On nearly Hausdorff compactifications

Sejal Shah and T. K. Das

Abstract. We introduce and study here the notion of nearly Hausdorffness, a separation axiom, stronger than T_1 but weaker than T_2. For a space X, from a subfamily of the family of nearly Hausdorff spaces, we construct a compact nearly Hausdorff space rX containing X as a densely C^*-embedded subspace. Finally, we discuss when rX is βX.

2000 AMS Classification: Primary 54C45, Secondary 54D35.

Keywords: Regular closed set, filter, compactification, Wallman base.

1. Introduction

A closed subset F in a topological space X is called a regular closed set if $F = Cl(Int F)$. We denote the family of all regular closed subsets of X by $R(X)$. Observe that $R(X)$ is closed under finite union. Also, if $F \in R(X)$, then $Cl(X - F) = X - Int F \in R(X)$. In Section 2, we define and study the notion of a nearly Hausdorff space (nh-space). We introduce a topological property Π and note that a space with property Π is an nh-space if and only if it is Urysohn. A flow diagram showing various implications about separation axioms supported by necessary counter examples is included in this section.

A map $f: X \to Y$ is called a density preserving map (dp-map) if for $A \subseteq X$, $Int(Cl f(A)) \neq \phi$ whenever $Int A \neq \phi$ [2]. We provide here an example showing that the nh-property is not preserved even under continuous dp-maps. Note that if X is an nh-space then $R(X)$ forms a base for closed sets in X.

In Section 3, we obtain a βX like' compactification of an nh-space X with property Π. Since $R(X)$ need not be closed under finite intersections, we form a new collection $Rf(X)$, of all possible finite intersections of members of $R(X)$. We observe that for an nh-space X with the property Π, the set $rX = \{\alpha \subseteq Rf(X) \mid \alpha$ is an r-ultrafilter} with the natural topology, is a nearly Hausdorff compact space which contains X as a dense C^*-embedded subspace. The natural question when $rX = \beta X$ is discussed in Section 4. We observe that
an nh-space X for which $Rf(X)$ is a Wallman base, is a completely regular Hausdorff space and hence for such a space X, $rX = \beta X$, the Stone-Čech compactification of X. In particular, if X is normal or zero-dimensional then $rX = \beta X$. The problem whether $rX = \beta X$ for any Tychonoff space X is still open.

2. Nearly Hausdorff spaces

Definition 2.1. Distinct points x and y in a topological space X are said to be separated by subsets A and B of X if $x \in A - B$ and $y \in B - A$.

Definition 2.2. A topological space X is called nearly Hausdorff (nh-) if for every pair of distinct points of X there exists a pair of regular closed sets separating them.

Definition 2.3. A space X is said to have property II if for every $F \in R(X)$ and $x \notin F$ there exists an $H \in R(X)$ such that $x \in \text{Int}H$ and $H \cap F = \emptyset$. The symbol $X(\Pi)$ denotes a space X having property II.

Remark 2.4. Henceforth all our regular spaces are Hausdorff. Recall that a space X is Urysohn [5] if for each pair of distinct points of X, we can find disjoint regular closed sets of X containing the points in their respective interiors. We have following implications:

\[
\text{Regular } \Rightarrow \text{Urysohn } \iff \text{Nearly Hausdorff } \Rightarrow \text{Urysohn} \quad \downarrow \\
\text{T}_1 \iff \text{Nearly Hausdorff } \iff \text{Hausdorff}
\]

Examples given below (refer [4, 5]) justify that unidirectional implications in the above flow diagram need not be reversible. In addition, Example 2.5(b) shows that nearly Hausdorffness is not a closed hereditary property.

Example 2.5.

(a) An infinite cofinite space is a T_1 space but not an nh-space. The one-point compactification of the space X in our Note 2 is a non-Hausdorff compact nh-space.

