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Abstract

In this paper, we present an approach for the development of spoken di-
alog systems based on the statistical modelization of the dialog manager.
This work focuses on three points: the modelization of the dialog manager
using Stochastic Finite-State Transducers, an unsupervised way to generate
training corpora, and a mechanism to address the problem of coverage that
is based on the online generation of synthetic dialogs. Our proposal has been
developed and applied to a sport facilities booking task at the university. We
present experimentation evaluating the system behavior on a set of dialogs
that was acquired using the Wizard of Oz technique as well as experimenta-
tion with real users. The experimentation shows that the method proposed
to increase the coverage of the Dialog System was useful to find new valid
paths in the model to achieve the user goals, providing good results with real
users.
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1. Introduction

1.1. Background literature

A dialog system can be viewed as a human-machine interface that recog-
nizes and understands speech input and generates a spoken answer in succes-
sive turns in order to achieve a goal, such as obtaining information or carrying
out an action. The development of spoken dialog systems is one of the main
objectives of spoken language technology research. Voice-driven applications
such as in-car navigation systems or telephone information services are com-
mon examples of spoken dialog systems. Most dialog systems are oriented
to restricted domain tasks, mixed initiative, and telephone access; however,
several new applications have appeared in portable devices such as mobile
phones or tablets.

Different modules are necessary to be able to carry out the final goal of a
spoken dialog system: a Speech Recognition module converts the audio signal
into words; an Understanding module converts these words into a semantic
representation; a Dialog Manager decides the next system action in order to
fulfill the user’s needs; an Answer Generator converts the action of the sys-
tem into one or more sentences; and a Text-to-Speech Synthesizer converts
the system sentences into audio. Each module has its own characteristics
and the selection of the most convenient model for it varies depending on
certain factors: the goal of each module, the possibility of manually defin-
ing the behavior of the module, or the capability of automatically obtaining
models from training samples. The use of statistical techniques for the devel-
opment of the different modules that compose the dialog system has been of
growing interest over the last years. These methodologies have traditionally
been applied within the fields of Automatic Speech Recognition and Natural
Language Understanding (Levin and Pieraccini, 1995), (Minker et al., 1999),
(Segarra et al., 2002), (Esteve et al., 2003), (He and Young, 2003), (Raymond
and Riccardi, 2007), (Hahn et al., 2010), (T{ir and Mori, 2011).

The Dialog Manager is in charge of selecting the action that the dialog
system must perform at each turn. This is usually done by taking into
account the last user turn and the history of the dialog. Thus, a Dialog
Manager can be seen as a function that maps the user turn to an action. Even
though there are models for dialog management in the literature that are
manually designed using hand-written rules, over the last years, approaches
that use statistical models to represent the behavior of the Dialog Manager



have been providing compelling results. Statistical models can be trained
from real dialogs, modeling the variability of user behaviors.

In the literature, statistical models have been successfully used to select
the system action for each user turn. These include Multi-layer Perceptrons
(Griol et al., 2008), (Hurtado et al., 2006), Maximum a Posteriori classi-
fiers (Hurtado et al., 2005), Example-Based modelization (Lee et al., 2007),
Bayesian networks (Martinez et al., 2009), (Meng et al., 2003), (Paek and
Horvitz, 2000), Finite State Transducers (Hori et al., 2009), (Hurtado et al.,
2010), and Partially Observable Markov Decision Prossess (Williams and
Young, 2007). These approaches are usually based on modeling the differ-
ent processes probabilistically and learning the parameters of the different
statistical models from a dialog corpus. In (Griol et al., 2014), a technique
for automatic acquiring dialog corpora in which the simulated dialogs are
automatically generated, is applied to develop a Dialog Manager based on
Multi-layer Perceptron classifiers for four different tasks.

In a previous work, we presented an approach to dialog management
based on the use of Multi-layer Perceptrons (Griol et al., 2008). That ap-
proach have in common with the one presented in the current work the use of
a data structure -dialog register- that contains all the information provided
by the user throughout the dialog without considering the order in which the
information is provided. The main difference between the two approaches is
that in the current proposal the next action to be taken by the system at a
given point of the dialog is determined not only by the previous history of
the dialog but also by a look-ahead mechanism that estimates the quality of
the possible finalizations of the dialog from this point.

One of the most commonly used approaches for dialog modeling is based
on the use of Partially Observable Markov Decision Processes (POMDPs)
(Jurcicek et al., 2012), (Williams and Young, 2007). The algorithms of pa-
rameter estimation used in POMDPs are mainly based on Reinforcement
Learning techniques (Sutton and Barto, 1998).

A first approach that uses Reinforcement Learning techniques for the es-
timation of the Dialog Manager consists of modeling human-computer inter-
action as an optimization problem using Markov Decision Processes (MDPs)
(Levin and Pieraccini, 1997), (Levin et al., 2000), (Singh et al., 1999).

Partially Observable MDPs (POMDPs), which are an extension of the
MDPs, outperform MDP-based dialog strategies. In POMDPs, the dialog
state is not known with certainty (as opposed to MDPs); therefore, the model
needs to have a representation for the distribution of the dialog states (belief
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states). The main drawback of these approaches is the large state space re-
quired by practical spoken dialog systems, whose representation is intractable
if represented directly (Young et al., 2007). Therefore, those approaches are
limited to small-scale problems. In the last few years, many studies have been
conducted to implement practical spoken dialog systems based on POMDPs.
An approach that scales the POMDP framework by the definition of two
state spaces is presented in (Young et al., 2010). Another approach based on
the use of hierarchical optimization is presented in (Cuayahuitl et al., 2007).
Also, an approach that uses a Bayesian update of the dialog states has been
presented in (Thomson and Young, 2010). Besides the computational com-
plexity, the POMDP models need a large number of dialogs to learn good
policies. This has been addressed in part by using Gaussian Processes and
directly learning from interactions with users (Gasi¢ et al., 2011).

The approaches based on POMDPs maintain active in the belief state
all possible states with their attributes values. Differently from them, in the
current proposal we modelize the uncertainty by means of a confidence score
for each attribute-value pair -belief at attribute level-. Thus, we have active
only one state at each point of the dialog allowing our approach to deal with
realistic state space sizes.

Statistical models have in common their need to have enough training
samples to estimate parameters. Since it is very difficult and time consum-
ing to obtain labeled dialog corpora, even with the Wizard of Oz technique,
many works have been developed to automatically generate training dialogs
(Georgila et al., 2005), (Schatzmann et al., 2006), (Hurtado et al., 2007),
(Keizer et al., 2010), (Ai and Litman, 2011). This is usually done by de-
veloping a user simulation module that interacts with a preliminary system
that can be manually defined or obtained by a bootstrapping process.

