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RESUMEN

Los problemas de optimización de desigualdades matriciales lineales en
control borroso se han convertido en la herramienta más utilizada en
dicha área desde los años 90. Muchos sistemas no lineales pueden ser
modelados como sistemas borrosos de modo que el control borroso puede
considerarse como una técnica de control no lineal. Aunque se han
obtenido muchos y buenos resultados, quedan algunas fuentes de conser-
vadurismo cuando se comparan con otros enfoques de control no lineal.
Esta tesis discute dichas cuestiones de conservadurismo y plantea nuevos
enfoques para resolverlas.

La principal ventaja de la formulación mediante desigualdades ma-
triciales lineales es la posibilidad de asegurar estabilidad y prestaciones
de un sistema no lineal modelado como un sistema borroso Takagi-
Sugeno. Estos modelos están formados por un conjunto de modelos
lineales eligiendo el sistema a aplicar mediante el uso de unas reglas
borrosas. Estas reglas se traducen en funciones de interpolación o de
pertenećıa que nos indican el grado de validez de un modelo lineal
respecto del resto. El mayor problema que presentan estas técnicas
basadas en desigualdades matriciales lineales es que las funciones de
pertenencia no están incluidas en las condiciones de estabilidad del sis-
tema, lo que significa que se prueba la estabilidad y prestaciones para
cualquier forma de interpolación entre los diferentes modelos lineales.
Esto genera una fuente de conservadurismo que seŕıa conveniente limi-
tar.

En la tesis doctoral se presentan varias metodoloǵıas capaces de
trasladar la información de las funciones de pertenencia del sistema al
problema basado en desigualdades matriciales lineales de estabilidad y
prestaciones. Las dos principales aportaciones propuestas se basan, res-
pectivamente, en introducir una serie de matrices de relajación que per-
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mitan incorporar esta información y en aprovechar la descripción de una
amplia clase de sistemas borrosos en productos tensoriales de modelos
lineales, en los que cada función de pertenencia se obtiene del producto
cartesiano de varias funciones.

Por otro lado, el problema de estabilidad y prestaciones para sistemas
borrosos Takagi-Sugeno está basado en las condiciones de estabilidad de
Lyapunov y no resulta equivalente al problema en desigualdades ma-
triciales lineales obtenido, siendo este último conservativo respecto al
primero. Aśı una de las mayores aportaciones de la tesis es la introduc-
ción de nuevas condiciones de estabilidad y prestaciones que mediante
un parámetro de diseño permiten acercar esta equivalencia entre las ex-
presiones, resultando equivalentes asintóticamente con el aumento del
parámetro. Como inconveniente, el aumento del parámetro comporta
un aumento en la complejidad del problema a resolver.



RESUM

Els problemes d’optimització de desigualtats matricials lineals en control
borrós s’han convertit en la ferramenta més utilitzada a l’àrea des dels
anys 90. Molts sistemes no lineals poden ser modelats com sistemes
borrosos, de tal forma que el control borrós es pot considerar com una
tècnica de control no lineal. Malgrat que s’han obtingut molts i bons
resultats, queden algunes fonts de conservadorisme quan es comparen
amb altres tècniques de control no lineal. Aquesta tesi discuteix les
qüestions de conservadorisme i planteja noves tècniques per a resoldre-
les.

El principal avantatge de la formulació mitjançant desigualtats ma-
tricials lineals és la possibilitat d’assegurar estabilitat i prestacions d’un
sistema no lineal modelat com a un sistema borrós Takagi-Sugeno. A-
quests models estan formats per un conjunt de models lineals triant el
sistema a aplicar mitjançant l’ús d’unes regles borroses. Aquestes re-
gles es tradueixen en funcions d’interpolació o de pertenència que ens
indiquen el grau de validesa d’un model lineal respecte de la resta. El ma-
jor problema que presenten aquestes tècniques basades en desigualtats
matricials lineals és, que les funcions de pertenència no estan incloses
en les condicions d’estabilitat del sistema, això significa que, es prova
l’estabilitat i prestacions per a qualsevol forma d’interpolació entre els
diferents models lineals. Açò genera una font de conservadorisme que
seria convenient limitar.

En la tesis doctoral es presenten diverses metodologies que poden
traslladar la informació de les funcions de pertenència del sistema al
problema basat en desigualtats matricials lineals d’estabilitat i presta-
cions. Les dues principals aportacions proposades es basen, respecti-
vament, en introduir una sèrie de matrius de relaxació que permeten
incorporar aquesta informació, i en aprofitar la descripció d’una àmplia
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classe de sistemes borrosos en productes tensorials de models lineals,
en els que cada funció de pertenència s’obté del producte cartesià de
diverses funcions.

D’altra banda, el problema d’estabilitat i prestacions per a sistemes
borrosos Takagi-Sugeno està basat en les condicions d’estabilitat de Lya-
punov i no és equivalent al problema en desigualtats matricials lineals
obtingut, on aquest últim resulta conservatiu respecte al primer. Aix́ı
una de les majors aportacions de la tesi és la introducció de noves condi-
cions d’estabilitat i prestacions que mitjançant un paràmetre de disseny
permeten aproximar aquesta equivalència entre les expressions, resul-
tant equivalents assimptòticament amb l’augment del paràmetre. Com
a inconvenient l’augment del paràmetre comporta un augment de la
complexitat del problema a resoldre.



ABSTRACT

Linear Matrix Inequalities (LMI) optimization problems became the tool
of choice for fuzzy control in the 1990’s. Many nonlinear systems can
be modelled as fuzzy systems, so fuzzy control may be considered as
a nonlinear control technique. Useful results have been obtained using
LMIs, however some sources of conservativeness remain when compared
to other nonlinear approaches. This thesis deals with such issues of
conservativeness and discusses some ideas on overcoming them.

The main advantage of Linear Matrix Inequalities formulations is
that they can ensure stability and performance of a nonlinear system
modelled by a Takagi-Sugeno fuzzy system. The system is described by
fuzzy IF-THEN rules which present “local” linear systems of the non-
linear plant. These rules are numerically represented by a set of mem-
bership functions. As a drawback, current linear matrix inequalities
methodologies do not include the shape of the membership functions.
Therefore the stability is proved for any set of rules with any member-
ship function that can be described by these linear models. This is a
source of conservatism that can be reduced.

In this thesis some methodologies are presented which include the
membership function information into the linear matrix inequalities sta-
bility and performance problem. We propose two main contributions
in this area. The first method introduces a set of relaxation matrices
that incorporates the information on the membership functions. The
other uses the description of a wide class of Takagi-Sugeno fuzzy sys-
tems, labelled as Tensor-Product Takagi-Sugeno fuzzy systems. In these
systems, each membership function is the product of several membership
functions.

On the other hand, the problem of stability and performance for
Takagi-Sugeno fuzzy systems is based on Lyapunov stability conditions
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which are not equivalent to the linear matrix inequalities optimization
problem, the second one is conservative compared to the first. That is
why one of the main contributions of the thesis is a set of progressively
less conservative sufficient conditions in order to hold stability or per-
formance conditions for Takagi-Sugeno fuzzy systems. These conditions
are asymptotically equivalent. But the problem complexity increases as
the conditions are closer.
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Chapter 1

Summary of the thesis

1.1 Introduction

In contrast to conventional control, fuzzy control was initially introduced
as a model-free control design method based on a representation of the
knowledge and the reasoning process of a human operator (Zadeh, 1973;
Assilian & Mamdani, 1975). Fuzzy logic can capture the continuous
nature of human decision making processes. Practical applications of
fuzzy control started to appear very quickly after the method had been
introduced in publications. Moreover fuzzy modelling methodologies
were developed and most nonlinear process could be modelled as fuzzy
systems. A drawback of knowledge-based, model-free fuzzy control is
that it does not allow for any kind of stability or robustness analysis,
unless a model of the process is available.

In a parallel research line, new control methodologies appeared in
the field of robust control in the 1990’s. These technics were based
on Lyapunov stability and convex optimization where the optimization
problem is subject to a set of Linear Matrix Inequalities (LMI). These
methodologies reached maturity after (Boyd, El Ghaoui, Feron, & Bal-
akrishnan, 1994) and were applied to fuzzy control theory by (Tanaka
& Wang, 2001), in particular to Takagi-Sugeno fuzzy models, becoming
widespread in the last 10 years. Results are available for control design
of fuzzy systems with uncertainty, delay, descriptor forms.

LMIs have become a powerful tool in fuzzy control. They solved a
wide variety of stability and performance problems for Takagi-Sugeno
fuzzy models. The ability of fuzzy systems to approximate nonlinear
models allowed control of large generic control problems.
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2 Objectives

As a drawback there are several sources of conservatism on main-
stream fuzzy control. The choice of the structure of the Lyapunov func-
tion, conservativeness of the LMI conditions as they are not equivalent
to the Lyapunov conditions, because they are independent of the mem-
bership shape.

LMI fuzzy control theory is not able to find any solution in some
complex scenarios, where other nonlinear control theory is successful,
due to the membership functions are not included in the LMI conditions.
The aim of the thesis is to introduce some new conditions in order to
reduce this conservatism.

1.2 Objectives

The main objective of the thesis is to reduce the above discussed gap
between fuzzy and nonlinear control. Four ways have been explored in
order to reduce this gap:� Conservativeness of the positivity conditions for fuzzy summations.� Local stability results for fuzzy systems.� New stability conditions for Tensor product fuzzy systems.� Membership-shape relaxation.

1.2.1 Conservativeness of the positivity conditions for
fuzzy summations

Current literature (Tanaka & Wang, 2001; Liu & Zhang, 2003; Fang,
Liu, Kau, Hong, & Lee, 2006) presents only sufficient conditions for en-
suring stability or performance of Takagi-Sugeno Fuzzy models. There
are many literature references in the area of stability and performance
conditions. So we explore the different ways to reduce this conservative-
ness. These contributions have been published in (Sala & Arino, 2007b)
and (Arino & Sala, 2007a).
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1.2.2 Local stability approach

Local quadratic stability results can be obtained, even in the case where
global quadratic-stability related LMIs are infeasible. Indeed, as com-
mented in (Sugeno, 1992), it is an interesting question to determine for
which initial conditions a fuzzy system is stable (or unstable) (Sugeno,
1992). Example 6 in (Tanaka & Wang, 2001)(Chapter 2) shows that the
basin of attraction for fuzzy systems may be membership dependent. In
this respect, the methodology presented here allows to determine the
largest sphere around the origin for which quadratic stability may be
provable in a given fuzzy system with known membership functions.
These contributions have been published in (Ariño & Sala, 2006a) and
(Ariño & Sala, 2006b).

1.2.3 Tensor-product fuzzy systems

Another example of conservativeness occurs when the membership func-
tions can be expressed as the “tensor product” of simpler partitions,
so that the fuzzy system can be written as a multi-dimensional fuzzy
summation.

Removing part of the conservatism in current solutions for the tensor-
product case above is indeed of interest; this product structure is often
the case in many engineering applications of fuzzy control:� in the systematic “sector nonlinearity” fuzzy modelling techniques

reported in (Tanaka & Wang, 2001);� in many man-made rulebases for multi-input fuzzy systems, where
the rules are built via the conjunction of simpler concepts arising
from fuzzy partitions on each of the input domains. A typical ex-
ample are rulebases formed with rules in the form“if z1 is large and
z2 is small and . . . then . . . ”, “if z1 is medium and z2 is small and
. . . then . . . ”, etc., with the antecedents covering all combinations
of fuzzy sets on z1, z2, etc..� in approximate interpolation and model reduction techniques based
in gridding and tensor-SVD algebra in (Baranyi, 2004).

These settings are a particular class of fuzzy models which will be de-
noted as tensor-product fuzzy systems.



4 Structure of the thesis

In summary the objective is to define and analyzing the tensor-
product fuzzy systems, by presenting fuzzy control design tools for them
which explicitly use the tensor-product structure. The study of the
properties of this class of systems is very relevant as most of the fuzzy
systems in nontrivial engineering applications of fuzzy control belong to
this class, as discussed above.

These contributions have been published in (Arino & Sala, 2007c)and
(Ariño & Sala, 2007b).

1.2.4 Memberships shape

When the expressions of the memberships as a function of some premise
variables are actually known, some zones of the possible membership
space can be excluded. Reducing the size of the (multi-dimensional) set
where the membership functions take values should obtain less conser-
vative conditions than those expressed for any membership. However,
LMI conditions in current literature do not take into account that fact.
These contributions have been published in (Sala & Ariño, 2007a).

1.2.5 Uncertain memberships

In most applications, we need to approximate the membership functions
and in these cases, it is difficult to take into account the knowledge of
the membership functions shape. Therefore the ability to incorporate
a wider class of constraints on the membership shape will improve the
current stability and performance results.

1.3 Structure of the thesis

The document is organized in three parts. Part I outlines with the state
of the art, and it is composed of two chapters. Chapter 2 introduces the
reader to Lyapunov stability and linear matrix inequalities problems and
Chapter 3 presents the stability and performance problem in Takagi-
Sugeno Fuzzy systems.

Part II presents the contributions and is organized in seven chapters:



Summary of the thesis 5� Chapter 4 exposes the problems with the LMI theory and deals
with the different points of view to tackle the problem.� Chapter 5 presents asymptotical necessary and sufficient condi-
tions for quadratic stability in Takagi-Sugeno fuzzy models.� Chapter 6 presents local stability conditions to apply when global
stability can not be proved� Chapter 7 deals with the introduction of the membership func-
tions shape into the LMI stability conditions in order to relax this
expressions and approach to nonlinear control specific results.� Chapter 8 develops new stability and performance LMI condi-
tions for TS fuzzy models with uncertain memberships functions.� Chapter 9 deals with the Tensor Product Takagi-Sugeno models
and presents a new stability results that take into account the
special structure of these models.

Part III closes the thesis with a summary of contributions and open
research lines.





Part I

State of the art

7





Chapter 2

Linear Matrix Inequalities stability analysis

2.1 Introduction

The most useful and general approach for studying the stability of non-
linear control systems is the theory introduced in the late 19th cen-
tury by the Russian mathematician Alexander Mikhailovich Lyapunov.
Lyapunov’s work, The General Problem of Motion Stability, includes
two methods for stability analysis (the so-called linearization method
and the direct method) and was first published in 1892. The lineariza-
tion method draws conclusions about a nonlinear system’s local stability
around an equilibrium point from the stability properties of its linear ap-
proximation. The direct method is not restricted to local motion, and
determines the stability properties of a nonlinear system by constructing
a scalar “energy-like” function for the system and examining the func-
tion’s time variation. However Lyapunov’s pioneering work on stability
received little attention outside Russia, although it was translated into
French in 1908 (at the instigation of Poincare), and reprinted by Prince-
ton University Press in 1947. The publication of the work by Lur’e and
a book by La Salle and Lefschetz brought Lyapunov’s work to the at-
tention of the larger control engineering community in the early 1960’s.
Many refinements of Lyapunov’s methods have since been developed.
Today, Lyapunov’s linearization method has come to represent the the-
oretical justification of linear control, while Lyapunov’s direct method
has become the most important tool for nonlinear system analysis and
design. Together, the linearization method and the direct method con-
stitute the so-called Lyapunov stability theory.

The objective of this chapter is to present Lyapunov stability theory
and illustrate its use in the analysis and the design of control systems.

9



10 Stability concept

2.2 Stability concept

The concept of stability and instability (Slotine & Li, 1991) are useful
in a wide field of knowledge: Finance, Medicine, Construction, Control,
Chemistry, etc... So a clear definition of the concept of stability is needed
in the control theory.

Qualitatively, a system is described as stable if starting the system
somewhere near its desired operating point implies that it will stay
around the point ever after. And this point is called the equilibrium
point. From this qualitative definition, we can classify three kinds of
equilibrium points (Slotine & Li, 1991; Boyd et al., 1994):� Asymptotically stable: the system returns to the equilibrium point

after a small perturbation.� Non-asymptotically stable: the system remains in the proximity
of the equilibrium point after a small perturbation.� Unstable equilibrium: the system keeps away from the equilibrium
point after a small perturbation.

2.2.1 Nonlinear systems

Let us consider a class of nonlinear dynamic systems (Slotine & Li, 1991),
which can be represented by a set of differential equations in the form

ẋ = f (x, t) (2.1)

Where x is the (n× 1) state space vector, and f is a (n× 1) vector
function. The number of the states is also called the order of the system.
And a solution x(t) of the equation is a trajectory.

If f is only a function of x, the system is said to be autonomous,
otherwise the system is called non-autonomous.

A special class of nonlinear systems are linear systems (Antsaklis &
Mitchel, 1997). The dynamics of linear systems have the form

ẋ = A(t)x (2.2)
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where A(t) is an (n× n) matrix. If A(t) is constant the system is called
Linear time-invariant (LTI) system, otherwise it is denoted as linear time
variant (LTV) system.

Equilibrium points
It is possible for a system trajectory to correspond to only a single point.
Such a point is called an equilibrium point. As we shall see later, many
stability problems are naturally formulated with respect to equilibrium
points.

In autonomous systems state x′ is an equilibrium state (or equilib-
rium point) of the system if once x(t) is equal to x, it remains equal to x
for all future time. Mathematically, this means that the constant vector
x′ satisfies

0 = f (x′)

In a linear time-invariant system 0 = Ax′. So x′ = 0 is the single equilib-
rium point if A is not singular. On the other hand, nonlinear systems
can have several isolated equilibrium points.

2.2.2 Lyapunov stability

In the beginning of this chapter, an intuitive notion of stability was in-
troduced, as a kind of behavior around an equilibrium point. However,
since nonlinear systems may have much more complex and exotic be-
havior than linear systems, the mere notion of stability is not enough to
describe the essential features of their motion. A number of more refined
stability concepts, such as asymptotic stability, exponential stability and
global asymptotic stability, are needed. In this section, we define these
stability concepts formally, for autonomous systems, and explain their
practical meanings.

Essentially, stability in the sense of Lyapunov means that the system
trajectory can be kept arbitrarily close to the equilibrium point, starting
sufficiently close to it. So let us define local stability as

Definition 2.1 The equilibrium state x = 0 is said to be stable if, for
any ε > 0, there exists η > 0, such that if ||x0|| < η then ||y(t,x0)|| < ε
for all t>0 . Otherwise, the equilibrium point is unstable.
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Also, Asymptotic stability in the sense of Lyapunov (Slotine & Li,
1991) means that the equilibrium is stable and that, in addition, if the
states started close to the equilibrium point, they actually converge to
the equilibrium point.

Definition 2.2 An equilibrium point x = 0 is asymptotically stable if it
is stable, and if in addition there exists some ε > 0 such that ||x(0)||< ε
implies that x(t)→ 0 as t→ ∞.

2.2.3 Lyapunov stability theorem

Inside the ball B(ε), the equilibrium point x = 0 of the system (2.1) is
locally stable, if there is a scalar function V (x) continuous and differen-
tiable such that

V (x) ≥ 0 ∀x ∈ B(ε)

dV
dt

≤ 0 t ≥ 0

V (0) = 0

where x is the state space vector of the system (2.1). And the func-
tion V (x) is called Lyapunov function.

The result can be derived using the geometric interpretation of a
Lyapunov function, as illustrated in figure 2.1 in which is drawn the
equipotentials of V on the state space of the system. In order to show
stability, it must be shown that given any strictly positive number ε > 0,
there exists a smaller positive number η such that any trajectory starting
inside the ball B(η) remains inside the ball B(ε) for all future time. Let
m be the minimum of V on the ball B(ε). Since V is continuous and
positive definite, m exists and is strictly positive. Furthermore, since
V (0) = 0, there exists a ball B(η) around the origin such that V (x) < m
for any x inside the ball. Consider now a trajectory whose initial point
is in the ball B(η) . Since V is non-increasing along system trajectories,
V remains strictly smaller than m, and therefore the trajectory cannot
possibly cross the outside sphere B(ε) . Thus, any trajectory starting
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inside the ball B(η) remains inside the ball B(ε), and therefore Lyapunov
stability is guaranteed.

ETA


E


V


Figure 2.1: Lyapunov stability in the neighborhood of V(0)

In applying the above theorem for analysis of a nonlinear system,
one goes through the two steps of choosing a positive definite function
V (x), and then determining its derivative along the path of the nonlinear
systems. The following example illustrates this procedure for the linear
system (2.2).

Example 2.1 We propose a quadratic function V (x) = xT Px as Lya-
punov function candidate.

Then V is definite positive if P is definite positive. And evaluating the
second condition w obtain:

V̇ (x) = xT Pẋ+ ẋT Px = (2.3)

= xT PAx+ xT AT Px = xT (PA + AT P)x (2.4)

(2.5)

Then V̇ (x) < 0 if PA + AT P is definite negative. Therefore the linear
system (2.2) is stable if we can find a definite positive matrix P such
that PA+AT P is definite negative. This introduces an LMI condition as
discussed below.
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2.3 Linear matrix inequalities (LMI)

A linear matrix inequality (Gahinet & Apkarian, 1994; Boyd et al., 1994;
Anderson, Kraus, Mansour, & Dasgupta, 1995; Scherer, Gahinet, &
Chilali, 1997) is an expression of the form:

A(x) = A0 + x1A1+ ...+ xNAN < 0 (2.6)

where� x = (x1, ...,xN) is a vector of N real numbers called the decision
variables.� A0, ...,AN are real symmetric matrices.� the inequality < 0 in (2.6) means definite negative. That is equiv-
alent to saying that all eigenvalues λ (A(x)) are negative, or equiv-
alently, the maximum eigenvalue is negative.

2.3.1 Properties of linear matrix inequalities

Convex set. The linear matrix inequality (2.6) defines a convex con-
straint on x. That is, the set

Φ = {x|A(x) < 0} (2.7)

of solutions of the LMI A(x) < 0 is convex. In fact, if x1 and x2 are in Φ
then αx1 +(1−α)x2 is in Φ, where 0≤ α ≤ 1.

A(αx1 +(1−α)x2) = αA(x1)+ (1−α)A(x2) < 0

where we used that A(x) is affine and where the inequality follows from
the fact that 0≤ α ≤ 1.

A set of linear matrix inequalities (LMIs) is a finite set of
linear matrix inequalities:

A1(x) < 0, . . . ,Ak(x) < 0 (2.8)



Linear Matrix Inequalities stability analysis 15

Any set of linear matrix inequalities can be expressed as a linear matrix
inequality in the form

A(x) =











A1(x) 0 . . . 0
0 A2(x) . . . 0
...

...
. . .

...
0 0 . . . Ak(x)











< 0 (2.9)

The last inequality indeed makes sense as A(x) is symmetric for any
x. Further, since the set of eigenvalues of A(x) is simply the union of the
eigenvalues of A1(x), . . . ,Ak(x), any x that satisfies A(x) also satisfies the
set of LMIs (2.8).

Affine constrains. A third important property amounts to incorpo-
rating affine constraints in linear matrix inequalities. By this, we mean
that combined constraints (in the unknown x) of the form x = Au+b for
some u. The LMI constrain A(x) < subject to x = Au+b can be rewritten
as an LMI of u as Â(u) < 0.

Congruence transformation. If M is a square matrix and T is
non-singular, then the product T T MT is called a congruence transfor-
mation of M. For symmetric matrices M this transformation does not
change the number of positive and negative eigenvalues of M. Indeed, if
an LMI A(x) < 0 holds for some x then uT A(x)u < 0 holds for any nonzero
u and x in Φ, (2.7). In particular if u = T v, vT T T A(x)T v < 0, therefore
T T A(x)T < 0 for any x in Φ, (2.7).

2.3.2 Schur complement

Let A(x) be an affine function which is partitioned according to

A(x) =

(

A11(x) A12(x)
A12(x)T A22(x)

)

(2.10)

then A(x) < 0 is equivalent to:
{

A11(x) < 0
A22(x)−A12(x)T A22(x)−1A12(x) < 0

(2.11)

and
{

A22(x) < 0
A11(x)−A12(x)A11(x)−1A12(x)T < 0

(2.12)
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The second inequalities in (2.11) and (2.12) are nonlinear in x. Using that
result follows that nonlinear matrix inequalities in the form (2.11) can
be converted into linear matrix inequalities. The proof can be obtained
with the congruence transformation

T =

(

I −A−1
22 AT

12
0 I

)

2.3.3 S-procedure

Sometimes a quadratic function should be negative whenever some other
quadratic functions are all negative. This constraint can be expressed
as an LMI defining the quadratic functions. Sometimes this LMI is
conservative, but often a useful approximation of the constraint.

The S-procedure for quadratic functions and non-strict in-
equalities: Let F0, . . . ,Fp the quadratic function of the variable u ∈Rn:

Fi(u) = uT Tiu+2biu+ vi i = 0, . . . , p (2.13)

where Ti is a symmetric matrix. We consider the following condition on
F0, . . . ,Fp:

F0(u) > 0 ∀u | Fi(u)≥ 0, i = 0, . . . , p (2.14)

Obviously if there exist τ1≥ 0, . . . ,τp ≥ 0 such that for all u,

F0(u)−
p

∑
i=1

τiFi(u)≥ 0 (2.15)

then (2.14) holds.

If p=1, the converse holds, provided that there is some u0 such that
F1(u0) > 0, See (Wolkowicz & Stern, 1995; Nocedal & Wright, 1999; Boyd
& Vandenberghe, 2004)

The inequality (2.15) can be rewritten as an LMI as

(

T0 b0

bT
0 v0

)

−
p

∑
i=1

τi

(

Ti bi

bT
i vi

)

≥ 0 (2.16)

Farkas Lemma is a particular case of the s-procedure, where the
functions Fi are affine. In that case (2.14) and (2.15) are equivalent. See
(Boyd & Vandenberghe, 2004)
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The S-procedure for quadratic forms and strict inequalities:

Another variation of the s-procedure involves quadratic forms and
strict inequalities. Let T0, . . . ,Tp ∈ Rn×n be symmetric matrices. We
consider the following conditions on T0, . . . ,Tp

uT T0u > 0 ∀u 6= 0 | uT Tiu≥ 0, i = 0, . . . , p (2.17)

it is obvious that if there exist τ1≥ 0, . . . ,τp ≥ 0 such that

T0−
p

∑
i=1

τiTi > 0 (2.18)

then (2.17) holds.

2.3.4 Finsler Lemma

Let x ∈ Rn, Q = QT ∈ Rn×n and R ∈ Rm×n. The following statements are
equivalent (Boyd et al., 1994):

1. xT Qx < 0 for all x 6= 0 such that Rx = 0

2. RT
⊥QR⊥ < 0 where RR⊥ = 0

3. Q−σRT R < 0 for some scalar σ ∈ R

4. Q + XR + RTXT < 0 for some matrix X ∈ Rn×m

2.3.5 Linear matrix inequalities problems

There are two generic problems related to the study of linear matrix
inequalities:

1. The LMI optimization problem. Let an objetctive function
f : Φ→ R where Φ = {x|A(x) < 0}. The problem to determine
minx f (x) is called an optimization problem with an LMI constraint.
If the function f is linear f = c1xn + · · ·+ cnxn, the optimization
problem is a generalization of linear programming to a cone of
positive semidefinite matrices. It is also called semidefinite pro-
gramming.
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2. The LMI feasibility problem. Test whether exist x ∈ Rn such
that A(x) < 0. That is, A(x) < 0 is feasible if and only if
minx λmax(A(x)) < 0. Therefore involves minimizing the function
f : x→ λmax(A(x)). That is possible because this function is convex
as it has been shown above.

2.3.6 Solving LMIs

A solution method for an LMI optimization problems is an algorithm
that computes a solution of the problem (to some given accuracy), given
a particular problem from the class, i.e., an instance of the problem.
Since the late 1940s, a large effort has gone into developing algorithms for
solving various classes of optimization problems, analyzing their proper-
ties, and developing good software implementations. The effectiveness
of these algorithms varies considerably, and depends on factors such as
the particular forms of the objective and constraint functions, how many
variables and constraints there are, and special structure, such as spar-
sity. (A problem is sparse if each constraint function depends on only a
small number of the variables).

High quality implementations of LMI optimization problems are a-
vailable in (Gahinet, Nemirovski, Laub, & Chilali, 1995; Sturm, 1999)
software.



Chapter 3

Takagi-Sugeno Models

3.1 Introduction

This Chapter outlines model-based fuzzy control systems. The central
subject is a systematic framework for the stability and design of non-
linear fuzzy control systems. Building on the so-called Takagi-Sugeno
fuzzy model, a number of the most important issues in fuzzy control sys-
tems are addressed. These include stability analysis, systematic design
procedures, incorporation of performance specifications, robustness and
observer design.

3.2 Definitions

This section shows the definition of the Takagi-Sugeno fuzzy model (TS
fuzzy model). followed by construction procedures of such models. Then
a model-based fuzzy controller design utilizing the concept of “parallel
distributed compensation” is described. The main idea of the controller
design is to derive each control rule so as to compensate each rule of a
fuzzy system. The design procedure is conceptually simple and natural.
Moreover, it is shown in this chapter that the stability analysis and
control design problems can be reduced to linear matrix inequality (LMI)
problems.

First we present the Takagi-Sugeno Fuzzy model as an approxima-
tion of a given nonlinear plant, described by fuzzy IF-THEN rules which
present “local” linear systems of the nonlinear plant (Babuska, 1998;
Babuska, Fantuzzi, & Verbruggen, 1996). So each rule expresses a sig-

19
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nificant feature of the plant, expressed as a linear system. Then the
whole plant is described by the interpolation among these linear sys-
tems. This feature is very useful in order to reduce the control problem
into linear matrix inequalities conditions.

3.2.1 Takagi-Sugeno Fuzzy Models

Takagi-Sugeno (Takagi & Sugeno, 1985) (TS) fuzzy model is defined
by IF-THEN rules that represent local linear dynamics of a nonlinear
system. The rules of the TS fuzzy models are usually expressed as:

IF z is Mi THEN

{

δxi = Aixi + Biu
yi = Cixi

The local models represented by Aixi + Biu are used to compute the
final output as follows:

δx =
r

∑
i=1

µi(z)(Ai · x+ Bi ·u) (3.1)

y =
r

∑
i=1

µi(z)Cix (3.2)

r

∑
i=1

µi(z) = 1, µi(z) > 0 ∀z i = 1. . . r (3.3)

In continuous models, δ represents the derivative operator and in
discrete case, it represents the advance operator. x(t) ∈ R

n is the state
space vector, u(t) ∈ R

m is the input vector of the model and y(t) ∈ R
p

is the output vector. Matrices Ai ∈ R
n×n, Bi ∈ R

n×m and Ci ∈ R
p×n for

i = 1. . . r represents a set of linear models. z(t) is the premise variables
and µi(z) represents the membership functions of fuzzy set Mi that hold
(3.3)
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3.2.2 PDC-controller

The parallel distributed compensation (PDC) controller began with a
model-based design prodedure proposed by (Sugeno & Kang, 1986) with-
out stability analysis. The LMI stability analysis was done in (Tanaka
& Sugeno, 1992) and it was named PDC in (Wang, Tanaka, & Griffin,
1995).

In the PDC controller design, each control rule is designed for the
corresponding rule of a TS fuzzy model. Therefore the designed fuzzy
controller shares the fuzzy sets with the fuzzy model, that are the mem-
bership functions in the inference procedure. For the TS fuzzy models
the PDC-controller is defined as:

IF z is Mi THEN

ui(t) =−Fixi(t)

So Each rule represents a linear controller (state feedback law). Other
controllers such as output feedback controllers and dynamic output feed-
back controllers can also be used. As is shown in Chapter 5 they can be
used in our approaches. The fuzzy controller is expressed by the follow-
ing control input vector:

u(t) =−
r

∑
i=1

µiFix(t) (3.4)

The above expression is usually denoted as a parallel distributed com-
pensation controller, PDC-controller.