(b) Consider \mathbb{N}, the set of natural numbers with cofinite topology and $\mathbb{I} = [0, 1]$ with the usual topology. Let $X = \mathbb{N} \times \mathbb{I}$ and define a topology on X as follows: neighborhoods of (n, y), $y \neq 0$ will be usual neighborhoods $\{(n, z) \mid y - \epsilon < z < y + \epsilon\}$ in \mathbb{I}, for small positive ϵ; neighborhoods of $(n, 0)$ will have the form $\{(m, z) \mid m \in U, 0 \leq z < \epsilon_m\}$, where U is a neighborhood of n in \mathbb{N} and ϵ_m is a small positive number for each $m \in U$. The resulting space X is a non-Hausdorff, nh-space without property II. It is easy to observe that the subspace \mathbb{N} of X is closed but is a non-nh, T_1 space.

(c) Let A be the linearly ordered set $\{1, 2, 3, \ldots, \omega, \ldots, -3, -2, -1\}$ with the interval topology and let \mathbb{N} be the set of natural numbers with the discrete topology. Define X to be $A \times \mathbb{N}$ together with two distinct
points say a and $-a$ which are not in $A \times \mathbb{N}$. The topology \mathcal{S} on X is determined by the product topology on $A \times \mathbb{N}$ together with basic neighborhoods $M_n(a) = \{a\} \cup \{(i, j) \mid i < \omega, j > n\}$ and $M_n(-a) = \{-a\} \cup \{(i, j) \mid i > \omega, j > n\}$ about a and $-a$ respectively. Resulting space X is a non-Urysohn Hausdorff space without property II. In fact, there does not exist any regular closed set containing a and disjoint from $M_n(-a)$. This example also justifies that a Hausdorff space need not have property II.

(d) Let S be the set of rational lattice points in the interior of the unit square except those whose x-coordinate is $\frac{1}{2}$. Define X to be $S \cup \{(0, 0)\} \cup \{(1, 0)\} \cup \{(\frac{1}{2}, r \sqrt{2}) \mid r \in \mathbb{Q}, 0 < r \sqrt{2} < 1\}$. Topologize X as follows: local basis for points in X from the interior of unit square are same as those inherited from the Euclidean topology and for other points following local bases are taken:

$$U_n(0, 0) = \{(x, y) \in S \mid 0 < x < \frac{1}{4}, 0 < y < \frac{1}{n}\} \cup \{(0, 0)\}, \quad U_n(1, 0) = \{(x, y) \in S \mid \frac{3}{4} < x < 1, 0 < y < \frac{1}{n}\} \cup \{(1, 0)\}, \quad U_n(\frac{1}{2}, r \sqrt{2}) = \{(x, y) \in S \mid \frac{1}{4} < x < \frac{3}{4}, |y-r \sqrt{2}| < \frac{1}{n}\}.$$

The resulting space X is a Urysohn space without property II.

(e) Let X be the set of real numbers with neighborhoods of non-zero points as in the usual topology, while neighborhoods of 0 will have the form $U - A$, where U is a neighborhood of 0 in the usual topology and $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Note that X is a non regular Urysohn space with property II.

Theorem 2.6. A nonempty product of an nh-space is an nh-space if and only if each factor is an nh-space.

Proof. Let $\{X_\gamma\}_{\gamma \in \Lambda}$ be a family of nh-spaces, $\lambda \neq \phi$ and let $x, y \in X = \prod_{\gamma \in \Lambda} X_\gamma, x \neq y$. Then $x_\gamma \neq y_\gamma$, for some $\gamma \in \Lambda$. Since each X_γ is an nh-space, there exist regular closed sets F_x and F_y separating x_γ and y_γ. Define $U = \prod_{\beta \in \Lambda} U_\beta$ and $V = \prod_{\beta \in \Lambda} V_\beta$, where $V_\beta = U_\beta = X_\beta$, for $\beta \neq \gamma$ and $U_\gamma = \text{Int} F_x$, $V_\gamma = \text{Int} F_y$. The regular closed sets $\text{Cl} U$ and $\text{Cl} V$ in X separate x and y.

Proof of the converse is similar. \square

Lemma 2.7. Let X be an nh-space and let $f : X \to Y$ be a dp-epimorphism. Then for a regular closed subset H of Y we have $\text{Cl} f(\text{Cl} f^{-1}(\text{Int} H)) = H$ and hence $R(Y) = \{\text{Cl} f(F) \mid F \in R(X)\}$.