An interesting initiative to evaluate this kind of systems was the Dia-
log State Tracking Challenge (Williams et al., 2013). In it, differently from
previous Spoken Dialog Evaluation challenges (Black et al., 2010), the in-
teraction progress is measured in terms of finding the correct dialog state
that describes the result of the interaction until a certain time t. The dialog
state tracker takes as input all of the observable elements up to time ¢ in a
dialog, including all of the results from the automatic speech recognition and
spoken language understanding components, and external knowledge sources
such as databases and models of past dialogs. It also takes as input a set
of possible dialog state hypotheses, where a hypothesis is an assignment of
values to slots in the system. The tracker outputs a probability distribution
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over the set of hypotheses. This is adequate to evaluate heterogeneous Dia-
log Managers, in particular, those based on POMDPs that works considering
multiple state hypotheses.

The dialog model proposed in this article is based on the transduction con-
cept and on the use of Stochastic Finite-State Transducers (SFST') (Casacu-
berta and Vidal, 2004). This approach is based on the assumption that the
entire dialog history can be condensed into a finite representation (a dialog
state). Based on this state and on the user utterance, the system outputs an
answer and moves to another state. Preliminary versions of this work have
been presented (Hurtado et al., 2010), (Planells et al., 2012).

1.2. Our approach to Dialog Management

In this approach, given a state of the model and a user turn, a system
action is selected and a transition to a new state is performed. Therefore,
dialog management is based on the modelization of the sequences of system
action and user turn pairs. Then, a dialog describes a path in the transducer
model from its initial state to a final one.

Since the space of all combinations of possible sequences of system action
and user turn pairs is very large, we establish a partition in the space of
sequences of pairs. We define a data structure, called Dialog Register (DR),
that contains a summary of the information (concepts and attribute values)
that is provided by the user throughout the previous history of the dialog.
Since the same information can be provided in different order, different se-
quences of pairs can lead to the same DR. We represent the history of the
dialog throughout the corresponding DR. This representation makes the
estimation of a statistical model from the training data manageable. This
reduction in the space of all the histories of the dialogs had previously been
introduced in another dialog system proposed in our laboratory (Griol et al.,
2008). In recent years, within the framework of the POMDPs for dialog man-
agement, there have been some approaches to state compression to reduce the
search space and make the dialog management problem tractable. Among
these works we can highlight (Crook and Lemon, 2011), (Cuayhuitl et al.,
2011), where the state compression is done after the state space definition.
In our approach the definition of the DR implicitly includes a reduction of
state space.

In many dialog applications that interact with an Information System,
especially where the system is limited to provide the information required
by the user, the Dialog Manager has sufficient information supplied by the



DR to decide the next system action. However, in the case of tasks where
the system can update the data of the Information System as a result of
interaction with the user (as is the case of EDECAN-SPORTS task (Hurtado
et al., 2012)), the dialog manager needs to have additional information to take
decisions about its next action. These kinds of more complex dialog systems
include an Application Manager, which is a module that communicates the
Dialog Manager with the Information System. For example, a sentence like
I want to book a basketball court on Monday afternoon, can induce a booking
(update) in the Information System or an error message when there is no
court available.

In order to take into account this information, we define a data structure
called Dialog State (DJS), which includes the following: all the information
provided by the user throughout the dialog that is stored in the DR (codified
in terms of not-supplied, low-confidence, or high-confidence), the last request
to the Application Manager, a summary representation of the last database
query result, and the last system answer. Each DS corresponds to a state in
the SFST model.

The success of statistical approaches depends on the quality of the data
used to develop the dialog model. Considerable effort is necessary to acquire
and label a corpus with the data necessary to train a good model. In order to
estimate the SF ST parameters, a large number of labeled dialogs is required.
Due to the high cost of acquiring dialogs with real users a dialog simulator
is used. We develop a process in which dialogs are automatically simulated.
Unlike other similar proposals in which user simulation takes deterministic
and non-deterministic decisions (Keizer et al., 2010), our proposal is based
on generating completely random sequences of user and system dialog act
pairs.

As in other approaches (Williams and Young, 2007), we consider a dialog
act to be a detailed structure rather than considering it just a label that
represents the general intention of the turn, such as in DAMSL (Core and
Allen, 1997). In our system a dialog act is a frame containing concepts and
attribute-value pairs. Once a dialog has been generated, a set of correctness
criteria is applied to classify the dialog as valid or not valid. All the valid
simulated dialogs are used to learn the SF'ST parameters.

In general, statistical methodologies for dialog management have a rea-
sonable performance in a laboratory environment, but they can have some
problems when they are applied to more realistic environments. They have
to deal with the lack of robustness when there are unexpected user utter-
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ances or with relevant recognition or understanding errors. Even though a
large number of labeled training samples of dialogs is automatically supplied
for the estimation of the Dialog Manager parameters, coverage problems can
arise. In a dialog with a real user, the dialog manager can get to a situa-
tion (a state of the transducer and a user turn) that was never seen in the
training samples and therefore has no information on what action should be
performed next.

Some proposals have been done to handle uncertainty and thereby to pro-
vide the Dialog Manager with mechanisms to improve its robustness against
recognition or understanding errors in the framework of POMDPs. (Gasi¢
et al., 2008) show that POMDPs system can learn noise robust policies and
that n-best outputs from the speech understanding component can be used
to improve robustness. In (Henderson et al., 2008), dialog systems based on
Information State Update are provided with a hybrid model that combines
reinforcement learning with supervised learning; they also use linear function
approximation to deal with states that were not in the training data. Differ-
ently from these approaches that learn how to deal with uncertainty during
the training process our approach is based on the use of dialog generation
during the test process.

This work makes three main contributions. First, we have developed and
evaluated a Dialog Manager based on SFSTs whose structure and parameters
are automatically estimated from dialog corpora. Second, we have developed
a procedure to automatically generate simulated dialogs in terms of system
and user dialog act pairs. We have also proposed a procedure to select the
correct dialogs from the simulated dialog set. As a result, we have obtained
a very large corpus of dialogs to estimate the Dialog Manager model. Third,
we propose the use of an online dialog generator to solve coverage problems.
Every time an unseen situation occurs (i.e., there is no answer in the model
for the user turn in the current state), a simulator is used to obtain a set of
valid dialogs that share the same first turns with the current dialog. These
dialogs are used to estimate the most likely system answer to the unseen
situation.

Our evaluation was carried out in the context of a spoken dialog system
for a booking task in a sport facilities in Spanish. These experiments confirm
that this approach has a reasonable behavior with real users and can be used
in closed-domains, that is, in specific task domains where user and system
actions are defined a priori.

The rest of the paper is organized as follows: Section 2 presents the archi-
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tecture and the different modules of our dialog system; Section 3 describes
the application task; Section 4 describes the Dialog Manager model based on
SFSTs; Section 5 introduces the procedure to automatically generate sim-
ulated dialogs; Section 6 proposes the use of an online dialog generator to
solve coverage problems, and, finally, the experimental evaluation and some
conclusions are presented.

