Extension of Compact Operators from DF-spaces to C(K) spaces

FERNANDO GARIHAY BONALES AND RIGOBERTO VERA MENDOZA

ABSTRACT. It is proved that every compact operator from a DF-space, closed subspace of another DF-space, into the space C(K) of continuous functions on a compact Hausdorff space K can be extended to a compact operator of the total DF-space.

2000 AMS Classification: Primary 46A04, 46A20; Secondary 46B25.
Keywords: Topological vector spaces, DF-spaces and C(K) the spaces.

1. INTRODUCTION

Let E and X be topological vector spaces with E a closed subspace of X. We are interested in finding out when a continuous operator $T : E \rightarrow C(K)$ has an extension $\tilde{T} : X \rightarrow C(K)$, where $C(K)$ is the space of continuous real functions on a compact Hausdorff space K and $C(K)$ has the norm of the supremum. When this is the case we will say that (E, X) has the extension property. Several advances have been made in this direction, a basic resume and bibliography for this problem can be found in [5]. In this work we will focus in the case when the operator T is a compact operator. In [4], p.23, it is proved that (E, X) has the extension property when E and X are Banach spaces and $T : E \rightarrow C(K)$ is a compact operator. In this paper we extend this result to the case when E and X are DF-spaces (to be defined below), for this, we use basic tools from topological vector spaces.

2. NOTATION AND BASIC RESULTS IN DF-SPACES.

We will use basic duality theory of topological vector spaces. For concepts in topological vector spaces see [3] or [2]. All the topological vector spaces in this work are Hausdorff and locally convex.

Let (X, t) be a topological vector space and $E < X$ be a closed vector subspace. Let $X' = (X, t)'$, $E' = (E, t)'$ be the topological duals of X and E respectively.
A topological vector space \((X, t)\) possesses a a fundamental sequence of bounded sets if there exists a sequence \(B_1 \subset B_2 \subset \cdots\) of bounded sets in \((X, t)\), such that every bounded set \(B\) is contained in some \(B_k\).

We take the following definition from [3], p. 396.

Definition 2.1. A locally convex topological vector space \((X, t)\) is said to be a DF-space if

1. it has a fundamental sequence of bounded sets, and
2. every strongly bounded subset \(M\) of \(X'\) which is the union of countably many equicontinuous sets is also equicontinuous

A quasi-barrelled locally convex topological vector space with a fundamental sequence of bounded set is always a DF-space. Thus every normed space is a DF-space. Later we will mention topological vector spaces which are DF-spaces but they are not normed spaces.

First, we state some theorems to be used in the proof of the main result.

If \(K\) is a compact Hausdorff topological space, we define, for each \(k \in K\) the injective evaluation map \(\hat{k} : C(K) \to \mathbb{R}\), \(\hat{k}(f) = f(k)\) which is linear and continuous, that is \(\hat{k} \in C(K)\). Let \(\hat{K} = \{\hat{k} | k \in K\} \subset C(K)'\) and \(cch(\hat{K})\) the balanced, closed and convex hull of \(\hat{K}\) (which is bounded).

Theorem 2.2. With the notation above we have

1. \(\hat{K}\) is \(\sigma(C(K)', C(K))\)-compact and \(K\) is homeomorphic to \((\hat{K}, \sigma(C(K)', C(K)))\). Here \(\sigma(C(K)', C(K))\) denotes the weak-* topology on \(C(K)\).

2. If \(T : E \to C(K)\) is a compact operator then \(A = T'(cch(\hat{K}))^\beta\) is \(\beta(E', E)\)-compact. Here \(\beta(E', E)\) is the strong topology on \(E'\), this topology is generated by the polars sets of all bounded sets of \((E, t)\).

Proof. See [1], p. 490.

Theorem 2.3. If \((X, t)\) is a DF-space then \((X', \beta(X', X))\) is a Frechet space.

Proof. See [3], p. 397

Theorem 2.4. Let \(M\) be paracompact, \(Z\) a Banach space, \(N \subset Z\) convex and closed, and \(\varphi : M \to F(N)\) lower semicontinuous (l.s.c.) Then \(\varphi\) has a selection.

Proof. See [6]

In the above theorem, \(F(N) = \{S \subset N : S \neq \emptyset, S\) closed in \(N\) and convex\}; \(\varphi : M \to F(N)\) is l.s.c. if \(\{m \in M : \varphi(m) \cap V \neq \emptyset\}\) is open in \(M\) for every open \(V\) in \(N\), and \(f : M \to N\) is a selection for \(\varphi\) if \(f\) is continuous and \(f(m) \in \varphi(m)\) for every \(m \in M\).