Proof. Clearly for $H \in R(Y)$, $\text{Cl} f(\text{Cl} f^{-1}(\text{Int} H)) \subseteq H$. For the reverse containment, if $y \in H - \text{Cl} f(\text{Cl} f^{-1}(\text{Int} H))$ then there exists an open set U containing y satisfying $f^{-1}(U \cap \text{Int} H) = \phi$ which contradicts $y \in H = \text{Cl} \text{Int} H$. \square

Note 1. Lemma 2.7 is stated in note 2.2 of [2] for a regular space. Further, observe that the first projection of the space $N \times I$ in example 2.5 (b) shows that continuous image of an nh-space need not be an nh-space. On the other hand, if we consider second projection of $N \times I$ on $[0, 1]$ with cofinite topology then we get that even a continuous density preserving image of an nh-space need not be an nh-space.
3. The Space \(rX \)

For an nh-space \(X \), a filter \(\alpha \subseteq R f(X) - \{ \varnothing \} \) is called an \(r \)-filter. A maximal \(r \)-filter is called an \(r \)-ultrafilter. The family of all \(r \)-ultrafilters in \(X \) is denoted by \(rX \). Observe that for \(x \in X \), there exists a unique \(r \)-ultrafilter \(\alpha_x \) in \(rX \) such that \(\cap \alpha_x = \{ x \} \). Further, if \(X \) is compact then each \(r \)-ultrafilter in \(X \) is fixed. The converse is also true: If \(C \) is an open cover of \(X \) then \(B = \{ F \in R(X) \mid X - U \subset F, \text{ for some } U \in C \} \) does not have finite intersection property for otherwise \(B \) will generate a fixed \(r \)-ultrafilter which will contradict that \(C \) is a cover of \(X \). Hence \(C \) has a finite subcover. Topologize the set \(rX \) by taking \(B = \{ F \in R(X) \mid F \in \alpha \} \) as a base for closed sets in \(rX \), where \(F = \{ \alpha \in rX \mid F \in \alpha \} \) and \(F \in R(X) \). The map \(rX \rightarrow rX \) defined by \(r(x) = \alpha_x \), where \(\alpha_x = \{ F \in Rf(X) \mid x \in F \} \) is an embedding.

Lemma 3.1. Let \(X \) be an nh-space with property \(\Pi \). Then the space \(rX \) of all \(r \)-ultrafilters in \(X \) is a compact nh-space which contains \(X \) as a dense subspace.

Proof. Clearly \(\alpha_x = \{ F \in Rf(X) \mid x \in F \} \) is an \(r \)-filter. For maximality of \(\alpha_x \), suppose \(A = \cap_{i=1}^{n} A_i \) in \(Rf(X) \) be such that \(A \cap F \neq \varnothing \), for each \(F \) in \(\alpha_x \). If possible suppose for some \(i \), \(A_i \notin \alpha_x \). Then \(x \notin A_i \). By the property \(\Pi \), there exists an \(H \in R(X) \) such that \(x \in IntH \) and \(H \cap A_i = \varnothing \). Therefore \(H \in \alpha_x \) and hence \(H \cap A \neq\varnothing \). But this implies \(\varnothing \neq H \cap A \subset H \cap A_i \neq \varnothing \), a contradiction. Further \(Cl_{rX}(F) = \overline{F} \) for all \(F \in R(X) \) implies \(r \) is a dense embedding. \(\square \)

