistently firing ectopic beats [Jais 1997, Schmitt 2002, Voigt 2012 ], or rotors, defined as 85 

functional reentries around an unexcited core [Gray 1995, Jalife 2002, Vaquero 2008]. Nobody 86 

questions today that trigger activity is involved in AF initiation by either early or delayed 87 

afterdepolarizations, most likely due to sarcoplasmic reticulum Ca2+ leaks [Hove-Madsen 2004, 88 
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Oral 2008, Voigt 2014]. On the other side, rotors by themselves have been shown to sustain 89 

fibrillatory processes in cardiac tissue slices [Cabo 1996], cardiac monolayers [Zlochiver 2008, 90 

Herron 2012, Climent 2015] and computer model simulations [Kneller 2002, Pandit 2013] but their 91 

role in whole-heart AF as drivers or bystanders is still a matter of debate [Waks 2014, Narayan 92 

2014]. However, these two hypotheses are nonexclusive since propagation of a wavefront 93 

originated in an ectopic trigger can reach a line of unidirectional block which its increases 94 

curvature and then this curved wavefront self-sustains in the form of a rotor [Jalife 2002], see 95 

Figure 1.A-B. Both ectopic triggers and rotors can be seen as either endocardial or epicardial 96 

breackthroughs when the core of the rotor lays underneath the mapped cardiac face [Hansen 97 

2015], see Figure 1.C-D.  98 

3. Evidence of rotor presence in atrial fibrillation 99 

3.1 Rotors in research models 100 

Most of the knowledge gained about rotors and their role in AF is based in mapping experiments 101 

in research models, such as Langendorff-perfused isolated hearts or cardiac monolayers.  102 

The isolated heart model imposes conditions to the preparation that are certainly far from being 103 

physiological, it has the advantage of allowing wide-field and high spatial resolution mapping. By 104 

performing epicardial electrical mapping in 11 Langendorff-perfused canine hearts, Schuessler et 105 

al. investigated the driving role of rotors in sustaining AF [Schuessler 1992]. They quantified the 106 

presence of rotors and simultaneous wavefronts by drawing isochronal maps during induced atrial 107 

fibrillation with and without infusion of acetylcholine (ACh). They hypothesized that an increased 108 

number of simultaneous wavelets due to ACh, which reduces the atrial refractory period and thus 109 

“enlarges” the atria, would confirm the multiple wavelet theory. However, they found that below a 110 

critical refractory period a single rotor stabilized and maintained the electrical activity and that the 111 

number of simultaneous wavefronts was reduced.  112 
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But the driving role of rotors has been mainly pushed forward by the use of the optical mapping 113 

technology, which allows for an increased spatial resolution and field of view and a more reliable 114 

detection of activation times than electrical recordings. In an isolated sheep heart model, Skanes 115 

et al. showed that the activation at rotor sites was faster and more regular than that of other sites 116 

during induced fibrillation [Skanes 1998]. This observation was attributed to a fast reentrant 117 

activity at rotor domains that cannot be followed at other atrial sites thus conduction blocks were 118 

observed at the transition between these domains. In a latter study, Berenfeld et al. showed that 119 

spectral analysis allowed identification of atrial sources by displaying dominant frequency (DF) 120 

maps [Berenfeld 2000] and highlighting a hierarchical activation pattern. 121 

Further evidence of the driving role of rotors was provided by Mandapati et al. [Mandapati 2000], 122 

who found a highly significant correlation between the rotation period of rotors and the DF at the 123 

same sites. In the same study, they found that these reentrant sources were more frequently 124 

located in the posterior free wall of the left atrium and thus there was a left-to-right gradient in 125 

activation frequencies. This driving role of left atrial rotors was confirmed by Mansour et al. 126 

[Mansour 2001], who showed that ablation of interatrial conduction paths decreased the DF of 127 

the right atrium while did not modify the DF of the left atrium, which was typically higher.    128 

According to all these observations, there is a rotor-driven hierarchical activation pattern   during 129 

atrial fibrillation that is summarized in Figure 1.  130 

In addition to isolated heart experiments, optical mapping studies of cardiac cell cultures, which 131 

allow the recording of the entire activated tissue without any hidden areas, were used to 132 

demonstrated that in-vitro fibrillation was sustained by stable reentries [2000 Entcheva, 2003 133 