2. The EDECAN-SPORTS dialog system

Acoustic
models

Language
Model

Information
System

Query/Answer

User
Frames

Frames
ASR w| Understanding - Dialog 4 w| Application
ld module 7”1 Manager | 7”1 Manager
Sentence
User
Frames
System
'(Eableh_ Frames
raphics .
P Graphical Data
Interface Y
Answer

Generator

TTS Sentence

Figure 1: Architecture of the dialog system.

A task called EDECAN-SPORTS that consists of mixed-initiative dialogs
for booking sport facilities using spontaneous speech was designed (Hurtado
et al.,, 2012). The definition of the semantics of the EDECAN-SPORTS
task was carried out considering the different functionalities required for the
booking system and the information required to complete them.

Figure 1 presents a scheme of the dialog system that was developed. The
system was implemented to allow the integration, substitution and collabo-
ration of the modules even if they are located in different computers. The
system contains the different modules of a dialog system, (i.e., the Auto-
matic Speech Recognizer, the Understanding module, the Dialog Manager,
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the Answer Generator, and the Text-to-Speech module). In addition, it con-
tains specific modules that are referred to as the Application Manager and
the Graphical Interface. The Application Manager controls the access to
the database, not only to provide information but also to modify it when a
booking or a cancellation must be made. The Graphical Interface is used
by the system to give some information to the user in terms of tables and
text on the screen. It must be noted that the Automatic Speech Recognizer,
the Understanding module, and the Dialog Manager are based on statistical
models that are learned from training samples, as described in the following
sections.

2.1. Automatic Speech Recognition and Understanding

The design of the dialog system allows the integration of independent
Automatic Speech Recognition (ASR) modules to the architecture.

Syntactic/
Semantic
Stochastic
Models
. Rules
(Automatic
Learning)
Pair Sequence
Written i segment/
Sentence Lexical/ semantic label Frame FRAME
—— Semantic Generation
Decoding
| want: NULL (BOOKING)
| want to book a to book:(BOOKING) SPORT: Basketball
basketball court next a basketball court:SPORT DATE: next [Thrusday]
Thursday in the moming next Thursday:DATE HOUR: morning
in the morning:HOUR

Written Sentence Pair Seqquence — >  FRAME

Figure 2: Understanding module diagram.

The main feature of our approach to speech understanding (Garcia et al.,
2011), (Ortega et al., 2010), (Segarra et al., 2002) is the integration of syn-
tactic and semantic constraints in a single stochastic finite-state automaton.



Learning samples

(BOOKING) SPORT DATE HOUR

(AVAILABILITY) SPORT

(CANCELLATION) COURT-NUM

{ Learning samples. Learning samples

(BOOKING) SPORT
unareserva | "ttt de baloncesto
resérveme tenis
reservar fatbol

Semantic model \
/Semantic Unit models

Integrated model

Figure 3: Understanding model.

The chosen semantic representation is the frame, which consists of a set
of concepts and their associated attribute-value pairs. This representation
is especially useful when the application runs in an information service that
requires access to a database, so the understanding module must complete
a set of fields to accomplish a requirement (slot-filling). The understanding
module works in two phases as Figure 2 shows.

The first phase consists of a transduction of the input sentence in terms of
an intermediate semantic language. In the example in Figure 2, the sentence

I want to book a basketball court next Thursday in the morning is translated as
follows:

Intermediate Semantic Representation:
I want: NULL

to book: (BOOKING)

a basketball court: SPORT

next Thursday: DATE

in the morning: HOUR

In the second phase, a set of rules translates this intermediate representation in
terms of frames. As the intermediate language is close to the frame representation,
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this phase only requires a small set of rules to construct the frame. This second
phase consists of the following: the deletion of irrelevant segments of the input
sentence; the reordering of the relevant concepts and attributes that appeared in
the user sentence following an order which has been defined a priori; the automatic
instantiation of certain task-dependent values, etc. This last action consists of
the conversion of dates and hours into their canonical values. For example, “on
September the 14th” into “[Sunday-2014-14-09]”.

In this phase, the sentence I want to book a basketball court on September the
14th in the morning is translated as follows:

Semantic Representation (frame):
(BOOKING)

SPORT': basketball

DATE: [Sunday-2014-14-09]

HOUR: morning

The goal of the first phase is to find the best sequence of semantic units given
the input sentence; a two-level statistical semantic modelization is used in this
phase (Segarra et al., 2002). Figure 3 shows a schema of the two-level statistical
semantic model. The meaning of each sentence is represented as a sequence of
semantic units, and a segmentation of the sentence in terms of the corresponding
semantic units is associated to it. From an annotated training corpus, we learn two
kind of models: one of them (the Semantic Model) represents the concatenations
of semantic units, and the other (Semantic Unit Model) represents the lexical
realization of each semantic unit (i.e., the model of sequences of words associated
to each semantic unit). In both cases, the models used for this task are bigrams,
(i.e., bigrams of semantic units and bigrams of words into each semantic unit).
The decoding process consists of a Viterbi search over the integrated network that
supplies not only the best sequence of semantic units but also the segmentation of
the input sentence associated to that best sequence. This segmentation is used in
the second phase of the semantic module to associate the values to the attributes
after a normalization process.

Let W be the vocabulary of the task, and let V' be the set of intermediate
semantic units. Given the input sentence w = wyws - - - w,, € W* | the understand-
ing process consists of finding the sequence of semantic units © = vivg - - - vy, € V*
that maximizes the probability:

0 = argmax P(w|v)P(v)
veV*

The term P(w|v) is the probability of the sequence of words w given the se-
quence of semantic units v. We estimate this probability (following the Viterbi
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algorithm) as the maximum for all segmentations of w in m segments.

P(wlv) = . l1211a)l< 71{P(w1, coowy o) - Plwg 41,0, w|vg) -

s Plwg, 1wy |vg) - Plwg, (41, - ,wn|vm)}
where, 1l <1 <l <...<lp<...<lp 1 <n.

If bigram models are used, the probability of a segment of words wy, |41, ,w;
given the associated semantic unit v, can be expressed as:

k

Uy

P(wlk71+1,. . .,wlk]vk) = H P(wi]wi_l,vk)
i=lp_1+1

And, the term P(v) is the bigram probability of the sequence v:

P(v) = Hp(vj!vj—l)

To learn the understanding models, a corpus of segmented and labeled sen-
tences is needed. Each sentence of the corpus must be segmented and each of its
segments must have a semantic label assigned to it. The label assigned to each
segment represents a semantic interpretation of that segment. From a segmented
and labeled corpus two types of finite-state models are estimated: the Semantic
Model (an automaton) is estimated from sequences of semantic labels; and a Se-
mantic Unit Model (an automaton) for each semantic label is estimated from all
segments of words associated to that semantic label.

In order to perform the understanding process, an integrated model (automa-
ton) is generated by replacing each state in the semantic model with the automaton
that corresponds to the semantic label represented by that state.