Note 2. A compactification of a non-Urysohn space without property \(\Pi \) may also be an nh-space. For example, consider the subspace

\[Y = \{ \left(\frac{1}{n}, \frac{1}{m} \right) \mid n \in \mathbb{N}, m \in \mathbb{N} \} \cup \{ \left(\frac{1}{n}, 0 \right) \mid n \in \mathbb{N} \} \]

of the usual space \(\mathbb{R}^2 \). Take \(X = Y \cup \{ p^+, p^- \}; p^+, p^- \notin Y \) and topologize it by taking sets open in \(Y \) as open in \(X \) and a set \(U \) containing \(p^+ \) (respectively \(p^- \)) to be open in \(X \) if for some \(r \in \mathbb{N} \), \(\{(\frac{1}{n}, \frac{1}{m}) \mid n \geq r, m \in \mathbb{N} \} \subseteq U \) (respectively \(\{(\frac{1}{n}, \frac{1}{m}) \mid n \geq r, -m \in \mathbb{N} \} \subseteq U \). The resulting space \(X \) is a non-Urysohn Hausdorff space without property \(\Pi \) and its one point compactification is an nh-space.

Proposition 3.2. Let the space \(X \) and \(rX \) be as in Lemma 3.1. Then \(X \) is \(C^* \)-embedded in \(rX \).

Proof. Let \(f \in C^*(X) \). Suppose range of \(f \subseteq [0, 1] = I \). For \(\alpha \in rX \), define \(f^\sharp(\alpha) = \{ H_1 \cup H_2 \in R(I) \mid Cl_X f^{-1}(Int H_1 \cup Int H_2) \in \alpha \} \). Note that if \(H_1 \cup H_2 \in f^\sharp(\alpha) \) then either \(H_1 \in f^\sharp(\alpha) \) or \(H_2 \in f^\sharp(\alpha) \). Also \(f^\sharp(\alpha) \) satisfies finite intersection property. Thus \(\cap f^\sharp(\alpha) \neq \varnothing \). We assert that \(\cap f^\sharp(\alpha) = \{ t \} \), for some \(t \in I \).

Assuming the assertion in hand, we define \(rf: rX \rightarrow I \) by \(rf(\alpha) = \cap f^\sharp(\alpha) \). Clearly \(rf \) restricted to \(X \) is \(f \). We now establish continuity of \(rf \). Let \(\alpha \in rX \). Then choose an open set \(G \) of \(I \) such that \(t \in G \), where \(rf(\alpha) = t \). Using
regularity of I successively we obtain open sets G_1, G_2 such that $t \in G_1 \subseteq ClG_1 \subseteq G_2 \subseteq ClG_2 \subseteq G$. Set $F_t = ClG_2$ and $H_t = Cl(I - ClG_1)$. Since $IntF_t \cup IntH_t = I$. We have $F_t \cup H_t \in f^t(\alpha)$ and as $t \notin H_t$, $F_t \in f^t(\alpha)$ and $H_t \notin f^t(\alpha)$. If $L_t = ClXf^{-1}(IntH_t)$, then $\alpha \notin L_t$ and the open set $rX - L_t$ contains α. Finally the containment $rf(rX - L_t) \subseteq G$ establishes the continuity. For the assertion, one may use the above technique to note that \{ $F \in R(I) \mid t \in IntF$ \} \subseteq f^t(\alpha), for each $t \in f^t(\alpha)$. \hfill \square

Theorem 3.3. Let X be an nh-space with property Π. Then there exists a compact nh-space rX in which X is densely C^*-embedded.

Proof. Follows from Lemma 3.1 and Proposition 3.2. \hfill \square

Corollary 3.4. If X is a regular space, then it is densely C^*-embedded in rX.

4. When $rX = \beta X$?

Let X be an nh-space such that $Rf(X)$ is a Wallman base. Then by 19L(7) in [5], X is a completely regular space. Therefore by Corollary 3.4, X is C^*-embedded in rX. Further if X is an nh-space such that $Rf(X)$ forms a Wallman base then by 19L(5) in [5], rX is Hausdorff. Hence we have the following result:

Theorem 4.1. Let X be an nh-space such that $Rf(X)$ is a Wallman base. Then $rX = \beta X$.

Corollary 4.2. If X is normal or zero-dimensional then $rX = \beta X$.

Question: Is $rX = \beta X$ when X is a Tychonoff space?

Acknowledgements. We thank the referee for his/her valuable suggestions.

References

Sejal Shah
Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara, India.

T. K. Das (tarunkd@yahoo.com)
Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara, India.