Iravanian]. Cell cultures also allow controlling the cell microenvironment and the monolayer 134 

composition in co-cultures and thus mechanistic hypothesis can be tested. The co-culture of 135 

cardiomyocytes and myofibroblasts allowed determining that an increased myofibroblast content, 136 

reduces the conduction velocity and thus increases the complexity of reentrant patterns [Zlochiver 137 
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2008], which may explain the increased complexity in persistent AF patients with remodelled atria. 138 

Atrial cell cultures with AF-induced electrical remodelling, with a decreased expression of 139 

connexins and an altered expression of some ion channel proteins have been recently used to 140 

demonstrate that rotors, and their dynamics, govern the electrical activity even in a substantially 141 

remodelled atria [Climent 2015].   142 

3.2 Rotors in human AF 143 

But evidence of the important role of rotors in AF is not restricted to research models and has 144 

been found in human AF. Since it is not possible to perform optical mapping in human patients 145 

because of current technological limitations, most of the efforts in locating rotors in human AF 146 

have been directed towards the identification of highest DF sites. Sanders et al. [Sanders 2005] 147 

developed a real time analysis tool to find the highest DF sites in patients during an 148 

electrophysiological study. By performing real time DF mapping they demonstrated a hierarchical 149 

pattern of activation that was consistent with previous observations in isolated sheep hearts, with 150 

highest DF sites typically located in the PV area ,although the highest DF sites were more 151 

widespread in persistent AF patients that paroxysmal AF patients. This left-to-right DF gradient in 152 

paroxysmal AF was independently found in other laboratories [Lazar 2004, Lin 2006, Atienza 153 

2006] and can be attributed to a left-to-right gradient in inward-rectifier potasium currents [Atienza 154 

2006, Voigt 2010]. Persistent AF patients do not consistently show a left-to-right DF gradient, 155 

which evidences that atrial tissue remodeling modifies the distribution of AF drivers and thus the 156 

RA is involved in the maintenance of AF in persistent AF patients [Hocini 2010, Atienza 2006, 157 

Atienza 2009].  158 

Atienza et al. [Atienza 2006] demosntrated the driving role of the highest DF sites by infusion of 159 

adenosine. Adenosine increases the conductivity of inward potasium rectifier channels and thus 160 

shortens the action potential and reduces excitability and automaticity, similar to the effect of ACh 161 

infusion already reported in animal studies [Schuessler 1992, Sarmast 2003]. In this study they 162 
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found that adenosine accelerated the highest DF sites, especially at the PVs of paroxysmal AF 163 

patients, which suggested that the highest DF sites were rotor-driven.  164 

Direct visualization of rotors by either activation maps or phase analysis using conventional 165 

mapping tools is technologically demanding because requires the use of multipolar catheters and 166 

intensive signal processing tools. Lin et al. [Lin 2013] reported their approach to localize rotors by 167 

sequential point-by-point mapping of the atria in 53 patients. They identified possible rotor sites 168 

in the LA as those with some degree of fractionation, high DF and some regularity and then 169 

obtained activation maps by sequentially mapping a mean of 9 sites around the putative rotor. By 170 

using this approach, they found that 15% of patients presented activations consistent with rotors. 171 

Although this may seem a very low incidence, the conditions they imposed to rotors were very 172 

strict (i.e. the rotor had to be stable for the few minutes). Only very stable rotors anchored at very 173 

fixed locations restricted to the LA could fulfilled their imposed criteria and under these 174 

circumstances, a rotor prevalence of 15% does not appear to be only anecdotical and, instead, 175 

highlights the importance of rotors in human AF.  176 

Multipolar catheters are, in principle, more suitable for indentifying rotors than bipolar catheters. 177 

Rotational activity consistent with rotors could be observed by using a spiral catheter [Atienza 178 