2.2. Dialog Manager

In a dialog system, the Dialog Manager (DM) is the module that is respon-
sible for choosing the best system answer at each dialog turn. The dialog model
proposed in this paper is based on the transduction concept and on the use of
Stochastic Finite-State Transducers. Given a state of the model and a user turn,
the DM generates an answer and a transition to a new state is done. Dialog man-
agement is therefore based on modeling sequences of pairs: user turns and system
turns. A dialog can be viewed as a path in the transducer model from its initial
state to a final state in which the user has reached his goal.
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The DM model covers the most common user behavior. However, during a
dialog with real users, it needs to deal with unexpected situations. To address this
problem, the DM is able to dynamically increase the coverage of the dialog model
to cover those situations that are not seen in training. The dialog model and the
strategy for increasing the coverage of this model are two of the main contributions
of this work and are detailed in following sections.

The system answers are represented in terms of system dialog acts. An exam-
ple of a system dialog act is shown below:

System dialog act:
(CONFIRMATION-ACTION-BOOKING)

SPORT: basketball

DATE: tomorrow

HOUR: 10:00

COURT-NUMBER: 3

From this system dialog act, the Answer Generator would generate the sentence
If you want to play basketball tomorrow, court number 3 is available at 10:00 . Do
you want to book this court?.

2.3. Application Manager

In some dialog systems, the dialog manager makes its decisions based only on
the information provided by the user in the previous turns and its own model. The
main difference between some of these slot-filling tasks and the EDECAN-SPORTS
task is that, in this last task, the dialog manager not only provides information
but also modifies the application data. Therefore, the dialog manager generates
the following system answer taking into account both the information provided
by the user and the information generated by the module that controls the sport
facilities booking application, which we call the Application Manager (AM).

The AM performs the queries to the information system and updates it when
necessary. For example, the information system for the EDECAN-SPORTS task
must be updated when BOOKING or CANCELLATION actions have been performed.

In dialog tasks of this kind, the result of the queries to the AM has to be
considered in order to generate the system answer. For instance, in order to book
the facilities, if there is no court available, the system can suggest a change in the
user restrictions (i.e., the AM verifies whether or not it is possible to perform the
booking by changing the hour). If only one court is available, the system confirms
whether or not everything is correct before making the booking (as shown in the
previous example). Finally, if there is more than one court available, the system
asks which court should be booked.
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2.4. Multimodal interface

Once the DM has decided the system answer, the answer is sent to the Answer
Generator, which is responsible for generating two different types of answers: oral
answers and graphical answers. For the generation of an oral answer, a set of pre-
designed templates is used; with these templates, the Answer Generator generates
a sentence that is sent to the Text-to-Speech (77'S) module. The generation of
the graphic answer is a bit more complex. First, the information provided by
the DM is processed to generate a set of graphical elements. Second, semantic
information is added to some graphical elements, mainly buttons; this semantic
information is sent back to the DM if the user presses the button. Thus, the
semantic interpretation of the user actions on the graphical interface is fairly easy.
Finally, the semantically labeled graphical information is sent to the Graphical
Interface module which will be responsible for displaying it on the screen. Figure
4 shows a view of the screen at a moment of the interaction.

Escenario 01 01

Edecan Sports

En la pantalla le indicamos las pistas que podemos reservarle.
Seleccione la pista que desea reservar

BALONCESTO

‘ 15-00-2010 ‘ 16-00-2010 ‘ 17-00-2010
(jueves) (viernes) (sabado)

15.00 I [ I

Figure 4: Screenshot of the visual information for the user.
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3. The EDECAN-SPORTS task

A sport facilities booking task was defined within the framework of the EDE-
CAN project (Lleida et al., 2006). This task is called EDECAN-SPORTS. It con-
sists of mixed-initiative dialogs where users can book a court, cancel an existing
booking, search for available facilities, or view their own bookings.

The semantic representation of user turns is a frame structure that includes the
different functionalities required for the task: a set of 4 task-dependent concepts
representing user intentions (BOOKING, CANCELLATION, AVAILABILITY, BOOKED),
and a set of 3 task-independent concepts (ACCEPTANCE, REJECTION, NOT-UNDERSTOOD).
Up to 6 attributes can be attached to each concept (SPORT, HOUR, DATE, COURT-TYPE,
COURT-NUMBER, URDER-NUMBER).

An example of the semantic interpretation of an input sentence is shown below:

User Turn:
I want to book a basketball court for tomorrow morning.

Semantic Representation:
(BOOKING)

SPORT: basketball

DATE: tomorrow

HOUR: morning

Dialog Manager answers are represented using a set of 21 actions. There are
actions for opening and closing the dialog, confirming user supplied attributes,
asking for more information, or showing information to the user. Each action can
have some attributes with the same names as the user frame attributes.

An example of the labeling of a dialog manager turn is shown below:

Dialog Manager Turn:
If you want to play basketball tomorrow, court number 3 is available at 10:00 . Do
you want to book this court?

Semantic Representation:
(CONFIRMATION-ACTION-BOOKING)

SPORT: basketball

DATE: tomorrow

HOUR: 10:00

COURT-NUMBER: 3
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The EDECAN-SPORTS corpus (Hurtado et al., 2012) consists of a set of 165
dialogs for the EDECAN-SPORTS task that was acquired using the Wizard of Oz
(WOz) technique and a specific software platform (Segarra et al., 2010). During
the corpus acquisition process, a specific WOz was used to play the role of the
natural language understanding module and a second WOz was used to control
the dialog manager. As a result of this acquisition process, we not only obtained
the dialog corpus, we also obtained the dialog acts corresponding to the labeling
of the user and system turns.

An initial set of 165 dialogs by 16 different speakers from different origins was
acquired for this task. The languages involved in the acquisition were Spanish
and Catalan. A set of 15 types of scenarios was defined in order to cover all the
expected use cases of the task. Table 1 shows the main characteristics of the
EDECAN-SPORTS corpus: number of speakers, number of dialogs, number of
user turns, average user turns per dialog, number of words, vocabulary size, and
average words per user turn. Some characteristics of the semantic representation
of the EDECAN-SPORTS corpus are also shown: the total number of user seman-
tic labels (concepts and attributes), the total number of system semantic labels
(concepts and attributes), the size of the user semantic vocabulary (frame units),
and the size of the system semantic vocabulary (frame units).