Theorem above remains true if \(Z\) is only a complete, metrizable, locally convex topological vector space (see [7]).
3. Main Results

Lemma 3.1. Let $A \subset E'$. If there is a continuous map
\[f : (A, \sigma(E', E)) \to (X', \tau'), \quad \sigma(X', X) \leq \tau' \leq \beta(X', X) \]
such that
1. $f(a)|_E = a$ and
2. $f(A)$ is an equicontinuous subset of X'.
Then every linear and continuous map $T : E \to C(K)$ has a linear and continuous extension $\tilde{T} : X \to C(K)$.

Proof. Let us define $\tilde{T} : X \to C(K)$ in the following way: for each $x \in X$, $\tilde{T}(x) : K \to \mathbb{R}$ is given by $\tilde{T}(x)(k) = f(T(k))(x)$. Here, \tilde{k} is the injective evaluation map defined before Theorem 2.2. It is easy to check that \tilde{T} is linear and extends T.

First, let us show that $\tilde{T}(x) \in C(K)$ for each $x \in X$. For this let $O \subset \mathbb{R}$ be an open set. We have that $\tilde{T}(x)^{-1}(O) = T^{-1}(f^{-1}(O))$. Since $x : X'[\sigma(X', X)] \to \mathbb{R}$, f and T' are all continuous maps with the weak* topology, $\tilde{T}(x)^{-1}(O)$ is open in K. This proves that $\tilde{T}(x) \in C(K)$.

Let us check that \tilde{T} is continuous. Let $\{x_\lambda\} \xrightarrow{\ell} 0$ in X, we need to show that $\{\tilde{T}(x_\lambda)\} \xrightarrow{\|\cdot\|_{C(K)}} 0$.

For this, let $\epsilon > 0$. By hypothesis $f(A)$ is a equicontinuous subset of X', so that, $\epsilon f(A)^o \subset X$ is a t-neighborhood of 0. Here $f(A)^o$ denotes the polar set of $f(A)$. Hence, there is $\lambda_0 \in \Lambda$ such that $x_\lambda \in \epsilon f(A)^o$ for all $\lambda \geq \lambda_0$. From part 2 of Theorem 2.2 we have $T'(K) \subset A$, hence
\[|\tilde{T}(x_\lambda)(k)| = |f(T'(k))(x_\lambda)| \leq \epsilon \text{ for all } \lambda \geq \lambda_0 \]
This implies that
\[\|\tilde{T}(x_\lambda)\|_{C(K)} = \sup \{ |f(T'(k))(x_\lambda)| / k \in K \} \leq \epsilon \text{ for all } \lambda \geq \lambda_0 \]
This proves that $\{\tilde{T}(x_\lambda)\} \xrightarrow{\|\cdot\|_{C(K)}} 0$.

Let $i : E \to X$ be the inclusion map and $i' : X' \to E'$ the dual map of i, that is, if $y \in X'$, $i'(y) = y|_E$.

Let $\mathcal{P}(X') = \{ Y \mid Y \neq \emptyset, Y \subset X' \}$ and define $\psi : E' \to \mathcal{P}(X')$ by $\psi(e') = \{ \text{extensions of } e' \text{ to } X \}$. Notice that $y \in \psi(i'(y))$ for all $y \in X'$ and $\psi(e') \in \mathcal{S}(X')$.

With this notation, we have

Proposition 3.2. Let (E, t) and (X, t) be DF-spaces, with $E \subset X$ a closed subspace. If $O \subset X'$ is a $\beta(X', X)$-open set then the set $U_O = \{ z \in E' \mid \psi(z) \cap O \neq \emptyset \}$ is an open set in $(E', \beta(E', E))$.

Proof. Notice that $U_O = \{ z \in E' \mid \psi(z) \cap O \neq \emptyset \} = i'(O)$. By Theorem 2.3 $(X', \beta(X', X))$ and $(E', \beta(E', E))$ are Frechet spaces. By the Banach-Schauder theorem (see [3], p. 166), the map $i' : (X', \beta(X', X)) \to (E', \beta(E', E))$ is an open map. Since $i'(O)$ is open in E', U_O is also open.
Corollary 3.3. Let \((E, t)\) and \((X, t)\) be DF-spaces, with \(E < X\) a closed subspace. Let \(A = T'(cch(K))\) be as in part 2 of Theorem (2.2) Then \(\varphi : (A, \beta(E', E)) \to \mathcal{P}(X')\) given by \(\varphi = \psi|_A\) is a lower semicontinuous function, \(X'\) provided with the strong topology \(\beta(X', X)\).

Proof. It follows from
\[
\{ z \in A \mid \varphi(z) \cap O \neq \emptyset \} = \{ z \in E' \mid \psi(z) \cap O \neq \emptyset \} \cap A
\]
and Proposition 3.2. □

With the notation in Corollary 3.3, we have

Proposition 3.4. If \((X, t)\) is a DF-space then \(\varphi : (A, \beta(E', E)) \to \mathcal{P}(X')\) admits a selection, that is, there is a continuous function \(f : (A, \beta(E', E)) \to (X', \beta(X', X))\) such that \(f(a) \in \varphi(a)\).