2011]. By using this spiral catheter, organized maps showing incoming directions that were 179 

frequently consistent with activations from the PVs accounted for 31% of activations. Rotors in 180 

the form of transient rotational patterns were also observed by [Ghoraani 2013] in the LA of 66% 181 

of 32 patients. However, these methods underestimate the number of possible rotors to be 182 

observed because due to the limited atrial area covered by the catheter. 183 

The development of multipolar basket catheters that allow mapping a wider atrial region together 184 

with very specific signal processing algorithms [Narayan 2012] allowed Narayan et. al to construct 185 

spatiotemporal maps showing either rotational patterns or focal sources. This technique named 186 

Focal Impulse Rotor Modulation (FIRM) mapping is based in the use of a 64-pole catheter, 187 
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activation detection and a specific “physiological filtering”. By using this approach they reported 188 

that as much as 97 % of 101 patients presented either focal sources or sustained rotors that 189 

lasted for tens of minutes, predominantly found in the LA (76%) [Narayan 2013]. The large 190 

prevelance of detected sources reported by Narayan was striking to the clinical and research 191 

community since they contradicted most observations in human AF for years [Konings 1991, de 192 

Groot 2010, Lee 2014] who failed to find rotors in human AF. While many authors question the 193 

validity of Narayan’s approach, Benharash et al. has been the first author to do so based on his 194 

own experience with FIRM mapping [Benharash 2015]. Benharash et al. reported no differences 195 

in DFs at rotor and non-rotor sites, which indeed contradicted most rotor-based studies. 196 

Unfortunately they defined the DFs in a two-wide range (1-20 Hz, instead of a more physiological 197 

4-12 Hz range) and thus they may be defining DFs that do not correspond to actual activation 198 

frequencies of the atrial tissue. Further studies are required in order clarify the driving role of driver 199 

sites identified by FIRM mapping.  200 

Additional support for the driving role of rotors in human AF was recently provided by Hansen et 201 

al. [Hansen 2015]. In their study, Hansen et al. performed simultaneous sub-epicardial and sub-202 

endocardial optical mapping in atrial preparations from 8 excised human hearts together with 3D 203 

gadolinium-enhanced magnetic resonance imaging to quantify fiber orientations. They found 204 

stable reentries anchored at anatomical tracks with increased transmural fiber angle differences 205 

and interstitial fibrosis. Ablation at these sites confirmed the primary role of these rotors as AF 206 

drivers.   207 

4. Noninvasive mapping of rotors in human AF 208 

The ability of body surface potentials to detect rotors and stable propagation patterns during AF 209 

was described several years ago by our group [Guillem 2009]. A total of 64 electrodes were placed 210 

in both the anterior and posterior torso and only TQ segments free from ventricular content were 211 

analyzed, but the observation of rotors in our studied patients was sporadic. Phase maps 212 
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computed from surface potentials also showed complex patterns in which reentries could be 213 

identified, but they were unstable and lasted for very short time. 214 

Very similar observations were reported in an early inverse problem report during AF [Cuculich 215 

2010]. Patients wore a vest with 256 electrodes and torso and heart volumes, required for solving 216 

the inverse problemand thus estimating epicardial potentials, were segmented from CT images. 217 

Inverse problem was validated by comparing inverse-reconstructed maps with CARTO activation 218 

maps during atrial pacing. After quantification of activation patterns, most activation maps 219 

presented multiple wavelets and only 15% of patients presented activation maps that could be 220 

attributted to rotors. Unfortunately, the lack of simultaneous endocardial mapping technology did 221 

not allowed the validation of those AF inverse problem solutions propagation patterns. However, 222 

indirect location of rotors in the form of highest DF sites and DF gradients was found to be possible 223 

from surface recordings in a latter study [Guillem 2011]. We performed real-time endocardial DF 224 

mapping in order to find the highest DF sites and obtained simultaneous endorcardial and body 225 

surface potentials. We found that it was possible to determine the presence of a DF gradient and 226 

to identify which atrium was faster in basis of the surface DF pattern.  227 

Since highest atrial activation frequencies can be detected from the body surface, we decided to 228 

use this information to detect rotor presence, which should take place at the highest DFs in the 229 

atria. Indeed, by band-pass filtering the potential signals around the highest DF we could observe 230 

stable reentries during 73.1±16.8% of the time vs. 8.3±5.7% for unfiltered potentials [Rodrigo 231 