Table 1: Main characteristics of the EDECAN-SPORTS corpus

Spanish | Catalan
Number of speakers 15 3
Number of dialogs 137 28
Number of user turns 687 144
Average user turns per dialog 5.01 5.14
Number of words 4,740 995
Vocabulary size 335 179
Average words per user turn 6.90 6.91
Number of user concepts & attributes 1,283 285
Number of system concepts & attributes 954 212
User semantic vocabulary size 13 13
System semantic vocabulary size 21 19

In this work, the EDECAN-SPORTS corpus has only been used for testing the
dialog models that were learned from synthetic dialogs generated using automatic
dialog generation.
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4. Statistical dialog modeling and Stochastic Finite-State Trans-
ducers

We have developed a DM based on the statistical modelization of the sequences
of dialog acts (user and system dialog act pairs). Let (u;, aj+1), i = 1...n be a pair
where u; is the user utterance at turn ¢ and a;1 is the system answer to this turn.
We consider that a dialog is a sequence of pairs as follows:

ao, (uo, a1), (u1,a2), (u2,a3), ..., (Wi, @ig1), - - -, (Un, Gpy1)

For each time 4, the best system answer a;y; can be selected with a local
process which takes into account the sequence of dialog pairs preceding time i.
This sequence is the last user turn u; and all the information provided in previous
turns either by the system or the user. This selection is made by maximizing:

ai+1 = argmax P(alag, up, a1, . .., a;, u;) (1)
acA

where A contains all the possible system answers. The system answer a;41 is
selected taking into account both u; and all the information provided by the user
and the system throughout the entire dialog sequence.

The estimation of these probabilities requires an exponential number of dialogs.
Since the number of all possible sequences of pairs is very large, we establish a
partition in the space of the history of the dialog that precedes time ¢. To do this,
the concepts of Dialog Register (DR) and Dialog State (DS) are introduced.

The DR is defined as a data structure that contains the information about
concept and attribute values that are provided by the user throughout the previous
history of the dialog.

All the information captured by the DR at a given time i (DR;) is a summary
of the information provided by the sequence:

agp, (UO, al), (ul, ag), (UQ, ag), ey (ui_l, ai)

Taking into account the concept of the DR, we establish a partition in the
space of sequences of states such that, at each time 7, two different sequences are
considered to be equivalent if they lead to the same DR;. We obtain a great
reduction in the number of different histories in the dialogs at the expense of
a loss in the chronological information. We consider this to be a minor loss,
since, although the way in which a user provides the information may be useful in
determining the behavior of the system, once a dialog state is reached, it is much
more important what information was supplied than in what order this information
was supplied. In addition, in our approach the previous user turn is explicitly taken
into account, as we will be seen below.

17



Furthermore, we assume that the specific value of an attribute in the DR is not
needed to calculate the next system answer. Thus for each attribute, we are only
interested in knowing whether or not it has been provided during the dialog and
its confidence value. To further reduce the variability in the value space of DR, we
quantify the confidence value of each attribute according to a confidence threshold,
and consider only three values: a) the attribute is not provided -not-supplied-, b)
the confidence of the attribute is lower than the threshold -low-confidence-, and
c) the confidence of the attribute is higher than the threshold -high-confidence-.
Therefore, the information we use from the DR is a codification of each of its
fields in terms of these three values. The value of the confidence threshold must
be experimentally determined, taking into account the performance of the ASR
and understanding module.

User turns supply the system with information about the task; that is, the user
asks for a specific concept and/or provides specific values for certain attributes.
However, a user turn could also provide other kinds of information, such as task-
independent information. This is the case of turns corresponding to AFFIRMATION,
NEGATION, and NOT-UNDERSTOOD dialog acts. This kind of information implies
decisions that are different from simply updating the DR. In order to take into
account all the information required by the Dialog Manager to select the next
system answer, the concept of Dialog State (DJS) is introduced. At a given time
i, the DS; is defined as a data structure that includes: a) the Dialog Register at
time i, DR;; b) the last request to the application manager; c) the cardinality of
the last Application Manager result (with four possible values: no-row, one-row,
two-rows, three or more rows); and d) the last system answer a;.

Therefore, using the concept of DS, the maximization in Equation 1 can be
approximate as:

G;+1 = argmax P(a|DS;, u;) (2)
acA

4.1. The Dialog Manager

The dialog model presented in this work is based on the transduction concept
and on the use of Stochastic Finite-State Transducers (SFST) (Casacuberta and
Vidal, 2004). In our proposal, given a state of the dialog and a user turn, a
system turn is generated and a transition to a new state is done. Therefore, dialog
management is based on the modelization of the sequences of system and user
dialog turn pairs. Thus, a dialog describes a path in the transducer model from
its initial state to a final one.

A SFST can be defined by a 6-tuple (Q,%, A, qo,p, f), where @ is a set of
states, X is the input alphabet, A is the output alphabet, gy is the initial state,
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p:@Q XXX AxEQ—|0,1] is the transition probability distribution, and f: Q —
[0, 1] is the final-state probability distribution.
The adaptation of a SF'ST model for dialog management assumes that:

@ contains all the possible dialog states represented as stated above (DS).

The input alphabet ¥ contains all the allowed user utterances (i.e., all the
allowed combinations of user dialog acts).

The output alphabet A is the set of system dialog acts that represents all
the possible system answers (the set A in the previous maximization).

qo is the ”welcome to the system” state. All dialogs start at this state.

Since the destination state (¢') of a transition is univocally defined with
the origin state (q) and the user input (u), the transition probability is
independent of the destination state, and p(q,u, a,q') = p(q, u, a). Therefore,
p can be estimated from a labeled dialog corpus as:

C(q,u,a)

p(g,u,a) = P(alg,u) = W

where C(q,u,a) is the number of times that, being at dialog state ¢ and
observing the user utterance u, the system answer was a; and C(q,u) is
the number of times that, being at dialog state ¢, the user utterance u was
observed.

f(q) = 1 for all states that can be reached with a system answer that involves
the end of the dialog. For those states in which the dialog remains active,

f(g)=0.

The selection of the best system answer at time i (a;) is made by means of the
following local maximization:

aij+1 = argmax P(a|DS;, u;) = argmax P(alq;, u;)
acA a€A

This approach considers a dialog (a sequence of user and system dialog acts) to
be a path in a SF'ST from the initial state to one of the final states. A sub-dialog
can be viewed as a path from a dialog state (not necessarily the initial state g)
to another dialog state (not necessarily a final state).
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5. Automatic Dialog Generation

Due to the high cost of acquiring dialogs with real users, an Offline Dialog
Simulator was developed in order to obtain a large number of labeled dialogs.
The Offline Dialog Simulator has no prior information about user behavior. An
arbitrary goal from the task domain must be chosen at the beginning of each dialog
simulation.

In the EDECAN-SPORTS task, four general goals were defined:

e To see the available courts,
e To book a court,
e To see the courts booked by the user,

e To cancel a booking.