3.3 Sector nonlinearity

In order to design a fuzzy controller, we need a Takagi-Sugeno fuzzy
model for a nonlinear system. Therefore the construction of a fuzzy
model represents an important and basic procedure in this approach. In
this section we discuss the issue of how to construct such a fuzzy model.
In general there are two approaches for constructing fuzzy models:� Experimental identification using input and output data.
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There has been an extensive literature on fuzzy modelling using input-
output data following Takagi’s, Sugeno’s, and Kang’s excellent work
(Takagi & Sugeno, 1985; Sugeno & Nishida, 1985; Sugeno & Kang, 1986,
1988). The procedure mainly consists of two parts: structure identifica-
tion and parameter identification. The identification approach to fuzzy
modelling is suitable for plants that are unable or too difficult to be
represented by analytical physical models. On the other hand, non-
linear dynamic models for mechanical systems can be readily obtained
by, for example, the Lagrange method and the Newton-Euler method.
In such cases, the second approach, which derives a fuzzy model from
given nonlinear dynamical models, is more appropriate. This section fo-
cuses on this second approach. This approach utilizes the idea of sector
nonlinearity.

The idea of using sector nonlinearity in fuzzy model construction
first appeared in (Kawamoto, Tada, Ishigame, & Taniguchi, 1992) and
expanded in (Tanaka & Wang, 2001). Sector nonlinearity is based on
the following idea. Consider a nonlinear system ẋ = f (x), x ∈R . The
aim is to find a global sector such that a1x ≤ f (x) ≤ a2x. Figure 3.1
illustrates the sector nonlinearity approach. This approach guarantees
an exact fuzzy model construction. However, it is sometimes difficult
to find global sectors for general nonlinear systems. In this case, we
can consider local sector nonlinearity. This is reasonable as variables of
physical systems are always bounded.

Example 3.1 Let us considerer the nonlinear model

ẋ = cos(x)x (3.5)

then as cos(x) ∈ [−1,1]

cos(x) =
cos(x)+1

2
∗1+

1−cos(x)
2

(−1)

defining the membership functions µ1 = 1+cos(x)
2 and µ2 = 1−cos(x)

2 clearly
µ1 and µ2 fulfill (3.3). Then a TS fuzzy representation of the system is:
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a1x

a2x
x

ẋ

f (x)

Figure 3.1: Sector nonlinearity representation.

IF x is 2nπ THEN

ẋ = x

IF x is (2n+1)π THEN

ẋ =−x

ẋ =
2

∑
x=1

µiaix (3.6)

where n ∈ N, a1 = 1 and a2 =−1.

We can generalize to any bounded nonlinear function such that:
f (x) ∈ [ f , f̄ ], then

f (x) =
f (x)− f

f̄ − f
∗ f̄ +

f̄ − f (x)

f̄ − f
f (3.7)

The drawbacks of the methodology are:� If f (x) is unbounded this is only true on a compact set.� If there are N nonlinear functions on the model then there are
2N rules and they describe a multiaffine or tensor product Fuzzy
system which is widely discussed in Chapter 9.
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Figure 3.2: Inverted pendulum system.

Example 3.2 Inverted pendulum TS model

The equations of motion for the inverted pendulum (Cannon, 2003)
are

ẋ1 = x2 (3.8)

ẋ2 =
gsin(x1)−amlx2

2sin(2x1)/2−acos(x1)u
4l/3−aml cos2(x1)

(3.9)

where x1 denotes the angle in radians of the pendulum from the vertical
and x2 is the angular velocity; g is the acceleration due to gravity, m
is the mass of the pendulum, M is the mass of the cart, l is the length
of the pendulum, and u is the force applied to the cart; a = 1/(m +
M). following the reasoning in (Tanaka & Wang, 2001) we choose the
nonlinear functions

f1 =
1

4l/3−aml cos2(x1)

f2 = sin(x1)/x1

f3 = x2 sin(2x1)

f4 = cos(x1)

where x1∈ (−π/2,π/2) and x2 ∈ [−α ,α ]. Defining the membership func-
tions µim as in (3.7), where the subindex i corresponds to the nonlinear
linear function fi and m is the membership function number for fi, that
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is 1 or 2. We obtain the TS model

(

ẋ1

ẋ2

)

=
2

∑
i=1

2

∑
j=1

2

∑
k=1

2

∑
l=1

µ1iµ2 jµ3kµ4l

[

Ai jkl

(

x1

x2

)

+ Bi jklu

]

(3.10)

where Ai jkl and Bi jkl are defined from the bounds of f1, f2, f3, f4.

There are several contributions on nonlinear systems are modelled
as TS models (Sugeno & Nishida, 1985; Sugeno & Kang, 1986; Babuska,
1998; Hori, Tanaka, & Wang, 2002; Baranyi, 2004; Feng, 2006) etc...
There are also interesting results (Fantuzzi & Rovatti, 1996; Ying, 1998;
Wang, Li, Niemann, & Tanaka, 2000; Tanaka & Wang, 2001) that show
TS models are universal approximators.

3.4 Stability of fuzzy models

Lyapunov stability theory proves that such a system is stable if there
exist positive α , β and a function V (x) such that:

β‖x‖ ≥V (x)≥ α‖x‖, dV
dx

< 0, V (0) = 0, ∀ x

The most popular Lyapunov Functions proposed in literature are quad-
ratic forms:

V (x) = xT Px (3.11)

with matrix P being symmetric and definite positive. So we review the
basic results on quadratic stability of the Takagi-Sugeno fuzzy model
(3.1).

3.4.1 Stability of open-loop system

Let us first consider the stability of continuous system without inputs
(u), that is:

ẋ =
r

∑
i=1

µi(x)Ai · x (3.12)

In this case, we take the quadratic form shown above V (x) = xT Px
as our Lyapunov function. Due to P being definite positive the first
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condition holds. So we only need to prove that V̇ < 0. First we obtain
the value of V̇ , using (3.12), that is:

V̇ = xT [
r

∑
i=1

µi(A
T
i P+ PAi)]x

as the membership functions are greater than 0 a sufficient condition for
stability is:

AT
i P+ PAi < 0, i : 1..r (3.13)

where < means definite negative. As it can be seen these conditions are
independent for any membership function. That makes these conditions
conservative. This thesis contributes new conditions in order to reduce
the conservatism of the conditions.

The above equations are LMIs, hence widely available LMI optimiza-
tion software either finds a P or determines that the LMI is infeasible.

Remark: Note that the membership functions µ do not appear in
the LMI conditions. Hence, the same P defines a quadratic Lyapunov
function for multiple nonlinear systems with the same “vertex models”
as the original one. Such generality is good in case a feasible P is found
but, on the contrary,it is too restrictive a condition as in some cases a
solution can not be reached despite the underlying system being stable.

3.4.2 Stability of PDC closed-loop systems

The objective here is to illustrate the basic ideas of stability analysis
and stable fuzzy control via LMIs.

First we define the nonlinear control law by a PDC controller (3.4).
The substituting (3.4) into (3.1), The closed-loop system can be rewrit-
ten as:

ẋ =
r

∑
i=1

r

∑
j=1

µiµ j(Ai−BiFj)x (3.14)

Note that we have used the equality ∑r
i=1 µi = 1 to obtain the above

expression.

Denote:

Gi j = Ai−BiFj (3.15)
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As ∑i ∑ j µiµ j = 1, it may be considered as an open-loop one and
stability addressed by (3.13), i.e., looking for a common P such that:

GT
i jP+ PGi j < 0 ∀ i, j

However, there are much less conservative conditions. Stability analysis
in such a case has been discussed in (Tanaka & Wang, 2001) and (Kim &
Lee, 2000), among others. The main results in those works to be applied
in this contribution are the following.

Theorem 3.1 (Tanaka & Wang, 2001) The equilibrium of the system
described by (3.1) is globally asymptotically stable if there exists a com-
mon positive definite matrix P such that:

GT
ii P+ PGii < 0 (3.16)

(

Gi j + G ji

2

)T

P+ P

(

Gi j + G ji

2

)

≤ 0 (3.17)

where (3.17) must hold only if µiµ j 6= 0.

Proof: note that system (3.14) can be rewritten as:

ẋ =
r

∑
i=1

µ2
i (Ai−BiFi)x+

r

∑
i=1

∑
j>i

µiµ j(Ai−BiFj + A j−B jFi)x (3.18)

then we take the quadratic Lyapunov function defined in (3.11).

V̇ =
r

∑
i=1

µ2
i (GT

ii P+PGii)x+
r

∑
i=1

∑
j>i

µiµ j[(Gi j +G ji)
T P+P(Gi j +G ji)]x (3.19)

so V̇ is definite positive if (3.16) and (3.17) hold.

Theorem 3.2 (Kim & Lee, 2000) The equilibrium of the fuzzy control
system (3.1) is globally quadratically stable if there exist symmetric pos-
itive matrix P and symmetric matrices Xi j such that

ΛT
ii P + PΛii + Xii < 0, i : 1, ...,n (3.20)

ΛT
i jP+ PΛi j + Xi j < 0, i < j ≤ r (3.21)







X11 . . . X1n
...

. . .
...

Xn1 . . . Xnn






> 0 (3.22)
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where
Λii = Gii

Λi j =
Gi j + G ji

2

3.5 Control Design for Takagi-Sugeno Fuzzy
Systems

In many situations, Lyapunov-based conditions for stability or perfor-
mance of a fuzzy control system may be expressed in the form

Ξ(t) =
r

∑
i=1

r

∑
j=1

µi(z(t))µ j(z(t))x(t)
T Qi jx(t) > 0 ∀ x 6= 0 (3.23)

where z(t) are denoted as premise variables (usually measurable) and r
denotes the number of fuzzy “rules” or “local models”. Symmetry (Qi j =
QT

ji), and a fuzzy partition condition (3.3) are assumed to hold. Notation
µi will be used as shorthand for µi(z(t)). Also, in most cases, “positive”
in the text below should be understood as shorthand for “positive for
x 6= 0”. Note that, the fuzzy partition condition (3.3) also implies:

r

∑
i=1

r

∑
j=1

µiµ j = 1 (3.24)

A typical example of the use of condition (3.23) is proving quadratic
stability of the fuzzy system (3.1) with a fuzzy PDC state-feedback con-
troller (3.4)

V̇ =
r

∑
i=1

r

∑
j=1

µi(z(t))µ j(z(t))x(t)
T ((Ai−BiFj)

T P+ P(Ai−BiFj))x(t) (3.25)

Introducing the notation Gi j = Ai−BiFj, Λi j = 1
2(Gi j +G ji), matrices Qi j

in (3.23) are (Kim & Lee, 2000):

Qii = −GT
ii P−PGii (3.26)

Qi j = −ΛT
i jP−PΛi j (3.27)
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Where P > 0 is a symmetric matrix, which defines a Lyapunov function
V (x) = xT Px, to be obtained via LMI algorithms (Boyd et al., 1994;
Tanaka & Wang, 2001; Boyd & Vandenberghe, 2004).

Stabilization design

If Fj in (3.4) is also to be designed, applying the change of variable
ξ = P−1x, (3.25) can be rewritten as

r

∑
i=1

r

∑
j=1

µi(z(t))µ j(z(t))ξ (t)T (X(Ai−BiFj)
T +(Ai−BiFj)X)ξ (t) (3.28)

r

∑
i=1

r

∑
j=1

µi(z(t))µ j(z(t))ξ (t)T (XAT
i −XFT

j BT
i + AiX −BiFjX)ξ (t) (3.29)

where X = P−1 and defining Mi as Mi = FiX , Qi j may be se to

Qi j =−(AiX + XAi
T −BiM j−MT

j BT
i ) (3.30)

Decay-rate performance requirement

The speed of response is related to the decay rate, that is, the largest
Lyapunov exponent α (Boyd et al., 1994) such that

lim
t→∞

eαt‖x(t)‖ = 0 (3.31)

A sufficient condition for (3.31) with Lyapunov candidate V = xT Px is

V̇ <−2αV (3.32)

for any initial point. Then if V (t) < V (x0)e−2αt and P > 0 then (3.31)
holds.

In Fuzzy control it can be applied introducing by Qi j such that

Qi j =−(AiX + XAi
T −BiM j−MT

j BT
i +2αX) (3.33)

where X > 0 and Mi = FiX are LMI decision variables (for details, see
(Tanaka & Wang, 2001; Kim & Lee, 2000)).
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Controller and observer design

In many applications, the state is not readily available. Then a state
space observer is needed to apply the fuzzy controller. A fuzzy observer
is defined in (Tanaka & Wang, 1997; Tanaka, Ikeda, & Wang, 1998) as

˙̄x =
r

∑
i=1

µi(z)(Aix̄ + Biu+ Ki(y− ȳ)) (3.34)

ȳ =
r

∑
i=1

Cix̄ (3.35)

Therefore, the PDC controller is computed using the state space esti-
mation x̄ as

u =
r

∑
i=1

µiFix̄

In (Tanaka et al., 1998), the augmented close-loop plant (3.36) is pro-
posed

(

ẋ
˙̃x

)

=

(

Ai−BiFj BiFj

0 Ai−K jCi

)[

x
x̃

]

(3.36)

where x̃ = x− x̄. Then with the Lyapunov function candidate

V = (xT x̃T )

(

P1 0
0 γP2

)(

x
x̃

)

(3.37)

where γ is a positive constant. The systems (3.36) can be stabilized if
(3.23) holds, with Qi j defined as

Qi j = AiX + XAi
T −BiM j−MT

j BT
i (3.38)

where X = P−1
1 , M j = FjX and if (3.23) holds, with Qi j defined as

Qi j = AT
i P2+ P2Ai−N jCi−CT

i NT
j (3.39)

where N j = P2K j. This result is similar to the separation principle for
linear systems. It has also been proved for TS fuzzy systems in (Ma, Sun,
& He, 1998). Note that, in the presented results the system model do not
include stability conditions of output stabilization for uncertain fuzzy
models. This has been reported in (Guerra, Kruszewski, Vermeiren, &
Tirmant, 2006).
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Disturbance rejection

Considerer the following TS fuzzy system with a disturbance w, in (Tuan,
Apkarian, Narikiyo, & Yamamoto, 2001)

ẋ =
r

∑
i=1

µi(z)(Aix+ B1iw + B2iu) (3.40)

y =
r

∑
i=1

µi(z)(Cix+ D11iw + D12iu) (3.41)

The disturbance rejection can be realized by minimizing γ such that

sup
‖w‖2 6=0

‖y‖2
‖w‖2

≤ γ (3.42)

The related performance condition in (Tuan et al., 2001) uses as Qi j the
matrix:





PAT
i + RT

j BT
2i + AiP+ B2iR j B1i PCT

i + RT
j DT

12i

BT
1i −γI DT

11i
CiP+ D12iR j D11i −γI



 (3.43)

Then the H∞ disturbance rejection is lower than γ

Other performance settings

The reader is referred to (Tanaka & Wang, 2001; Fang et al., 2006;
Sala, Guerra, & Babuska, 2005) and references therein for details on
the possibilities of different Qi j. Also the reader can consult (Chen,
Chang, Su, Chung, & Lee, 2005; Hsiao, Hwang, Chen, & Tsai, 2005) for
fuzzy delay systems , (Guerra & Vermeiren, 2004; Choi & Park, 2003)
for uncertain ones, non-quadratic Lyapunov functions, (Chen, Tseng, &
Uang, 2000) for output feedback control, etc.

3.5.1 Positiveness conditions

Of course, requiring Qi j > 0 is a trivial sufficient condition for positive-
ness of (3.23), but much less conservative conditions appear in literature.
One of the first was proposed in
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Theorem 3.3 (Tanaka & Sano, 1994). Expression (3.23) under
fuzzy partition condition holds if

Qii > 0 i = 1. . . r (3.44)

Qi j + Q ji > 0 i = 1. . . r i < j (3.45)

In (Tuan et al., 2001) more relaxed conditions for (3.23) are presented

Theorem 3.4 (Tuan et al., 2001). Expression (3.23) under fuzzy
partition condition holds if

Qii > 0 i = 1. . . r (3.46)

2
r−1

Qii + Qi j + Q ji > 0 i = 1. . . r i 6= j (3.47)

Another popular one is Theorem 2 in (Liu & Zhang, 2003), which is
mainly based on the scheme in (Kim & Lee, 2000). The conditions in
(Liu & Zhang, 2003) may be proved by means of reordering (3.23) as

Ξ =
r

∑
i=1

µ2
i xT Qiix+

r

∑
i=1

∑
i< j≤r

µiµ jx
T (Qi j + Q ji)x > 0 (3.48)

Hence, if Xii ≤ Qii and Xi j + X ji ≤ Qi j + Q ji for i 6= j, as µiµ j is always
greater or equal than 0,

Ξ≥
r

∑
i=1

µ2
i xT Xiix+

r

∑
i=1

∑
i< j≤r

µiµ jx
T (Xi j + X ji)x > 0 (3.49)

which may be expressed in matrix form as in Theorem 7 in (Kim & Lee,
2000), yielding:

Theorem 3.5 (Liu & Zhang, 2003, Theorem 2). Expression (3.23)
under fuzzy partition condition holds if there exist matrices Xi j = XT

ji such
that:

Xii ≤ Qii (3.50)

Xi j + X ji ≤ Qi j + Q ji i 6= j (3.51)

X =







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






> 0 (3.52)
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Note: In (Kim & Lee, 2000), Xi j are forced to be symmetric (more
conservative than (Liu & Zhang, 2003)). Also, it is well-known that
conditions (3.51) need to be enforced only when µiµ j 6= 0, i.e., refer-
ring to overlapping fuzzy sets. The reader is also referred to (Teixeira,
Assuncao, & Avellar, 2003) for related conditions.
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contributions

35





Chapter 4

Roadmap: Reducing the gap between the fuzzy

and nonlinear control

As have been shown in the introduction, LMI formulations for fuzzy
control became the tool of choice in the 1990s. Many nonlinear sys-
tems can be modelled as fuzzy systems (sector-nonlinearity), so fuzzy
control may be considered as a technique for nonlinear control. In spite
of the obtained results some sources of conservativeness remain when
compared to other nonlinear approaches. This chapter, inspired by the
work exposed in (Sala, 2007), can be understood as a brief compilation
of the main contributions of this thesis.

4.1 Introduction

Fuzzy control started as a heuristic methodology in the 1970’s, coding
control rules by hand, trying to embed heuristic and reasoning into the
control block. However, most of the widespread heuristic rules have
no fundamental differences with standard PID regulators (the fuzzy-
PD, fuzzy-PI and alike) and many other heuristic designs, which fuzzify
operation rules for a complex plant, are one-of-a-kind tailored develop-
ments which therefore have little interest for a broad audience. Due to
these reasons, the emphasis on heuristics and logic reasoning in fuzzy
control has almost disappeared, in favor of rigorous mathematical tools,
in order to guarantee control specifications expressed in terms of sta-
bility, performance, robustness to modelling errors, etc. for a class of
nonlinear systems, for which a systematic modelling methodology (sec-
tor nonlinearity (Tanaka & Wang, 2001)) is available to transform them
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into Takagi-Sugeno form (3.1):

ẋ =
r

∑
i=1

µi fi, xk+1 =
r

∑
i=1

µi fi

with fi linear. In this way, nonlinear systems may be “embedded” into
a linear time-varying (LTV) dynamics and LTV design tools applied
readily.

The advantages of the fuzzy approach are that efficient semidefinite-
programing tools (LMI (Boyd et al., 1994; Boyd & Vandenberghe, 2004),
sum-of-squares (Prajna, Papachristodoulou, & Parrilo, 2002)), widely
used in linear systems, can be almost directly applied to nonlinear con-
trol problems. Unfortunately, there is a price to pay: the objective of
this Chapter is discussing the specific disadvantages of the fuzzy ap-
proach versus “direct nonlinear” alternatives. The reader is referred to
(Sala et al., 2005) for other considerations, trends and open issues in
fuzzy modelling, identification and control.

Nowadays, Linear Matrix Inequality (LMI) techniques have become
the tool of choice in order to design fuzzy controllers when a fuzzy model
of the process is available in the Takagi-Sugeno form: LMIs were intro-
duced by (Tanaka & Sugeno, 1992) in the fuzzy control community, be-
coming widespread in the last 10 years. Results are available for systems
with uncertainty, delay, descriptor forms, etc.

As it has been shown in Chapter 3, the most frequently considered
setting is the so called parallel-distributed-compensation (PDC) in which
a fuzzy TS controller shares the membership functions with the plant to
be controlled (3.4). Conditions for decrescence of a Lyapunov functions
in such settings end up requiring to prove positiveness of a so-called
double fuzzy summation1 (Tanaka & Wang, 2001; Liu & Zhang, 2003),
in expressions such as (3.23).

4.2 Some Shadows

Basically, there are several sources of conservatism on mainstream fuzzy
control results. The following will be chosen for discussion below:

1Other settings (fuzzy observers, descriptor systems, fuzzy Lyapunov functions,
etc.) may require a higher summation dimension.
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1. choice of the Lyapunov function family,

2. conservativeness on the most used theorems on “positivity of fuzzy
summations”,

3. results are independent of the membership shape,

4. computational power

and some recent ideas to overcome them will be discussed in Section 4.3.

Other issues, such as uncertainty structures, adaptive approaches,
observers, etc. are also important, deserving further attention, but they
have not been elaborated here. The reader is referred to (Labiod &
Guerra, 2007; ?, ?) for recent relevant contributions in some of those
topics.

Let us discuss the above-selected issues in some detail:

4.2.1 Conservatism of the Lyapunov approach

In fuzzy control, the search of Lyapunov functions is only made on a
particular family of candidate functions, hence a stable system may not
have a Lyapunov function in the particular class being sought. This
problem is common to nonlinear control theory: the Lyapunov approach
is not constructive.

The approach using the quadratic Lyapunov function xT Px has been
deeply explored. Improvements are available: a piecewise quadratic
function (Feng, 2003; Johansson, 1999), and fuzzy Lyapunov functions
for continuous (Tanaka, Hori, & Wang, 2003) or discrete (Guerra &
Vermeiren, 2004) systems.

4.2.2 Conservativeness of the positivity conditions for
fuzzy summations

Current literature (Tanaka & Wang, 2001; Liu & Zhang, 2003; Fang
et al., 2006) presents only sufficient conditions for (3.23) to hold. Hence
a Lyapunov function fulfilling (3.23) may exist but the conditions above
may fail to find it. There is a long-term quest in the fuzzy community
to find necessary and sufficient conditions for positivity of (3.23).
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4.2.3 Intrinsic conservativeness of the fuzzy approach ver-
sus a nonlinear one

The last open issue regards the knowledge of the membership function
shape. Indeed, in order to implement a fuzzy PDC controller, the values
of µi should be a known function of some measurable variables. How-
ever, the LMI conditions in the above works do not depend on the shape
of the membership functions. This is good, because the results apply
to a set of nonlinear time-varying systems (as long as they share the
same ”vertices”), but it is, evidently, conservative for a particular sys-
tem. On the contrary, Lyapunov-based nonlinear control usually takes
into account the exact shape of the nonlinearity in order to derive re-
sults, being less conservative than the fuzzy approach when used for a
particular system.

As a trivial example, consider ẋ = µ1(z) · x + (1− µ1(z)) · (−x). It
cannot be proved stable for an arbitrary µ1, 0≤ µ1(z)≤ 1 (it is unstable
for µ1(z) = 1). However, it is stable for, say, µ1 = 0.2+ 0.2sin(x) as
ẋ = (−1+2µ1)x is, trivially, an exponentially stable first-order nonlinear
system when µ1≤ b < 0.5, b ∈R. The example is a clear case indicating
that this situation may happen even in first-order systems: by using
nonlinear control ideas, once the explicit formula of the membership
functions has been included in the TS model, Lyapunov functions may
be obtained where fuzzy methodologies fail.

4.2.4 Computational power

The number of decision variables in some of the latest LMI results is
huge. Even if LMI solvers use polynomial-time algorithms, the exponent
of the system order is large and many results can only be implemented
for simple systems.

4.3 Some Lights

There are some ideas reducing conservativeness on the first three cases
above, but heavily increasing the fourth problem (computational power)
so there is a tradeoff. The results, however, diminish the gap between
fuzzy and nonlinear control, at least in theory.
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4.3.1 Arbitrarily complex Lyapunov functions

It is interesting to mention three possibilities of getting arbitrarily com-
plex Lyapunov functions:

(1) higher-degree homogeneous Lyapunov functions (Chesi, Garulli,
Tesi, & Vicino, 2003)

(2) exacerbate the piecewise idea (the point-wise approach in (Jo-
hansen, 2000));

(3) use“resampling”, checking for V (t +k)−V (t)≤ 0, k > 1 (Kruszewski
& Guerra, 2005) (indeed, if a system is stable, there will exist a k
so that even V (x) = xT x will do; complexity lies in the predictors
needed in the approach and in an underlying non-delayed Lya-
punov function expression).

4.3.2 Asymptotically necessary and sufficient conditions
for fuzzy summations. Chapter 5

Consider a multi-dimensional index variable i∈ {1, . . . ,r}n where r is the
number of rules and n is an arbitrary complexity parameter. Denote
the permutations of i by P(i). Then, results in (Liu & Zhang, 2003;
Fang et al., 2006) are particular cases of finding a multi-dimensional
arrangement of matrices (tensor) fulfilling, for all i:

∑
j∈P(i)

Q j1 j2 > ∑
j∈P(i)

1
2
(Xj + XT

j ) (4.1)

and the inequality (with complexity n−2):

∑
k∈Bn−2

µkξ T







X(k,1,1) . . . X(k,1,r)
...

. . .
...

X(k,r,1) . . . X(k,r,r)






ξ > 0 (4.2)

In a suitable recursive framework, it can be proved that the above con-
ditions become necessary and sufficient with n→∞, and establish some
“tolerance” parameter for finite n as it is shown in Chapter 5

The main issue with these conditions is, however, that they are nec-
essary only asymptotically; hence, unfeasibility does not imply that the
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original fuzzy control problem is not solvable as they are only sufficient.
In (Kruszewski, Sala, Guerra, & Arino, 2007) a complementary approach
(necessary and asymptotically sufficient condition) is presented.

4.3.3 Membership shape techniques

Incorporating membership-shape information may relax conservative-
ness. There are two types of such information:� restrictions on the memberships themselves (which would apply to

LTV systems and, hence, to nonlinear systems embedded as LTV,
i.e., Takagi-Sugeno models), say µ1µ2 < 0.1� Nonlinearity-related restrictions (restrictions on the membership
shape in particular regions of the state space), such as x1 ≥ 0⇒
µ2 < 0.4 i.e., in a certain zone of the state space, a particular
model is not totally active so the Lyapunov function may take it
into account.

Each of those two classes will be discussed in more detail in Chapters
7 and 9. Another promising possibility is designing the memberships
of the fuzzy controller (not necessarily the same and the same number
than those of the plant) to achieve some performance objectives. A first
approach in that direction appears in (Lam & Leung, 2007).

Membership-only restrictions (LTV)

(a) Overlap bounds. Chapter 7. As the membership functions for
fuzzy controllers are known, the following set of bounds can be easily
computed:

0≤ µi(z)µ j(z)≤ βi j ∀ z (4.3)

The bounds βi j may be used to set up some relaxed LMIs. From (Sala
& Ariño, 2007a), expression (3.23) holds if there exist matrices Xi j = XT

ji
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and symmetric Ri j, i≤ j, such that, defining Λ = ∑r
k=1∑k≤l≤r βklRkl:

Xii ≤Qii + Rii−Λ (4.4)

Xi j + X ji ≤Qi j + Q ji + Ri j−2Λ (4.5)

X =







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






> 0, Ri j ≥ 0 (4.6)

In this way, adding information about the “overlap” between member-
ship functions allows additional performance to be gained from a PDC
controller for a particular system.

(b) Tensor-product fuzzy systems, Chapter 9. Very frequently,
fuzzy systems are in the form:

ẋ =
n1

∑
i1=1

n2

∑
i2=1

. . .
np

∑
ip=1

µ1i1µ2i2 . . .µpip(Ai1i2...ipx+ Bi1i2...ipu) (4.7)

where the fuzzy antecedents are conformed as a tensor product of sim-
pler fuzzy partitions. A well-known case are those using the sector-
nonlinearity modelling technique in (Tanaka & Wang, 2001), where
n1 = · · · = np = 2 from interpolations between maximum and minimum.
The recursive methodologies in Chapter 9 exploit such tensor structure.
However, it is more computationally demanding than using the previous
approach, knowing that the tensor-product systems have overlap bounds
which are powers of 0.25, say

µ12µ23 = (µ11µ22)× (µ12µ23)≤ 0.252

4.3.4 Local stability approach, Chapter 6

When global stability conditions are unfeasible, it is interesting to archive
local stability results in a zone around the equilibrium as large as possi-
ble. this is motivated by the first Lyapunov theorem for local stability,
Chapter 2. In that case we approximate the global TS fuzzy system
to a local TS fuzzy model which is valid in a defined region. The idea
is obtain a region as large as possible where the global system remains
stable.
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If the membership functions µ(x) of the fuzzy system (3.14) in a
region Ω can be expressed as

µ(x) =
nv

∑
p=1

βp(x)vp, ∀ x ∈Ω (4.8)

then the system can be equivalently expressed as:

ẋ =
n

∑
i=1

n

∑
j=1

βiβ j(A
∗
i −B∗i F∗j )x (4.9)

where

A∗p =
n

∑
i=1

vpiAi (4.10)

B∗p =
n

∑
i=1

vpiBi (4.11)

F∗p =
n

∑
i=1

vpiFi (4.12)

nv

∑
p=1

βp(x) = 1 βp(x) > 0 ∀x ∈Ω p = 1. . .nv

This model is valid only in the region Ω. If the region is close to
x = 0 then the TS model tends to the linearised model of the system at
the equilibrium point. Therefore if the linearised system is stable with
this local modelling we will find an ellipsoidal region Ω∗ ⊂Ω where the
system is stable.

4.3.5 Uncertain memberships, Chapter 8

The majority of works on fuzzy control for TS models assume that the
membership functions are known. But, in most cases, the applied mem-
berships functions are only an approximation. As the memberships are
needed to compute the PDC controller that stabilize the plant, the con-
ditions in Section 3.5 cannot be applied to prove stability. New shape-
dependent LMI conditions have been developed and the allowed uncer-
tainty description is more general than that in (Lam & Leung, 2005),
which did consider only multiplicative uncertainty.
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The system (3.1) will be controlled via a state-feedback fuzzy con-
troller:

u =−
r

∑
i=1

ηiKix
r

∑
i=1

ηi = 1, ηi ≥ 0 (4.13)

The controller yields a closed-loop (Lam & Leung, 2005):

ẋ =
r

∑
i=1

r

∑
j=1

µi(z)η j(z
′)(Ai−BiK j)x (4.14)

With a given set of p restrictions on the shape of the membership func-
tions of the plant, µi, and controller, ηi

cT
k η + aT

k µ + bk ≤ 0 k = 1. . . p (4.15)

Then we can apply the s-procedure introducing new positive definite
matrices Ri j and R∗i j to the conditions of Theorem 3.5

p

∑
k=1

(

a jkRik + aikR jk
)

≥ Xi j + X ji (4.16)

Qi j +
p

∑
k=1

(

c jkRik + aikR∗jk + bk(Rik + R∗jk)
)

≥ Xi( j+r) + X( j+r)i (4.17)

p

∑
k=1

(

cikR∗jk + c jkR∗ik
)

≥ X(i+r)( j+r) + X( j+r)(i+r) (4.18)







X11 . . . X1(2r)
...

. . .
...

X(2r)1 . . . X(2r)(2r)






> 0 (4.19)

4.4 Conclusions

LMI fuzzy control approaches nonlinear control if the actual shape of
the membership functions is used in the LMIs (exploiting some non-
linearity knowledge) and some “fuzzy” sufficient conditions are made
also (asymptotically) necessary or, conversely, necessary ones are made
asymptotically sufficient. That fact, jointly with the use of more general
Lyapunov functions, looks promising but, in practice, it requires a lot of
computing power.





Chapter 5

Relaxed LMI conditions, an asymptotically

approach

5.1 Introduction

The aim of this chapter is to provide a set of progressively less conserva-
tive sufficient conditions in order to prove stability or performance con-
ditions for Takagi-Sugeno Fuzzy systems. These conditions are asymp-
totically necessary. This is not a new area in Fuzzy control, there are
many literature references in the area of stability and performance con-
ditions of Takagi-Sugeno (TS) (Takagi & Sugeno, 1985) fuzzy control
systems. Currently, most of the significant results use a linear matrix
inequality (LMI) approach (Boyd et al., 1994), which reached maturity
in the fuzzy area with (Tanaka & Wang, 2001).