2014]. Our BSPM phase maps obtained after filtering surface potentials displayed very simple 232 

propagation patterns that resembled those reported by Haissaguerre et al. after solving the 233 

inverse problem of the electrocardiography after adding filtering and phase map analysis to their 234 

reconstructed potentials [Haissaguerre 2013]. Latter studies by Haissaguerre et al. in a cohort of 235 

103 persisent AF patients [Haissaguerre 2014] reported up to 80.5% activations caused by 236 

reentries.  237 
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However, there is indeed room for skepticism around inverse-problem AF maps because the 238 

activation patterns they report are simpler than epicardial maps recorded both by electrical or 239 

optical mapping during AF and have not been validated with simultaneous intracardiac data.  240 

In order to clarify the relation between noninvasive mapping recordings and intracardiac AF 241 

activity, we performed mathematical model simulations to help us interpret some of these 242 

observations that arise from noninvasive studies in AFBy using a simplified model of atria and 243 

torso we could track phase singularities of potentials at both the inner and outer spheres but also 244 

at the intermediate layers and describe the evolution of these phase singularities inside the torso 245 

volume and we termed filaments the connection of phase singularities across layers in our model. 246 

Filaments arising from the driving rotors did reach the outer surface whereas filaments arising 247 

from fibrillatory conduction decreased in number with increasing distances from the atria. This 248 

decrease in the number of phase singularities with the distance was a consequence of mutual 249 

cancellation between nearby filaments with opposed chiralities (see Figure 3). This explains why 250 

our body surface phase maps are quite simpler as compared to the expected complexity of 251 

epicardial potentials.  252 

Our simulations also helped us to understand the instability of rotors on the body surface We 253 

found that deflection of the filament on the outer layer had the same periodicity than the 254 

propagation pattern on the passive hemisphere and thus the electrical activity of the remaining 255 

tissue would most likely be the cause of the filament deflection (see Figure 3). Therefore, an 256 

irregular propagation at distal regions to the driving rotor results in a magnified instability of the 257 

rotor on the torso surface. Subsequent filtering of potentials on the surface at the frequency of the 258 

rotor in presence of a DF gradient reduced the deflection of the filament and thus stabilized the 259 

phase singularity on the outer surface. 260 

According to our results, it becomes evident that the signal processing applied is crucial for 261 

detecting stable phase singularities in non-contact mapping because, even if rotors are present, 262 
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the electrical activity that does not follow a rotational pattern deflects the projection of this rotation 263 

which may lead to misinterpretation of the propagation pattern. Overall, it seems that the 264 

smoothing effect of the torso may be responsible for blurring the most disorganized electrical 265 

activity (i.e. fibrillatory conduction) while emphasizing the more organized activity. In addition, time 266 

course filtering of potentials at the frequency of the rotor may cancel out the activity at other 267 

frequencies than that of the rotor and thus may help in identifying the propagation patterns at the 268 

frequencies of interest.  269 

An additional observation from our simulations was that by recording non-contact potentials of 270 

rotational patterns a mirroring can be found in panoramical mapping. This is the consequence of 271 

the projection of rotational patterns on two contralateral views: the filament can be seen as the 272 

center of rotation that projects in a normal direction to the rotation plane and intersects the torso 273 

surface at two sites, producing two phase singularities. This “mirror effect” may also explain the 274 

consistent finding of at least two simultaneous rotors in non-contact mapping studies 275 

[Haissaguerre 2014]. 276 

4. Stability of rotors in atrial fibrillation 277 

Rotors, defined as functional reentries, are not stationary and may meander or drift, as opposed 278 

to anatomical reentries in which there is a non-excitable anatomical obstacle. Rotor meandering 279 

occurs as a consequence of beat-to-beat variations in core excitability and ionic dynamics while 280 

drifting may occur because of tissue heterogeneities. Computer model simulations allowed 281 

determining that rotor drift aligns with fiber orientation [Berenfeld 1999] and is governed by 282 

inhomogeneities in ion channel expressions [Calvo 2014]. In particular, the different gradients of 283 

main ion channels proteins and particularly the inward rectifier potassium current (IK1) may 284 

explain the attraction of and perpetuation of rotors to in pulmonary veins. [Calvo 2014]. Both in 285 

animals models [Yamazaki 2012] and humans [Hansen2015], rotors seem to anchor at sites that 286 

represent boundaries of areas with different wall thickness [Yamazaki 2012] or sites with 287 
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transmural differences in fiber orientation and increased interstitial fibrosis [Hansen 2015], which 288 

again is coherent with the reported higher incidence of rotors and high DF sites near the PVs 289 