These goals correspond to the concepts defined for the frame representation of
the user turns: AVAILABILITY, BOOKING, BOOKED, and CANCELLATION. To establish
the goal, a random choice among these concepts and a random choice among the
attributes associated to each concept are made. For example, the attributes asso-
ciated to the concept BOOKING are SPORT, DATE, HOUR, COURT-TYPE, COURT-NUMBER.
Since it is not necessary to generate the exact values of the attributes (it is enough
to state whether or not the attributes exist), we assign the label CORRECT as value
to each chosen attribute to indicate that this value is supplied. For example, for
the concept BOOKING, the following goal could be chosen:

BOOKING
SPORT: CORRECT
DATE:CORRECT

It is possible to generate a multiple goal scenario by combining several concepts,
as sometimes occurs in real dialogs. This scenario can be viewed as different goals
that must be sequentially accomplished in the same dialog. An example of a
multiple goal scenario is shown below. It corresponds to the CANCELLATION of a
court and the posterior BOOKING of another one.

CANCELLATION
SPORT:CORRECT

BOOKING
SPORT:CORRECT
DATE:CORRECT
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Once the goal of the dialog is chosen, it starts an iterative process which
involves the following components: a user simulator, a communication channel
simulator, and a dialog manager simulator.

e At each turn during the simulation, the user simulator randomly generates
a user dialog act. This is done by randomly selecting some concepts and a
subset of attributes for each one of the selected concepts. Random confidence
values in [0, 1] are attached to each concept and attribute. It should be noted
that it is not necessary to choose real values for the attributes; a generic label
CORRECT is associated to each attribute.

An example of a user dialog act generated by the user simulator is:

BOOKING 0.75

SPORT: CORRECT 0.67
DATE:CORRECT 0.32
HOUR:CORRECT 0.46

e The communication channel simulator: In order to simulate errors that can
appear in real dialogs, (i.e., speech recognition errors or misunderstandings),
each user turn is modified using the communication channel simulator. The
decision to introduce an error is taken individually for each concept and
attribute. The mechanism for introducing errors consists of generating a
new random value in the range [0, 1] for each concept and attribute in the
turn. If this new value is greater than the confidence value assigned to the
same concept or attribute by the user simulator, an error is introduced in
the concept or attribute.

When the error concerns a concept, the concept is randomly changed for
another concept. When the error concerns an attribute, the label COR-
RECT is replaced by the label FRROR. Although an error is introduced,
the confidence value is not modified. That is, the value assigned by the user
simulator is kept. This ensures that low confidence elements are more likely
to be confused than higher confidence ones.

An example of a simulated user dialog act after being processed by the
communication channel simulator is:

BOOKING 0.75
SPORT: CORRECT 0.67
DATE:EFRROR 0.32
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HOUR:CORRECT 0.46

In this example, the value of the attribute DATE has been changed because
its confidence value was lower than the random value generated by the com-
munication channel simulator.

The inclusion in the training set of user turns with errors (as shown in
the previous example) generates dialog samples where errors have to be
corrected. Therefore, the Dialog Manager model can learn strategies to
tackle misunderstandings.

e The dialog manager simulator chooses an action at random from the set of
actions defined for the task. If the selected action requires a database query,
a random value in {0, 1, 24} is used to represent the answer cardinality of
the query result. No channel simulation is used for system turns.

This approach to automatic dialog simulation is easy to implement because it
only requires the semantic definition of the task (i.e., the structure of user and
system dialog acts), and a validation function to determine the correctness of the
generated dialog.

The correctness of each simulated dialog must be evaluated. A validation
function that considers a set of correctness criteria checks whether or not the
dialog is coherent and the user goal is met. This function performs some tests on
the turn sequence and the user goal and rejects every dialog that fails at least one
test. We have defined a set of simple criteria in order to automatically determine
the correctness of a dialog. A dialog is considered to be unsuccessful if one of the
following conditions takes place:

e The dialog exceeds the maximum number of turns. The maximum number
of turns allowed for the simulated dialogs is defined to be a slightly higher
than the average number of turns of the dialogs acquired with real users.

e The dialog manager simulator has modified the information system with
information marked as Error or with attributes not present in the user goal.

e The dialog manager simulator has chosen an action that needs information
not provided by the user. For example: asking for a confirmation of an
attribute that the user has not said.

e The dialog manager simulator performs an update of the application infor-
mation system not related to the user goal.
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Otherwise, the dialog is considered correct and is added to the dialog corpus.

Even though thousands of random dialogs are needed to get a few valid dialogs,
the procedure is fast enough to obtain a large corpus in a reasonable amount of
time and the procedure is easy to parallelize. Only valid dialogs are considered for
estimating the model.

6. Online Generated Transducer

Given enough dialogs, every state should have been visited enough times to
achieve a reliable parameter estimation and, in the limit, the estimated model
could manage all possible dialog situations. However, this is an unrealistic scenario
because there is a huge dialog state space, and, therefore, the number of training
samples to get full coverage of the model is impossible to generate.

The coverage problem arises in dialog management because, when interacting
with a real user, the SF'ST can lead to a state in which the current user turn
has never been seen in the training samples and, therefore, the model has no
information on what action should be performed next. The possibility of this
kind of situations arising is increased by the fact that, even though the Offline
Dialog Simulator generates some training samples that have errors, new ASR or
understanding errors could appear during an interaction with real users.

In a previous implementation, an ad-hoc heuristic smoothing approach was
proposed (Hurtado et al., 2010). It was based on the definition of a distance
measure between states. Thus, when the SFST arrived to an unseen situation,
the closest state in the model was searched, and a transition to this state was
performed and the dialog continued from this new state. This approach solved
the coverage problem in some cases, but it was restricted to working with the
existing dialog states in the model, and no additional states or transition could be
added dynamically based on real interactions. This approach also had problems
when more than one unseen state was found consecutively because that means
that there was an important difference between the belief of the user and the state
of the system.

The new approach proposed in this work is oriented to dynamically adapting
the model when interacting with real users; it is based on the use of the Offline
Dialog Simulator. Given a user turn, when the current dialog achieves a state
where the model has no information on what to do next, the dialog simulator is
used. At this point, the simulator is used to generate a small corpus of dialogs
with which new states and transitions can be created.

The dialog simulator procedure allows us to generate a set of labeled samples
given some fixed turns or a sub-dialog. In other words, the simulator can be used
to obtain a corpus of dialogs that have the same sequence of turns ending at a
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chosen position. If the first n turns of the dialog are fixed, a set of correct endings
for that situation can be generated. Using this idea, we have added the Offline
Dialog Simulator to the SFST model. From now on, we refer to this model as the
Online Generated Transducer (OGT).

Let ag, ug,a1,u1,...,u; be the initial sequence of user turns and system turns
of a dialog that reaches a state ¢; for which wu; is an unseen situation. These prefix
turns are used to simulate a corpus of N synthetic sub-dialogs that begin from
state ¢; and whose first user turn is u;. As we discussed in the previous section,
in order to determine the correctness of a simulated dialog it is necessary to know
the user goal. However, in real dialogs the user goal is unknown by the system.
Instead of using the real user goal, the dialog simulator uses an approximation to
this goal based on the dialog history.