Basically, the most frequently considered setting is parallel-distrib-
uted-compensation (PDC), in which a fuzzy TS controller shares the
membership functions with the plant to be controlled. In many cases,
PDC fuzzy control design involves checking positivity of “double” fuzzy
summations in the form (3.23).

The first nontrivial sufficient conditions for such positivity were re-
ported in the 1990’s (Tanaka & Wang, 2001). Later research has focused
in conceiving less conservative LMI conditions, such as the ones in (Kim
& Lee, 2000; Teixeira et al., 2003; Liu & Zhang, 2003). Recently, (Fang
et al., 2006) provided sufficient conditions which are less conservative
than those in (Kim & Lee, 2000; Teixeira et al., 2003; Liu & Zhang,
2003). However, the problem of finding necessary and sufficient posi-
tivity conditions (i.e., the “least conservative sufficient conditions”) for
fuzzy summations remains open. Note that, even if necessary and suf-

47
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ficient conditions for fuzzy summations were found, conservatism would
remain in many cases due to the limited choices of Lyapunov functions
(for instance, quadratic stability is more conservative than other possi-
bilities, such as the ones in (Guerra & Vermeiren, 2004)).

This chapter provides an infinite family of sufficient conditions for
positivity of fuzzy summations which improve over the ones in (Kim &
Lee, 2000; Teixeira et al., 2003; Liu & Zhang, 2003; Fang et al., 2006)
(actually, the cited conditions are particular cases). A theorem is pre-
sented which introduces a parameter, n, related to the complexity of the
resulting LMI conditions. As n increases, the conditions are asymptoti-
cally exact, i.e., they become necessary for a large enough n. The results
in this work are based on Polya’s theorems on positivity of homogeneous
forms in the standard simplex which date back to the 1920’s (Pólya &
Szegö, 1928), refined in (Powers & Reznick, 2001; Loera & Santos, 1996;
Scherer, 2005).

The presented results close an open theoretical problem, in an asymp-
totic sense. In practice, however, there are two shortcomings: first,
bounds on n to achieve necessity and sufficiency can be stated for fixed
Qi j in (3.23), but that is not the case if Qi j contain LMI decision vari-
ables (then, a sort of “tolerance” parameter needs to be introduced);
second, the reachable value of n is limited by numerical precision of
solver software and the available computing power.

5.2 Problem statement

Widely-used conditions (Tanaka & Wang, 2001; Sala et al., 2005; Guerra
& Vermeiren, 2004; Fang et al., 2006) for stability or performance of a
closed-loop fuzzy control system may be expressed, for some matrices
Qi j (assumed symmetric, without loss of generality), in the form (3.23)

Ξ(t) =
r

∑
i=1

r

∑
j=1

µi(z)µ j(z)x
T Qi jx > 0 ∀x 6= 0

where z and x are system variables which change with time and µi(z)
denotes the membership functions of a fuzzy partition

{µ1(z),µ2(z), . . . ,µr(z)}

being z a set of known variables, and r the number of “rules”.
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A well-known example (Tanaka & Wang, 2001) of conditions for
quadratic stabilizability of a continuous-time Takagi-Sugeno (TS) fuzzy
system

ẋ =
r

∑
i=1

µi(z)(Aix+ Biu)

with a parallel-distributed compensator (3.4) u =−∑r
i=1 µi(z)Kix may be

written, for some symmetric matrix T > 0, in the form (3.23) as it is
shown in Chapter 3. Where the most important stability and perfor-
mance conditions are expressed in this way.

Importantly, if Qi j are linear in some matrix decision variables, linear
matrix inequality (LMI) techniques (Boyd et al., 1994; Tanaka & Wang,
2001) may be used to find feasible values for the unknown matrices, if
sufficient LMI conditions for (3.23) to hold are stated; the objective of
this chapter is studying such sufficient conditions. Historically, condi-
tions in (Tanaka & Wang, 2001):

Qii > 0, Qi j + Q ji > 0 ∀ i, j = 1, . . . ,r i≤ j (5.1)

were the first proposed ones, which have been generalised in literature
(Kim & Lee, 2000; Liu & Zhang, 2003; Teixeira et al., 2003). Recently,
(Fang et al., 2006) provided some sufficient conditions which improved
over the previously cited ones. Section 5.3 will further improve such
conditions.

As a generalization of (3.23), other fuzzy control results require pos-
itiveness of a p-dimensional fuzzy summation, i.e., checking

Ξ(t) =
r

∑
i1=1

r

∑
i2=1

. . .
r

∑
ip=1

µi1(z)µi2(z) . . . µip(z)x
T Qi1i2...ipx > 0 ∀x 6= 0 (5.2)

The case p = 2 reduces to (3.23). Conditions requiring p = 3 are, for in-
stance, the fuzzy dynamic controllers in (Li, Niemann, Wang, & Tanaka,
1999; Tanaka & Wang, 2001), using Qi jk = Ei jk + ET

i jk, with

Ei jk =

(

AiQ11+ BiC jk Ai + BiD jCk

Ai jk AiP11+Bi jCk

)

< 0 (5.3)

or the output-feedback ones in (Fang et al., 2006; Chen et al., 2005).
For convenience, shorthand µi denoting µi(z) will be used in the from
now on.
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5.2.1 Multi-index notation.

In order to streamline notation in multi-dimensional summations (5.2),
the following notation will be used:

Ip = {i = (i1, i2, . . . , ip) ∈ N
p | 1≤ i j ≤ r ∀ j = 1,2, . . . , p} (5.4)

∑
i∈Ip

γi =
r

∑
i1=1

r

∑
i2=1

. . .
r

∑
ip=1

γi1i2...ip (5.5)

For some suitably defined multi-dimensional γi = γi1i2...ip (γi1i2...ip will be
either a number or a matrix), i.e., boldface symbol i will denote a multi-
index in a p-dimensional index set Ip (Ip has rp elements). For instance,
triple-summations in a four-rule fuzzy system will be spanned by a multi-
index i ∈ I3, where I3 has 43 elements:

{1,1,1},{1,1,2}, . . . ,{1,1,4},{1,2,1}, . . . ,{4,4,4}

By convention, the juxtaposition of several multi-indices, resulting
in a higher-dimensional one, will be symbolized by parentheses:

i ∈ Ip, j ∈ Iq, . . . ,m ∈ It ⇒ k = (i, j, . . . ,m) ∈ Ip+q+···+t (5.6)

When the context is clear, by mere concatenation k = ij . . .m. One-
dimensional indices, say j ∈ I1 are ordinary integer index variables: they
will be typed in italic typeface (say, j, 1≤ j ≤ r) when its one-dimen-
sionality should be emphasized.

Multi-dimensional fuzzy summations. The purpose of multi-index
notation is to compactly represent multi-dimensional fuzzy summations,
as follows.

First, let us define the following notation, specific for membership
functions as a shorthand for a product:

µi =
p

∏
l=1

µil = µi1µi2 . . .µip i ∈ Ip (5.7)

For instance µ(3,5,1,1) = µ3µ5µ2
1 will be the membership associated to the

term Q(3,5,1,1) in a 4-dimensional fuzzy summation with 5 or more rules.
Note that if t = (i,k)

µt = µiµk (5.8)
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With the above notation, p-dimensional fuzzy summations (5.2) may
be written as follows:

Ξ(t) = ∑
i∈Ip

µix
T Qix (5.9)

where the basic memberships µ = {µ1, . . . ,µr} from which µi stem fulfill
the partition condition µ ∈∆r−1. The expression ∑i∈I0

µiQ will be defined
to be equal to Q.

Permutations. Given a multi-index i ∈ Ip, let us denote by P(i) ⊂ Ip

the set of permutations (with, possibly, repeated elements) of the multi-
index i. For instance, for i = (3,3,1,1), the permutations are:

P(i)= {(3,3,1,1),(3,1,3,1), (3,1,1,3),(1,3,1,3), (1,1,3,3),(1,3,3,1)}

The number of permutations of i, i ∈ I
+
p will be denoted by c(i). Such

numbers can be computed by using well-known combinatoric expressions
(in the above case, 4!/(2!2!) = 6). Of course, if i ∈P(j), then j ∈P(i).

The permutations will be used to group elements in multiple fuzzy
summations which share the same “antecedent”: it is an evident fact
that

j ∈P(i) ⇒ µj = µi

For instance,

µ(1,1,3,4) = µ2
1µ3µ4 = µ(3,1,4,1) = µ(4,1,1,3) = . . .

Then, the idea can be stated in formal terms via equivalence classes.

Equivalence class: Consider a set-theoretic relation between multi-
indices which is defined to be true if and only if µi = µj for all µ ∈ ∆r−1,
i.e., true if i ∈P(j). It can be easily shown that such a relation is
an equivalence one, which partitions the set of multi-indices in disjoint
classes. The equivalence class of a multi-index i is, evidently, the set of
its permutations P(i).

The following subset of Ip:

I
+
p = {i ∈ Ip | ik ≤ ik+1, k = 1. . . p−1}

may be interpreted as the generalization of “upper triangular” indices in
two-dimensional ordinary matrices. Its importance lies in the usefulness
of the proposition below.
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Proposition 5.1 Given any index j ∈ Ip, there exists a unique permu-
tation of it, say i, which belongs to I

+
p ( i.e, P(j) ∩ I

+
p has only one

element). Hence, given any Qj, j ∈ Ip:

∑
j∈Ip

µjQj = ∑
i∈I

+
p

∑
j∈P(i)

µjQj = ∑
i∈I

+
p

µi ∑
j∈P(i)

Qj =

= ∑
i∈I

+
p

µiQ̃i =
r

∑
i1=1

r

∑
i2=i1

. . .
r

∑
ip=ip−1

µi1µi2 . . .µip Q̃i (5.10)

where Q̃i = ∑j∈P(i) Qj.

Proof is evident by arranging the elements of j in increasing order,
giving a unique permutation i in I

+
p which belongs to the equivalence

class of j. The number of elements in I
+
p is the number of equivalence

classes. Then, Q̃i is just the sum of all Qj for all j in the equivalence
class of i.

Remark: Expression (5.10) is a compact way of writing a multiple
fuzzy summation as an homogeneous polynomial in µ , with coefficients
xT Q̃ix. For instance, for p = 3 and r = 2 and some Qj:

∑
j∈I3

µjx
T Qjx = xT (µ3

1Q̃111+ µ2
1µ2Q̃112+ µ1µ2

2Q̃122+ µ3
2Q̃222

)

x

is an homogeneous polynomial1 of degree 3 in µ , where

Q̃111 = Q111, Q̃112 = Q112+ Q121+ Q211

Q̃122 = Q122+ Q212+ Q221, Q̃222 = Q222

5.3 Relaxed positivity conditions via dimen-

sionality expansion

As previously discussed, the most trivial sufficient check of (3.23) is
checking positive-definiteness of Qi j, which often fails. This section dis-
cusses two possible paths in order to obtain less conservative conditions;

1evidently, it is also an homogeneous polynomial of degree 2 in x, i.e., a quadratic
form.
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the first option will resort to splitting the number of positivity condi-
tions, the second option will discuss the addition of artificial decision
variables.

The results below will be based on the evident fact that

1 =
r

∑
i=1

µi =

(

r

∑
i=1

µi

)p

= ∑
i∈Ip

µi (5.11)

for any positive integer p.

5.3.1 Relaxation by increasing the number of positivity
conditions

Now, consider the 2-dimensional fuzzy summation (3.23). Based on
(5.11), proving (3.23) is equivalent to proving, for n≥ 2:

[Ξ]n(t) =

(

r

∑
i=1

µi

)n−2

· Ξ(t) = ∑
i∈In

µix
T Qi1i2x > 0 (5.12)

i.e., a 2-dimensional fuzzy summation may be expanded to any desired
level of nested sums. Of course, [Ξ]n = Ξ, i.e., notation [Ξ]n will denote
the equivalent expression of Ξ as an homogeneous polynomial of degree n
appearing in (5.12) above. [Ξ]n will be referred to as the dimensionality
expansion of degree n.

The parameter n may be considered as a sort of complexity param-
eter. The results in this section will show that the larger n is, the less
conservative the proposed conditions are, but the more computationally
demanding the procedure is.

Note that, by using Proposition 5.1:

[Ξ]n = ∑
i∈In

µix
T Qi1i2x = ∑

i∈I
+
n

µi ∑
j∈P(i)

xT Q j1 j2x = ∑
i∈I

+
n

µix
T Q̃ix (5.13)

where
Q̃i = ∑

j∈P(i)

Q j1 j2 (5.14)

For instance, given i = {1,1,1,3}, which has four permutations

{1,1,1,3}, {1,1,3,1}, {1,3,1,1}, {3,1,1,1}
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results in Q̃i = Q11+ Q11+ Q13+ Q31 = 2Q11+ Q13+ Q31.

Let us now consider conditions for proving positivity of Ξ in (3.23).

Proposition 5.2 For a fixed n, the positive-definiteness conditions

Q̃i = ∑
j∈P(i)

Q j1 j2 > 0 ∀ i ∈ I
+
n (5.15)

are sufficient for positivity of Ξ in (3.23).

Proof: it is almost evident as, Ξ = [Ξ]n = ∑i∈I
+
p

µixT Q̃ix. Hence, Ξ is
expressed as a sum of positive terms if (5.15) holds (as µi ≥ 0).

Theorem 5.1 (Matrix Polya Theorem) For each collection of ma-
trices Qi j fulfilling (3.23), i.e., Ξ > 0 for any fuzzy partition µ and any
x 6= 0, there exists a finite n such that condition (5.15) holds, i.e., (5.15)
become necessary and sufficient for some finite value of n.

Proof: The proof follows the lines of a similar result in (Scherer,
2005) in a different context. Consider ‖x‖ to be the Euclidean norm of
vector x in (3.23). Denote as

κ = min
‖x‖=1,µ∈∆r−1

Ξ (5.16)

which, by assumption exists and is positive (existence is proved by con-
tinuity of polynomials and compactness of the finite-dimensional unit
balls and the simplex ∆r−1). Denote as

L = max
i≤ j

1
c(i j)

max(λmax(Q̃i j),−λmin(Q̃i j)) (5.17)

where Q̃ii = Qii, Q̃i j = Qi j + Q ji, for i 6= j, arise from the permutation
equivalence classes of 2-dimensional indices, and the cardinals are c(ii) =
1, and for j 6= i, c(i j) = 2. For any i ≤ j, as λmax(Q̃i j) < c(i j)L and
λmin(Q̃i j)‖x‖ ≤ xT Q̃i jx ≤ λmax(Q̃i j)‖x‖, the constant L is positive (other-
wise Ξ would be non-positive for all x, contradicting the assumptions)
and |xT Q̃i jx| ≤ c(i j)L‖x‖ holds for any vector x.

For a fixed x, expression (3.23) is an homogeneous polynomial in µ
of degree 2, whose coefficients are xT Q̃iix = xT Qiix (those multiplying µ2

i )
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and xT Q̃i jx = xT (Qi j +Q ji)x (those multiplying µiµ j for i≤ j). Hence, for
any x with unit norm, (3.23) is an homogeneous polynomial in µ whose
lower value is greater than κ (by definition) in the standard simplex,
and whose coefficients (divided by the cardinal of the corresponding
permutation) are upper bounded by L in absolute value. Then, from
(Powers & Reznick, 2001) (use notation λ = κ , d = 2, aα = xT Q̃i jx, N =
n−2 in (Powers & Reznick, 2001)), for any value of n such that:

n >
L
κ

, n≥ 2

all coefficients of the corresponding dimensionality expansion of degree
n (i.e., xT Q̃ix, i ∈ I

+
n ) will be positive. As x is an arbitrary unit norm

vector, xT Q̃ix > 0 entails Q̃i being a positive definite matrix, denoted as
Q̃i > 0 in (5.15).

The reader is referred to Example 5.1 in the following section, which
illustrates conditions (5.15) for different settings.

Remark: it is easily shown that if (5.15) holds for some n0, it does
for any n≥ n0 (indeed, the coefficients of [Ξ]n are a positive linear com-
bination of those of [Ξ]m if n≥m). Hence, the conditions in Proposition
5.2 are less and less conservative as n increases, becoming asymptot-
ically exact: if (3.23) holds, a large enough dimensionality expansion
n will hold. Hence, when n→ ∞, (5.15) and (3.23) become equivalent
conditions.

Using the bound2 for n provided in the proof of Theorem 5.1, a
version of it can be rewritten as stated below, where f loor(a) denotes
the largest integer s such that s≤ a.

Theorem 5.2 The first of the following statements implies the second
one:

1. For any fuzzy partition µ ∈ ∆r−1, for any vector x 6= 0, given any
tolerance level κ > 0

r

∑
i=1

r

∑
j=1

µiµ jx
T Qi jx≥ κxT x

2 The upper bound for finding the required n is not tight. Providing tighter bounds
than L/κ in the second condition is a matter of current research. In (Loera & Santos,
2001) other bounds and conjectures are put forward.
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2. There exists n ∈ N, 2≤ n ≤ f loor( L
κ + 1) (L as defined in (5.17)),

such that

∑
j∈P(i)

Q j1 j2 > 0 ∀ i ∈ I
+
n

The “gap” between Theorem 5.2 and the necessary and sufficient
conditions sought after in the fuzzy control community is now expressed
via the tolerance level κ , which may be chosen to be as small as desired.

Note that, in the case Qi j includes some decision variables (for sub-
sequent LMI optimizations), the constraint −L · I ≤ Q̃i j/c(i j) ≤ L · I for
a predefined L should be enforced3 (in addition to the tolerance κ) to
ensure that (5.17) holds, in order to compute the bound for n.

5.3.2 Relaxation via artificial decision variables

This subsection discusses a closely related path to obtaining sufficient
conditions for positivity of fuzzy summations, based on the introduction
of artificial decision variables. These will allow using a much lower value
for n, compared to the one required in the previous theorems.

Theorem 5.3 A sufficient condition for positivity of Ξ in (3.23) is the
positivity condition below, for n≥ 2:

∑
k∈In−2

µkξ T







X(k,1,1) . . . X(k,1,r)
...

. . .
...

X(k,r,1) . . . X(k,r,r)






ξ > 0 (5.18)

if there exist matrices Xj, j ∈ In so that

∑
j∈P(i)

Q j1 j2 ≥ ∑
j∈P(i)

1
2
(Xj + XT

j ) ∀ i ∈ I
+
n (5.19)

Proof: Starting from (5.12):

Ξ = [Ξ]n = ∑
i∈In

µix
T Qi1i2x = ∑

i∈I
+
n

µi ∑
j∈P(i)

xT Q j1 j2x (5.20)

3Usually, in Lyapunov-function-based fuzzy control setups, such constraint can be
enforced with no loss of generality as Lyapunov functions can be arbitrarily scaled.
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Hence, if (5.19) holds, as µi ≥ 0,

∑
i∈I

+
n

µi ∑
j∈P(i)

xT Q j1 j2x≥ ∑
i∈I

+
n

µi ∑
j∈P(i)

xT 1
2
(Xj + XT

j )x =

= ∑
i∈I

+
n

µi ∑
j∈P(i)

xT Xjx = ∑
i∈In

µix
T Xix =

= ∑
k∈In−2

r

∑
i=1

r

∑
j=1

µkµiµ jx
T X(k,i, j)x =

= ∑
k∈In−2

µkξ T







X(k,1,1) . . . X(k,1,r)
...

. . .
...

X(k,r,1) . . . X(k,r,r)






ξ (5.21)

where ξ = (µ1xT µ2xT . . . µrxT )T . Hence, if (5.18) holds, (3.23) also does.
For n = 2, the leftmost summation over In−2 in the last two expressions
must be deleted (this case is a well-known result in (Liu & Zhang, 2003)).

Note that, without loss of generality, the equality restrictions X(k,i,i) =
XT

(k,i,i) and X(k,i, j) = XT
(k, j,i) can be enforced, as the sign of (5.18) only de-

pends on the symmetric component. In this way, the number of decision
variables is reduced.

Corollary 5.1 Given some Qi j fulfilling (3.23), if conditions (5.15) hold
for some n, then there exist feasible Xi in Theorem 5.3 for a lower or
equal value of n.

Proof: As (5.15) holds by assumption, there exists n0 such that the
left-hand side of (5.19) is positive-definite for all i ∈ In for any n ≥ n0.
Then, consider the same value of n0 for Theorem 5.3, and denote by I
the identity matrix. Take X(k,i,i) = εI > 0, and X(k,i, j) = 0 when i 6= j.
It’s easy to check that condition (5.19) holds for a sufficiently small
ε . Furthermore, all matrices being added in (5.18) are positive definite
(they are εI). In this way, a feasible set of decision variables for Theorem
(5.3) has been found.

The examples in the following section will show that the actually
needed value of n is much lower for Theorem 5.3 than Theorem 5.1, due
to the new decision variables introduced.
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Theorem 5.3 is still not useful, because it replaces a positivity con-
dition (3.23) with another similar one (5.18) with a possibly higher di-
mension. Hence, some extra developments (useful for their own sake,
anyway) are needed in order to turn Theorem 5.3 into a practically ap-
plicable solution.

5.3.3 Generalization to higher-dimensional fuzzy summa-
tions

Polya’s theorem applies to homogeneous forms (Loera & Santos, 1996,
2001; Powers & Reznick, 2001) of any dimension (5.2), and not only to
quadratic forms (3.23). Hence, the results can be generalised to other
fuzzy control setups involving p-dimensional fuzzy summations for any
p, as proposed below.

Theorem 5.4 Consider proving positivity of a p-dimensional fuzzy sum-
mation (p≥ 2) for some fuzzy partition ∑i∈Ip

µi = 1, given by (5.2). Con-
sider now its dimensionality expansion [Ξ]n = (∑r

i=1 µi)
n−pΞ, with n≥ p.

Then, a sufficient condition for Ξ > 0 when x 6= 0 is

∑
k∈In−2

µkξ T







X(k,1,1) . . . X(k,1,r)
...

. . .
...

X(k,r,1) . . . X(k,r,r)






ξ > 0 for ξ 6= 0 (5.22)

if there exist matrices Xi, i ∈ In, so that:

∑
j∈P(i)

Q j1 j2... jp > ∑
j∈P(i)

1
2
(Xj + XT

j ) ∀ i ∈ I
+
n (5.23)

Furthermore, the condition is asymptotically exact with a large enough
n so a statement analogous to Theorem 5.2 can be made.

Proof: The proof of the above theorem follows identical lines to that
of Theorem 5.3, just by changing j1 j2 in (5.20) and (5.21) to j1 j2 . . . jp.

In order to prove the asymptotic exactness, matrix Polya theorem
can be also set up for p greater than 2, resulting in a bound n > p(p−1)L

2κ
(Powers & Reznick, 2001) for which positivity of all Q̃i holds. Hence, it
is easy to show that, given some Qi, i ∈ Ip, if (5.2) holds, then Theorem
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5.4 will hold for a large enough n, i.e., it is asymptotically exact, and n
will be lower or equal than p(p−1)L

2κ +1. Details are omitted for brevity,
as they are a replica of those discussed for p = 2.

Theorem 5.4 reduces to Theorem 5.3 for p = 2. The case p = 3
would directly apply to the cubic parametrization dynamic controllers
in (Li et al., 1999; Tanaka & Wang, 2001) or the output feedback fuzzy
controllers in (Chen et al., 2005; Fang et al., 2006).

Remark: note that n can be equal to p in Theorem 5.4. The suffi-
cient conditions arising from this choice will be denoted as non-expanded
conditions: such conditions state positivity of a p-dimensional summa-
tion if a particular (p−2)-dimensional positivity condition holds.

5.3.4 Recursive procedure

The previous remark provides the missing link in order to express a
version of Theorems 5.3 and 5.4 computable in practice. This section
discusses a methodology to set up a collection of LMI constraints via a
recursive procedure. Note that the LMIs cannot be solved until all the
constraints, for all the recursion steps, have been set up.

Given a value of the complexity parameter n ≥ 2, a super-index in
square brackets will be used to indicate recursion steps, denoted by
h = 0,1, . . . ,hmax = f loor((n−1)/2).

Theorem 5.5 Computable sufficient conditions for proving positiveness
of a p-dimensional fuzzy summation may be obtained as follows, for any
desired value of the complexity parameter n:

1. ( initialisation) Obtain the dimensionality expansion of degree n of

the fuzzy summation, n ≥ p, setting Q[0]
i = Qi1i2...ip, i ∈ In. The

dimension of the multi-indices in iteration step h will be denoted
by dh, starting with d0 = n.

2. ( recursive procedure) Consider now iteration step h≥ 0, trying to

set up sufficient conditions for ∑i∈Idh
xT Q[h]

i x > 0, with dh > 2. Apply

Theorem 5.4 by setting a constraint (5.23) and then considering a
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new (dh−2)-dimensional summation (5.22), i.e.:

∑
j∈P(i)

Q[h]
j > ∑

j∈P(i)

1
2
(X [h]

j +(X [h]
j )T ) ∀ i ∈ I

+
dh

(5.24)

∑
k∈Idh−2

µkξ T









X [h]
(k,1,1) . . . X [h]

(k,1,r)
...

. . .
...

X [h]
(k,r,1) . . . X [h]

(k,r,r)









ξ > 0 for ξ 6= 0 (5.25)

Note that any sufficient condition for (5.25) implies positivity of
the original summation. Then, considering dh+1 = dh−2, and

Q[h+1]
k =









X [h]
(k,1,1) . . . X [h]

(k,1,r)
...

. . .
...

X [h]
(k,r,1) . . . X [h]

(k,r,r)









k ∈ Idh+1 (5.26)

expression (5.25) may be written as

∑
i∈Idh+1

µiξ T Q[h+1]
i ξ > 0 (5.27)

i.e., sufficient conditions for (5.25) may be stated applying non-
expanded conditions (5.24) and (5.25) recursively, until h = hmax

is reached, and dhmax = 1 or dhmax = 2, depending on whether the
starting complexity parameter n is odd or even, respectively.

3. ( termination) Use either the well-known sufficient conditions in
(Tanaka & Wang, 2001) for 1-dimensional sums when dhmax = 1, or
those in (Liu & Zhang, 2003) for 2-dimensional ones when dhmax =
2.

The result of the above procedure is a set of conditions which are suffi-
cient for the positivity of Ξ in (3.23). LMI conditions are obtained if the
original Qi are affine in some matrix decision variables.

Proof: Proof is evident and almost outlined in the theorem state-
ment, which describes an algorithm. Indeed, given a p-dimensional sum-
mation Ξ, for a chosen n, the recursion above sets up a “ladder” of suf-
ficient conditions with dimension n− 2, n− 4, . . . , so that each one is
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a sufficient condition for the preceding one, i.e., the following chain of
implications can be built:

[p-dimensional sum]: Ξ > 0 ⇔ [n-dimensional sum]: [Ξ]n > 0

⇑
(5.25)[n−2-dimensional sum] and (5.24), d0 = n

⇑
(5.25)[n−4-dimensional sum] and(5.24), d1 = n−2

⇑
. . .

Hence, proving the final conditions , i.e., ∑i∈Idhmax
µiξ T Q[hmax]

i ξ > 0 entails

proving the initial p-dimensional condition and, as those conditions have
dimensionality one or two, standard literature results can be used (most
of which, in fact, are particular cases of Proposition 5.2 and Theorem
5.3, see Section 5.3.6). Once all conditions have been set up, an LMI
solver can be used.

5.3.5 Number of conditions and decision variables

The number of conditions needed in Proposition 5.2 is the number of
elements in I

+
n , i.e., the combinatorial number:

NC1 =

(

r + n−1
n

)

Proving positivity of fuzzy summations via the sufficient conditions in
Proposition 5.2 does not need any new decision variable apart from those
in Qi j. NC1 grows approximately as O(nr−1) when n grows.

The above expression also gives the number of conditions (5.24) in
a particular iteration (replacing n by dh). Hence, the total number of
conditions (5.24) is:

NC =
hmax

∑
h=0

(

r + n−2h−1
n−2h

)

and, after applying the termination conditions:

NC2 = NC + r(r +1)/2+1, NC2 = NC + r
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if n was even or odd, respectively. NC2 grows at the rate O(nr) when n
grows.

With r rules, if Qi were t×t, the matrices Q[h]
i are of size (t ·rh)×(t ·rh).

Hence, after symmetry considerations, a number of trh(trh−1)/2 decision
variables is introduced for each h, i.e., the recursive procedure needs NV
decision variables with NV given by

NV =
hmax

∑
h=1

trh(trh−1)/2 (5.28)

If dhmax = 2, then (Liu & Zhang, 2003) needs additional decision vari-
ables: the total number is obtained by replacing hmax by hmax + 1 in
(5.28). The rate of growth with n is O(rn).

In summary, the number of conditions is polynomial-complexity in n,
but the number of decision variables in the recursive procedure is expo-
nential in n. To avoid such explosion of decision variables, some simplifi-
cations can be made, such as choosing a lower-dimensional arrangement
for X variables, i.e., Xi = Xi1...iq with i ∈ Ip, q ≤ p (see Example 5.1 in
Section 5.4).

5.3.6 Comparison to previous literature

The presented approach includes previous literature results on relaxed
LMI conditions for fuzzy control as a particular case.

Corollary 5.2 Proposition 5.2 with n = 2 are the conditions stated in
Theorem 7 in (Tanaka & Wang, 2001);

Proof: Indeed, restating Proposition 5.2 for the particular case in
consideration, it says that ∑r

i=1∑r
i=1 µiµ jxT Qi jx > 0 if Qii > 0 (for the

only permutation of the multi index {i, i}) and Qi j +Q ji > 0 (when i < j,
corresponding to the two permutations of {i, j} ∈ I

+
2 ) .

Corollary 5.3 if Theorem 5.3 were adapted to n = 2, conditions in (Liu
& Zhang, 2003) would have been obtained.
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Proof: It’s evident just considering, as done above, the unique per-
mutation if {i, i}, yielding Qii > 1

2(Xii + XT
ii ) in (5.19) and the permuta-

tions {i, j} and { j, i} when i < j, yielding

Qi j + Q ji <
1
2

(

(Xi j + XT
i j )+ (X ji + XT

ji)
)

Now consider a symmetric matrices Xi j j and Xi j = XT
ji , the sufficient

condition is expressed by Qii ≤ Xii and Qi j + Q ji ≤ Xi j + X ji, jointly with
the positive-definiteness of the matrix whose blocks are Xi j.

Corollary 5.4 Theorem 5.5 with p = 2, n = 3 sets up the conditions in
(Fang et al., 2006).

Proof: Denote Sym(X) = 1
2(X + XT ). Consider a double summation

(p = 2), after a dimensionality increase (n = 3). The results in this work
assert that positivity of the double summation holds when conditions
(5.23) are applied, i.e.,� Qii ≤ Sym(Xiii) (for permutations {i, i, i}),� Qii +Qi j +Q ji ≤ Sym(Xii j +Xi ji +X jii) (for permutations of i, i, j, i 6=

j)� Qi j +Q ji +Qik +Qki +Q jk +Qk j ≤ Sym(Xi jk +X jik +Xik j +Xki j +X jki +
Xk ji) (for permutations of i, j,k,l i 6= j, i 6= k, j 6= k)

and, subsequently, positivity of a one-dimensional summation ∑r
i=1 µiQi

is proved, where the new Qi is formed from the decision variables Xi jk as
in (5.26).

Considering now Xi j j symmetric and Xi jk = XT
ik j the conditions result

in: � Qii ≤ Xiii,� Qii + Qi j + Q ji ≤ Xii j + XT
ii j + X jii,� Qi j +Q ji +Qik +Qki +Q jk +Qk j ≤ Xi jk +X jik +Xki j +XT

i jk +XT
jik +XT

ki j
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and the positivity of the remaining one-dimensional fuzzy summation
is proved if each Qi is positive definite. The resulting conditions are
analogous (we use a more general notation) to the ones in Theorem 5 in
(Fang et al., 2006).

5.4 Examples

In this section, three examples are presented. The first one illustrates
how the various Q̃i previously discussed are computed via combinatoric
permutation formulae. The second one applies the conditions in section
5.3 to a numerical example. And the third applies these conditions to
a specific Qi formed of a Quadratic Parallel Distributed Compensation
(QPDC) controller. This example illustrates that the additional degrees
of freedom in QPDC controllers allow to achieve a more stringent per-
formance requirements than of a PDC controller.