[Sanders 20015, Haïsaguerre 1998]. 290 

The fundamental role of ion channels expression (mainly sodium, L-type calcium and inward 291 

rectifier currents) in rotors behaviors has been also demonstrated both in animals and in-vitro 292 

studies [Martins 2014, Climent 2015]. In a sheep model of long-term AF, an increase of DF during 293 

the transition from paroximal to persistent AF was associated with changes in aciton potential 294 

duration and densities of soldium, L-type calcium and inward rectifier currentss which suggested 295 

that rotors are more stable with the progression of AF [Martins 2014]. In the same direction, 296 

Climent et al. demonstrated that AF induced electrical remodeling harbours rotors with an 297 

increased stability in spite of their increased number of rotors becuase their spatial stability is also 298 

increased [Climent 2015].  299 

In addition to tissue heterogeneities and remodeling, infusion of drugs has also been shown to 300 

affect rotor stability. Sarmast et al. [Sarmast 2003], demonstrated that the number of phase 301 

singularities and their DF in both atria monotonically increased with ACh concentration although 302 

rotors life span decreased. In humans, infusion of adenosine increases the mean DF at the 303 

posterior left atrial wall, leading to an increase in electrogram duration and number of spikes in 304 

surrounding electrodes [Atienza 2011]. We also compared the DFs at peak adenosine effect 305 

during consecutive infusions and found no significant differences between consecutive adenosine 306 

infusions with time (Atienza 2006). Thus, although the temporal stability and reproducibility of the 307 

DFs gradients distribution at peak adenosine effect is preserved, adenosine mediated 308 

acceleration of AF drivers gives rise to electrogram fragmentation of the tissue surrounding the 309 

DFmax domain. On the other side verapamil, a calcium channel blocker, lowers the atrial rate in 310 

AF patients [Bollmann 2002], most likely due to a reduction in rotor stability and rotation frequency 311 

that contributes to fibrillation termination [Climent 2015]. Chloroquine, a blocker of inward-rectifier 312 
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K+ channels showed a similar antiarrhythmic effect with increased rotor meandering and 313 

decreased DFs in a stretch AF model in sheep [Filguerias 2012]. In fact, stretch is another variable 314 

that may affect the stability of reported AF drivers. Already in 2003, Kalifa et al [Kalifa 2003] 315 

showed that an increase in intra-atrial pressure increases the rate and organization of waves 316 

emanating from the superior pulmonary veins underlying stretch-related perpetuation of AF.  317 

Rotor stability also affects EGM characteristics and their stability. Rotor drift may cause 318 

electrogram fractionation as a consequence of: 1) beat-to-beat changes in local directionality of 319 

successive activations wavefronts from the rotor core to the point of recording due to instant 320 

variations on frequency activation [Zlochiver 2008] and 2) Doppler effect due to wave front 321 

acceleration ahead of drifting rotors giving rise to intermittent local fractionation [Atienza 2011].  322 

When a rotor drifts towards the recording electrode, there is a shortening in the atria-to-atria 323 

activation times that results in EGM fractionation, whereas when the rotor is stable the EGMs are 324 

periodic and monomorphic. Therefore, from a theoretical point of view, rotors themselves present 325 

some instability that is amplified at their periphery, which complicates the detection of stable rotors 326 

by any mapping technology.  327 

DF mapping has been clinically used to identify rotor location, considering that sites activating at 328 

highest DF would be those driving AF. Consequently, the stability of DF regions may indicate that 329 

AF drivers are stable and could be isolated. To date, most of these studies analyzing AF spectral 330 

features acquired signals using sequential mapping with varying recording durations, casting 331 

doubts with regards to the stability and reproducibility of the DF determinations, since the spatial 332 

distribution of DF on maps depends upon the time at which each site is sampled. Indeed, in the 333 

study of Sanders et al. fluctuations in DF values as measured in the coronary sinus over a period 334 

of 50 min were found during sustained AF, but without a significant slowing or acceleration trend. 335 