From this corpus, the dialog manager obtains a set of possible actions for ¢;:
Ait1 = {ait1,,Qit1y,-- -, Git1y ). Then, the transducer output for (g;,w;) is the
most likely action.

ai+1 = argmax P(alq;, u;)
a€A;iq1

In the implementation, the next action is selected using the simulated dialogs;
however, the model parameters are not updated at that moment because the sys-
tem cannot determine whether or not the selected action is correct. The informa-
tion is saved and a coherence test is used at the end of the dialog to determine
whether or not the action was correct. A requirement for this approach is that
the Online Generated Transducer needs to be fast enough to accomplish a fluent
interaction with the user. It is not realistic to expect to simulate one thousand
dialogs each time the model gets to an unseen state because a typical user is not
going to wait more than a few seconds for a system answer. Therefore a small N
needs to be chosen.

7. Evaluation

In order to evaluate the performance of the Dialog Manager based on SFST
and the Automatic Dialog Simulation techniques (both the online and the offline
techniques) presented in this paper, we carried out three different experiments.
Throughout all the experimentation, we used the Offline Dialog Simulator (de-
scribed in section 5) to generate the training corpora.

7.1. Evaluation of the Dialog Manager based on SFST

The first experiment consisted of a study of the coverage achieved by a dialog
manager based on SFST. In this experiment, no technique for dealing with unseen
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situations was used. The coverage of the DM was studied for a set of models that
were learned using a growing number of dialogs that were automatically generated
using the Offline Dialog Simulator technique presented in Section 5. The 137
Spanish dialogs (687 user turns) of the EDECAN-SPORTS corpus, in Section 3,
were used as the test set for the experimentation.

Table 2 shows the increase in coverage when more dialogs are used for the
SFST model estimation. Each row of the Table represents the statistics of a
different DM model. For each model, we show the number of dialogs that were
used to learn it, the total number of states of the SF ST, and the unseen situation
rate for the test set, (i.e., the percentage of states from the test corpus that had
not been founded in the model). The unseen ratio initially decreases when the
number of dialogs used to learn the model is increased. However, over 100,000
dialogs no significant decrease in the unseen ratio is observed.

An additional measure was used to evaluate the correctness of the model. For
every system turn in the dialogs of the test corpus, we also checked if the answer of
the estimated DM was the same answer as the one selected by the WOz during the
acquisition. This measure is presented in Table 2 as the Exact Turn Rate. Note
that Exact Turn Rate is a lower bound of the correctness of the model because, at
a given state, more than one action may be correct. For example, if there is more
than one attribute with low confidence at a given time, confirming any of them
would be correct. However, to calculate this measure, we only consider correct the
action selected by the WOz.

Table 2: Ratio of out-of-model states when the number of correct dialogs used to estimate
the SFST is increased.
’ Dialogs \ Total states

Unseen rate | Exact Turn Rate ‘

1,000 3,121 45.6 34.3
5,000 9,543 24.1 57.3
10,000 14,375 17.6 64.0
20,000 20,804 11.6 64.0
50,000 32,332 9.6 70.1
100,000 43,163 6.9 75.3
120,000 46,249 6.9 73.4
150,000 50,211 6.9 74.9
170,000 52,538 6.9 74.9
200,000 55,645 6.7 75.0

For the coverage, no significant improvement in the Exact Turn Rate mea-
sure was achieved using models learned with more than 100,000 correct dialogs.
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This experiment outlines the difficulty of covering every possible situation during
training.

7.2. Comparison between an offline and an online generated transducer

Next, we tried to assess the convenience of the Online Generated Transducer
for solving the problem of coverage, see Table 3. We generated 1, 000 dialogs offline
and created a SFST from them. This model covered only 67% of the situations of
the test. We used this poorly-estimated model as a starting point for the Online
Generator Transducer. We compared this model against the best model of the
previous experimentation, that is the model learned with 200,000 dialogs shown
in the last row of Table 2. This last model was generated completely offline. Even
though it covered more than 93% of the situation that appeared in the test, it had
no strategy for dealing with the 6.7% of unseen situations. If an unseen situation
arose the system simply aborted the dialog.

To evaluate the performances of the two managers, we used the following mea-
sures:

e Out of model turn rate: the percentage of dialog turns in the test set for
which the DM has no answer.

e Exact turn rate: the percentage of turns in the test set for which the answer
of the transducer is equal to the WOz answer during the acquisition. It is
the same measure used for the previous experimentation.

e Exact dialog rate: the percentage of dialogs in the test set for which the
answer of the transducer is equal to the answer produced by the WOz during
the real acquisition in all the dialog states.

e Completed dialog rate: the percentage of dialogs in the test set accepted by
the transducer (i.e., the percentage of dialogs in the test set for which there
is a path between the initial state and a final state in the transducer).

As in the previous experiment, the Spanish part of the EDECAN-SPORTS
corpus was used as the test set.

Table 3 compares the SFST learned with 200,000 dialogs generated offline
and without treatment of the unseen situations (offline column) against the SFST
learned with only 1,000 dialogs but with the Online Generation technique (OGT
column). Due to the lower size of the training set, the OGT system presents
a higher Out-of-model turn rate. However, as Table 3 shows, the online model
improves every measure. Both the Fxact turn rate and the Ezact dialog rate are
considerably improved. Moreover, the new model was able to deal with every
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Table 3: Evaluation with the EDECAN-SPORTS corpus
Offline | OGT

y Training dialogs | 200,000 | 1,000
States | 55,645 | 3,378

Out-of-model turn rate 6.7 | 329
Exact turn rate 75.0 87.1
Exact dialog rate 26.6 | 61.0

Completed dialog rate 73.4 | 100.0

possible situation, so it managed to finalize all the dialogs in the test set even
though not every dialog met the user goal.

For this experiment, the OGT simulated 10 dialogs for each Out-of-model turn
(N =10).

7.3. Evaluation of the OGT with real users

It is well known that the performance of a dialog system decreases when it is
tested in real conditions as it is shown in (Ai et al., 2007) (Young et al., 2014).
Some problems, such as misunderstanding errors produced by a noisy acoustic
environment, or unexpected dialog situations due to the interaction with untrained
real users, can lead the dialog manager to generate incorrect answers. This occurs
because during the training process it is impossible to generate all the dialog
situations, even if a simulation of recognition errors is done in order to increase
the robustness of the model.

In order to test the performance of our system in close to real conditions, we
carried out an evaluation of the OGT with real users using our Spoken Dialog
System prototype (Segarra et al., 2010). A corpus of 120 dialogs was acquired
from 12 users of the university staff. All these users were different from those
participants in the acquisition of the EDECAN-SPORTS corpus (Section 3); these
users were untrained but the experimentation was done in laboratory conditions.

To acquire each dialog, a scenario was selected and explained to the user.
The user’s mission was to achieve a goal by interacting with the dialog system.
Examples of these goals are: to book a court on a day of the week or to check the
user bookings. Some dialogs had complex goals with combinations of BOOKING,
CANCELLATION, AVAILABILITY, and BOOKED that the user had to perform in a
predefined order in order to achieve the global goal of the dialog.