Example 5.1 Consider proving ∑3
i=1 ∑3

j=1 µiµ jxT Qi jx > 0, i.e., n = 2, r =
3 with Proposition 5.2. For i = (1,1), i = (1,2), i = (1,3), i = (2,2),
i = (2,3), and i = (3,3) (which are the six elements of I

+
2 ), the conditions

(5.15) are, respectively,

Q11 > 0, Q12+ Q21 > 0, Q13+ Q31 > 0, (5.29)

Q22 > 0, Q23+ Q32 > 0, Q33 > 0 (5.30)

which are well-known conditions stated in (Tanaka et al., 1998; Tanaka
& Wang, 2001).

Consider now a dimensionality expansion to n = 3. In order to prove

3

∑
i=1

3

∑
j=1

µiµ jx
T Qi jx =

3

∑
k=1

3

∑
i=1

3

∑
j=1

µkµiµ jx
T Qi jx > 0

the permutations of

I
+
3 = {(1,1,1),(1,1,2),(1,1,3),(1,2,2), (1,2,3),

(1,3,3),(2,2,2),(2,2,3),(2,3,3),(3,3,3)} (5.31)



Relaxed LMI conditions, an asymptotically approach 65

must be considered. The result are the conditions

Q̃111 = Q11 > 0, Q̃112 = Q11+ Q12+ Q21 > 0,

Q̃113 = Q11+ Q13+ Q31 > 0, Q̃122 = Q12+ Q21+ Q22 > 0,

Q̃123 = Q12+ Q21+ Q13+ Q31+ Q23+ Q32 > 0,

Q̃133 = Q13+ Q31+ Q33 > 0, Q̃222 = Q22 > 0,

Q̃223 = Q22+ Q23+ Q32 > 0,

Q̃233 = Q23+ Q32+ Q33 > 0, Q̃333 = Q33 > 0 (5.32)

Observe that the obtained conditions are sums with positive coefficients
of those for n = 2 (cf. remark in page 55).

Considering now n = 8, the condition associated to the equivalence
class of, for instance, i = (1,1,1,2,2,2,3,3) ∈ I

+
8 is:

Q̃11122233=
6!

1!3!2!
Q11+

6!
2!2!2!

(Q12+ Q21)+
6!

3!1!2!
Q22+

+
6!

2!3!1!
(Q13+ Q31)+

6!
3!2!1!

(Q23+ Q32)+
6!

3!3!0!
Q33 =

60Q11+90(Q12+Q21)+60(Q13+Q31)+60(Q23+Q32)+60Q22+20Q33> 0

That of i = (1,1,1,1,1,2,3,3) is:

Q̃11111233=
6!

3!1!2!
Q11+

6!
4!0!2!

(Q12+ Q21)+
6!

4!1!1!
(Q13+ Q31)+

+
6!

5!0!1!
(Q23+ Q32)+

6!
5!1!0!

Q33 =

60Q11+15(Q12+ Q21)+30(Q13+ Q31)+6(Q23+ Q32)+6Q33 > 0

and so on. Of course, for large values of n, generation of the vast number
of resulting conditions must be carried out automatically by means of
a suitable computer program. For instance, the number of positivity
conditions required in Proposition 5.2 for n = 50 is 1326.

As discussed in Section 5.3.5, Theorem 5.5 involves a high number
of decision variables in Xi which, however, may be reduced by sticking
to a lower-dimensional X . For instance, conditions for n = 4 for a 2-rule
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fuzzy system may be stated, taking X12 = XT
21, X11 = XT

11, X22 = XT
22, as:

{1111} : Q11≥ X11

{1112} : 2Q11+ Q12+ Q21≥ 2X11+ X12+ X21

{1122} : Q11+ Q22+2Q12+2Q21≥ X11+ X22+2X12+2X21

{1222} : 2Q22+ Q12+ Q21≥ 2X22+ X12+ X21

{2222} : Q22≥ X22
(

X11 X12

X21 X22

)

> 0

where a 2-dimensional decision variable X has been chosen instead of
the 4-dimensional one which arises from direct application of Theorem
5.5 (see next example).

Example 5.2 Consider a continuos fuzzy system, taken from Example
1 in (Fang et al., 2006), defined by:

ẋ =
3

∑
i=1

µi(Aix+ Biu)

where A1 =

(

1.59 −7.29
0.01 0

)

, B1 =

(

1
0

)

,

A2 =

(

0.02 −4.64
0.35 0.21

)

, B2 =

(

8
0

)

,

A3 =

(

−a −4.33
0 0.05

)

, B3 =

(

−b+6
−1

)

.

Analogously to (Fang et al., 2006), existence of a stabilising controller
is cast as a quadratic Lyapunov condition ∑3

i=1∑3
j=1 µiµ jxT Qi jx > 0 where

Qi j are defined by (3.1).

Feasibility of the sufficient conditions arising from Proposition 5.2
are evaluated for different values of a, b. The obtained feasible points
for n = {5,10,20,35,50} are depicted in Figure 5.1. The LMI solver was
Matlab LMI Toolbox (Gahinet et al., 1995).

Similarly, results with Theorem 5.5 (n ranging from 2 to 4) for the
same grid of values for a and b are depicted in Figure 5.2. Indeed, results
for n = 2 and n = 3 coincide with those reported in (Fang et al., 2006).
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Legend: ×→ n = 5 , ◦ → n = 10, ⋆ → n = 20, + → n = 35, • → n = 50

Figure 5.1: Stabilization region based on Proposition 5.2 with different
values of n
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Legend: × → n = 2, ◦ → n = 3, • → n = 4

Figure 5.2: Stabilization region based on Theorem 5.5 with different
values of n



68 Examples

As expected, n = 4 improves over those results.

Let us detail the procedure used to set up the conditions for n = 4
(the notation Sym(N) = 1

2(N + NT ) will be used).

First, Theorem 5.3 with n = 4 is applied. As a result, if the following
conditions hold:

Q̃1111= Q11 > Sym(X1111) (5.33)

Q̃1112= 2Q11+1(Q12+ Q21) >

Sym(X1112+ X1121+ X1211+ X2111) (5.34)

...

Q̃1122= Q11+2(Q12+ Q21)+ Q22 >

Sym(X1122+ X1212+ X1221+ X2112+ X2121+ X2211) (5.35)

...

Q̃1223= 2(Q12+ Q21)+ (Q13+ Q31)+

2(Q23+ Q32)+2Q22 >

Sym(X1223+ X1232+ X1322+ X2123+ X2132+ X2231+

+X2213+ X2312+ X2321+ X3122+ X3212+ X3221) (5.36)

...

Q̃3333= Q33 > Sym(X3333) (5.37)

(the total number of elements of I
+
4 for r = 3 is 15, but only 5 inequalities

have been shown, for brevity) then positivity of

3

∑
k=1

3

∑
l=1

µklξ T Hklξ > 0 (5.38)

where

Hkl =





Xkl11 Xkl12 Xkl13

Xkl21 Xkl22 Xkl23

Xkl31 Xkl32 Xkl33





ensures that the original quadratic stabilisation conditions do also hold.

Finally, in order to test the positivity of (5.38) the conditions of (Liu
& Zhang, 2003) are added, introducing decision variables Yi j fulfilling
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Yi j = Y T
ji and

Sym(H11) > Y11 (5.39)

Sym(H22) > Y22, Sym(H33) > Y33, (5.40)

Sym(H12+ H21) > Y12+Y21 (5.41)

Sym(H13+ H31) > Y13+Y31 (5.42)

Sym(H23+ H32) > Y23+Y32 (5.43)

and




Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y23 Y33



> 0 (5.44)

As a result, the problem is cast as a set of LMIs with decision variables
T and M j in Qi j, from (3.1). Also Xik jl (81 matrices of size 3×3) and
the Ymn (9 matrices of size 9×9), i.e., a total of 23 LMI’s (adding T > 0)
with 504 scalar decision variables.

Note that the recursive procedure in Theorem 5.5 with n = 4 achieved
better results than the original Polya conditions (Proposition 5.2) with
n = 50. Larger values of n in the above computations resulted in nu-
merical problems (slow progress) with the LMI solver, due to the large
number of LMI constraints (in Proposition 5.2) or decision variables (in
Theorem 5.5). This did not allow additional feasiblility points to be
found. The average computation times in seconds per test point (304
tests were needed to plot the whole figure) were, for Figure 1 0.11, 0.45,
2.49, 11.5 and 33.7 s, for n = 5, 10, 20, 35 and 50, respectively (increasing
the LMI solver iteration limit to 650). Regarding Figure 2 (with default
options), with n = 3 the average time per test point was 0.13 s, whereas
that for n = 4 was 11.7 s (i.e., it took about 1 hour to compute the full
figure). The computer was a dual Pentium 4, 3.0 GHz, Matlab 7.1, 1
GB RAM.

Example 5.3 (Quadratic-Parametrisation Controllers.)

Once a criterion for positivity of (5.2) is described, it will be applied
to the design of quadratic-parametrisation controllers, to be denoted as
QPDC controllers:

u =−
r

∑
i=1

r

∑
j=1

µiµ jFi jx (5.45)
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which are a generalisation of the PDC ones, inspired on some proposals
in (Tanaka & Wang, 2001). Clearly, the PDC control law is a particular
case of the QPDC law (setting Fi j = Fi).

A Takagi-Sugeno system (3.1) under QPDC control yields a closed
loop given by:

ẋ =
r

∑
i=1

r

∑
j=1

r

∑
k=1

µiµ jµk(Ai−BiFjk)x (5.46)

Therefore, following the same reasoning than in Section 3.5, The equilib-
rium of the continuous TS fuzzy system (3.1) is quadratically stabilizable
via a QPDC control law (5.45) if there exist matrices M jk such that:

∑
i jk

µi jkξ T Qi jkξ > 0

where

Qi jk =−(AiX −BiM jk + XAT
i −MT

jkBT
i )

Clearly, Theorem 5.5 can be applied to solve previous positivity con-
ditions.

The system to be controlled will be taken from (Kim & Lee, 2000),
and it will be given by:

ẋ1 = x2 +sinx3−0.1x4 +(x2
1 +1)u

ẋ2 = x1 +2x2 (5.47)

ẋ3 = x2
1x2 + x1 (5.48)

ẋ4 = sinx3 (5.49)
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Under the assumption that x1 ∈ [−a,a] and x3 ∈ [−b,b], the above
nonlinear system is exactly represented by the TS model:

A1 =









0 1 1 −0.1
1 2 0 0
1 a2 0 0
0 0 1 0









A2 =









0 1 sinb/b −0.1
1 2 0 0
1 a2 0 0
0 0 sinb/b 0









A3 =









0 1 1 −0.1
1 2 0 0
1 0 0 0
0 0 1 0









A4 =









0 1 sinb/b −0.1
1 2 0 0
1 0 0 0
0 0 sinb/b 0









B1 = B2 =
(

(1+ a2) 0 0 0
)T

B3 = B4 =
(

1 0 0 0
)T

with membership functions:

M1(x) =
x2

1

a2

M3(x) =

{

bsinx3−x3 sinb
x3(b−sinb) x3 6= 0

1 x3 = 0

µ1(x) = M1(x)M3(x)

µ2(x) = M1(x)(1−M3(x))

µ3(x) = (1−M1(x))M3(x)

µ4(x) = (1−M1(x))(1−M3(x))

In order to compare the achieved QPDC controllers with those in
(Kim & Lee, 2000), the same constraints on the control input as in
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(Kim & Lee, 2000) will be enforced. The results applying Theorem 2 in
(Liu & Zhang, 2003), which relaxes some symmetry conditions in (Kim
& Lee, 2000), will also be compared. The constrain ‖u‖2 ≤ δ can be
expressed in terms of QPDC controllers as

(

1 x(0)T

x(0) X

)

≥ 0 (5.50)

(

X MT
ii

Mii δ 2I

)

≥ Zii, i = 1...r (5.51)

(

X MT
i j

Mi j δ 2I

)

+

(

X MT
ji

M ji δ 2I

)

≥ Zi j + ZT
i j,

i = 1...r, i < j ≤ r (5.52)







Z11 . . . Z1r
...

. . .
...

Zr1 . . . Zrr






> 0 (5.53)

where X = P−1, Mi j = FiX , Zi j = ZT
ji and Zii symmetric.

Where the initial states in this example are x(0)=
(

−1.2 0.5 0.7 −0.6
)T

,
a = 1.4 and b = 0.7.

Results: Using PDC control and (Kim & Lee, 2000), the lower bound
of δ for which the resulting LMIs were feasible was 5.116. With (Liu
& Zhang, 2003), the limit of δ was 4.65. For a QPDC controller, the
feasibility bound obtained with Theorem 5.2 with n = 3 is δ ≥ 4.484.
Theorem 5.5 obtains a new QPDC controller with δ ≥ 4.272, significantly
improving over previous results.

In order to show the additional flexibility of the QPDC controller,
figures 5.3 (PDC) and 5.4 (QPDC) compare the first element of the 1×4
state-feedback matrix F̂ below:

u =−F̂(x)x =−
(

F̂1(x) F̂2(x) F̂3(x) F̂4(x)
)

x

as a function of M1 and M3 above, used to define the membership func-
tions. Indeed, the peak “gain” is reduced in the QPDC case.
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Figure 5.3: The first component of the state-feedback matrix F̂ with a
PDC controller computed with Theorem 3.5, δ = 4.65.
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Figure 5.4: The first component of the state-feedback matrix F̂ with
QPDC controller, δ = 4.272.
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M

m
θ

Figure 5.5: TORA model.

Example 5.4 Consider the system shown in Figure 5.5, which repre-
sents a translational oscillator with an eccentric rotational proof mass
actuator (TORA) (Jankovic, Fontaine, & Kokotovic, 1996; Tanaka &
Wang, 2001).

It consists of a platform that can oscillate without damping in the hor-
izontal plane (no gravity effect). On the platform a rotating eccentric
mass is actuated by a dc motor. Its motion applies a force to the plat-
form which can be used to damp the translational oscillations. Assuming
that the motor torque is the control variable, the task is to find a control
law to asymptotically stabilize the system at a desired equilibrium, with
restrictions on the control action. Let x1 and x2 denote the translational
position and velocity of the cart with x2 = ẋ1. Let x3 = θ and x4 = ẋ3

denote the angular position and velocity of the rotational proof mass.
Then the system dynamics can be described by the equation

ẋ = f (x)+ g(x)u (5.54)
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where u is the torque applied to the eccentric mass and

f (x) =











x2
−x+εx2

4 sinx3

1−ε2 cos2 x3

x4
ε cosx3(x1−εx2

4 sinx3)
1−ε2 cos2 x3











(5.55)

g(x) =











0
−ε cosx3

1−ε2 cos2 x3

0
1

1−ε2 cos2 x3











(5.56)

with ε = 0.1.

As in (Jankovic et al., 1996; Tanaka & Wang, 2001), introduce new
state variables z1 = x1 + sinx3, z2 = x2+ εx4cosx3, y1 = x3, y2 = x4, and
employ the feedback transformation

v =
1

1− ε2cos2y1
[ε cosy1(z1− (1+ y2

2)ε siny1)+ u] (5.57)

the system can be described in the following form

ż1 = z2 (5.58)

ż2 =−z1 + ε siny1 (5.59)

ẏ1 = y2 (5.60)

ẏ2 = v (5.61)

The T-S model of the TORA system can be constructed as in (Tanaka
& Wang, 2001) from (5.58)-(5.61) by using the sector nonlinearity fuzzy
model construction described in Chapter 3.

ẋ =
4

∑
i=1

µi(Aix+ Biu) (5.62)
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where

A1 =









0 1 0 0
−1 0 ε απ

απ 0
0 0 0 1
−ε

1−ε2 0 0 0









, B1 =









0
0
0
1

1−ε2









(5.63)

A2 =









0 1 0 0
−1 0 ε 2

π 0
0 0 0 1
0 0 0 0









, B2 =









0
0
0
1









(5.64)

A3 =









0 1 0 0
−1 0 ε 0
0 0 0 1
ε

1−ε2 0 −ε2

1−ε2 0









, B3 =









0
0
0
1

1−ε2









(5.65)

A4 =











0 1 0 0
−1 0 ε 0
0 0 0 1
ε

1−ε2 0 −ε2(1+a2)
1−ε2 0











, B4 =









0
0
0
1

1−ε2









(5.66)

(5.67)

In this simulation, as in (Tanaka & Wang, 2001), x4 ∈ [−a,a], with a = 4
and 0 < α < 1 we take for instance al pha = 0.99.

As in the previous example, in order to compare the achieved PDC
controller computed with the multidimensional summation conditions of
Theorem 5.3, with those in (Liu & Zhang, 2003), we impose a constrain
on the control input. δ = 500 and x0 = [0101]T . The archived results
with Theorem 3.5 are the maximum decay rate α = 0.008 and for the
presented theorem 5.3 and the parameter n = 3 the maximum obtained
decay rate is α = 0.0147. As is shown, in mechanical systems the pre-
sented procedure shows a great improvement with previous technics.

5.5 Conclusions

This chapter has shown how to improve some results in previous litera-
ture, achieving less conservative sufficient conditions on positive definite-
ness of fuzzy summations (related to stability and performance criteria
in fuzzy control). Based on Polya’s theorem, it can be shown that the
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conditions are progressively less conservative as a complexity parameter
n increases, becoming asymptotically exact. Bounds for n can be com-
puted if a tolerance parameter is introduced. The number of conditions
is polynomial in n; if decision variables are introduced, the number of
them may be exponential in n.

The achievable value of n in a particular fuzzy control problem de-
pends on solver accuracy and available computing resources. Previously
reported conditions in literature correspond to n = 2 and n = 3 in the
presented approach.





Chapter 6

Local stability results

In most literature contributions, LMI stability conditions are devised
in order to prove stability and performance of Takagi-Sugeno (Takagi
& Sugeno, 1985) fuzzy systems as has been shown in The Chapter 1.
However, such laws are usually independent of the values of member-
ship functions, and valid for any arbitrary shapes of them. Knowledge
of the shape of the membership functions may allow to lift some conser-
vativeness.

The LMI conditions in the above works do not dependent on the
shape of the membership functions. The values of the membership are
needed when implementing a fuzzy controller, but LMI conditions in
controller design are usually stated as valid for any underlying fuzzy
partition. The conditions may be conservative: a particular nonlinear
system (modelled as a fuzzy TS one (Tanaka & Wang, 2001)) may be
stable, but the LMI conditions may fail to pinpoint the fact.

In summary, there is still some conservativeness to be lifted if knowl-
edge of the shape of the membership functions for a articular TS model
is introduced in the LMI framework.

As a conclusion from the above, “pure nonlinear” control strate-
gies (feedback linearisation, backstepping, Lyapunov synthesis (Khalil,
1996)) on an original nonlinear model may find better solutions than
“fuzzy control” ones on an “equivalent” fuzzy TS model. This is due to
fuzzy control conditions usually been set in order to hold for a “convex
family” of nonlinear systems, making them conservative if a “particular
one” in such family is the only target for control design.
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6.1 Introduction

When LMI stability conditions (3.13) are unfeasible, other alternative
conditions must be sought. Fuzzy or piecewise Lyapunov functions are
discussed in (Johansson, 1999), Fuzzy Lyapunov functions are discussed
in (Oliveira, Bernussou, & Geromel, 1999), non-PDC regulator are dis-
cussed in (Guerra & Vermeiren, 2004) and some ellipsoidal bounds are
discussed in (Calaÿore & El Ghaoui, 2004).

A different alternative, not commonly explored in current literature,
is trying to achieve local stability results in a zone around the equi-
librium as large as possible. Such a result is motivated on the first
Lyapunov theorem for local stability: if the linearised system in x = 0 is
exponentially stable, then so it is the nonlinear one, for initial conditions
in a sufficiently small neighborhood of x = 0. Ellipsoidal characterisa-
tions of subsets of those basins of attraction may be expressed via LMI
conditions, as discussed in the following section.

6.2 Local Fuzzy Models

In order to analyze the local stability of a TS fuzzy model (3.1) within
a region, the original model is modified using the information of the
membership functions.

Lemma 6.1 if the membership functions µ(x) of a fuzzy system de-
scribed in (3.12) in a region of Ω can be themselves expressed as a convex
sum of some vectors vp:

µ(x) =
nv

∑
p=1

βp(x)vp, ∀ x ∈Ω (6.1)

where:

µ(x) = [µ1(x),µ2(x), . . . ,µn(x)]

nv

∑
p=1

βp(x) = 1 βp(x) > 0 ∀x ∈Ω p = 1. . .nv
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Then the system can be transformed to:

ẋ =
nv

∑
p=1

βp(x)A
∗
p · x (6.2)

where

A∗p =
n

∑
i

vpiAi (6.3)

Proof: The expression (6.1) can be substituted in the system equa-
tion (3.12):

µ(x) =
nv

∑
p=1

βp(x)vp (6.4)

vp = [vp1,vp2, . . . ,vpn] (6.5)

µi(x) =
nv

∑
p=1

βp(x)vpi (6.6)

ẋ =
n

∑
i=1

nv

∑
p=1

βp(x)vpiAi · x (6.7)

ẋ =
nv

∑
p=1

βp(x)
n

∑
i

vpiAi · x (6.8)

so the local representation of the system in Ω

ẋ =
nv

∑
p=1

βp(x)A
∗
p · x ∀x ∈Ω

where:
nv

∑
p=1

βp(x) = 1 βp(x) > 0 ∀x ∈Ω p : 1. . .nv

Lemma 6.2 If the membership functions µ(x) of the fuzzy system (3.14)
in a region Ω can be expressed as (6.1), then the system can be equiva-
lently expressed as:

ẋ =
n

∑
i=1

n

∑
j=1

βiβ j(A
∗
i −B∗i F∗j )x (6.9)
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where

A∗p =
n

∑
i=1

vpiAi (6.10)

B∗p =
n

∑
i=1

vpiBi (6.11)

F∗p =
n

∑
i=1

vpiFi (6.12)

The proof uses the same procedure as Lemma 6.1 above.

The convex-combination conditions for the membership functions
required in the above lemmas are easy to meet. Indeed µi are assumed
to be known in fuzzy systems. Then, the result below may be applied
to obtain a (possibly conservative) vertex set.

Note 6.1 Let us consider a region Ω. If bounds µM
i and µm

i on the
extremum values of the membership functions in Ω can be computed, in
such a way that:

µM
i ≥max

x∈Ω
µi(x) µm

i ≤min
x∈Ω

µi(x) (6.13)

then there exist a set of βp(x), p = 1, . . . ,nv so that the vector of mem-
bership functions

µ(x) = [µ1(x),µ2(x), . . . ,µn(x)]

may be expressed in Ω as:

µ(x) =
nv

∑
p=1

βp(x)vp, x ∈Ω (6.14)

where:
nv

∑
p=1

βp(x) = 1 βp(x) > 0 ∀x ∈Ω p : 1. . .nv

Indeed, the linear restrictions µM
i ≥ µi ≥ µm

i , ∑i µi = 1 describe a bounded
polytope with a finite number of vertices (Luenberger, 2003).
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Well-known linear-programming-related methods to obtain the mem-
bership vector vertices may be used (related to the obtention of the basic
feasible solutions in an LP problem (Luenberger, 2003)). A related al-
ternative is described below.

Lemma 6.3 Consider the set Σi of at most 2n−1 vectors defined by:

Σi = {[µ̃1, ..., µ̃i−1,X , µ̃i+1, ..., µ̃n],

X = 1− ∑
1≤ j ≤ n

j 6= i

µ̃ j

such that µ̃ j ∈ {µM
j ,µm

j } j 6= i, µm
i ≤ X ≤ µM

i } (6.15)

Then, the vectors belonging to the set

Σ =
n
⋃

i=1

Σi (6.16)

satisfy (6.14) for some βp.

Indeed, as there is only one equality restriction in memberships, all
except one of them are“free”to attain an extremum value; the remaining
one must fulfill the add-1 restriction and be inside its required bounds.
The above lema produces the union of all the “all minus one” combina-
tions, and the sought vertices will belong to such set.

Example. For instance, if three memberships have minimum and
maximum values given by {0.15,0.3,0.35} and {0.6,0.5,0.4}, the set Σ1 is
originated by the four combinations:

{(X1,0.3,0.35),(X2,0.5,0.35),

(X3,0.3,0.4),(X4,0.5,0.4)}

with X1 = 1−0.65= 0.35, X2 = 0.15, X3 = 0.3, X4 = 0.1. As X4 is out of
the required range, the candidate vertices kept are:

Σ1 = {(0.35,0.3,0.35),(0.15,0.5,0.35),

(0.3,0.3,0.4)}
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The set Σ2 is generated by:

{(0.15,X1,0.35),(0.6,X2,0.35),

(0.15,X3,0.4),(0.6,X4,0.4)}

with X1 = 0.5, X2 = 0.05, X3 = 0.45 and X4 = 0. Hence,

Σ2 = {(0.15,0.5,0.35),(0.15,0.45,0.4)}

Regarding the third membership,

{(0.15,0.3,X1),(0.6,0.3,X2),

(0.15,0.5,X3),(0.6,0.5,X4)}

results in
Σ3 = {(0.15,0.5,0.35)}

hence the resulting set of vertices to compute the local models is:

Σ = {(0.35,0.3,0.35),(0.15,0.5,0.35),

(0.3,0.3,0.4),(0.15,0.45,0.4)}

6.2.1 Stability analysis

By using the transformed models discussed in the above section, local
stability results may be obtained.

Lemma 6.4 The ellipsoidal region Ω∗ ⊂Ω

Ω∗ = {x |xT Px≤VM , P > 0} (6.17)

is a basin of attraction of the equilibrium point x = 0 of the system (3.1),
i.e., all trajectories with initial state in Ω∗ converge assymptotically to
x = 0, if

(6.18)

VM ≤ min{xT Px |x ∈ ∂Ω} (6.19)

where ∂Ω denotes the boundary of Ω and P verifies:

A∗p
T P + PA∗p < 0 p : 1, . . . ,nv (6.20)
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Proof: As, by Lemma 6.1, the system can be expressed in Ω as:

ẋ =
nv

∑
p=1

βp(x)A
∗
p · x

if the LMI (6.20) is feasible for a positive definite matrix P, V (x) = xT Px
is a decreasing function with time, so a Lyapunov function has been
obtained ensuring that Ω∗ is an invariant set. La Salle’s theorem (Khalil,
1996) ensures that every solution starting in Ω∗ will approach x = 0.

As the expression of the local system (6.2) is not valid outside Ω, then
the local stability can only be proved in the largest ellipsoid Ω∗ contained
in Ω, which will be defined by a value of Vm equal to the minimum value
of V (x) in the boundary of Ω (∂Ω).

The following lemma is useful in order to set up an LMI characteri-
sation of the largest ellipsoid in Ω which is a Lyapunov equipotential1.

Suppose Ω defined as a symmetric polytope that contains x = 0:

Ω = {x | |aT
i x| ≤ 1i : 1, ...,np} (6.21)

Lemma 6.5 Θ = {x | xT Q−1x≤ 1}, Q = QT > 0 is an ellipsoid contained
in Ω which itself contains the maximum volume sphere centered at x = 0
if the LMI problem

minimize λ
subject to λ I > Q−1 > 0
Q > 0, aT

1 Qai ≤ 1, i = 1, ...np

is feasible. Then, no other ellipsoid in Ω contains a larger centered
sphere.

The proof appears in (Boyd et al., 1994) chapter 3.

1Largest is here understood as containing the largest spherical ball around x = 0,
i..e, guaranteeing stability for the largest initial distance from the origin.
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Theorem 6.1 Consider the system (3.12). The largest spherical basin
of attraction of x = 0 provable by a quadratic Lyapunov function in a
symmetric polytopic region Ω has a radius λ− 1

2 given by the solution of
the following LMI problem:

minimize λ subject to

λ I > P > 0 (6.22)

P > 0 (6.23)
(

P a j

aT
j 1

)

> 0, j : 1...np (6.24)

A∗p
T P+ PA∗P < 0, p : 1...nv (6.25)

and Ω is defined as (6.21). The ellipsoid Θ = {x | xT Px≤ 1} is, of course,
also contained in the basin of attraction of x = 0.
Proof: Conditions (6.25) imply that trajectories inside any equipotential
region defined by P converge to the point x = 0, as shown in Lemma 6.4.
Applying the Schur complement, the conditions (6.24) are equivalent to

aT
p P−1ap < 1, i : 1..np

Then, conditions (6.24) keep Θ inside Ω and the condition (6.22) along
with the LMI objective, maximize the radius of the quadratically invari-
ant sphere contained in Θ, from Lemma 6.5.

6.3 Stability analysis of Feedback Systems

Some interesting results for local stability of feedback systems may be
found by using the theorems in Chapter 3 and adding the conditions of
Lemma 6.5.

The theorem below adapts Theorem 3.1 to the local model framework
previously presented.

Theorem 6.2 Consider the feedback fuzzy system (3.14).The largest
spherical basin of attraction of x = 0 provable by a quadratic Lyapunov
function in a symmetric polytopic region Ω has a radius λ− 1

2 given by
the solution of the following LMI problem:
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minimize λ subject to

G∗ii
T P+ PG∗ii < 0 (6.26)

(

G∗i j + G∗ji
2

)T

P+ P

(

G∗i j + G∗ji
2

)

≤ 0 (6.27)

P > 0 (6.28)
(

P a j

aT
j 1

)

> 0 (6.29)

λ I > P (6.30)

where:
G∗i j = A∗i −B∗i F∗j

The theorem below is based on Theorem 3.5 for local models.

Theorem 6.3 The feedback fuzzy system (3.14).The largest spherical
basin of attraction of x = 0 provable by a quadratic Lyapunov function in
a symmetric polytopic region Ω has a radius λ− 1

2 given by the solution
of the following LMI problem:

minimize λ subject to

G∗ii
T P+ PG∗ii + Xii < 0 (6.31)

(

G∗i j + G∗ji
2

)T

P+ P

(

G∗i j + G∗ji
2

)

+ Xi j + X ji ≤ 0 (6.32)







X11 . . . X1n
...

. . .
...

Xn1 . . . Xnn






> 0 (6.33)

P > 0 (6.34)
(

P a j

aT
j 1

)

> 0 (6.35)

λ I > P (6.36)
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where: P is a definite positive matrix and matrices Xi j = XT
ji .

6.4 Algorithm

These results may be combined in order to obtain an algorithm to com-
pute the largest ball around x = 0 for which attraction is ensured.

Basically, the procedure will first check the extreme cases: (1) check-
ing for feasibility of LMI problems as stated in Section 3.5 (2) checking
for stability of the linearised model around x = 0.

If the first one is unfeasible but the second one is feasible, selecting
a polytopic region on the state space and a scaling factor ρ allows to set
up a bisection procedure in order to determine the largest feasible ρ .

6.5 Examples

Example 6.1 Let us have a fuzzy system given by:

ẋ =
2

∑
i=1

µi(x)Aix (6.37)

A1 =

(

−0.5 −1
−1 −0.5

)

(6.38)

A2 =

(

−0.5 1
1 −0.5

)

(6.39)

Figure 6.1 shows the membership functions µ1 and µ2 which, for sim-
plicity, depend only on x2. The value of a = 1 will be assumed.

Define Ωk as a rectangle bounded in x2, unbounded in x1:

Ωk = {x | |(0 1/ρk)x| ≤ 1}
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µ1 µ2

x2

1

a−a0 0

Figure 6.1: membership functions µ1(x2), µ2(x2)

where k is the iteration number.
Note that the maximum and minimum values of µi in Ω are easily ob-
tained, and the Lemma 6.5 can be applied.

In the proposed procedure, the LMIs for ρ = 1 are unfeasible. How-
ever, the linearised model is:

ẋ = (0.5A1 +0.5A2)x =

(

−0.5 0
0 −0.5

)

(6.40)

which is stable. Hence, there exists a zone around x = 0 (possibly small)
where local stability holds. The procedures in this chapter allow to deter-
mine the largest sphere around x = 0 for which local quadratic stability
holds.