Spatio-temporal stability analyses were also reported by Atienza et al. [Atienza 2006], and found 336 

that in 33 patients in whom consecutive DF measurements at 3 stable biatrial positions every 2 337 
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minutes fluctuated with an average standard deviation of 0.25 and 0.21 Hz in paroxysmal and 338 

persistent AF patients, respectively, without significant temporal trend. Similarly, Lazar et al [Lazar 339 

2004], found an excellent agreement among recorded RA frequencies (r=0.99) and PV 340 

frequencies (r=0.93) during longer-term recordings. Moreover, a similar DFmax sites location and 341 

DF values was observed in five patients undergoing a redo procedure following a first DF guided 342 

ablation with clinical recurrence [Atienza 2009]. Thus, long-term measured DFs in different parts 343 

of the atria using several approaches and varying order consistently demonstrated the presence 344 

of spatio-temporal stability of DF distribution over periods of time spanning several minutes in the 345 

atria of patients with both paroxysmal and persistent AF.  346 

There are, indeed, large discrepancies regarding rotor stability across studies are summarized in 347 

Table 1. Whereas rotors appear as unstable in some studies and account for very few consecutive 348 

rotations [Yamazaki 2009, Ghoraani 2013, Haïsaguerre 2014, Rodrigo 2014], they have been 349 

reported to last for up to several minutes [Schluesser 1992, Narayan 2012]. These discrepancies 350 

may be largely attributed to methodological differences.  351 

First important difference among studies is the size of the mapped area. Obviously, the larger the 352 

mapped area, the greater the chances of finding rotors. This may explain the differences between 353 

wide-area optical mapping [Skanes 1998] and high-density epicardial or endocardial electrical 354 

maps [Konings 1994, Lee 2014] but also between point-by-point [Lin 2013] or multipolar catheters 355 

sequential mapping [Atienza 2011, Ghoraani 2013] and endocardial baskets that provide 356 

simultaneous wide endocardial recordings [Narayan 2013]. 357 

There are also relevant differences in rotor stability between invasive [Narayan] and noninvasive 358 

[Rodrigo 2014, Haïsaguerre 2014] approaches that can be attributed to the distance from the 359 

electrical sources and the recording point. According to our mathematical simulations, electrical 360 

activity at sites different than the rotor distorts the pattern caused by the rotor itself [Rodrigo 2014]. 361 

Although rotors can be stabilized by signal processing, filtering does not completely remove the 362 
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effect on the ECG at other frequencies and it does not remove at all the effect of planar waves 363 

and wavebreaks taking place at the rotor frequency.  364 

In addition to the different mapping technologies, the significant reported differences between 365 

clinical epicardial [Konings 1994, de Groot 2010] and endocardial [Narayan 2013] electrical 366 

mapping would be explained attending to recent optical mapping experiments from isolated 367 

human atria which reported that there is a higher incidence of rotors in the endocardium than in 368 

the epicardium [Hansen 2015] and that reentries taking place at a distant plane or at a plane 369 

different than that mapped may appear as unstable breakthroughs and multiple-wavelets. 370 

Finally, the disparity in the reported presence of rotors among studies can be attributed to the the 371 

applied signal processing and analysis. Narayan [Narayan 2013], Haïsaguerre [Haïssaguerre 372 

2014] and ourselves [Rodrigo 2014] applied a quite restrictive band-pass filtering in order to 373 

stabilize rotors. Although this can be a matter of debate, we have shown that this filtering mode 374 

attenuates the effect of atrial regions activating at frequencies different than those driving the rotor 375 

[Rodrigo 2014].  376 

5. Clinical implications of rotors and rotor-guided ablation 377 

Rotor-guided ablation has emerged in the recent years and has opened new perspectives into 378 

the therapeutical approaches for AF. Sanders et al. [Sanders 2005] were able to identify localized 379 

sites of high-frequency activity during AF in humans and showed the different DF distributions in 380 

paroxysmal and permanent AF. A latter study by Atienza et al. showed that it was feasible and 381 

effective to ablate the highest DF sites by performing real-time DF mapping in humans [Atienza 382 