Proof. From Theorem 2.3, \((X, t)\) DF-space implies \((X', \beta(X', X))\) Fréchet. From Theorem 2.2, part 2, \(A\) is \(\beta(E', E)\)-compact, hence \(A\) is a paracompact set. By Corollary 3.3, \(\varphi\) is a lower semi continuous function, therefore, by Theorem 2.4, \(\varphi\) admits a selection. □

Theorem 3.5. If \((X, t)\) and the closed subspace \(E\) are DF-spaces then every compact operator \(T : E \to C(K)\) has a compact extension \(\hat{T} : X \to C(K)\).

Proof. Let \(A\) be as in Proposition 3.4 and \(f : (A, \beta(E', E)) \to (X', \beta(X', X))\) a selection function. Since \(A\) is \(\beta(E', E)\)-compact and \(f\) is continuous, \(f(A)\) is compact, hence \(f(A)\) is an equicontinuous set. Let \(\hat{T}\) be the linear extension of \(T\) given in Lemma 3.1.

Let us prove that \(\hat{T}\) is a compact operator. For this, we need to show that there is a \(t\)-neighborhood \(V\) such that \(\hat{T}(V)\) is a relatively compact set.

Since \(f(A) \subset X'\) is an equicontinuous set and \(X\) is a DF space, [2] (p. 260 and p. 214) tells us that there is \(V \subset X\) a balanced, closed and convex \(t\)-zero-neighborhood such that \(f(A) \subset V^0\) and the topologies \(\beta(X', X)\) and \(\rho_{V^0}\) coincide on \(f(A)\). Here \(\rho_{V^0}\) is the Minkowski functional of \(V^0\). In this case \(\rho_{V^0}\) is a norm and \((X'_{V^0}, \rho_{V^0})\) is a Banach space.

By using the Arzela-Ascoli Theorem, we will show that \(\hat{T}(V) \subset C(K)\) is relatively compact.

First, \(\hat{T}(V)\) is pointwise bounded because, for each \(x \in V\) and \(k \in K\),
\[
|\hat{T}(x)(k)| = |f(T'(\hat{k}))(x)| \leq 1 \text{ since } f(A) \subset V^0.
\]

Now let us prove that \(\hat{T}(V)\) is equicontinuous in \(C(K)\).

Choose and fix \(k_0 \in K\) and \(\epsilon > 0\). Since the chain of functions
\[
K \xrightarrow{\sim} K \xrightarrow{T} (A, \beta(X', X)) \xrightarrow{f} (f(A), \beta(X', X))
\]
is continuous, given a \(\beta\)-neighborhood \(W\) of \(f(T'(\hat{k}_0))\) on \(f(A)\), there exists \(O \subset K\) neighborhood of \(k_0\) such that \(k \in O \Rightarrow f(T'(\hat{k})) \in W\). Since \(\rho_{V^0}|_{f(A)} = \beta(X', X)|_{f(A)}\), we can say that
\[
k \in O \Rightarrow \rho_{V^0} \left(f(T'(\hat{k})) - f(T'(\hat{k}_0))\right) < \epsilon
\]
For each $x \in X$, \(x : (X'_\rho \circ V) \to \mathbb{R} \) is linear and continuous, moreover,
\[|x'(x)| \leq \|x\|_\rho \circ V \circ (x') \]
for all \(x' \in X' \), where
\[\|x\|_\rho \circ V = \sup\{|x'(x)| \mid x' \in V'\} \]

If \(x \in V \), \(\|x\|_\rho \circ V \leq 1 \). Therefore, for every \(k \in O \) and every \(x \in V \)
\[\left| f(T'(\hat{k})) - f(T'(\hat{k}_0))(x) \right| \leq \|x\|_\rho \circ V \left(f(T'(\hat{k})) - f(T'(\hat{k}_0)) \right) \leq (1)\epsilon \]
This proves that \(\tilde{T}(V) \) is equicontinuous in \(C(K) \) and, by the Arzela-Ascoli Theorem, \(\tilde{T}(V) \) is relatively compact which means that \(\tilde{T} \) is a compact operator. \(\square \)

In [3] (p. 402) it is shown that the topological inductive limit of a sequence of DF-spaces is a DF-space. In particular, if \((E_n)\) is a sequence of Banach spaces such that \(E_n \) is a proper subspace of \(E_{n+1} \), its inductive limit is DF-space. This inductive limit is not metrizable (see [8] p. 291). For this kind of spaces, Theorem 3.5 can be applied, i.e., given a fixed \(n \), a compact operator \(T : E_n \to C(K) \) can be extended to a compact operator of the inductive limit.

Acknowledgements. The research of the authors was supported by the Coordinación de la Investigación Científica de la UMSNH.

References

Received November 2004
Accepted June 2005
F. Garibay Bonales (fgaribay@zeus.umich.mx)
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060, México.

R. Vera Mendoza (rvera@zeus.umich.mx)
Facultad de Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060, México.