Let us consider for the fist iteration ρ1 = 0.1. The maximum and
minimum values of µ are, in that case: µM

1 = 0.55, µm
1 = 0.45, µM

2 = 0.55,
µm

2 = 0.45
Then the vertices obtained in the region Ω1 are:

v1 =
(

0.45 0.55
)

v2 =
(

0.55 0.45
)

The local fuzzy model from Lemma 6.1 is described by:

A∗1 =

(

−0.5 0.1
0.1 −0.5

)

A∗2 =

(

−0.5 −0.1
−0.1 −0.5

)
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And, solving the LMIs:

A∗1
T P + PA∗1 < 0

A∗2
T P + PA∗2 < 0

X > 0

local stability in a certain ellipsoidal region inside Ω1 is proved.

When the same procedure is applied to ρ = 0.5 the LMIs are un-
feasible. The LMIs are, however, feasible for any ρ < 0.5. for instance,
ρn = 0.499 results in the following LMI conditions:

A∗1
T P+ PA∗1 < 0

A∗2
T P+ PA∗2 < 0





P
0

1/ρn

0 1/ρn 1



 > 0

P > 0

λ I > P

which are feasible for the above value of ρn and, the matrix P obtained
for the minimum λ defines an ellipsoid:

Θ = {x | xT Px≤ 1}

P =

(

3.8274 0
0 4.016

)

which conforms the guaranteed basin of attraction.

Trajectories with starting points inside the ellipsoid Θ are guaranteed
to converge to the origin. Points outside the ellipsoid may lead to either
convergent or non-convergent trajectories.

Example 6.2 Let us have a fuzzy system given by:
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x1

x 2
Θ Ω

Figure 6.2: The Basin of attraction of x = 0 provable by quadratic sta-
bility (Example 2).

ẋ =
2

∑
i=1

µi(x)(Aix+ Biu) (6.41)

A1 =

(

2 −10
1 0

)

(6.42)

A2 =

(

6 −10
1 1

)

(6.43)

B1 =
(

1 0
)T

(6.44)

B2 =
(

10 0
)T

(6.45)

Figure 6.1 shows the membership functions µ1 and µ2 which, for sim-
plicity, depend only on x2. The value of a = 1 will be assumed.
The control action u is given by (3.4) where F1 and F2 are:

F1 =
(

18 5
)

(6.46)

F2 =
(

2.3 2.2
)

(6.47)

These values of Fi are designed to place the closed-loop poles of Ai−BiFi

at −1 and −15.
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Conveniently, we take the same region shape Ω as in Example 1.
Then the maximum ρ obtained is 0.3 and the maximum ellipsoid θ that
ensures stability for its points is illustrated in Figure 6.2, with some ex-
amples of initial points.

6.6 Conclusions

This chapter shows how local stability results (the largest sphere around
x = 0 for which a quadratic Lyapunov function can be proven via LMI)
may be obtained in fuzzy systems via the knowledge of the membership
functions, even when no feasible quadratic Lyapunov function can be
found to prove global stability. The discovered sphere is part of a larger
ellipsoidal guaranteed basin of attraction.

The methodology used is based on transformation of the membership
functions by expressing them as a convex combination of some points in
the membership space. These points are obtained from the knowledge
of the maximum and minimum values of the memberships in the zone
under study.



Chapter 7

Relaxed LMI conditions: Overlap in

membership functions

7.1 Introduction

The objective of this chapter is to reduce, the gap between fuzzy and
nonlinear control discussed in Chapter 4 by looking at the membership
functions shape. Indeed, for a particular application, when the expres-
sions of the memberships as a function of some premise variables are
actually known, some zones of the possible membership space can be
excluded (only for that particular case, of course). Reducing the size of
the (multi-dimensional) set where the membership functions take val-
ues “should” obtain less conservative conditions than those expressed for
“any” membership. However, LMI conditions in current literature do
not take into account that fact.

This contribution presents results generalizing ones presented in
Chapter 5 in order to incorporate any multivariate polynomial constraint
on the membership shapes, such as µ2

1 − µ3
2 µ3− 4µ2µ4− 0.1≥ 0. The

most interesting particular cases are: (a) asserting that the member-
ship vector is always inside (or outside) a particular ellipse (or set of
them); (b) asserting that the overlap (measured as a product) of some
memberships is below a particular value, say µ1µ4µ2≤ 0.03.

In summary, this work provides membership-shape dependent condi-
tions for fuzzy closed-loop analysis and controller design problems, which
are less conservative than other approaches in literature. The results al-
low specialization of the designs to a particular nonlinear plant, and give
room to greater flexibility of the designs (such as multiple performance
objectives in different operation regions).
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The structure of the chapter is as follows: next section relaxes the
conditions in theorem 3.5 using bounds on the products of the member-
ship functions (measuring the degree of overlap) and introducing addi-
tional artificial LMI variables. The approach is directly applicable with
minor modifications to other settings where stability or performance
(decay rate, H∞, etc.) requires positivity of a double fuzzy summa-
tion ∑i ∑ j µiµ jxT Qi jx > 0, for instance (Tuan et al., 2001). The required
bounds on the membership functions are easily obtained in practice, as
examples will illustrate. As an additional result, relaxed LMI condi-
tions for single fuzzy summations ∑i µixT Qix > 0 are also proposed from
bounds on the maximum value of the memberships. An alternative ap-
proach, based on changes of variable, as is reported in Chapter 6, but
that approach does not apply to the product bounds. The next section
will generalize these results to any shape that can be expressed as a
quadratic form of the membership functions. And finally an approach
for relaxing the conditions for any polynomial constrain of the member-
ship functions’ constraints using the stability and performance results
from Chapter 5 will be shown. Numerical examples are provided in
section 7.5.

7.2 Relaxed conditions with overlap informa-

tion

This section presents relaxations of the above results, which apply when
nontrivial bounds on the maximum firing strength of each membership
function (or their products) are known.

7.2.1 Single sum relaxation

If a bound for µ j is known, so that

µ j(z)≤ β j ∀ z

the following theorem allows to set up stability and performance condi-
tions which are less conservative that those in Chapter 3.

Theorem 7.1 Expression Ξ(t) = ∑r
i=1 µi(z(t))x(t)T Qix(t) is positive if

there exist symmetric positive definite matrices N1, . . . , Nr such that,
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for all i:

Qi + Ni−
r

∑
j=1

β jN j > 0 (7.1)

If Qi > 0 is a linear matrix inequality (LMI (Boyd et al., 1994; Tanaka
& Wang, 2001)), the above expressions are LMIs, too.

Proof: Consider an arbitrary positive definite N j. Then, by using the
partition condition (3.3) and the fact that xT N jx≥ 0 for any x:

µ j ≤ β j

r

∑
i=1

µi (7.2)

µ jx
T N jx ≤ β jx

T N jx
r

∑
i=1

µi =
r

∑
i=1

µiβ jx
T N jx (7.3)

Hence, the term

H j = µ jx
T N jx−

r

∑
i=1

µiβ jx
T N jx (7.4)

is negative semi-definite, i.e., H j ≤ 0. As a result, it may be added to Ξ
and positiveness of Ξ will be proved if positiveness of Ξ + H j is shown,
i.e.,

Ξ≥ Ξ + H j =
r

∑
i=1

µix
T Qix+ µ jx

T N jx−
r

∑
i=1

µiβ jx
T N jx =

= xT

(

µ j(Q j +(1−β j)N j)+ ∑
i6= j

µi(Qi−β jN j)

)

x (7.5)

Such positivity occurs if

Qi−β jN j > 0 ∀i 6= j (7.6)

and, for the case i = j

Q j +(1−β j)N j > 0 (7.7)
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In order to complete the proof, if a bound β j is known for all j, the
conditions may be stated similarly, i.e.:

Ξ≥ Ξ +
r

∑
j=1

H j =
r

∑
i=1

µix
T Qix+

r

∑
j=1

(

µ jx
T N jx−

r

∑
i=1

µiβ jx
T N jx

)

=

= xT

(

r

∑
i=1

µi(Qi + Ni−
r

∑
j=1

β jN j)

)

x (7.8)

from which conditions (7.1) are readily obtained.

The theorem indicates that a negative definite Q j may be “compen-
sated”by addition of a positive matrix to it, in expression (7.7), if it fires
only up to a limited strength β j and the rest of fuzzy models (which will
fire with strengths adding at least 1−β j) are positive enough, fulfilling
(7.6).

Note that the trivial bound β j = 1 is useless. Bounds lower than 1
arise with the use of non-normal fuzzy sets. Note also that, by fixing
N j = 0, Theorem 7.1 reduces to the standard conditions in literature.

The ideas arising from Theorem7.1 can be extended to a more inter-
esting and useful result involving double sums, as discussed below.

7.2.2 Double-sum relaxation

Assume that knowledge of the specific shape of the membership functions
allows to set up a bound:

0≤ µi(z)µ j(z)≤ βi j ∀ z (7.9)

The bounds βi j may be used to set up some relaxations of Theorem
1, similarly to the previously considered single-sum case. The trivial
bounds in this case are obtained with: µiµ j ≤ µi(1−µi)≤ 0.25 and, for
i = j, βii = 1 if the involved fuzzy sets are normal.

Theorem 7.2 Consider an antecedent fuzzy partition fulfilling the over-
lap bounds (7.9). Expression (3.23) holds if there exist matrices Xi j = XT

ji



Relaxed LMI conditions: Overlap in membership functions
97

and symmetric Ri j, i≤ j, such that:

Xii ≤ Qii + Rii−Λ (7.10)

Xi j + X ji ≤Qi j + Q ji + Ri j−2Λ (7.11)

X =







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






> 0, Ri j ≥ 0 (7.12)

where

Λ =
r

∑
k=1

∑
k≤l≤r

βklRkl

Proof. Consider an arbitrary symmetric positive definite Rkl. Using
condition (3.24),

µkµl ≤ βkl

r

∑
i=1

r

∑
j=1

µiµ j (7.13)

µkµlx
T Rklx≤ βklx

T Rklx
r

∑
i=1

r

∑
j=1

µiµ j =
r

∑
i=1

r

∑
j=1

µiµ jx
T βklRklx (7.14)

Then, the term:

Hkl = µkµlx
T Rklx−

r

∑
i=1

r

∑
j=1

µiµ jx
T βklRklx

is negative-semidefinite, i.e., Hkl ≤ 0, so it may be added to Ξ in (3.23),
i.e.:

Ξ≥ Ξ + Hkl = µkµlx
T Rklx+

r

∑
i=1

r

∑
j=1

µiµ jx
T (Qi j−βklRkl)x (7.15)

and, if the resulting Ξ+Hkl were proved to be positive, Ξ would evidently
be positive. Reordering the above expression as in (3.48) results in

Ξ≥ µkµlx
T Rklx+

r

∑
i=1

µ2
i xT (Qii−βklRkl)x+

+
r

∑
i=1

∑
i< j≤r

µiµ jx
T (Qi j + Q ji−2βklRkl)x (7.16)
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Considering all the different pairs of membership functions, yielding dif-
ferent βkl (for k : 1. . . r, k ≤ l ≤ r), an expression of Ξ + ∑r

k=1∑k≤l≤r Hkl

can be easily obtained:

Ξ≥ Ξ +
r

∑
k=1

∑
k≤l≤r

Hkl =
r

∑
i=1

∑
i≤ j≤r

µiµ jx
T Ri jx+

r

∑
i=1

µ2
i xT (Qii−

r

∑
k=1

∑
k≤l≤r

βklRkl)x+

r

∑
i=1

∑
i< j≤r

µiµ jx
T (Qi j + Q ji−2

r

∑
k=1

∑
k≤l≤r

βklRkl)x (7.17)

By straightforward manipulations of the expression (7.17), if conditions
(7.10) and (7.11) hold, then

Ξ≥
r

∑
i=1

µ2
i xT (Qii + Rii−

r

∑
k=1

∑
k≤l≤r

βklRkl)x+

r

∑
i=1

∑
i< j≤r

µiµ jx
T (Qi j + Q ji + Ri j−2

r

∑
k=1

∑
k≤l≤r

βklRkl)x≥
r

∑
i=1

µ2
i xT Xiix+

r

∑
i=1

∑
i< j≤r

µiµ jx
T (Xi j + X ji)x(7.18)

Finally, using an argumentation analogous to that in (3.49), a sufficient
condition for Ξ > 0 is stated in the theorem.

Proposition 7.1 For the trivial off-diagonal bound βkl = 0.25, Theorem
7.2 does not provide better results than Theorem 3.5, i.e., Theorem 7.2
with normal partitions is only useful in fuzzy models with 3 or more
rules.

Proof. Indeed, assume that feasible Xi j, Rkl , k < l have been obtained
with Theorem 7.2, so that

Xii ≤ Qii−0.25Rkl (7.19)

Xi j + X ji ≤ Qi j + Q ji−0.5Rkl (i, j) 6= (k, l) (7.20)

Xkl + Xlk ≤Qkl + Qlk +0.5Rkl (7.21)

Take X ′i j = Xi j for all pairs (i, j) except (k,k), (l, l), (k, l), (l,k), and
take X ′kk = Xkk +0.25Rkl , X ′ll = Xll +0.25Rkl , X ′kl = Xkl−0.25Rkl , X ′lk = Xlk−
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0.25Rkl . Then, conditions (3.50)–(3.51) are fulfilled for X ′i j. Consider

now an arbitrary vector ξ = (ξ T
1 . . .ξ T

k . . .ξ T
l . . .ξ T

r )T where ξi is itself a
vector compatible with the dimensions of Xii. Then,

ξ T X′ξ = ξ T Xξ +
(

ξ T
k ξ T

l

)

(

0.25Rkl −0.25Rkl

−0.25Rkl 0.25Rkl

)(

ξk

ξl

)

=

= ξ T Xξ +0.25(ξk−ξl)
T Rkl(ξk−ξl) (7.22)

proves that X′ ≥ X, as (ξk− ξl)
T Rkl(ξk− ξl) ≥ 0. Hence, the matrix X′

in (3.52) formed with the X ′i j is positive definite, i.e., the procedure has
obtained a feasible solution for Theorem 3.5.

The numerical examples in Section 7.5 will show that Theorem 3
improves over Theorem 3.5 when βi j < 0.25.

Remark: if βkl = 0 (i.e., fuzzy sets µk and µl are disjoint and non-
overlapping), Rkl dissapears from Λ. Hence, the LMI (7.10) or (7.11) in
which Rkl appears may be eliminated as Rkl can be as large as needed.
In this way, the usual conditions regarding completely non-overlapping
memberships in literature (Kim & Lee, 2000) are recovered as a partic-
ular case.

7.3 Shape-dependent positivity conditions for
double fuzzy summations

Denote by µ(z) the column vector of membership functions
µ(z) = (µ1(z),µ2(z), . . . ,µr(z))T in (3.23). On the sequel, the shorthand
notation µ will be used instead of µ(z), as previously introduced for the
individual membership components.

Assume that knowledge of:� the specific shape of the membership functions,� the set of values Ω taken by premise variables z,

allows to set up a bound, for some known S, t and v, in the form:

µT Sµ + tµ + v≤ 0 ∀ z ∈Ω (7.23)
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where parameters S, t and v are, respectively, a matrix (of dimensions
r×r), a row vector (1×r) and a scalar. The elements of S will be denoted
by si j, and βi j will denote:

βi j = (si j + ti + v)

The left-hand side term in (7.23) is a second-order polynomial in the
membership functions. Particular examples are, for instance, knowledge
on degrees of membership function overlap (say, µ1µ2 < 0.15, µ1µ3 = 0,
(µ1 + µ2)∗µ4 ≤ 0.4), ellipsoidal sets (such as (µ1−0.9)2 +2(µ2−0.1)2 ≤
0.052) or drilling ellipsoidal “holes” (such as (µ1−0.9)2 +2(µ2−0.1)2 ≥
0.052); see section 7.3.1 for further discussion.

Proposition 7.2 If the membership functions conform a fuzzy parti-
tion, then the matrix B whose elements are βi j fulfills:

µT
Bµ ≤ 0 (7.24)

Proof: Indeed, using condition (3.3),

0≥ µT Sµ + tµ + v =
r

∑
i=1

r

∑
j=1

µiµ jsi j +
r

∑
i=1

tiµi + v =

=
r

∑
i=1

r

∑
j=1

µiµ jsi j +
r

∑
i=1

r

∑
j=1

µiµ jti +
r

∑
i=1

r

∑
j=1

µiµ jv =

=
r

∑
i=1

r

∑
j=1

µiµ j(si j + ti + v) =
r

∑
i=1

r

∑
j=1

µiµ jβi j (7.25)

Hence, any second-order polynomial restriction on the membership
shape can be expressed as an homogeneous quadratic form.

Theorem 7.3 Assume knowledge about the particular membership func-
tion shape is available via a constraint matrix B, with elements βi j,
fulfilling (7.24). Then, expression (3.23) is proved if there exists a sym-
metric matrix R≥ 0 so that the condition:

Ξ′(t) =
r

∑
i=1

r

∑
j=1

µiµ jx
T Q′i jx > 0 ∀ x 6= 0 (7.26)
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holds, where

Q′i j = Qi j + βi jR

i.e. Qi j is replaced in (3.23) by Q′i j involving an additional matrix vari-
able.

Proof: consider an arbitrary symmetric positive semi-definite R.
Then, the term

H = xT Rx
r

∑
i=1

r

∑
j=1

µiµ jβi j =
r

∑
i=1

r

∑
j=1

µiµ jx
T βi jRx (7.27)

verifies H ≤ 0, so it may be added to Ξ in (3.23) and, if the resulting
sum is positive, Ξ will evidently be positive, i.e.,

Ξ≥ Ξ + H =
r

∑
i=1

r

∑
j=1

µiµ jx
T (Qi j + βi jR)x = Ξ′ (7.28)

Multiple restrictions can be incorporated by repeated application of
Theorem 7.3, i.e.:

Corollary 7.1 Assume that knowledge about the particular membership
function shape is available via a set of matrices B[k], k = 1, . . . , t, with

elements β [k]
i j . Expression (3.23) is proved if there exist positive semi-

definite matrices Rk, k = 1, . . . , t, so that the condition (7.26) holds, where

Q′i j = Qi j +
t

∑
k=1

β [k]
i j Rk

In order to check condition (7.26), well-known expressions can be
used, such as the ones in (Tuan et al., 2001), or (Liu & Zhang, 2003).
For instance, straightforward application of (Liu & Zhang, 2003) yields
the following theorem:

Theorem 7.4 Consider an antecedent fuzzy partition fulfilling the
bounds (7.23). Expression (3.23), under shape constraints B[k], k =
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1, . . . , t, holds if there exist matrices Xi j = XT
ji and symmetric Rk ≥ 0 such

that:

Xii ≤Qii +
t

∑
k=1

β [k]
ii Rk (7.29)

Xi j + X ji ≤ Qi j + Q ji +
t

∑
k=1

(β [k]
i j + β [k]

ji )Rk (7.30)

X =







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






> 0 (7.31)

7.3.1 Particular cases

Membership function overlap. Assume that a bound on the overlap
between fuzzy sets defined by µk and µl, for k 6= l, is expressed as:

µkµl ≤ γkl (7.32)

It is a particular case of (7.23) with ti = 0 and

skl = slk =
1
2
, v =−γkl (7.33)

si j = 0 ∀ (i, j) 6= (k, l) (7.34)

resulting in βkl = βlk = 1
2− γkl, the rest of βi j =−γkl .

The conditions of Theorem 7.4 result in:

Xii ≤ Qii− γklR (7.35)

Xi j + X ji ≤ Qi j + Q ji−2γklR (i, j) 6= (k, l) (7.36)

Xkl + Xlk ≤ Qi j + Q ji +(1−2γkl)R (7.37)

X =







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






> 0, R≥ 0 (7.38)

As it can be seen, the results are equivalent to ones obtained in the
previous section.

Ellipsoidal hole. The interior (or exterior) of any ellipse, parabola
or hiperbola can be considered via a suitable B. As a simple example,
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Let us assume that the condition

r

∑
i=1

(µi− ci)
2≥ δ 2 (7.39)

is known to hold, i.e., the membership functions are known to lie outside
of a particular hyper-sphere.

Then,

r

∑
i=1

(µ2
i + c2

i −2ciµi)≥ δ 2 (7.40)

r

∑
i=1

µ2
i +

r

∑
i=1

r

∑
j=1

µiµ j(
r

∑
k=1

c2
k)−2

r

∑
i=1

r

∑
j=1

µiµ jci ≥ δ
r

∑
i=1

r

∑
j=1

µiµ j (7.41)

so we have, denoting by φ =−δ 2 + ∑r
k=1 c2

k ,

r

∑
i=1

µ2
i (1−2ci)+ φ +

r

∑
i=1

r

∑
j=i+1

µiµ j(2φ −2ci−2c j)≥ 0 (7.42)

so the previous results apply with

βii =−(1−2ci)−φ (7.43)

βi j =−φ +2ci i 6= j (7.44)

In general, one may specify that the membership functions are out-
side of an arbitrary ellipsoidal quadratic form, in the form:

µT Sµ− v≤ 0 (7.45)

where S is a positive definite matrix. A set of such ellipsoids may be
used to exclude any zones which are known to be out of the range of the
membership function vector (Figure 7.1). Using a negative definite S is
equivalent to stating that the membership vector lies inside a particular
ellipsoid.

7.3.2 Obtention of bounds in practice.

As the shape of the membership functions is known in fuzzy control1, ob-
taining the bounds for any second-order polynomial in the form (7.23)

1See (Lam & Leung, 2005) for conditions with uncertain memberships.
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Figure 7.1: Ellipsoidal holes on the add-1 simplex in R
3.
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Figure 7.2: Fuzzy partition with limited overlap.

is, in principle, easy, as the problem can be approached as an opti-
mization one. Indeed, choosing arbitrary S and t, maximising J(z) =
µ(z)T Sµ(z)+ tµ(z) over the expected range of values of the premise vari-
ables z, previously denoted as Ω, yields a value Jmax = maxz∈Ω J(z). Once
Jmax is available2, an expression in the form (7.23) can be obtained from
J(z)− Jmax ≤ 0, i.e., the polynomial µT Sµ + tµ− Jmax≤ 0.

As an example, consider the fuzzy partition in Figure 7.2. In this
case, the bounds µ2− 0.86≤ 0 and µ1µ3− 0.0045≤ 0 may be easily
computed by line-search on the one-dimensional set where the premise
variable takes values.

In other common cases, membership functions are the cartesian prod-
uct of simpler ones, describing either fuzzy partitions on individual vari-

2The optimization on Ω can be carried out by using any optimization technique;
even a brute-force approach evaluating the memberships on a dense-enough grid on z
may suffice.
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ables or basic nonlinearities in the system equations, following the mod-
elling methodology in (Tanaka & Wang, 2001). In that case, if the
membership functions are the cartesian product of w fuzzy partitions, it
can be shown that certain products of memberships can be bounded by
a power of 0.25 (because µ(1−µ)≤ 0.25). For instance, consider “high”
and “low” to be contrary concepts defined on pressure and temperature
universes. If a membership µ1 is “temperature is low and pressure is
low”, and other membership µ2 is “temperature is high and pressure is
high”, then µ1µ4≤ 0.252. Details and examples of these situations appear
in (Sala & Ariño, 2007a).

The reader may browse at this moment, if so wished, Example 7.1
in Section 7.5, which shows some numeric results.

7.4 Generalization to higher dimensions

As a generalization of (3.23), other fuzzy control results require posi-
tiveness of a p-dimensional fuzzy summation, i.e., checking

Ξ(t) =
r

∑
i1=1

r

∑
i2=1

. . .
r

∑
ip=1

µi1(z)µi2(z) . . .µip(z)x
T Qi1i2...ip x≥ 0 (7.46)

The case p = 2 reduces to (3.23). Conditions requiring p = 3 are, for
instance, the fuzzy dynamic controllers in (Li et al., 1999; Tanaka &
Wang, 2001), using Qi jk = Ei jk + ET

i jk, with

Ei jk =

(

AiQ11+ BiC jk Ai + BiD jCk

Ai jk AiP11+Bi jCk

)

< 0 (7.47)

for suitably defined A ,B,C ,D . Triple fuzzy summations are needed also
in the output-feedback settings in (Fang et al., 2006; Chen et al., 2005).

Consider also the possibility that a restriction on the shape of the
membership functions is given by a multivariate polynomial of degree p,
for instance

µ4
1−2µ3 + µ1µ2−0.3 < 0 (7.48)

with p = 4, where monomials of degree four, one, two and zero appear.

Now, choose any arbitrary integer n, n ≥ p. By multiplying each of
the atomic monomials of degree q (0≤ q ≤ p) by (∑r

i=1 µi)
n−q (which is



106 Generalization to higher dimensions

identically equal to one), any polynomial of degree p can be converted to
an homogeneous polynomial of degree n. For instance, the above (7.48)
gets converted in

µ4
1−2µ3(∑

i

µi)
3 + µ1µ2(∑

i

µi)
2−0.3(∑

i

µi)
4 < 0 (7.49)

So, let us restate a generalised version of the theorem, introducing
some notation from (Sala & Arino, 2007b).

7.4.1 Multi-dimensional index notation

In order to streamline notation in multi-dimensional summations (7.46),
we will follow the multi-index notation in Section 5.2.1 to handle p-
dimensional vectors of natural numbers (denoted by boldfaced vari-
ables), and its associated p nested summations:

Ip = {(i1, i2, . . . , ip) | 1≤ i j ≤ r, j = 1,2, . . . , p}

∑
i∈Ip

γi =
r

∑
i1=1

r

∑
i2=1

. . .
r

∑
ip=1

γi1i2...ip (7.50)

By convention, the cartesian product of several multi-indices, result-
ing in a higher-dimensional one, will be symbolized by parentheses:

i ∈ Ip, j ∈ Iq, . . . ,m ∈ It ⇒ k = (i, j, . . . ,m) ∈ Ip+q+···+t (7.51)

and sometimes by mere juxtaposition, such as in γi1...ip in (7.50) One-
dimensional indices, say j ∈ I1 are ordinary integer index variables: they
will be typed in italic typeface as j, 1≤ j≤ r when its one-dimensionality
should be emphasised.

Multi-dimensional fuzzy summations. The purpose of multi-index
notation is to compactly represent multi-dimensional fuzzy summations,
as follows.

First, let us define the following notation, specific for membership
functions as a shorthand for a product:

µi =
p

∏
l=1

µil = µi1µi2 . . .µip i ∈ Ip (7.52)
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With the above notation, p-dimensional fuzzy summations (7.46) may
be written as follows:

Ξ(t) = ∑
i∈Ip

µix
T Qix (7.53)

where the basic memberships µ = {µ1, . . . ,µr} from which µi stem fulfill
the add-1 partition condition.

Permutations. Given a multi-index i ∈ Ip, let us denote by P(i) ⊂ Ip

the set of permutations (with, possibly, repeated elements) of the multi-
index i. The permutations will be used to group elements in multiple
fuzzy summations which share the same “antecedent”: it’s an evident
fact that j ∈P(i) ⇒ µj = µi.

The following subset of Ip will be used in later developments:

I
+
p = {i ∈ Ip | ik ≤ ik+1, k = 1. . . p−1} (7.54)

7.4.2 Relaxed conditions

This section discusses how to obtain relaxed conditions for positivity of
fuzzy summations under information on membership shape given by a
degree-q constraint:

∑
i∈Iq

µiβi ≤ 0 (7.55)

The coefficients βi may be considered elements of a multi-dimensional
array (tensor (Temple, 2004)) B, generalising the matrix appearing in
(7.24).

Note that any polynomial of degree lower or equal to q may be ex-
pressed as an homogeneous q-dimensional summation (7.55), by follow-
ing the methodology used to obtain (7.49).

Theorem 7.5 Consider a p-dimensional fuzzy summation condition
(7.46), jointly with shape-dependent knowledge expressed as constraints
of degree q (7.55). Choose any arbitrary integer n so that n≥max(p,q).
The positivity condition (7.46) (in the region determined by the con-
straints (7.55)) is fulfilled if there exists a positive definite matrix R so
that the condition ∑i∈In

µixT Q′ix≥ 0, i = (i1, i2, . . . , in), holds with:

Q′i = Qi1i2...ip + βi1i2...iq R (7.56)
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Proof: As ∑r
k=1 µk = 1, it’s straightforward that:

∑
i∈Ip

µix
T Qix≥ ∑

i∈Ip

µix
T Qix+ xT Rx ∑

i∈Iq

µiβi =

= (
r

∑
k=1

µk)
n−p ∑

i∈Ip

µix
T Qix+(

r

∑
k=1

µk)
n−q ∑

i∈Iq

µix
T βiRx =

= ∑
i∈In

µix
T Q′ix (7.57)

so positivity of the last term implies positivity of the first one.

Note that an extension to multiple restrictions (say, t restrictions) is
straightforward, by using:

Q′i = Qi1i2...ip +
t

∑
k=1

β [k]
i1i2...iq Rk (7.58)

for some positive-definite Rk associated to each constraint tensor B[k].

Once the new Q′i are defined as above, any sufficient condition to
prove positivity of an n-dimensional fuzzy summation may be used. For
instance, n = 3 may be handled by adapting the conditions in (Fang
et al., 2006, Theorem 5).

Theorem 7.6 Given a set of t degree-3 polynomial restrictions, ex-
pressed as t homogeneous forms (7.55), and any Qi jk expressing some
fuzzy control requirements, the 3-dimensional summation

r

∑
i=1

r

∑
j=1

r

∑
k=1

µiµ jµkxT Qi jkx

is positive (in the region determined by the constraints) if there exist

Xi jk, Rl so that, being Q′i jk = Qi jk + ∑t
l=1 β [l]

i jkRl:

R≥ 0 Xi jk = XT
ik j (7.59)

Q′iii ≤ Xiii (7.60)

Q′ii j + Q′i ji + Q′jii ≤ Xii j + Xi ji + X jii i < j (7.61)

Q′i jk + Q′ik j + Q′jik + Q′jki + Q′ki j + Q′k ji ≤
Xi jk + Xik j + X jik + X jki + Xki j + Xk ji i < j < k (7.62)







Xi11. . .Xi1r
...
. . .

...
Xir1 . . .Xirr






> 0 ∀i (7.63)
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In fact, any n ≥ 2 may be handled by using Theorems 4 and 5 in
(Sala & Arino, 2007b). Substituting Q′ from (7.58) in the theorems of
(Sala & Arino, 2007b), the result is:

Theorem 7.7 A sufficient condition for positivity of Ξ in (7.46), under
as set of t constraints in the form (7.55), is the positivity condition below,
for n≥max(p,q):

∑
k∈In−2

µkξ T







X(k,1,1) . . . X(k,1,r)
...

. . .
...

X(k,r,1) . . . X(k,r,r)






ξ > 0 (7.64)

if there exist matrices Xj, j ∈ In, and positive-definite Rl, l = 1, . . . , t, so
that, for all i ∈ I

+
n

∑
j∈P(i)

(Q j1 j2... jp +
t

∑
l=1

β [l]
j1 j2... jqRl)≥ ∑

j∈P(i)

1
2
(Xj + XT

j ) (7.65)

The proof is a trivial adaptation of those in (Sala & Arino, 2007b)
(changing Q by Q′) and, hence, omitted. The number of decision vari-
ables can be reduced by assuming X(k,i, j) = XT

(k, j,i) with no loss of gener-
ality.

The above theorem must be applied recursively as, given a start-
ing value of n, it provides sufficient conditions for the positivity of the
n-dimensional sum expressed as an (n−2)-dimensional one. Hence, re-
peated application of the theorem is needed until: (a) 2-dimensional
fuzzy summations are obtained (using Theorem 2 in (Liu & Zhang,
2003) as a last step) when starting from an even n; (b) in the odd-n
case, one-dimensional fuzzy summations are obtained, stating then the
condition that each of the elements in the sum must be positive. The
reader is referred to (Sala & Arino, 2007b) for details.

Remark: Theorem 5 in (Fang et al., 2006) is the particular case

of Theorem 7.7 for n = 3 and β [l]
i = 0; Theorem 2 in (Liu & Zhang,

2003) is Theorem 7.7 for n = 2. Note, for the first case, that (7.60),
(7.61) and (7.62) correspond to the 1, 3 and 6 permutations of indexes
iii, i j j and i jk, respectively, which appear in (7.65); then, (7.63) is the
condition to prove positivity of the remaining 1-dimensional sum (7.64).
The particularisation to (Liu & Zhang, 2003) is also straightforward
(there are only 2 permutation of the index i j).
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7.5 Examples

Example 7.1 Let us consider the fuzzy system (3.1) where

A1 =

(

2 −10
1 0

)

B1 =

(

1
0

)

(7.66)

A2 =

(

a −10
1 0

)

B2 =

(

b
0

)

(7.67)

A3 =

(

−2 −10
1 0

)

B3 =

(

1
0.334

)

(7.68)

with the knowledge that µ1µ3≤ β13 (the actual value of β13 depends on
the particular application; several of such values will be tested below).