2009]. The multicenter RADAR-AF study showed that in paroxysmal AF patients, highest DF 383 

ablation is noninferior to the empirical isolation of PVs and was associated with a lower incidence 384 

of adverse events [Atienza 2014]. However, in persistent AF patients, the combination of CPVI 385 

with DF sites ablation offered no incremental benefit and tended to increase complications rate.  386 
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In contrast, rotor-guided ablation using either endocardial or inverse computed epicardial 387 

recordings have reported higher AF freedom rates that the standard CPVI approach in persistent 388 

AF patients. Narayan et al. reported a significantly improved outcome in persistent AF patients 389 

when the sources found by FIRM mapping were ablated together with a conventional anatomical 390 

ablation [Narayan 2013]. Their reported success for persistent AF patients is striking: 82% vs. 391 

45% for empirical PVI. Similar results were reported for rotor-guided ablation based on the inverse 392 

problem resolution of body surface recordings, with an 85% freedom of AF at 1 year.   393 

Acute endpoint termination is not achieved in most patients after ablation of FIRM-identified 394 

sources, or DF-targeted patients, and this constitutes another source of criticism for these rotor-395 

guided ablation strategies. However, their supporters claim that even after the critical sites for 396 

reentry are ablated, reentry can take place at other sites, but their elimination hampers the 397 

appearance of new sustained episodes.   398 

6. Future perspectives 399 

Rotor-guided ablation has opened new perspectives into the therapeutical treatment for AF. 400 

However, there are still open questions that will need to be addressed in the near future. A wider 401 

use of both FIRM and DF mapping based ablation will help to confirm the reproducibility of such 402 

approaches by independent laboratories. In addition, the noninvasive detection of AF drivers will 403 

potentially help in selecting patients for AF ablation and planning their ablation procedures. 404 

Current studies are underway that aim at validating the noninvasively computed propagation 405 

patterns with the actual electrical patterns in AF patients. These studies may clarify the accuracy 406 

of noninvasive approaches and its potential application to patient identification. In the long run, 407 

development of new technological solutions together with more realistic research models may be 408 

the key for understanding AF mechanisms and develop effective therapeutical approaches. 409 
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Table 1. Selected references for rotor/reentry presence in the atria and atrial fibrillation 699 

Reference Mapping 
technique 

Patients/animals Prevalence Duration/number 
of rotations 

Allessie 1976 Multiple 
synchronous 
microelectrode 
recordings 

Isolated 
segments (15 X 
15 mm) of rabbit 
left atrium 

Not reported Not reported 

Allessie 1984 Two endocavitary 
mapping 
electrodes 
containing 960 
leads and 
recording from 
192 different sites 
simultaneously. 

6 isolated blood-
perfused canine 
hearts, perfused 
with ACh 

 Atrial fibrillation 
or flutter lasting 
from several 
seconds to more 
than half an hour 

Schuessler 1992 Electrical 
mapping, 256 
electrodes 

11 Dogs   
(Langendorff 
perfused) 
with ACh  

57% to 100% in 
a dose 
dependent 
manner with 
ACh 
concentrations 

Up to 2 minutes 
(2100 cycles) 

Skanes 
Circulation. 1998 

Optical mapping 6 sheep 
(Langendorff 
perfused with 
ACh) 

12/20 
recordings 
showed 
spatiotemporal 
periodicity 

Up to 3-4 sec, 4-
14 consecutive 

Mandapati  
Circulation. 2000  

Optical mapping 7 sheep 
(Langendorff 
perfused with 
Ach) 

Not reported Not reported 

Chen 
Cardiovasc Res. 
2000 

Optical mapping 6 sheep 
(Langendorff 
perfused with 
ACh) 

Not reported Not reported 

Sarmast 
Cardiovasc Res. 
2003 

Optical mapping 7 sheep 
(Langendorff 
perfused with 
Ach)  

Not reported 1 to 2.1 rotations 
depending on 
ACh dose and 
chamber 

Yamazaki 2009 Optical mapping 24 sheep 
(Langendorff 
perfused) 