Table 4 shows the results of the evaluation with real users. From 945 system
turns, 233 were Qut-of-model turns (28.9%) and triggered the Online Dialog Sim-
ulator. Every action resulting from this online simulation was locally correct or
coherent, that is, it did not lead the dialog to an unrecoverable incorrect state like
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booking a wrong court. Even with almost two unseen situations per dialog, the
goal of the user was achieved in 94.2% of the dialogs.

Although the WER is lower than 6%, most of the times the recognition errors
affect attribute values. When these kind of errors occurs it may be difficult to the
Dialog Manager overcome the situation because it lacks information necessary to
fulfill the goal of the dialog.

Table 4: Evaluation with real users

Number of users 12
Number of dialogs 120
ASR Word Error Rate 5.97
User turns 804
System turns 945
Out-of-model turns 233 (28.9%)
Successful dialogs 113 (94.2%)

The evaluation shows that the model is robust enough for real-life interaction
and that possible recognition and understanding errors can be corrected during
the dialog by using confirmations.

As stated above, two of the main problems when dialog systems are used in
real conditions are: recognition errors affecting attribute values and unseen situa-
tions due to the interaction with naive untrained users. In our proposal, we have
addressed the problem of recognition errors by means of confidence scores. Each
attribute/value pair provided by the user has associated a confidence score. Often,
low confidence in some attribute forces the DM to ask for explicit confirmations.
Regarding the unseen dialog situations, they can be sometimes solved by the online
generation process that selects an system action that allows the DM for carrying
on with the dialog.

The following example, Figure 5, illustrates how the online dialog generation
system works when unseen situations, due to recognition errors, appear. The
example is a sequence of user and system turns. In the user turns it can be seen:
the correct transcription of the user utterance (CT), the output of the Automatic
Speech Recognizer (ASR) and the semantic representation of the utterance (SLU).
In the system turns it can be seen: the query to the Application Manager (AM),
the action selected by the Dialogue Manager (DM) and its translation into natural
language (TTS).

It should be noted that in user turn 1 the recognizer fails in the value of an
attribute (it recognizes "qual” instead of "squash”). The model triggers the OGT
process and a question about the sport is selected.
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Figure 5: Ezxample of a dialog using the online dialog generation system.

DMO: (OPENING)
TTSO: Bienvenido al servicio de consulta, reserva y anulacién de pistas deportivas de la UPV.
;En qué puedo ayudarle?
(Welcome to the service of query, booking and cancellation of the sports facilities of the UPV. Can
I help you?)
CT1: quiero reservar una pista de squash (I want to book a squash court)
ASR1: quiero reservar una pista de *cual* (I want to book a court which)
SLU1: (BOOKING) / 0.630433
DM1: (SPORT) # selected by OGT
TTS1: . A qué deporte quiere jugar?
(What sport do you want to play?)
CT2: jugar a squash  (play squash)
ASR2: jugar a squash (play squash)
SLU2: O
SPORT: squash / 0.755294
AM2: (AVAILABILITY-QUERY)
DM2: (SHOW-AVAILABILITY)
TTS2: En la pantalla puede ver las pistas que tenemos disponibles de Squash
(On the screen you can see the Squash courts we have available)
CT3: quiero reservar una pista el sabado (I want to book a court on Saturday)
ASR3: quiero reservar una pista el sdbado (I want to book a court on Saturday)
SLU3: (BOOKING) / 0.717141
DATE: saturday / 0.836906
AMS3: (AVAILABILITY-QUERY)
DMS3: (SHOW-AVAILABILITY)
TTS3: En la pantalla puede ver las pistas que tenemos disponibles para el sidbado
(On the screen you can see the courts we have available for Saturday)
CT4: quiero reservar a las trece horas (I want to book at thirteen hours)
ASR4: quiero reservar a las trece *hora* (I want to book at thirteen hour)
SLU4: (BOOKING) / 0.407799
HOUR: 01:00:PM / 0.765674
AMA4: (AVAILABILITY-QUERY)
DMA4: (CONFIRMATION-ACTION-BOOKING)
TTS4: ;Desea reservar la pista de Squash seleccionada?
(Do you want to book the selected squash court?)
CT5: si (yes)
ASRS5: si (yes)
SLUS5: (ACCEPTANCE) / 1.000000
AMS5: (BOOKING-QUERY)
DM5: (BOOKING-0K)
TTS5: Ha reservado la pista seleccionada. ;Desea algo més?
(You have booked the selected court. Anything else?)
CTé6: no nada mas  (No nothing more)
ASRE6: no nada mas (No nothing more)
SLU6: (REJECTION) / 0.669649
DM6: (CLOSING)
TTS6: Gracias por utilizar este servicio

(Thank you for using this service)

8. Conclusions

In this paper, a proposal for the development of the statistical dialog manager
component of a spoken dialog system has been presented. This proposal is based
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on finite-state models, particularly SFSTs. Our approach tries to overcome the
problem of the large state space in real tasks by means of condensing in a state
the whole information provided by the user throughout the previous history of
the dialog and codifying the attribute values in terms of 3 labels: not-supplied,
low-confidence, or high-confidence.

One of the main characteristics of this approach is that the learning process
can be performed in an unsupervised way. Not only is the dialog manager model
automatically estimated from a dialog corpus, but the labeled corpus is also artifi-
cially generated by a user/system simulation process. This way, since a manually
labeled corpus acquired with real users is not required, the design of statistical
dialog systems for new applications becomes faster and cheaper. In our approach,
for the estimation of the dialog manager model it is only necessary to define the
semantics of the task and the system/user dialog acts.

We have also addressed the problem of the lack of coverage of the model by
means of an online mechanism for sub-dialog generation. This mechanism was
useful to find new valid paths in the transducer to achieve the user goals. This
allows, all the situations in the dialogs to be answered by the dialog manager.
The experimental results show the good behavior of the proposals when real users
interact with the system and when real unseen situations arise.

In order to compare our proposal for the development of the Dialog Manager
component with other approaches (e.g., the most commonly used approach based
on POMDPs models and reinforcement learning as the estimation paradigm), a
standard framework of dialog competitions would be necessary. Unfortunately,
the definition of an homogeneous framework for the experiments, which includes
the user behavior, the language understanding module, the ASR, etc.., is a very
complex task; however, it could be the subject of future works.

Some issues regarding the differences between our proposal and POMDPs can
be studied in the future. Omne of the differences is that while POMDPs keep
all possible states with their attributes values active in the belief state, in the
current proposal, we model the uncertainty by means of a confidence score for
each attribute-value pair. Thus, only one state is active at each point of the
dialog, allowing our approach to deal with realistic tasks easily. In addition, the
proposed approach could be enriched by introducing a reward element as in the
POMDPs as a direction for future work.
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