A controller Ki is designed to place the closed-loop poles of Ai−BiKi

at −1 and −15, and the overall control law is obtained from (3.4). Note
that solution for Ki is unique.

Setting Qi j as dictated by (3.26) and (3.27), stability analysis is car-
ried out: theorems 3.5 and 7.2 are compared by evaluating the feasibility
of the associated LMI problems (with decision variables P, Xi j, Ri j) for
varying values of a and b. If a and b yield a feasible LMI, stability of
the resulting closed-loop system is proved.

The results appear in Figure 7.3, indicating that Theorem 7.2 clearly
outperforms Theorem 3.5: the lower βi j are, the more the difference
between Theorems 3.5 and 7.2 is (i.e., the larger the set of feasible
values of a and b is with Theorem 7.2). Feasible values for the different
conditions are:� Theorem 3.5 and Theorem 7.2 (β13 = 0.25): [*]� Theorem 7.2 (β13 = 0.2): [*,◦]� Theorem 7.2 (β13 = 0.05): [*,◦,×]

Example 7.2 Consider a nonlinear model ẋ = A(x)x+ B(x)u where
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2 3 4 5 6 7 8
1
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a

b

Figure 7.3: LMI feasibility as a function of a and b: – ∗: Feasible with
Theorem 3.5 and Theorem 7.2 with β13 = 0.25, – ◦: additional feasible
points obtained with Theorem 7.2 and β13 = 0.20, – ×: further feasible
points obtained with Theorem 7.2 and β13 = 0.05, – unfeasible grid points
have been left blank.
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A(x) = 0.75x−2.25sin(x)+ sin(x)x−2.5 (7.69)

B(x) = 0.42x+1.25sin(x)−0.42sin(x)x−0.25 (7.70)

for which PDC fuzzy controllers are to be designed when x ∈ [−π,π].
In this case, x may be written as x = ∑2

i=1νi pi, and sin(x) as sin(x) =

∑2
i=1ηiqi, with:

x = ν1(x) ·π + ν2(x) · (−π), sin(x) = η1(x) ·1+ η2(x) · (−1)

where membership functions are ν1 = 1
2π (x + π), ν2 = 1 − µ1,

η1 = 1
2(sin(x)+1), η2 = 1−η1, resulting in

A(x) = 0.75
2

∑
i=1

νi pi−2.25
2

∑
i=1

ηiqi +(
2

∑
i=1

ηiqi)(
2

∑
i=1

νi pi)−2.5

A(x) =
2

∑
i=1

2

∑
j=1

νiη j(0.75pi−2.25q j + piq j−2.5) =
2

∑
i=1

2

∑
j=1

νiη jai j

where

a11 = 0.748,a12 =−1.035,a21 =−10.247,a22 = 0.536

and similarly

B(x) =
2

∑
i=1

2

∑
j=1

νiη j(0.42pi +1.25q j−0.42piq j−0.25) =
2

∑
i=1

2

∑
j=1

νiη jbi j

where:
b11 = 1,b12 = 1.139,b21 = 1,b22 =−4.139

Then, if µ1 = ν1η1, µ2 = ν1η2, µ3 = ν2η1 and µ4 = ν2η2 were defined, a
fuzzy TS with four models:

ẋ =
4

∑
i=1

µi(aix+ biu) (7.71)

a1 = 0.748,a2 =−1.035,a3 =−10.247,a4 = 0.536 (7.72)

b1 = 1,b2 = 1,139,b3 = 1,b4 =−4.139 (7.73)

will exactly describe the nonlinear system under analysis for x ∈ [−π,π].
The reader is referred to Chapter 9 and (Tanaka & Wang, 2001) for more
examples of this cartesian-product nonlinear modelling methodology.
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If Theorem 3.5 is applied with the obtained set of four models and
Qi j given by (3.33), no feasible stabilizing PDC state-feedback controller
u =−∑4

i=1 µiKix can be found by the LMIs.

However, note that:

µ1µ4 = µ3µ2 = ν1ν2η1η2≤ 0.252

as ν1ν2 ≤ 0.25 and η1η2 ≤ 0.25. Hence, Theorem 3 may be used with
β14 = β23 = 0.0625. In this case, Theorem 3 shows that there exists a
feasible stabilizing PDC controller for the nonlinear system expressed as
a cartesian TS one which achieves a decay rate performance of 0.1369.

Regarding H∞ performance, the model ẋ = A(x)x + B(x)u + w, y = x
has been tested with conditions (3.43), searching for the minimum γ .
Without the relaxations considered in Theorem 3 the problem was, ev-
idently, unfeasible from the considerations above. With the relaxations
arising from β14 and β23, a value of γmin = 7.3002 was obtained as the
LMI-guaranteed H∞ bound.

Example 7.3 Consider the system (3.1), with r = 3 and

A1 =





−0.74 0.61 0.87
0.39 −0.26 0.56
0.99 0.05 −0.16



 B1 =





0.99 0.65
0.2 0.87
0.76 0.12





A2 =





0.69 0.07 0.35
0.48 0.86 0.37
0.1 0.31 0.3



 B2 =





0.96 0.36
0.76 0.17
0.04 0.20





A3 =





0.28 0.39 0.58
0.32 0.13 0.20
0.68 0.34 0.19



 B3 =





0.32 0.02
0.72 0.15
0.29 0.06





The fastest decay rate3 with a state feedback PDC law provable by
Theorem 2 in (Liu & Zhang, 2003), using the Qi j in (3.33), is α = 0.51.

Now, the procedures in this chapter will be applied to achieve im-
proved decay rates when some knowledge about the membership func-
tion shape is available (Figure 7.4).

3Note that the chosen performance measure has been decay rate, for simplicity, but
other features such as robustness margins or H∞ bounds may be tested by selecting
a different Qi j, as discussed in Section 3.5.
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µ1µ1

µ2µ2 µ3µ3

Figure 7.4: Example 1: (left) case 1, (right) case 2. Shaded area denotes
possible values of membership functions inside the triangle µ1+µ2+µ3 =
1, µi ≥ 0. Isometric projection.

Case 1. Assume that, for a particular system, the membership vector
does not lie inside a sphere centered at the origin (ci = 0 in (7.39)) with
radius δ (Figure 7.4-left), and that fact is known to the designer to take
advantage of it.

Then, conditions (7.43) and (7.44) in Theorem 7.4 result in:

Xii ≤ Qii +(δ 2−1)R (7.74)

Xi j + X ji ≤ Qi j + Q ji +2δ 2R i < j (7.75)

Note that, for 0≤ δ ≤ 1, the conditions are less conservative as δ in-
creases, because there is a larger addition to the off-diagonal terms
(proportional to δ ) and a smaller subtraction to the diagonal ones (pro-
portional to 1−δ ). In fact, the extreme case δ = 1 indicates that only
the canonical vertices (µ1,µ2,µ3) ∈ {(1,0,0),(0,1,0),(0,0,1)} are possi-
ble values of memberships (corresponding, for instance, to a switching
linear system). In that extreme case, conditions (7.74) and (7.75) result
in:

Xii ≤ Qii (7.76)

Xi j + X ji ≤ Qi j + Q ji +2R i < j (7.77)

Hence, with a large enough R, Xi j = 0 for i 6= j can be made to be a
solution of (7.77), so (3.23) holds if Qii > 0, which is a well known result
in “crisp” switching linear systems.

Let us check different cases for δ with the above system. In partic-
ular, values of δ > 1/

√
2 produce faster decay rates than the case with

arbitrary memberships: for δ = 0.72 the decay rate is α = 0.96; for δ = 1
it is α = 3.4.
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Case 2. Using expressions (7.43)-(7.44) as before, the knowledge that
the membership vector lies outside of a sphere with center (0, 0.5, 0.5)
and radius 0.4 is cast into the LMIs. The result is a decay α = 0.62. If a
sphere with center (0,0,1) and radius 0.49 is used, the achievable decay
is α = 0.56. With both circles and two relaxation variables R1, R2, the
achievable decay rate is α = 0.66.

Case 3: Multi-objective design (dual specifications). Consider the
problem of achieving different levels of specifications in different regions
of the working space4. For instance, only stability may suffice for certain
infrequent cases whereas a faster decay may be desired near a particular
operation point. The operation point will be assumed to be given by
a particular condition on the membership functions (stating that the
membership vector µ is inside or outside a region with a polynomial
boundary).

Under these assumptions, the LMI conditions for mere stability,
stated for any unrestricted membership shape, may be adjoined with
the decay rate ones incorporating membership shape information.

For instance, α = 1.11 is the fastest decay when the distance of the
membership vector to the point (1,0,0) is smaller than 0.75 (i.e., con-
ditions on the membership vector being inside a sphere are setup), si-
multaneously ensuring overall stability via a shared Lyapunov function:
conditions in Theorem 7.4 with Qi j in (3.33) are stated with α = 1.11
and suitable βi j (obtained from (7.43) and (7.44)); additionally, condi-
tions in (Liu & Zhang, 2003, Theorem 2) using α = 0 are also stated,
with different decision variables Xi j. The LMI solver is able to find a fea-
sible solution for both sets of constraints simultaneously; when α > 1.11
on the first set of (shape-dependent) restrictions, the problem renders

4The above multi-objective design is different, and complementary, to the usual
approach in literature of achieving different sorts of performance bounds on all the
state space (mixed H2/H∞, H∞ plus decay rate, etc. (Gahinet et al., 1995; Li et al.,
1999)): the same performance type but with different level in different regions is
suggested here. Note also that some definitions are needed in order to rigorously
define the meaning of “local” decay rate in terms of basins of attraction and Lyapunov
level sets. The definition of, say, a “local” H∞ norm would also be cumbersome.
These issues are, however, omitted for brevity as they are not the main objective
of the chapter. In the example in consideration, in a set of premise variables Ω, a
“local” decay rate α will be said to have been proved when a Lyapunov function is
found fulfilling V̇ (x)≤−2αV (x) for all z ∈Ω (indeed, z may include some or all of the
components of x, as usual in TS modelling (Tanaka & Wang, 2001)).
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−0.5 0 0.5 1 1.5 2 2.5 3 3.5
5

5.5

6

6.5

7

7.5

Figure 7.5: Feasible points (example 2) under different restrictions with
Theorem 7.7, n = 3. ‘⊗’: βi jk = 0; ‘*’: µ1µ2µ3≤ 0.0004; ‘+’ µ1µ2µ3 = 0.
Horizontal axis denotes parameter a, vertical axis denotes parameter b.

unfeasible.

Example 7.4 Consider the system:

A1 =

(

1.59 −7.29
0.01 0

)

B1 =

(

1
0

)

A2 =

(

0.02 −4.64
0.35 0.21

)

B2 =

(

8
0

)

A3 =

(

−a −4.33
0 0.05

)

B3 =

(

−b+6
−1

)

A stabilising PDC controller is to be designed. The ranges of values
of parameters a and b yielding a feasible LMI solution are compared
following several methods, for a ∈ [−0.5,3.25], b ∈ [5.25,7.25].

The procedure in (Liu & Zhang, 2003, Theorem 2) does not yield
any feasible value in this parameter range.

Even with no restriction (βi = 0), Theorem 7.6 (i.e., (Fang et al.,
2006)), produces feasible stabilising regulators for the values of a and b
indicated by the “cart wheel” symbol in Figure 7.5.

When the restriction µ1µ2µ3≤ 0.0004is enforced, a few more feasible
points appear (indicated by a star) using Theorem 7.6. The restriction
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µ1µ2µ3 = 0 produces a larger set of feasible points; the + sign on the
figure pinpoints those combinations of parameter values yielding feasible
controllers only under the last restriction.

In all cases, the LMI solver was Matlab LMI Toolbox with default
options.

7.6 Conclusions

This chapter shows how to relax stability and performance conditions for
fuzzy control models with knowledge of membership function overlap;
two theorems relaxing some LMI stability and performance conditions
in (Tanaka & Wang, 2001; Kim & Lee, 2000; Liu & Zhang, 2003) have
been presented. The conditions consider a set of known bounds in µi

and µiµ j, which generalize the relaxations when µiµ j = 0 previously re-
ported in literature for non-overlapping fuzzy sets. As a result, more
freedom in guaranteeing control requirements is available. A numerical
example shows how the feasibility regions for typical fuzzy control prob-
lems become larger as the overlap bounds become smaller, showing the
improvements over previous work.

The proposed technique may prove useful in fuzzy control applica-
tions. In fuzzy PDC control techniques, membership functions are as-
sumed to be known so the required bounds may be easily obtained. Im-
portantly this technique is particularly well suited to widespread cartesian-
product Takagi-Sugeno modelling of nonlinear systems.





Chapter 8

Stability Analysis with uncertain membership

functions

8.1 Introduction

Fuzzy control has reached maturity and acceptance nowadays via a for-
malisation of the performance requirements and controller design tech-
niques. In particular, there is a vast amount of literature on control
design for Takagi-Sugeno (TS) (Takagi & Sugeno, 1985) fuzzy systems
via linear matrix inequalities (LMI) (Boyd et al., 1994; Tanaka & Wang,
2001; Liu & Zhang, 2003). There may be other (possibilistic) interpre-
tations of fuzziness in a control context (Bondia, Sala, Pico, & Sainz,
2006). The reader is referred to (Sala et al., 2005; Feng, 2006) for a
review of the current trends and open issues in fuzzy modelling, identi-
fication and control.

The majority of works on fuzzy control for TS models assume the
parallel distributed compensation (PDC) paradigm (Tanaka & Wang,
2001), i.e., the membership functions of the controller, say ηi, are the
same as the ones from the process, say µi. Furthermore, the proposed
stability and performance conditions are shape-independent, i.e., valid
for any non-negative membership function setup.

Recent contributions in the non-PDC case are (Lam & Leung, 2005,
2007; Guerra & Vermeiren, 2004). In particular, in (Lam & Leung,
2005), LMI stability conditions were given for non-PDC fuzzy systems
with uncertain degrees of membership expressed as a multiplicative un-
certainty inequality ρm

i µi ≤ ηi ≤ ρM
i µi. Lam and Leung’s conditions are

shape-dependent, in the sense that they achieve a reduction of conser-
vativeness by setting up conditions which are only valid for membership

119
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functions having a constrained shape. In the same spirit, (Sala & Ariño,
2007a) presents some shape-dependent conditions for the PDC case.

The main objective of this chapter is presenting new shape-dependent
LMI conditions to design controllers for Takagi-Sugeno fuzzy systems
with uncertain memberships. The allowed uncertainty description is
more general than that in (Lam & Leung, 2005), which did consider
only multiplicative uncertainty.

The structure of the chapter is as follows. The next section will
describe the fuzzy systems and closed-loop equations to be discussed.
Section 8.3 presents the main result which extends the uncertainty de-
scriptions in literature. Section 8.4 applies it to particular cases of ad-
ditive and multiplicative uncertainty. Section 8.5 will show numerical
examples illustrating the possibilities of the approach. A conclusion sec-
tion closes the chapter.

8.2 Problem statement

Consider a Takagi-Sugeno fuzzy system (3.1) of order n with r rules:

ẋ =
r

∑
i=1

µi(z)(Aix+ Biu)
r

∑
i=1

µi(z) = 1, µi(z)≥ 0 (8.1)

The above system will be controlled via a state-feedback fuzzy controller:

u =−
r

∑
i=1

ηi(z
′)Kix

r

∑
i=1

ηi(z
′) = 1, ηi(z

′)≥ 0 (8.2)

where z′ denotes measurable scheduling variables. The controller yields
a closed-loop (Lam & Leung, 2005):

ẋ =
r

∑
i=1

r

∑
j=1

µi(z)η j(z
′)(Ai−BiK j)x (8.3)

On the following µi, ηi will be used as shorthand for µi(z), ηi(z′), respec-
tively.

Conditions for stability and performance of the above closed-loop
system may be cast as positivity of fuzzy summations, similar that ones
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in (3.23), in the form:

ψT Θψ = ψT

(

r

∑
i=1

r

∑
j=1

µiη jQi j

)

ψ ≥ 0 ∀ψ 6= 0 (8.4)

where Qi j are symmetric R
n×n matrices, possibly including unknown

decision variables to be found via optimization algorithms (usually LMI
(Boyd et al., 1994; Tanaka & Wang, 2001)). For instance, stability is
proved if (8.4) holds with ψ = x and (Lam & Leung, 2005):

Qi j =−
(

(Ai−BiK j)P+ P(Ai−BiK j)
T ) (8.5)

Apart from mere stability, if performance is sought, there are also LMI
conditions (Tanaka & Wang, 2001; Tuan et al., 2001) resulting in dif-
ferent expressions1 for Qi j above. In the same way, different expressions
for Qi j may be proposed to deal with discrete systems (Tanaka & Wang,
2001; Guerra & Vermeiren, 2004). The reader is referred to the cited ref-
erences and the review articles (Feng, 2006; Sala et al., 2005) for details
on the different options for Qi j.

In this context, there are two extreme situations:� Parallel Distributed Compensation (PDC). If the membership func-
tions µi are perfectly known and z is measurable, a usual approach
is setting ηi = µi; this approach is the widely-known parallel dis-
tributed compensation (3.4), for which the LMI framework, intro-
duced by (Tanaka & Wang, 2001), is nowadays well developed.
Widely-used positivity conditions for (8.4) in the PDC case are
the adaptation of (Liu & Zhang, 2003, Theorem 2).� Shape-independent conditions. If µi and η j may be arbitrary, the
only possibility for (8.4) to hold is enforcing the naive conditions

Qi j > 0 ∀ i, j (8.7)

1Note that most of the cited literature considers Qi j for cases where ηi = µi, i.e.,
applied to

ψT Θψ = ψT

(

r

∑
i=1

r

∑
j=1

µiµ jQi j

)

ψ ≥ 0 ∀ψ 6= 0 (8.6)

However, such Qi j also apply to (8.4) without modification.
The difference between the PDC and non-PDC cases are in the LMIs needed to

prove (8.4), which are different to those needed for (8.6). Of course, all LMI’s proving
(8.4) –such as the ones in this chapter– prove as well (8.6), but they may be very

conservative for the PDC case (8.6).
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as, for instance, say µ3 = η5 = 1 (the rest being zero) involves
Θ = Q35 in (8.4) and the numbers 3, 5 may be arbitrarily replaced
by any i or j.

However, there are intermediate cases where the membership func-
tions µi are not perfectly known, hence ηi 6= µi, yielding non-PDC setups
but, on the other hand, some knowledge on them is available which might
be used for stating conditions which are less conservative than (8.7).
In particular, (Lam & Leung, 2005) states conditions which guarantee
closed-loop stability2 of (8.3) when:

ρm
i ≤

µi

ηi
≤ ρM

i (8.8)

given known values of the bounds ρm
i and ρM

i .

Lemma 8.1 (Lam & Leung, 2005) Expression (8.4) holds if there
exists P > 0 and matrices Xi j = X ji = XT

i j such that:

ρM
i Qii−Xii > 0, ρm

i Qii−Xii > 0 (8.9)

ρM
j Qi j + ρM

i Q ji−2Xi j > 0, ρm
j Qi j + ρm

i Q ji−2Xi j > 0 (8.10)

ρm
j Qi j + ρM

i Q ji−2Xi j > 0, ρM
j Qi j + ρm

i Q ji−2Xi j > 0 (8.11)






X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






> 0 (8.12)

The developments in next section will present less conservative con-
ditions for the above case, as numerical examples in Section 8.5 will
later show. The case will be denoted as multiplicative uncertainty, be-
ing a particularization of a more general uncertainty description to be
discussed in next section.

8.3 Main Result

Consider a set of p restrictions on the shape of the membership functions
of the plant, µi, and controller, ηi, given by:

cT
k η + aT

k µ + bk ≤ 0 k = 1. . . p (8.13)

2The cited work discussed only the particular case of Qi j in (8.5) but it is, trivially,
generalisable to any other performance-related expression of Qi j.
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where η and µ denote the membership functions arranged as a column
vector, ck, ak are also column vectors and bk are scalars. Notation aik

and cik denote the i-th component of vectors ak and ck, respectively. For
instance, the restriction µ2+ µ1≤ 2η1+0.05, in a 3-rule fuzzy system, is
trivially expressed in the form (8.13) with c = (−2 0 0)T , a = (1 1 0)T ,
b =−0.05.

Theorem 8.1 If (8.13) is known to hold, Expression (8.4) holds if there
exist matrices Xi j = XT

ji i, j = 1...2r, and symmetric definite positive ma-
trices R jk and R∗jk such that for all j = 1...r, k = 1. . . p

p

∑
k=1

(

a jkRik + aikR jk
)

≥ Xi j + X ji (8.14)

Qi j +
p

∑
k=1

(

c jkRik + aikR∗jk + bk(Rik + R∗jk)
)

≥ Xi( j+r) + X( j+r)i (8.15)

p

∑
k=1

(

cikR∗jk + c jkR∗ik
)

≥ X(i+r)( j+r) + X( j+r)(i+r) (8.16)







X11 . . . X1(2r)
...

. . .
...

X(2r)1 . . . X(2r)(2r)






> 0 (8.17)

If Qi j are linear in some matrix decision variables, then Theorem 8.1
provides LMI conditions for checking (8.4) in a shape-dependent frame-
work.

Proof: Expression (8.13) may be written as

r

∑
i=1

cikηi + aikµi + bk ≤ 0 k = 1. . . p (8.18)

Consider now, for a particular fixed k, the matrix Γk = ∑r
j=1(µ jR jk +

η jR∗jk). Evidently, Γk ≥ 0 because it is a sum with positive coefficients of
positive definite matrices. For a particular k, multiplying (8.18) above
by Γk we get:

r

∑
i=1

r

∑
j=1

(cikR jkηiµ j + cikR∗jkηiη j + aikR jkµiµ j + aikR∗jkµiη j)+

+ bk

r

∑
j=1

(µ jR jk + η jR
∗
jk)≤ 0 (8.19)
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Subsequently, by using the equalities ∑r
i=1 µi = 1 and ∑r

i=1ηi = 1 in

bkΓk = bk

r

∑
j=1

(
r

∑
i=1

ηiµ jR jk +
r

∑
i=1

µiη jR
∗
jk)

we get a negative-semi-definite matrix to be denoted as Hk given by:

Hk =
r

∑
i=1

r

∑
j=1

(cikR jkηiµ j + cikR∗jkηiη j + aikR jkµiµ j+

+ aikR∗jkµiη j + bk(ηiµ jR jk + µiη jR
∗
jk))≤ 0 (8.20)

As (8.20) holds for each k, denoting by H = ∑p
k=1Hk, evidently H ≤ 0,

i.e.:

H =
p

∑
k=1

r

∑
i=1

r

∑
j=1

(cikR jkηiµ j + cikR∗jkηiη j + aikR jkµiµ j+

+ aikR∗jkµiη j + bk(ηiµ jR jk + µiη jR
∗
jk))≤ 0 (8.21)

Taking H above and Θ from (8.4), it is evident that if Θ+H > 0 can be
proved, then Θ > 0. Then, conveniently grouping terms:

Θ+ H =
r

∑
i=1

r

∑
j=1

(

µiµ j

p

∑
k=1

aikR jk + ηiη j

p

∑
k=1

cikR∗jk+

+ µiη j

(

Qi j +
p

∑
k=1

c jkRik + aikR∗jk + bk(Rik + R∗jk)

))

=

=
r

∑
i=1

(

µ2
i

p

∑
k=1

aikRik + η2
i

p

∑
k=1

cikR∗ik

)

+ ∑
i< j≤r

(

µiµ j

p

∑
k=1

aikR jk + a jkRik+

+ηiη j

p

∑
k=1

cikR∗jk + c jkR∗ik

)

+
r

∑
i=1

r

∑
j=1

µiη j(Qi j+

+
r

∑
k=1

c jkRik + aikR∗jk + bk(Rik + R∗jk)) (8.22)

Consider now the variables Xi j = XT
ji i, j = 1. . . r, which fulfill (8.14)-

(8.16). By suitably grouping terms, and associating (8.14) to the terms
where µiµ j appears, (8.15) to those with µiη j and (8.16) to those with
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ηiη j, we have3:

Θ+ H ≥
r

∑
i=1

(

µ2
i Xii + η2

i Xii
)

+
r

∑
i=1

∑
i< j≤r

(µiµ j(Xi j + X ji)+

+ ηiη j(X(i+r)( j+r) + X( j+r)(i+r)))+
r

∑
i=1

r

∑
j=1

(

µiη j(Xi( j+r) + X( j+r)i)
)

(8.23)

By taking the same ψ as in (8.4), and defining
ξ = [µ1ψT . . . µrψT η1ψT . . . ηrψT ]T , the terms in the right-hand side
of (8.23) may be expressed as follows:

ψT (Θ+ H)ψ ≥ ξ T







X11 . . . X1(2r)
...

. . .
...

X(2r)1 . . . X(2r)(2r)






ξ (8.24)

Hence, given (8.24), if (8.17) holds, ψT (Θ + H)ψ > 0 for ψ 6= 0 and,
hence, (8.4) holds.

8.4 Particular cases

Let us now consider some particular cases of Theorem 8.1.

Multiplicative uncertainty Consider now the multiplicative uncer-
tainty case, also discussed in (Lam & Leung, 2005):

ρm
i ≤

ηi

µi
≤ ρM

i (8.25)

Corollary 8.1 If (8.25) is known to hold, Expression (8.4) holds if
there exist matrices Xi j = XT

ji i, j = 1...2r, and symmetric definite positive

3Note that (8.14) implies ∑p
k=1 aikRik ≥ Xii, and an analogous consideration may be

made with (8.16): the diagonal terms µ2
i , η2

i need not be explicitly written in the
theorem statement.
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matrices Ri j, N ji, R∗i j and N∗ji such that for all i, j = 1...r:

Ri jρm
j −Ni jρM

j + R jiρm
i −N jiρM

i ≥ Xi j + X ji (8.26)

Qi j− (Ri j−Ni j)− (R∗i j−N∗i j)≥ Xi( j+r) + X( j+r)i (8.27)

R∗i j

ρM
i
−

N∗i j

ρm
i

+
R∗ji
ρM

j
−

N∗ji
ρm

j
≥ X(i+r)( j+r) + X( j+r)(i+r) (8.28)







X11 . . . X1(2r)
...

. . .
...

X(2r)1 . . . X(2r)(2r)






> 0 (8.29)

Proof: The uncertainty description can be expressed as:

ηk−ρM
k µk ≤ 0 −ηk + ρm

k µk ≤ 0 (8.30)

Hence, the theorem will be proved by using Theorem 8.1 with 2r con-
straints, divided in two groups (both with bk = 0):� One with akk = −ρM

k , aik = 0 for i 6= k and ckk = +1, cik = 0 for
i 6= k; Theorem 8.1 will be applied using Mik and M∗ik as relaxation
variables,� Another group (consider a′k = ak+r, c′k = ck+r) with a′kk = ρm

k , a′ik = 0
for i 6= k and c′kk =−1, c′ik = 0 for i 6= k; Theorem 8.1 will be applied
using Tik and T ∗ik as relaxation variables.

Note that (8.14)–(8.16) in this case reduce to

a j jMi j + aiiM ji + a′j jTi j + a′iiTji ≥ Xi j + X ji (8.31)

Qi j +
(

c j jMi j + aiiM
∗
ji + c′j jTi j + a′iiT

∗
ji

)

≥ Xi( j+r) + X( j+r)i (8.32)

ciiM
∗
ji + c j jM

∗
i j + c′iiT

∗
ji + c′j jT

∗
i j ≥ X(i+r)( j+r) + X( j+r)(i+r) (8.33)

because most of the aik, cik, a′ik, c′ik are zero.

The conditions for the theorem being proved arise immediately once
the values of aik, cik, a′ik, c′ik are substituted above and the following
changes of variable are made:

Mi j = Ni j Ti j = Ri j ρM
i M∗i j = R∗i j ρm

i T ∗i j = N∗i j
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Additive uncertainty Consider a set of known additive bounds on
the membership functions, δk, so that, given (8.4), it is known that:

|µk−ηk|< δk k = 1. . . r (8.34)

Corollary 8.2 If the membership functions satisfy (8.34), expression
(8.4) holds if there exist matrices Ri j, Ni j, Xi j = XT

ji and Xi( j+r) = XT
( j+r)i

i, j = 1...r, such that:

Mi j = Ri j−Ni j, M+
i j = Ri j + Ni j (8.35)

Mi j + M ji ≥ Xi j + X ji (8.36)

Qi j−2Mi j−
r

∑
k=1

δk(M
+
ik + M+

k j)≥ Xi( j+r) + X( j+r)i (8.37)

for all i = 1. . . ,r, j = 1. . . ,r and

Y11 =







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr






Y12 =







X1(r+1) . . . X1(2r)
...

. . .
...

Xr(r+1) . . . Xr(2r)






(8.38)

(

Y11 Y12

Y T
12 Y11

)

> 0 (8.39)

Proof: The uncertainty description can be expressed as:

ηk−µk−δk ≤ 0 −ηk + µk−δk ≤ 0 (8.40)

Hence, the theorem will be proved by using Theorem 8.1 with 2r con-
straints, divided in two groups:� One with akk = 1, aik = 0 for i 6= k and ckk = −1, cik = 0 for i 6=

k; Theorem 8.1 will be applied using Rik and R∗ik as relaxation
variables,� Another one with akk =−1, aik = 0 for i 6= k and ckk = +1, cik = 0 for
i 6= k; Theorem 8.1 will be applied using Nik and N∗ik as relaxation
variables.

The conditions for the theorem being proved arise almost immediately
once those for Theorem 8.1 are written as (8.31)–(8.33) and the following
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equalities are enforced: R∗i j = N ji, N∗i j = R ji. Details are omitted for
brevity.

The following two lemmas show that: (a) the PDC case is recovered
from the above corollaries under no uncertainty and, (b) as expected,
the conditions proposed with the additive or multiplicative uncertainty
bounds are less conservative than the trivial ones Qi j > 0.

Lemma 8.2 When the membership error bounds δi is equal to zero, or
the multiplicative bounds are equal to one (i.e., µi = ηi), a feasible set of
variables for corollaries 8.1 and 8.2 may be obtained if (Liu & Zhang,
2003, Theorem 2) (which applies to the PDC case) is feasible.

Proof: Note that, when δ = 0 and ρm
i = ρM

i = 1, enforcing R∗i j = Ri j,
N∗i j = Ni j, X(i+r)( j+r) = Xi j in corollary 8.1 leaves conditions (8.26)–(8.29)
identical to (8.36)–(8.39) in corollary 8.2 so a unified analysis is possible,
considering only corollary 8.2 in the sequel.

If δi = 0 for all i, then (8.37) can be rewritten as

Qi j−2Mi j ≥ Xi( j+r) + X( j+r)i (8.41)

Taking Mi j = Qi j/2 and Xi( j+r) = 0, which fulfill (8.41), the inequality
(8.36) gets converted into:

Qi j/2+ Q ji/2≥ Xi j + X ji (8.42)

and the matrix Y12 is equal to 0. Finally (8.39) is

(

Y11 0
0 Y11

)

> 0 (8.43)

equivalent to Y11 > 0.This condition and (8.42) are the ones in (Liu &
Zhang, 2003, Theorem 2): if the latter is feasible, corollaries 8.1 and 8.2
without uncertainty will be feasible as well.

Lemma 8.3 If Qi j > 0 for all i, j = 1. . . r, then corollaries 8.1 and 8.2
are satisfied.
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Proof: Regarding corollary 8.2, take all Ni j = 0, and all X(i+r) j = Xi( j+r) =
0. Then, take Ri j = 0 for i 6= j and Rii = εiI for i = 1. . . r, choosing a small
enough εi > 0 so that Qii≫ 2εiI (I denotes the identity matrix). Then
Xi j = 0, i 6= j, fulfills (8.36) and (8.37), and for i = j Xii = εiI fulfills (8.36).
Finally all Xi j form a diagonal positive matrix that satisfies (8.39) if ε is
small enough.