16.6% to 93.2% 
depending on 
stretch, Ach, 
RYA, CAFF 

1.1 to 6.2 
consecutive 
rotations 

Atienza 2011 Spiral catheter in 
LA 

5 paroxysmal AF 62% Not reported 
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Filgueiras-Rama Endocardial -
epicadial optical 
mapping 

30 intact isolated 
sheep hearts 

Not reported Up to 3.7 
rotations 
depending on 
chloroquine dose 

Cuculich 
Circulation. 2010  

ECGi 26 patients (11 
paroxysmal) 

15% of patients 
(only in non-
paroxysmal 
patients) 

Rarely > 1 
rotation 

Narayan 2012 FIRM mapping 92 patients (72% 
persistent) 

97% of patients 
with sources, 
70% of time 

Tens of minutes 

Ghoraani 2013 Circular catheter 
in LA 

32 patients, 88% 
persistent. 

66% of patients Few (9%) lasted 
2.5 seconds, most 
non-sustained 
(610 ms) 

Lin 2013 Sequential 
electroanatomical 
mapping in LA 

53 patients (31 
persistent, 22 
long-standing) 

15% patients Not reported 

Haïssaguerre 
2014 

ECGi 103 persistent 
AF patients 

80.5% of time  Average 2.6 
rotations. Max 7 
rotations 

Rodrigo 2014 BSPM 14 AF patients  73.1% of time 2.8 rotations (I 
THINK OUR DATA 
SHOWS A 
NAVERAGE OF 
ABOUT 7 
ROTATIONS - 
~340 msec) 

Hansen 2015 Endocardial -
epicadial optical 
mapping 

6 explanted 
human heart 
preparations 

75% 
preparations 

Not reported 
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Figure legends 701 

 702 

Figure 1. Schematic representation of trigger initiation of AF and rotor maintenance. An ectopic 703 

beat causes a concentrical propagation (A) that can find a discontinuous propagation or line of 704 

block that can curve the propagation wavefront and initiate a rotor(B). A rotational pattern can 705 

then be observed at the plane of rotation of the rotor, such as the epicardium in (C) whereas at 706 

the epicardium the propagation pattern is consistent with a breakthrough. When the rotor seats 707 

transmurally, then a a rotational pattern may not be seen neither in the epicardium nor the 708 

endocardium and breackthroughs may be seen in both layers (D) 709 

 710 

Figure 2. Schematic representation of the hierarchical activation during AF. Rotors,or functional 711 

reentries around an unexcited core, present some degree of spatiotemporal periodicity and thus 712 

EGMs are quite regular. Spectral analysis at these sites allows identifying a dominant peak which 713 

matches the activation frequency of the rotor, which is the fastest in the tissue. At nearby sites, 714 

the wavefront cannot rotate at the same frequency than the rotor, beause this wold require and 715 

exceedingly high propagation velocity and thus the propagation wavefront fractionates and some 716 

activations are blocked. Since there are beat-to-beat variations in activation times and directions 717 

at the boundaries of the rotor, EGMs at these sites have variable morphology and are fractionated. 718 

In the frequency domain, these beat-to-beat variations in activation times result in multiple peaks 719 

in the spectrum. At more distal sites, the wavefront is less curved and thus there are less 720 

wavebreaks and a more regular activity. Since some activations are missed at the boundaries of 721 

the rotor, the activation frequency that can be observed in the frequency domain is lower than at 722 

the rotor site.  723 

 724 
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Figure 3. Propagation of rotational patterns from the epicardium to the torso surface. Rotational 725 

patterns are projected from the epicardium towards the torso surface.The center of rotation of 726 

rotors across intermediate layers (filament) is deflected by the main propagation direction in the 727 

remaining atria. Complexity is decreased across layers because filaments arising from counter-728 

rotating sources cancel out with each other. Instability in the main propagation pattern in the tissue 729 

causes an unstable pattern on the body surface, that can be stabilized by band-pass filtering of 730 

surface potentials at the rotor frequency.  731 

 732 

    733 
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Figure 1 734 
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 736 

 737 
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Figure 2 739 

740 
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Figure 3 744 
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