Corollary 8.1 is also satisfied with the same choice of Ni j and Ri j plus
N∗i j = Ni j, R∗i j = Ri j. Details are analogous to those above for Corollary
8.2.

8.5 Examples

Example 8.1 Let us consider the system:

ẋ =
3

∑
i=1

µi(x)(Aix+ Biu) (8.44)

A1 =





0.39 0.85 0.48
0.81 0.010 0.34
0.51 0.28 0.078



 , B1 =





0.1 0.58
0.016 0.32
0.80 0.58





A2 =





0.0089 0.35 0.96
0.76 0.54 0.38
0.14 0.85 0.25



 , B2 =





0.031 0.036
0.87 0.53
0.75 0.78





A3 =





0.84 0.094 0.8
0.19 0.2 0.13
0.82 0.58 0.33



 , B3 =





0.054 0.16
0.21 0.84
0.47 0.64





A state-feedback fuzzy controller with the structure

u =−
2

∑
j=1

η j(x)Fjx

is proposed, where functions η j(x) are an approximation of µ j(x) fulfilling
(8.34), for a shared δk = δ . Several values of the uncertainty δ will be
tested, ranging from δ = 0 (which is the well-known PDC case ηi = µi)
to δ = 1 (indicating absolute ignorance on the shape of µi).
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Table 8.1: Decay rate α achievable as a function of the uncertainty δ
δ 0 0.05 0.1 0.15 0.2 0.25 0.3 . . . 1

α 0.36 0.35 0.33 0.31 0.30 0.29 0.28 . . . 0.28

The control objective will be finding the Fj maximizing the achievable
quadratic decay rate α (roughly, analogous to the dominant pole of a
linear system), by checking (8.4) with conditions from (Tanaka & Wang,
2001)

Qi j =−AiY −YAT
i + BiM j + MT

j Bi−2αY (8.45)

where Y is a positive-definite matrix related to a Lyapunov function and
M j = FjY . The sufficient conditions provided in corollary 8.2 will be used,
searching for the maximum value of α for which a feasible LMI solution
exists (which is a generalized eigenvalue problem). The maximum α
achieved for different values of δ appears in Table 8.1.

The results in the referred table show that the more precise the
knowledge of µ is (lower δ ), the faster decay rates can be achieved. The
results for δ = 0 are coincident with those (Liu & Zhang, 2003, Theorem
2) for the PDC case, as discussed in Lemma 8.2. Furthermore, the
results for δ = 1 are coincident with the ones obtained by using a non-
fuzzy linear regulator u = −Kx robustly stabilising a polytopic system
(Boyd et al., 1994) via the LMI conditions:

Qi =−AiY −YAT
i + BiM + MT Bi−2αY > 0

Such conditions are, in fact, equivalent to the shape-independent ones
Qi j > 0 (indeed, conditions for M1 in (8.45) are the same as those for M2,
etc. so there is no loss of generality by assuming M1 = M2 = · · ·= M).

In summary, with the methodology in this chapter, a smooth tran-
sition between a full-PDC fuzzy controller and a robust linear one is
achieved: as uncertainty increases the feasible performance decreases. If
the uncertainty is greater than 0.3, the performance of fuzzy and non-
fuzzy controllers is the same.

Example 8.2 Let us consider an example of DC motor controlling an
inverted pendulum on a gear train (Kuschewski, Hui, & Zak, 1993):
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Figure 8.1: Inverted pendulum controlled by a DC motor

The state equations describing the plant are





ẋ1
ẋ2
ẋ3



=







x2
g
l sinx1 + NKm

ml2 x3

−KbN
La

x2− Ra
La

x3






+







0
0
1

La






u (8.46)

where the state variables are: x1 = θp, x2 = θ̇p, x3 the dc motor current
and the input u is the Voltage of the dc motor supposed less than 100V.
Km is the motor torque constant, Kb is the back emf constant, and N is
the gear ratio. Reasonable parameters for the plant are g = 9.8 m./s.2,
l = 1 m., m = 1 Kg., N = 10, Km = 0.1 Nm/A, Kb = 0.1 V s/rad, Ra = 1 Ω
and La = 100 mH. this parameters lead to





ẋ1

ẋ2

ẋ3



=





x2

9.8sinx1 + x3

−10x2−10x3



+





0
0
10



u (8.47)

Fuzzy modelling for the nonlinear system was done in (Tanaka &
Sano, 1994; Kawamoto, 1996), following sector nonlinearity procedure
described in Section 3.3. The fuzzy model is as follows

ẋ = µ1(A1x+ B1u)+ µ2(A2x+ B2u) (8.48)



132 Examples

Here,

x = (x1 x2 x3)
T (8.49)

A1 =





0 1 0
9.8 0 1
0 −10 −10



 , B1 =





0
0
10



 (8.50)

A1 =





0 1 0
0 0 1
0 −10 −10



 , B2 =





0
0
10



 (8.51)

(8.52)

the membership functions are defined as

µ1(x) =

{ sinx1
x1

, x1 6= 0
1 x1 = 0

(8.53)

µ2 = 1−µ1 (8.54)

This fuzzy model exactly represents the dynamics of the nonlinear me-
chanical system under −π ≤ x1≤ π.
We design a disturbance rejection fuzzy controller. We can rewrite the
system as:

ẋ =
2

∑
i=1

µi(Aix+ Biu)+ Bww (8.55)

y = x1 (8.56)

where Bw = (1 1 0)T is the direction of the disturbance w. Then positivity
conditions of the closed loop system controlled by a PDC controller (8.2)
can be formulated as

2

∑
i=1

2

∑
j=1

µ1η jx
T Qi jx (8.57)

where Qi j are the conditions for disturbance rejection obtained in Section
3.5. For a proper comparison, considerer the system without knowl-
edge of the membership functions. Then the best controller is a Lin-
ear controller. In this case the best disturbance rejection coefficient is
γM = 0.31102. On the other hand let us considerer µi = ηi then the per-
formance conditions yield to Theorem 3.5 and the obtained coefficient is
γm = 0.28434. So our system with some information on the ηi boundaries
must be between γM and γm.
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Considering the relative uncertainty (8.25)

ρm ≤ ηi

µi
≤ ρM (8.58)

with ρm = 1/1.5 and ρM = 1.5 Then the best disturbance rejection
coefficient obtained for Lemma 8.1 is γ = 0.291 and for Corollary 8.1 is
γ = 0.289. So the result of Corollary 8.1 improves the result of Corollary
Lemma 8.1.

Example 8.3 Let us now discuss the same example as in (Lam & Le-
ung, 2005) regarding multiplicative uncertainty. Consider a TS fuzzy
system with 2 rules, with matrices

A1 =

(

2 −10
1 0

)

, A2 =

(

a −10
1 1

)

B1 =

(

1
0

)

, B2 =

(

b
0

)

Analogously to (Lam & Leung, 2005), a two-rule state-feedback fuzzy
controller is built by designing the Fi, i = 1,2, by pole-placement so that
the closed-loop poles of Ai−BiFi are at −1 and −15 (unique solution).
Then, stability of the overall closed-loop system (8.3) is tested for dif-
ferent values of a and b, and different values of ρM

i and ρm
i in (8.25).

Figure 8.2 shows the values of a and b for which the closed loop can
be proved stable, for different uncertainty levels: the left plot presents
the results with Corollary 8.1, whereas the right one presents the results
with Lemma 8.1; the tested uncertainty values were ρM

i = ε , ρm
i = 1/ε for

ε taking values in {2,1.5,1.2,1.1,1}. All points feasible for a particular
value of ε were as well feasible for lower values of it.

Clearly, Corollary 8.1 in this work achieves better results than (Lam
& Leung, 2005) in all tested uncertain cases, i.e., it finds a larger set
of values for a and b yielding a stable closed loop. As expected, for no
uncertainty in memberships (ρM

i = ρm
i = 1) the PDC case is recovered

in both cases (denoted with • in the figure), with results coincident to
those from Theorem 3.5.
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Figure 8.2: Feasible values of parameters a and b for Example 2: –
(left): Corollary 8.1, – (right) Lemma 8.1. Legend: [ 2 symbol]: ρM

i = 2,
ρm

i = 1/2; [ © symbol]: ρM
i = 1.5, ρm

i = 1/1.5; [ × symbol]: ρM
i = 1.2,

ρm
i = 1/1.2; [ + symbol]: ρM

i = 1.1, ρm
i = 1/1.1; [ • symbol]: ρM

i = ρm
i = 1,

i.e., PDC controller

8.6 Conclusions

This chapter presents an extension of the methodology in (Lam & Leung,
2005) to consider arbitrary linear constraints in the shape of uncertain
membership functions in a non-PDC fuzzy control setup. The proposed
extensions apply to various stability and performance requirements in
continuous and discrete systems, by making different choices for Qi j.

The main contribution of the chapter is, thus, the ability to incorpo-
rate a wider class of constraints on the membership shape than (Lam &
Leung, 2005). Interestingly, with the same type of restrictions, numer-
ical examples illustrate that improvements over (Lam & Leung, 2005)
may also be achieved, at least in the particular cases of the examples.

The examples in the chapter also illustrate the gradual loss of per-
formance from a “full-PDC” fuzzy controller to a “robust linear” one as
uncertainty in the memberships increases.



Chapter 9

Tensor product TS systems

In many fuzzy models, membership functions with multiple arguments
are defined as the product of simpler ones, where all possible combina-
tions of such products conform a fuzzy partition. In particular, such
situations arise with widely-used fuzzy modelling techniques for nonlin-
ear systems (Tanaka & Wang, 2001; Babuska et al., 1996). These type of
fuzzy models will be denoted as tensor-product fuzzy systems, because
their expressions can be understood as operations on multi-dimensional
arrays.

This chapter discusses the generalization to tensor-product fuzzy sys-
tems of the results on stability and performance of Takagi-Sugeno fuzzy
systems with LMIs. They were shown in Chapter 3.

9.1 Introduction

In many situations in fuzzy systems the membership functions can be
expressed as the “tensor product” of simpler partitions, so that the fuzzy
system can be written as a multi-dimensional fuzzy summation, for in-
stance ẋ = ∑r

i=1∑r
j=1∑r

k=1 µiµ jµk(Ai jkx + Bi jku). The tensor notation to
be used in this chapter is motivated by the use of multidimensional ar-
rays to describe this class of fuzzy systems (see (Baranyi, Tikk, Yam, &
Patton, 2003)).

Removing part of the conservatism in current solutions for the tensor-
product case above is indeed of interest; this product structure is often
the case in many engineering applications of fuzzy control:� in the systematic “sector nonlinearity” fuzzy modelling techniques

135
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reported in (Tanaka & Wang, 2001);� in many man-made rulebases for multi-input fuzzy systems, where
the rules are built via the conjunction of simpler concepts arising
from fuzzy partitions on each of the input domains. A typical ex-
ample are rulebases formed with rules in the form“if z1 is large and
z2 is small and . . . then . . . ”, “if z1 is medium and z2 is small and
. . . then . . . ”, etc., with the antecedents covering all combinations
of fuzzy sets on z1, z2, etc..� in approximate interpolation and model reduction techniques based
on gridding and tensor-SVD algebra in (Baranyi, 2004).

These settings will give rise to a particular class of fuzzy models which
will be denoted, following the nomenclature in (Baranyi, 2004), as Tensor-
Product (TP) fuzzy systems. The reader is referred to the above refer-
ences and later sections in this chapter for a more precise definition of
TP fuzzy systems. In particular, a tensor-product structure of Takagi-
Sugeno fuzzy systems will be the object of study, denoted as Tensor-
Product Takagi-Sugeno fuzzy systems (TPTS).

In summary, the objective of this contribution is defining and ana-
lyzing the tensor-product fuzzy systems, presenting fuzzy control design
tools for them which explicitly use the tensor-product structure. The
study of the properties of this class of systems is very relevant, in the
authors’ opinion, as most of the fuzzy systems in nontrivial engineering
applications of fuzzy control belong to this class, as discussed above.

In particular, a generalization of Theorem 3.5, exploiting the par-
ticular structure of the TPTS systems will be presented. The result
provides less conservative conditions than other approaches in literature
on closed-loop analysis and controller design problems. A numerical
example will illustrate the achieved improvement.

9.2 Problem Statement

Tensor calculus originated in 19th century physics as a way of work-
ing with multilinear transformations, even in non-Euclidean geometries
(Spain, 2003). When the multilinear transformations have arguments in
R

n with the usual Euclidean metric and Hilbert space structure, tensors
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may be considered as multi-dimensional arrays. This is the case in this
work.

In the definitions below, the notation Iq will refer to array index sets
in the form Iq = {1,2, . . . ,nq} for some nq. Several values of q will be used
in defining multi-dimensional arrays.

Definition 9.1 A tensor T is a multilinear application which can be
represented as a multidimensional array T ∈R

I1×···×Ip relative to the basis
vectors being chosen on each array dimension. The number p is denoted
as tensor rank. When the tensor structure is to be made explicit, the
notation TI1×···×Ip will be used, or even Tn1×n2×···×np to describe both the
rank and the sizes on each dimension. The tensor elements are real
numbers, denoted by a lowercase symbol, indexed by a multi-dimensional
index variable (to be denoted as multi-index):

ti1i2...ip 1≤ iq ≤ nq, q = 1, . . . , p (9.1)

Note that rank-1 tensors may be considered transpose-free vectors
and rank-2 ones are matrices. In the same way that matrices can be con-
sidered as a collection of vectors, a tensor can be considered a collection
of lower-rank ones. On the sequel, when a rank-p tensor T ∈ R

I1×···×Ip

is indexed by an index with less than p components, the result will be
a tensor (thus, denoted by uppercase), symbolised by the notation, for
q < p:

Ti1i2...iq ∈R
Iq+1×···×Ip (9.2)

For instance a rank-5 tensor may be considered as a 3-dimensional array
of matrices or a 4-dimensional array of vectors.

Definition 9.2 (Outer tensor product) . The outer tensor product
of Un1×···×np and Tn′1×···×n′s is a tensor Vn1×···×np+s =U⊗T , where np+q≡ n′q,
q = 1, . . . ,s. The elements of V are:

vi1...ipip+1...ip+s = ui1...iptip+1...ip+s (9.3)

Definition 9.3 (Multi-indices) On the following, as in Chapters 5
and 7, boldface symbols will denote multi-indices when its structure is
clear from the context:

i = i1i2 . . . ip 1≤ iq ≤ nq, q = 1, . . . , p (9.4)
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and, similarly, the cartesian product of index sets will be referred to by
the notation:

Ip = I1×·· ·× Ip (9.5)

For instance, if either the dimensions have been suitably defined be-
forehand or they are not relevant to a particular discussion, the elements
referred to in (9.1) will be denoted as ti, i∈ Ip for convenience. The multi-
index will be said to have rank p, as the tensor it indexes. Note that,
the multi-indices sets Ip are formed of the cartesian product of different
index sets. On the other hand, the multi-indices sets defined in Chapters
5 and 7 were formed of the cartesian product of the same index set.

Multi-indices of higher rank will also be represented by the juxta-
position of indices of smaller rank. For instance, the elements of the
tensor resulting from the outer product in (9.3) will be denoted, when
convenient, by vij = uitj, for suitably defined i ∈ Ip, j ∈ I

′
s.

The following definition extends the usual matrix product along p
shared dimensions1.

Definition 9.4 (product) The ordinary product of two tensors U ∈
R

I
′′

s×Ip and V ∈ R
Ip×I

′
q, which share the dimensions Ip, is a tensor T ∈

R
I
′′

s×I
′
q which will be denoted as T = U ·p V whose elements are:

ti′′i′ = ti′′1...i′′si′1...i′q =
n1

∑
i1=1

n2

∑
i2=1

. . .
np

∑
ip=1

ui′1...i′′si1i2...ip vi1i2...ipi′1...i
′
q
= ∑

i∈Ip

ui′′ivii′

The notation U ·V (or UV ) will be used to represent the product with
shared index of rank 1, i.e., UV = U ·V = U ·1V (if U and V are rank-2
tensors, UV is the usual matrix product).

As an example of the use of the product notation, a quadratic form
(xT Qx in matrix notation) may be expressed as (x⊗ x) ·2 Q.

1There are other alternative definitions and notations for (inner) tensor products
(De Lathauwer, De Moor, & Vandewalle, 2000; Baranyi, 2004), as the number and
position of the shared dimensions may vary. The one presented here has been adopted
for convenience.
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Proposition 9.1 Given rank-p tensors A1, A2, a rank-q tensor B and a
rank-(p+q) tensor C, the ordinary product and the outer product verify:

A1 ·p A2 = A2 ·p A1 (9.6)

(A⊗B) ·p+qC = A ·p (C ·q B) (9.7)

Note that A1 ·p A2 is a real number, which is the generalization of the vec-
tor scalar product. For a rank-2 tensor (matrix)

√
A ·2 A is the Frobenius

norm.

Definition 9.5 (unfolding) The unfolding operation (“flattening”),
denoted as f lr←qV reduces the rank of a tensor V ∈ RI1×···×Ir×···×Iq×···×Ip by
one, converting it to a new tensor U ∈ RI1×···×I′r×···×Iq−1×Iq+1×···×Ip whose
elements are given by:

ui1...ir ...ip = vi1...ir−1 jr ir+1...iq−1 jqiq+1...ip (9.8)

where (ir−1) = ( jr−1)∗nq +( jq−1),i.e., jr−1 is the integer part of the
quotient (ir−1)/nq, and ( jq−1) is the remainder.

As unfolding can be nested, successive applications of the operator
can rearrange the tensor as a matrix or even as a vector. The notation

f lp←q←r←···←t←s = f lp←q f lq←r . . . f lt←s p < q < r < .. . t < s

will be later used.

Example 9.1 Consider the tensor of rank 3, with n1 = 2, n2 = 3, n3 = 2
given by: ti1i2i3 = 2i1−13i2−15i3−1. Then,

f l2←3T =

(

1 5 3 15 9 45
2 10 6 30 18 90

)

and

f l1←2←3T = f l1←2 f l2←3T = (1 5 3 15 9 45 2 10 6 30 18 90)

Example 9.2 Unfolding a rank-3 tensor T may produce 6 different ma-
trices: f l1←2T , f l1←3T , f l2←1T , f l2←3T , f l3←1T and f l3←2T . The n-
mode matrix of a rank-p tensor T (Definition 4 in (Baranyi, 2004))
is, for n > 2, the transpose of the matrix resulting from the unfolding
f l2←1←3←4←···←n−1←n+1←pT .
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As unfolding is just a reordering of the tensor elements, it’s easy to
prove the following proposition (details omitted for brevity).

Proposition 9.2 The inner product of tensors remains invariant under
unfolding on any of the shared dimensions, i.e.,

( f lr←qU) ·p−1 ( f lr←qV ) = U ·p V

In particular, the above proposition generalises the transformation
from (9.14) to (9.15), which used the fact that

(µ⊗µ⊗ x⊗ x) ·4 X = f l1←3 f l2←4(µ⊗µ⊗ x⊗ x) ·2 f l1←3 f l2←4X

There are many other definitions in tensor algebra (n-mode tensor-
matrix products (De Lathauwer et al., 2000; Baranyi, 2004), etc.) which
are out of the scope of this work. The reader is referred to the just cited
works and textbooks (Spain, 2003; Temple, 2004) for further information
about tensor algebra.

9.2.1 Sufficient Positivity Conditions

Sufficient conditions for positivity of Ξ in (3.23) are discussed in Chapter
3. For convenience, some of them are reviewed below.

Lemma 9.1 If there exist matrices Xi j = XT
ji such that:

Xii ≤ Qii (9.9)

Xi j + X ji ≤ Qi j + Q ji i < j (9.10)

defining

Θ(t) =
r

∑
i=1

r

∑
j=1

µi(z(t))µ j(z(t))x(t)
T Xi jx(t) (9.11)

then Ξ(t) in (3.23) fulfills

Ξ(t)≥Θ(t) (9.12)
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Proof: The proof is evident after reordering (3.23) and (9.11) as

Ξ(t) =
r

∑
i=1

µ2
i xT Qiix+

r

∑
i=1

r

∑
j=i+1

µiµ jx
T (Qi j + Q ji)x (9.13)

Θ(t) =
r

∑
i=1

µ2
i xT Xiix+

r

∑
i=1

r

∑
j=i+1

µiµ jx
T (Xi j + X ji)x (9.14)

respectively. In this way, (9.9) and (9.10) indicate that each term in the
summations in Ξ in (9.13) is larger than the corresponding one in the
reordered Θ in (9.14).

Note that, in addition to an expression in the form (9.14), another
expression for Θ is:

Θ(t) = (µ1xT µ2xT . . .µnxT )







X11 . . . X1r
...

. . .
...

Xr1 . . . Xrr

















µ1x
µ2x
...

µnx











(9.15)

which yields the well-known theorem 3.5.

9.2.2 Tensor-product fuzzy systems

This section will first present the fuzzy systems and fuzzy summations
in Chapter 3 with tensor notation, and then generalize the expressions
via a new definition, which will encompass widely used classes of fuzzy
systems. Basically, a so-called rank-p tensor will denote a p-dimensional
array of real numbers. The reader is referred to section 9.2 for tensor
definitions, notation and operations with them.

Tensor expression for fuzzy systems

Note that the Takagi-Sugeno system (3.1) may be considered, by
juxtaposing Ai and Bi as a matrix with size n× (n+ w), as:

ẋ =
r

∑
i=1

µi(Ai Bi)

(

x
u

)

(9.16)

Consider now the one-dimensional array of matrices (Ai Bi) to be the
components of a suitably defined rank-3 tensor S so that the element si jk
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is the element ( j,k) of the matrix (Ai Bi), for j = 1, . . . ,n, k = 1, . . . ,(n+w).
Consider also the membership functions to be arranged as a vector (rank-
1 tensor). Then, (9.16) may be written as a tensor product

ẋ = (µ ·1 S)

(

x
u

)

(9.17)

because the tensor product µ ·1 S produces the so-called system matrix
(rank-2 tensor):

µ ·1 S =
r

∑
i=1

µi(Ai Bi) (9.18)

As the memberships are a rank-1 tensor, the above fuzzy systems will be
also denoted as rank-1 fuzzy systems. The case of higher dimensionality
(higher tensor rank) will be discussed later in this section.

It’s also straightforward to check that the double fuzzy summations
in (3.23) may also be expressed as:

Ξ = (µ⊗µ⊗ x⊗ x) ·4 Q (9.19)

where Q is a rank-4 tensor (a “matrix” of matrices Qi j), i.e., element qi jkl

is equal to the element at position (k, l) of the matrix Qi j. Note that Ξ
is a scalar.

9.2.3 Multi-dimensional tensor-product fuzzy systems

In many applications, membership functions in a multi-input fuzzy model
are chosen to be the product of simpler memberships with a linguistic
interpretation, and all the possible products of such simpler member-
ships appear as rule antecedents2. Let us discuss a couple of simple
motivating examples.

Example 9.3 Consider a so-called fuzzy-PD regulator built by setting
up a fuzzy partition on an“error (e)” variable (say, a partition with 5 sets
given by {negative large, negative, zero, positive, positive large}), and another
(different) partition in the “error derivative (de)” (say, a partition with
3 sets {negative, zero, positive }).

2Such simpler functions usually refer to a reduced number of input variables (but
the definitions later in this section allow for any set of variables in any membership).
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For convenience, the membership functions on the error partition will
be denoted by (µ11(e), . . . ,µ15(e)), respectively, and those on the error
derivative, by (µ21(de),µ22(de),µ23(de)). The partitions are assumed to
verify ∑5

i=1 µ1i = 1, ∑3
i=1 µ2i = 1.

Once such partitions have been defined, rules are stated in a form
such as:

IF e is negative large and de is positive THEN u = u13

IF e is negative and de is zero THEN u = u22
...

In this example, the total number of rules is 5×3= 15. If the conjunction
is interpreted as the algebraic product, the output of the controller may
be expressed as:

u =
5

∑
i1=1

3

∑
i2=1

µ1i1(e)µ2i2(de)ui1i2 (9.20)

Now, consider the tensor outer product of the vectors (i.e., rank-
1 tensors) µ1 = (µ11(e), . . . ,µ15(e)) and µ2 = (µ21(de),µ22(de),µ23(de)).
Then, considering the following “membership tensor”,

µ1(e)⊗µ2(de) =













µ11(e)µ21(de) µ11(e)µ22(de) µ11(e)µ23(de)
µ12(e)µ21(de) µ12(e)µ22(de) µ12(e)µ23(de)
µ13(e)µ21(de) µ13(e)µ22(de) µ13(e)µ23(de)
µ14(e)µ21(de) µ14(e)µ22(de) µ14(e)µ23(de)
µ15(e)µ21(de) µ15(e)µ22(de) µ15(e)µ23(de)













it’s easy to see that (9.20) may be expressed as an inner product of two
tensors:

u = (µ1⊗µ2) ·2U (9.21)

for a suitably crafted matrix (rank-2 tensor) U of size 5× 3 whose el-
ements are the corresponding rule consequents ui j for i = 1, . . . ,5, j =
1,2,3.

Example 9.4 Consider a nonlinear model ẋ = A(x)x+ B(x)u where
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A(x) = 0.75x−2.25sin(x)+ sin(x)x−2.5 (9.22)

B(x) = 0.42x+1.25sin(x)−0.42sin(x)x−0.25 (9.23)

for which a fuzzy model is to be set up for x ∈ [−π,π]. In this case, x
may be written as x = ∑2

i=1 νi pi, and sin(x) as sin(x) = ∑2
i=1 ηiqi, with:

x = ν1(x) ·π + ν2(x) · (−π), sin(x) = η1(x) ·1+ η2(x) · (−1)

where membership functions are ν1 = 1
2π (x + π), ν2 = 1 − µ1,

η1 = 1
2(sin(x)+1), η2 = 1−η1, resulting in

A(x) = 0.75
2

∑
i=1

νi pi−2.25
2

∑
i=1

ηiqi +(
2

∑
i=1

ηiqi)(
2

∑
i=1

νi pi)−2.5

A(x) =
2

∑
i=1

2

∑
j=1

νiη j(0.75pi−2.25q j + piq j−2.5) =
2

∑
i=1

2

∑
j=1

νiη jai j

where

a11 = 0.748,a12 =−1.035,a21 =−10.247,a22 = 0.536

and similarly

B(x) =
2

∑
i=1

2

∑
j=1

νiη j(0.42pi +1.25q j−0.42piq j−0.25) =
2

∑
i=1

2

∑
j=1

νiη jbi j

where:
b11 = 1,b12 = 1.139,b21 = 1,b22 =−4.139

Hence, the fuzzy system can be expressed as:

ẋ =
2

∑
i=1

2

∑
j=1

νiη j(ai jx+ bi ju) = ∑
i∈I2

µ̃i(aix+ biu) (9.24)

where i is a two-dimensional index variable (i1, i2) taking values in the set
I2 = {1,2}×{1,2}, and µ̃i = νi1ηi2, using the multiindex notation in the
Appendix9.2. In an analogous way to (9.20) in the previous example, a
tensor notation can be thought of (see below).

Motivated by the above examples, let us consider now a definition
for a general tensor-product fuzzy model in the Takagi-Sugeno (TS)
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framework (TS fuzzy systems are the most frequently used process model
for fuzzy control in current literature), in order give a compact notation
to fuzzy systems whose expression is a multi-dimensional sum, as in the
above examples.

Definition 9.6 Tensor-product Takagi-Sugeno fuzzy systems.
Consider a vector of measurable variables, z, in an universe of discourse
Z. Consider also p fuzzy partitions defined on Z, each of them with n1,
. . . np fuzzy sets, respectively.

The fuzzy sets will be assumed to have linguistic labels denoted by
M1i1, i1 = 1, . . . ,n1 for the first partition, M2i2, i2 = 1, . . . ,n2 for the second
partition, etc. and membership functions arranged in rank-1 tensors:

µ1 = (µ11(z) µ12(z) . . . µ1n1(z))

µ2 = (µ21(z) µ22(z) . . . µ1n2(z))
... (9.25)

µp = (µp1(z) µp2(z) . . . µpnp(z))

fulfilling
nl

∑
k=1

µlk = 1 0≤ µlk ≤ 1 l = 1, . . . , p

Then, a rank-p continuous-time tensor-product Takagi-Sugeno fuzzy
system (TPTS) built on the above fuzzy sets will be defined as the one
described by the rules3:

IF z is (M1i1 and M2i2 and Mpip) THEN ẋ = Ai1i2...ip x +
Bi1i2...ip u

being its output evaluated with:

ẋ = ∑
i∈Ip

µ̃i(Aix+ Biu) (9.26)

3In many applications, such as the one in Example 9.3, the rules have the form:

IF z1 is M1i1 and z2 is M2i2 and ... and zp is Mpip THEN ẋ = Ai1i2...ip x+
Bi1i2...ip u

i.e., fuzzy partitions are defined over universes of discurse of smaller dimension, so
that Z = Z1×Z2× . . .Zp. However, that’s not necessary, in principle, for the results in
this chapter to apply. For instance if Z is R

2, we could have p = 3, with three fuzzy
partitions defined on, say, z1 + z2, z1−

√
z2 and (sin(z1)+1)/(cos(z2)+1). Hence, the

rules above in this footnote are a particular case of the ones in Definition 9.6.
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where x and u are the TPTS state and input variables, respectively, i =
i1i2 . . . ip, and

µ̃i =
p

∏
k=1

µkik (9.27)

Remark: Analogous definitions may be cast for discrete-time TPTS
systems and also for systems incorporating output equations, but they
are omitted for brevity.

Using tensor notation, the following definition for TPTS systems is
equivalent to the previous one (proof is omitted as it is just an issue of
notation).

Definition 9.7 Consider a state vector x with dimension d, and an
input vector u with dimension w, and form a vector of dimension n+ w
by juxtaposing x and u. Consider a set of p fuzzy partitions defined on
a universe Z, each of them arranged as a rank-1 tensor µi, i = 1, . . . , p,
i.e., as in (9.25) above. Then, a TPTS fuzzy system is described by:

ẋ = (µ̃ ·p S)

(

x
u

)

(9.28)

where S is a tensor with rank p + 2 and dimensions n1, n2, . . . , np,
np+1 = d, np+2 = d + w and

µ̃ = µ1⊗µ2⊗·· ·⊗µp

is a tensor with dimensions n1, n2, . . . , np (whose elements are, evi-
dently, given by (9.27)), denoted as membership tensor. S will be de-
noted as consequent tensor4.

An example of a membership tensor element is, for instance µ3,4,1,1 =
µ13µ24µ31µ41, which will denote a particular rule in a rank-4 TPTS fuzzy
system.

Note that µ̃ ·p S is a rank-2 tensor (i.e., a matrix which multiplies
the state-input vector with the ordinary matrix-vector multiplication).

4Notation in (9.28) is somehow different from that in (Baranyi, 2004), but equiva-
lent. We wanted to emphasise the concept of “membership tensor” (generated via an
outer product) whereas Baranyi used n-mode products (De Lathauwer et al., 2000)
for subsequent singular-value-related computations.
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Obviously, the notations (9.26) and (9.28) are equivalent to an ex-
pression such as:

ẋ =
n1

∑
i1=1

n2

∑
i2=1

. . .
np

∑
ip=1

µ1i1µ2i2 . . .µpip(Ai1i2...ipx+ Bi1i2...ipu) (9.29)

For instance, the fuzzy system (9.24) may be considered a rank-2
TPTS one.

Remarks on TPTS modelling: Many fuzzy systems in practice
have the tensor-product structure:� Example 9.3 shows how they naturally arise from man-made rules.� Another paradigmatic example is the “sector nonlinearity” mod-

elling methodology in (Tanaka & Wang, 2001); Example 9.4 in
this work is one of the simplest cases of the referred modelling
technique. The reader is also referred to Example 3, in section
2.2.1 of the referred book, which results in a 16-rule model TPTS
described by a membership tensor of dimensions 2×2×2×2 (of
course, the authors there do not use the notation introduced here),
i.e., a rank-4 TPTS system.� Last, (Baranyi, 2004) proposes a tensor-product based method-
ology to approximate functions of multiple variables via Takagi-
Sugeno fuzzy systems. The procedure, instead of being based on
the previously-discussed sector-nonlinearity approach, is based on
multi-dimensional gridding, lookup and interpolation. A subse-
quent step of complexity reduction based on higher-order singular
value decomposition (De Lathauwer et al., 2000) is needed in order
to get a reduced number of rules.

In fact, fuzzy system without a TSTP structure are seldom present in
applications, except in the simplest cases (even some first-order single-
input TS systems can be better modelled as TSTP, by using the sector-
nonlinearity methodology above cited, as demonstrated in Example 9.4
in this work).

Proposition 9.3 Standard TS fuzzy systems are rank-1 TPTS fuzzy
systems. Conversely, TPTS systems are a subclass of standard TS fuzzy
systems.
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Proof: The first affirmation is evident from the definitions, and it
has already been discussed in Section 9.2.2. Regarding the second one,
consider the well-known identity

n1

∑
i1=1

n2

∑
i2=1

. . .
np

∑
ip=1

µ1i1 . . .µpip = 1 (9.30)

It shows that the tensor product conforms a fuzzy partition composed
of q = n1×n2×·· ·×np fuzzy sets. Such partition is given by the rank-1
membership functions obtained by unfolding (flattening) the tensor µ̃
onto a vector. The idea can be formalised by using proposition 9.2, as:

ẋ = (µ̃ ·p S)

(

x
u

)

= ( f l1←···←pµ̃ ·1 f l1←···←pS)

(

x
u

)

(9.31)

Hence, the original TPTS fuzzy system is expressed as a standard TS
one because the membership tensor has been unfolded onto a vector, and
the consequent tensor S has been suitably rearranged by the f l operator
as a rank 3 tensor. Such rank-3 tensor f l1←···←pS produces an ordinary
matrix when subject to the product with the unfolded f l1←···←pµ̃ (rank
1).

Example 9.5 Consider a TP fuzzy system with p = 2, n1 = 2, n2 = 3.
It may be equivalently considered as an “unfolded” fuzzy system with 6
membership functions, denoted as βk(z) given by:

k = 1 β1(z) = µ11(z)µ21(z)

k = 2 β2(z) = µ11(z)µ22(z)

k = 3 β3(z) = µ11(z)µ23(z)

k = 4 β4(z) = µ12(z)µ21(z)

k = 5 β5(z) = µ12(z)µ22(z)

k = 6 β6(z) = µ12(z)µ23(z)

As another example, consider the fuzzy model of Example 9.4. In the
same way as above, if µ1 = ν1η1, µ2 = ν1η2, µ3 = ν2η1 and µ4 = ν2η2

were defined, a fuzzy TS with four models:

ẋ =
4

∑
i=1

µi(aix+ biu) (9.32)

a1 = 0.748,a2 =−1.035,a3 =−10.247,a4 = 0.536 (9.33)

b1 = 1,b2 = 1,139,b3 = 1,b4 =−4.139 (9.34)
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will exactly describe the nonlinear system under analysis for x ∈ [−π,π].

The reader is referred to (Tanaka & Wang, 2001) for more exam-
ples of this tensor-product nonlinear modelling methodology (although
tensor notation is not used and the final model is always unfolded).

Remark: Proposition (9.3) seems to make ill-fated any attempt
to approach fuzzy control design for TPTS systems because TPTS are
TS systems and vice-versa. However, a crucial fact is overlooked in
this argumentation: most results for stability and performance of TS
fuzzy systems are independent of the membership shapes – particularly
those in (Tanaka & Wang, 2001; Kim & Lee, 2000; Liu & Zhang, 2003).
However, an unfolded TPTS system does not sweep over all possible
membership values5. Hence, such membership-independent stability and
performance conditions are conservative in the case of TPTS systems.
This is the key issue motivating the work in Section 9.4.

9.3 Closed-loop tensor-product fuzzy systems

Definition 9.8 (tensor-product controller) Given a rank-p TPTS
system (9.26), a controller in the form:

u =−∑
j∈Ip

µ̃j(z)Fjx =−(µ̃ ·p F)x (9.35)

will be denoted as rank-p tensor product PDC controller (F is a rank-
(p+2) tensor formed by suitably arranging matrices Fj).

By analogy with (3.14), it is straightforward to prove that, when a
rank-p tensor-product PDC controller is used to control a rank-p system
(9.26), the closed loop equations are given by:

ẋ = ∑
i∈Ip

∑
j∈Ip

µ̃iµ̃jGij = ((µ̃ ⊗ µ̃) ·2p G)x (9.36)

where Gij = Ai−BiFj defines a tensor G with rank 2p+2 (note that, for
fixed i and j, Bi and Fj are rank-2 tensors, following notation (9.2), so
the product is well defined, being the usual matrix product).

5for instance, it’s impossible to have β1 = 0.1 and β2 or β3 larger than 0.1 in
Example 9.5.
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In general, analogously to (3.23), many stability and performance
criteria for tensor-product closed-loop fuzzy systems can be expressed
as requiring, for any x 6= 0:

Θ = ∑
i∈Ip

∑
j∈Ip

µ̃iµ̃jx
T Qijx > 0 (9.37)

For instance, it’s almost evident to check that a condition for quadratic
stability of a TPTS fuzzy system is (9.37) with Qij given by (3.1) but
replacing the i and j with its boldfaced counterparts.

In tensor notation, stability and performance conditions (9.37) look
like

Θ = (µ̃⊗ µ̃⊗ x⊗ x) ·2p+2 Q > 0 (9.38)

for a suitably defined tensor Q with rank 2p+2. Indeed,

Θ = ∑
i∈Ip

∑
j∈Ip

n

∑
k=1

n

∑
l=1

µ̃iµ̃jxkxlQijkl

Unfolding to a TS system. A possibility to work with TPTS
systems is considering them as ordinary TS systems (Proposition 9.3)
and design fuzzy controllers for them. Indeed, this is the commonly
considered option in literature which this chapter seeks to improve.

The above argumentation may be equivalently stated by using Propo-
sition 9.2 on (9.38), which results in stating:

Θ = ( f l1←···←pµ̃⊗ f l1←···←pµ̃⊗ x⊗ x) ·4 f l1←···←p f l(p+1)←···←2pQ (9.39)

where f l1←···←pµ̃ is a rank-1 tensor (i.e., the memberships of an ordinary
TS system arranged as a vector, suitably ordered) so (9.39) may be
written as (9.19), i.e., (3.23). Hence, LMIs for such conditions can be
applied, such as Theorem 3.5 (details are omitted for brevity).

The next section discusses an explicit use of the tensor-product form
of the memberships in order to produce conditions less conservative than
the “unfolding + Theorem 3.5” procedure used in literature.
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9.4 Relaxed stability and performance condi-

tions for TPTS fuzzy systems

Theorem 9.1 Expression (9.37) (equiv. (9.38)) holds if there exists a
rank-(2p + 2) tensor X such that the conditions stated below hold. For
ease of notation, note that Xikjs i, j ∈ Ip−1, k,s ∈ Ip is a rank-2 tensor
(matrix), and the same applies to Qikjs. The conditions are:

Xikjs = XT
isjk (9.40)

Xikjk ≤ Qikjk (9.41)

Xikjs + Xisjk ≤ Qikjs + Qisjk (9.42)

Y = f lp←2p+1 f l2p←2p+2X , i.e.,

Yij =







Xi1j1 . . . Xi1jnp

...
. . .

...
Xinpj1 . . . Xinpjnp






(9.43)

∑
i∈Ip−1

∑
j∈Ip−1

µ̃iµ̃jξ (t)TYijξ (t) > 0 (9.44)

where Y is a rank-(2p) tensor (hence Yij is a matrix).

If (9.44) can be proved by a set of LMI sufficient conditions, then
such conditions jointly with (9.41)–(9.43) are still an LMI problem stat-
ing sufficient conditions for (9.37).

Proof. Note that, for i∈ Ip−1, k ∈ Ip, for any tensor T of rank greater
than p:

∑
h∈Ip

µ̃hTh = ∑
i∈Ip−1

np

∑
k=1

µ̃ikTik = ∑
i∈Ip−1

µ̃i

np

∑
k=1

µpkQik

Similarly, (9.37) may be written as:

Θ = ∑
i∈Ip−1

∑
j∈Ip−1

µ̃iµ̃j

np

∑
k=1

np

∑
s=1

µpkµpsx
T Qikjsx (9.45)

Then, Lemma 9.1 can be applied to

δij =
np

∑
k=1

np

∑
s=1

µpkµpsx
T Qikjsx (9.46)
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considering i and j as fixed, so that, if (9.41), (9.42) hold, then (consid-
ering the analogous formulas to (9.13) and (9.14)):

δij ≥ pij =
np

∑
k=1

np

∑
s=1

µpkµpsx
T Xikjsx (9.47)

and, hence, building the matrix Yij in (9.43),

pij = ξ TYijξ (9.48)

where ξ = f l1←2(µp⊗ x) = (µp1x1 . . . µp1xn µp2x1 . . . µpnp xn) expressed
as a column vector. As the elements of the membership tensors are all
positive, we have

Θ≥ ∑
i∈Ip−1

∑
j∈Ip−1

µ̃iµ̃j pij (9.49)

and the proof is complete. 2

The above theorem is a generalization of Theorem 3.5. It provides
a sufficient condition which transforms computation of positivity condi-
tions for a “double p-dimensional sum” (9.37) into computations with a
“double (p−1)-dimensional sum” and larger matrices (the size of Yij is
(np ·n)× (np ·n), where n is the size of the square matrices Qij).

From a computational point of view, recursive application of the
above theorem allows to reach p = 1, and directly applying Theorem 3.5
as a last step. Then, Theorem 2 allows to assert that (9.37) holds if a
certain nq×nq matrix is positive definite.

Note that the size of the final matrix is the same as the one obtained
by unfolding (9.37) and applying Theorem 3.5: the number of elements
of tensors X , Y and Q are the same, but arranged differently. However,
the larger number of relaxation variables X in Theorem 9.1, with various
sizes, allows to produce less conservative results as the example in next
section shows.

Recursive application of Theorem 9.1 for a rank-p TP fuzzy system
needs p−1 tensors of decision variables (of rank 2p+2, 2p, . . . , 4). All
of these tensors have the same number of elements as the original Q.
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9.5 Robust stability of LTI multiaffine systems

An application of this Tensor-Product Description and relaxation may
also be done to prove robust stability on linear time-invariant (LTI)
multiaffine or Tensor-Product systems (Ariño & Sala, 2007b; Anderson
et al., 1995). Robust control, understood as the study of the properties
of open-and closed-loop systems with uncertain parameters. Robust
control techniques for a class of dynamics systems in state-space form,
for which some “sector bounds” can be computed, are well known for
at least 20 years. The sector bounds may arise either from uncertain
parameters (even time-varying) (Gahinet, Apkarian, & Chilali, 1996;
Amato, Mattei, & Pironti, 1998; Bliman, 2004) in linear systems, or
from sector bounded nonlinearities from first-principle equations (such
as those used in gain scheduling or fuzzy control developments) (Rugh
& Shamma, 2000; Apkarian & Adams, 1998; Tanaka, Ikeda, & Wang,
1996; Ebihara & Hagiwara, 2005; Dettori & Scherer, 2000)

Definition 9.9 Let us define a multiaffine system as the one described
by

,Boyd : 1994ẋ =
n1

∑
i1=1

n2

∑
i2=1

. . .
np

∑
ip=1

α1i1α2i2 . . .αpip Ai1i2...ip x (9.50)

where α j ∈Ωn j , where Ωn j is the n j-dimensional simplex given by:

Ωn j =

{

α j ∈R
n j |

n j

∑
i=1

α ji = 1, α ji ≥ 0, i = 1. . .n j

}

and j ranges from 1 to p.

Note that, in fact, this system looks like the Tensor-Product Tanaka-
Sugeno Fuzzy System proposed in section 9.2.2. Definition 9.9 may be
recast as follows.

Definition 9.10 A multiaffine linear system can be described using the
multiindex notation by

ẋ = ∑
i∈Ip

αiAix (9.51)

where i = {i1, . . . , ip} ∈ Ip, and αi is obtained from (9.27) for some pre-
defined αlk, k = 1, . . . ,nl , l = 1, . . . , p.
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Evidently, the definition with p = 1 refers to usual polytopic systems.

9.5.1 Robust stability conditions

Let us now generalise some well-known results on robust stability of poly-
topic dynamic systems (via parameter-dependent quadratic-in-the-state
Lyapunov functions) to the previously defined multiaffine (multipoly-
topic) case.

Consider a uncertain multiaffine LTI system

ẋ = ∑
i∈Ip

αiAix (9.52)

where the additional assumption of αi being time-invariant is made.

Proposition 9.4 The multiaffine LTI system (9.52) is robustly stable if
there exists a collection of positive-definite matrices Pj, j ∈ Ip such that:

Θ = ∑
i∈Ip

∑
j∈Ip

αiαjx
T Qijx > 0 (9.53)

for all x 6= 0, and for any value of the parameters αi, where

Qij =−(AT
i Pj + PjAi) (9.54)

Proof: Considerer as a candidate Lyapunov function

V = ∑
j∈Ip

αjx
T Pjx (9.55)

then the system is stable if the conditions below hold for any value of
the parameters αi:

Pj > 0 j ∈ Ip (9.56)

V̇ = ∑
i∈Ip

∑
j∈Ip

αiαjx
T (AT

i Pj + PjAi)x < 0 (9.57)

2

Note that Qi j is a symmetric matrix.

Of course, when the conditions are stated for p = 1, the well-known
conditions for robust stability of polytopic systems (via affinely param-
eter dependent Lyapunov functions) are recovered.

The expression (9.53) is equivalent positivity condition that one in
(9.37) and then theorem 9.1 can be applied in order to proof stability.
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9.6 Examples

The following examples illustrates the effectivenes of the new stability
conditions (Theorem 9.1) compared to the usual approach in literature.
The first one applies this new conditions to a Takagi-Sugeno Fuzzy Model
and the second applies it to a multiaffine Linear Time invariant system.

Example 9.6 Consider a continuous fuzzy plant composed of the fol-
lowing four rules:

R11: IF x1 is M11 and x2 is M21 THEN ẋ = A11x+ B11u
R12: IF x1 is M11 and x2 is M22 THEN ẋ = A12x+ B12u
R21: IF x1 is M12 and x2 is M21 THEN ẋ = A21x+ B21u
R22: IF x1 is M12 and x2 is M22 THEN ẋ = A22x+ B22u

where

A11 =

(

0.5 −0.05
0 −5

)

,B11 =

(

a
0.1

)

A12 =

(

−10 0
0 −10

)

,B12 =

(

1
0.2

)

A21 =

(

−1 0.1
0 −2

)

,B21 =

(

1
0.4

)

A22 =

(

b −0.01
0 −3

)

,B22 =

(

1
0.05

)

represented by the equations:

ẋ = ∑
i∈I2

µ̃i(Aix+ Biu) =
2

∑
i1=1

2

∑
i2=1

µ1i1µ2i2(Ai1i2x+ Bi1i2u) (9.58)

where I2 = {1,2}×{1,2}. Membership functions {µ11,µ12} and {µ21,µ22}
are supposed to be fuzzy partitions on the domain of x1 and x2 respec-
tively. Hence, the system conforms to the definition of a rank-2 TPTS
one. The shape of each of the four membership functions is arbitrary as
long as µ11 = 1−µ12 and µ21 = 1−µ22.
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A stabilising PDC controller with 4 rules is to be designed,

u =−∑
i∈I2

µ̃iFix

The stabilization conditions expressed in the form (9.37) are obtained
from (3.33) with α = 0, resulting in:

Qij =−ZAi−AT
i Z + BiNj + NT

j Bji
T (9.59)

where i, j ∈ I2, and Z, Nj are LMI decision variables. Z should be a
symmetric positive-definite matrix, and the PDC controller is provided
by Fj = NjZ−1.

The parameters a in B11, and b in A22, will take values in a prescribed
grid, in order to check the feasibility of the associated fuzzy control
synthesis problem under two different approaches.

Usual approach. A first possibility in order to design the above
regulator would be considering the fuzzy system to be a four-rule stan-
dard one (unfolding), with A1 = A11, A2 = A12, A3 = A21 and A4 = A22,
using a similar notation for B, generating Qi j, i, j = 1, . . . ,4.

This well-known approach has been compared to the one proposed
in this work. Note that 16 Lyapunov matrices (9.59) are defined in both
approaches, the only difference is how they are indexed (via two integer
indices from 1 to 4, in the usual approach; via two rank-2 indices of size
{1,2}×{1,2} in this work).

Proposed approach. Applying Theorem 9.1, expression (9.37)
holds if there exist a rank-6 tensor X from which matrices Xikjs can be
extracted so that Xikjs = XT

isjk for each i, j ∈ I1, k,s ∈ I1 (I1 = I1 = {1,2}),
and

Xi1j1≤ Qi1j1, Xi2j2≤ Qi2j2 (9.60)

Xi1j2 + Xi2j1≤ Qi1j2 + Qi2j1 (9.61)

Yij =

(

Xi1j1 Xi1j2

Xi2j1 Xi2j2

)

(9.62)

∑
i∈I1

∑
j∈I1

µiµjξ TYijξ > 0 (9.63)

Then, regarding the positivity of ∑i∈I1 ∑j∈I1
µiµjξ TYijξ Theorem 3.5 is

directly applied, because i and j are now one-dimensional indices: Theo-
rem 3.5 requires the existence of matrices Wi j = W T

i j for each i, j ∈ {1,2},
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such that

W11≤Y11,W22≤ Y22 (9.64)

W12+W21≤ Y12+Y21 (9.65)
(

W11 W12

W21 W22

)

≥ 0 (9.66)

Note that the set of conditions (9.59) jointly with (9.60)–(9.62),
(9.64)–(9.66) are LMIs.

Results. Figure 9.1 shows the values of a and b where a stabilising
controller is found, based on either Theorem 3.5 (after unfolding) or
Theorem 9.1, using a suitable LMI solver.

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1
−2

−1

0

1

2

3

4

5

6

7

8

b

a

Figure 9.1: Parameter values for which feasible stabilising regulators are
found: unfolding + Theorem 3.5 (◦); Theorem 9.1(◦, ×).

In this figure, the ◦mark indicates the existence of feasible stabilising
regulators proved by Theorem 3.5 (and, of course, also by Theorem 9.1);
the × mark indicates parameter values for which stabilizability is proved
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from Theorem 9.1, but not from Theorem 3.5. Hence, substantially
better results are obtaining by exploiting the tensor-product structure
of the four involved TS rules.

Similar results are obtained when the methodology is applied to the
nonlinear system in Example 9.4 expressed as a rank-2 TPTS fuzzy
system: the usual approach does not find a stabilising controller, whereas
the one proposed in this work does.

Example 9.7 Consider the system (9.67) below, with two uncertain
time-invariant parameters m and n which are assumed to belong to a
known interval, i.e., m ∈ [m1, m2] and n ∈ [n1, n2] respectively.

ẋ = Ã x =

(

−1
8(1+3m n) 0.3 (n−m)

0.3 (m−n) −1

)

x (9.67)

This system can be represented exactly taking the maximum and mini-
mum posible values of m and n by the multiaffine expression

ẋ =
2

∑
i=1

2

∑
j=1

α1iα2 jAi jx (9.68)

for some α11, α12, α21, α22 fulfilling α11+α12 = 1, α21+α22 = 1, 0≤ αi j ≤
1 and

Ai j =

(

ai j bi j

−bi j −1

)

where the values of matrix elements ai j, bi j are:

ai j =−1
8
(1+3mi n j), bi j = 0.3 (n j−mi)

Indeed, the representation (9.68) is obtained by just replacing

m = α11m1 + α12m2 n = α21n1 + α22n2

in (9.67) and carrying out straightforward algebraic manipulations. For
instance, with m and n taking values in the interval [−1, 1], the resulting
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vertex matrices are:

A11 =

(

−0.5000 0
0 −1

)

A12 =

(

0.2500 −0.6
0.6 −1

)

A21 =

(

0.2500 0.6
−0.6 −1

)

A22 =

(

−0.500 0
0 −1

)

The above multiaffine model is not equivalent to the polytopic one
in the form:

ẋ =
4

∑
i=1

αiAix (9.69)

for any arbitrary set of αi > 0, such that ∑4
i=1αi = 1, which describes the

convex hull of

A1 = A11,A2 = A12,A3 = A21,A4 = A22

Instead, the multiaffine model is strictly included inside the mentioned
convex hull.

Indeed, the matrix

Au =

(

0.25 0
0 −1

)

(9.70)

with an unstable pole, is not described by any m, n ∈ [−1, 1] in (9.67),
but it belongs the polytopic form (9.69), as

Au = 0.5A2 +0.5A3

even if A2 and A3 are themselves stable.

To further illustrate this, Figure 9.2 shows the posibles values of the
elements 11 and 12 of the matrix Ã, denoted as ã11 and ã12. In this
figure, It is shown that the multiaffine model 9.9 is not convex in the
space of values of the matrix Ã.
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ã 1
2

ã11

0

0 0.2−0.2−0.4

0.6

0.6

A11

A12

A21

A22

Figure 9.2: The multiaffine set of matrix coefficients in (9.67) lies inside
the arrow-like shape.

The poles of the matrix Ã can be computed symbolically. Obtained
by using Mathematica 5.0 software, they are given by:

−45−15mn−∆
80

−45−15mn+ ∆
80

where

∆ =
√

1225−576m2 +102mn−576n2 +225m2 n2

Then, with any n,m ∈ [−1,1], the system is stable (stability has been
assessed by plotting the poles achieved in a dense enough grid covering
the mentioned intervals; in fact, the range of values of m and n which
stabilize the system appears in Figure 9.3).
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Figure 9.3: Values of n and m yielding a stable system (white).

However, the existence of unstable matrices (such as (9.70) above)
in the polytopic convex hull makes any polytopic-based approach futile
and, of course, a set of Lyapunov functions valid for all the convex hull
is impossible to be found, no matter which technique were to be used
(Gahinet et al., 1996; Feron, Apkarian, & Gahinet, 1996; Chesi, Garulli,
Tesi, & Vicino, 2005; Oliveira & Peres, 2006).

Now, Theorem 9.1 is applied to the multiaffine parametric descrip-
tion in example 9.2 in order to look for a parameter-dependent Lyapunov
function (9.55).

From the theorem, considering suitable Qi j in the form (9.54) for the
expressions below, the system is robustly stable if there exist symmetric
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matrices Xik, jk and matrices Xik, js = XT
is, jk such that, from (9.41),

AT
11P11+ P11A11+ X11,11≤ 0 (9.71)

AT
12P12+ P12A12+ X12,12≤ 0 (9.72)

AT
21P21+ P21A21+ X21,21≤ 0 (9.73)

AT
22P22+ P22A22+ X22,22≤ 0 (9.74)

AT
11P21+ P21A11+ X11,21≤ 0 (9.75)

AT
12P22+ P22A12+ X12,22≤ 0 (9.76)

AT
21P11+ P11A21+ X21,11≤ 0 (9.77)

AT
22P12+ P12A22+ X22,12≤ 0 (9.78)

from (9.42)

AT
11P12+ P12A11+ AT

12P11+ P11A12+

+X11,12+ X12,11≤ 0 (9.79)

AT
21P22+ P22A21+ AT

22P21+ P21A22+

+X21,22+ X22,21≤ 0 (9.80)

AT
11P22+ P11A22+ AT

12P21+ P11A12+

+X11,22+ X12,21≤ 0 (9.81)

AT
21P12+ P12A21+ AT

22P11+ P11A22+

+X21,12+ X22,11≤ 0 (9.82)

and from (9.43), forming the following augmented symmetric matrices

Y11 =

(

X11,11 X11,12

X12,12 X12,12

)

(9.83)

Y12 =

(

X11,21 X11,22

X12,22 X12,22

)

(9.84)

Y21 =

(

X21,11 X21,12

X22,12 X22,12

)

(9.85)

Y22 =

(

X21,21 X21,22

X22,22 X22,22

)

(9.86)

robust stability is proved if the following reduced condition holds:

2

∑
i=1

2

∑
j=1

α1iα1 jξ TYi, jξ T > 0 (9.87)
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Figure 9.4: Different boxes for which robust stability of the multiaffine
system can be proved.

This is a condition in which the indices in the summations are one-
dimensional, compared to the original one with two-dimensional sum-
mations.

Thus, applying again the theorem 9.1 to (9.87) (i.e., one iteration of
the recursive procedure suggested in the previous section), the obtained
conditions, introducing new auxiliary variables, are:

H11≤ Y11 H22≤ Y22 (9.88)

H12+ H21≤ Y12+Y21 (9.89)
(

H11 H12

H21 H22

)

> 0 (9.90)

where H12 = HT
21, and H11, H22 are symmetric decision matrices.

Then the inequalities (9.71)-(9.86), (9.88)-(9.90) form a set of LMI
sufficient conditions than can be tested with the Matlab LMI Toolbox
(Gahinet et al., 1995) obtaining a valid parameter-dependent Lyapunov
function for this case. The decision variables are the matrices Xi j, Pi j,
Hi j (i, j ∈ {1,2}), where Xi j and Pi j are matrices of size 2×2 and Hi j are
matrices of size 4×4.
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Expanding the range of m and n to the interval [−q,q] for both cases,
the system has stable poles up to q =

√
3 (from the symbolic formula and

Figure 9.3). The multiaffine parametric stability conditions being tested
also keep feasible until that value of q so, in this particular example,
they provide a tight result.

Of course, the multi-affine approach can only prove robust stability
for boxes (or, with some modifications, for convex polytopes) in the
parameter space. Other boxes of parameter values have also been tested
with positive robust stability results (see Figure 9.4), so results seem to
be non-conservative in this case (understanding, of course, that the non-
convex robust stability zone in the above figure cannot be directly found
by the algorithm). No such claim is made for other cases, of course.

9.7 Conclusions

This chapter has provided a generalization of double-fuzzy summation
results in literature to multiple summations with a tensor-product struc-
ture. Such structure is indeed common in many fuzzy models allowing
for less conservative results in fuzzy controller designs for such systems,
as demonstrated in the numerical example. Although, for simplicity, the
chosen example only considers stabilisation, the presented procedure ap-
plies to other more sophisticated performance/robustness requirements,
by considering well-known different choices for Qij.

This chapter has also presented robust stability results for multiaffine
(multipolytopic) uncertain LTI systems by means of the use of a mul-
tiaffine parametric Lyapunov function. The results provide conditions
which are less conservative than those that arise from only consider-
ing the polytopic convex hull, as such a hull comprises a larger set of
systems, some of which could be unstable.

LMI conditions for computations are obtained via a recursive proce-
dure involving the addition of artificial decision variables.
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Chapter 10

Conclusions and future work

This thesis has dealt with the analysis of nonlinear systems via Takagi-
Sugeno fuzzy models: new LMI conditions for stability and performance
of a Takagi-Sugeno fuzzy model have been discussed. These conditions
are presented in order to use the available membership function informa-
tion in the linear matrix inequalities arising from well-known stability
and performance problems. The proposed conditions improve over cur-
rent literature, where Linear matrix inequalities methodologies do not
include any information about the shape of the membership functions:
stability is proved for any set of rules, with any membership function
shape, as long as the linear vertex models are maintained. This is a
source of conservatism that has been reduced in this work.

In this sense, this thesis has taken some steps towards improving the
Lyapunov-based theory for nonlinear control via Takagi-Sugeno fuzzy
systems. In these concluding remarks, we summarize the contributions
and give some suggestions for future research.

Sufficient and asymptotical necessary results.
Extension of Polya’s Theorem

In Chapter 5, some results in previous literature have been improved,
achieving less conservative sufficient conditions on positive-definiteness
of fuzzy summations (related to stability and performance criteria in
fuzzy control), with a extension of the Polya’s theorem (Pólya & Szegö,
1928). We have shown the conditions are progressively less conservative
as a complexity parameter n increases, becoming asymptotically exact.
Bounds for n can be computed if a tolerance parameter is introduced.
The number of conditions is polynomial in n; if decision variables are
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introduced, the number of them may be exponential in n. The achiev-
able value of n in a particular fuzzy control problem depends on solver
accuracy and available computing resources.

Local Stability

As discussed in Chapter 6, Some local stability results for TS models
may be obtained in fuzzy systems via the knowledge of the membership
functions, even when no feasible quadratic Lyapunov function can be
found to prove global stability1. The stability is achieved in the largest
sphere around x = 0 for which a quadratic Lyapunov function can be
proven via LMIs), therefore the found sphere is part of a larger ellipsoidal
guaranteed basin of attraction.

The methodology used is based on transformation of the membership
functions by expressing them as a convex combination of some points in
the membership space. These points are obtained from the knowledge
of the maximum and minimum values of the memberships in the zone
under study.

Overlap relaxed results

In order to relax stability and performance conditions for fuzzy control
models with knowledge of membership function overlap, two theorems
relaxing some LMI stability and performance conditions in (Tanaka &
Wang, 2001; Kim & Lee, 2000; Liu & Zhang, 2003) have been presented
in Chapter 7. The conditions consider a set of known bounds in the
membership functions, which generalize the relaxations previously re-
ported in literature for non-overlapping fuzzy sets. As a result, more
freedom in guaranteeing control requirements is available.

The proposed technique may prove useful in fuzzy control applica-
tions: in fuzzy PDC control techniques, membership functions are as-
sumed to be known so the required bounds may be easily obtained, and
the conditions are computationally simple.

1The concept of global understood as for any membership function shape; some-
times, TS models are themselves a local model (sector nonlinearity approach), hence
it will not be possible to prove anything outside the domain of definition of the original
TS model.
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Stability Analysis with uncertain membership functions

In most applications, we need to approximate the membership functions
and in these cases, it is difficult to take into account the knowledge of the
membership functions’ shape. Chapter 8 considers arbitrary linear con-
straints in the shape of uncertain membership functions in a non-PDC
fuzzy control setup. The proposed methodology applies to various sta-
bility and performance requirements in continuous and discrete systems.
The gradual loss of performance from a “full-PDC” fuzzy controller to a
“robust linear” one as uncertainty in the memberships increases is also
shown.

Conditions for Tensor-product TS models

Tensor-product structures are common in many fuzzy models and the
results in Chapter 9 allow for less conservative conditions in fuzzy con-
troller designs for such systems. We also presented, as a corollary,robust
stability results for multiaffine (multipolytopic) uncertain LTI systems
by means of the use of a multiaffine parametric Lyapunov function. The
results provide conditions which are less conservative than those that
arise from only considering the polytopic convex hull, as such hull com-
prises a larger set of systems some of which could be unstable.

LMI conditions for computations are obtained via a recursive proce-
dure involving the addition of artificial decision variables.

Applications of the results

The thesis has provided several methodologies in order to control non-
linear dynamical systems. The results are generic and have direct ap-
plications to basically any nonlinear system modelled via the sector-
nonlinearity Takagi-Sugeno methodology discussed in Section 3.3. The
results are specially useful when several nonlinearities yield a multi-
dimensional tensor product system, where the methodology in Chapter
9 is able to relax the conditions significantly.
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10.1 Future research lines

In this thesis, we have shown how LMI optimization can be used to
analyze the stability of nonlinear dynamical systems. The results have
direct applications, and can be extended in many promising ways. In
this section, we point out some open problems and give ideas for future
research.� The thesis has presented many ways to reduce the conservationism

of LMI stability and performance conditions. Most of them are
not mutually exclusive, but the intensive use of all of them will
increase the computational cost. Therefore further developments
will compare the computational cost of the different methodologies
and choose the best trade-off for different scenarios.� Fuzzy systems can be embedded into the polynomial system class,
for which sum of squares sufficient stability conditions can be
stated and solved with recent tools, such as SOSTOOLS (Prajna
et al., 2002), which translate some sum-of-squares (SOS) polyno-
mial problems to linear matrix inequalities. So it would be inter-
esting to apply the presented results to a more general class of
polynomial fuzzy systems.� There are several contributions where the complexity of the Lya-
punov function is increased in order to relax the stability and per-
formance conditions. In the thesis, the complexity of the LMI
conditions is increased and most of the results are not mutually
exclusive with other contributions in the literature, but there is
not a criterium to choose the relative complexity of the Lyapunov
function and the LMI conditions. It would be very useful to be
able to compare between “more complex Lyapunov functions with
simple conditions” and “simpler Lyapunov functions with complex
conditions”.
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