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1. Introduction

Two families A and B of subsets of a topological space X mesh (denoted
A#B), if A ∩ B 6= ∅ whenever A ∈ A and B ∈ B. Given a class D of filters on
X , we say that a filter F on X is D-compact at A ⊂ X if

D ∈ D,D#F =⇒ adhD ∩ A 6= ∅.

If F = {X} and A = X , we recover the notion of a D-compact space. Instances
include compact spaces (when D is the class F of all filters), countably compact
spaces (when D is the class Fω of countably based filters), Lindelöf spaces (when
D is the class F∧ω of countably deep filters) among others. We recall that a
filter F is countably deep if

⋂
A ∈ F whenever A is a countable subfamily of F .

In [11], [12], J. Vaughan investigated stability under product of D-compact
spaces under fairly general conditions on the class D. However, even for sim-
ple cases like that of D being the class of countably based filters, no internal
characterization of spaces whose product with every countably compact space
is countably compact is known (known characterization involve the Stone-Čech
compactification of the space). We investigate the problem in the framework
of D-compact filters. In Section 3 below, we characterize filters whose product
with every D-compact filter is D-compact. The result turns out to be interest-
ing for at least two reasons. It leads to a discussion of exotic filters in Section 4
which provides a deeper perspective on the productivity problem for variants of
compactness like countable compactness. Next, the theorem allows other appli-
cations. Indeed, many classes of maps can be characterized as those preserving
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D-compact filters [10]. Several local topological properties can be characterized
in terms involving D-compact filters. Consequently, our product theorem for
D-compact filters can be applied to the investigations of stability under prod-
uct of global properties (D-compact spaces), local properties (Fréchetness and
variants) and maps [9].

2. Terminology and basic facts

Our terminology is standard and compatible with [7]. The word ‘space’
refers to ‘topological space’. A filter on a set X is a non-empty family of
subsets stable by supersets and finite intersections. The only filter containing
the empty set is the degenerate filter 2X . The set of filters on a set X is
preordered by inclusion. Denoting A↑ = {B ⊂ X : ∃A ∈ A, A ⊂ B}, the
infimum filter F ∧ G is {F ∪G : F ∈ F , G ∈ G}↑. The supremum F ∨ G of two
filters F and G exists whenever F#G and is {F ∩G : F ∈ F , G ∈ G}↑. We use
blackboard fonts to denote classes of filters. For instance F denotes the class
of all filters (with unspecified set) and F(X) denote the family of filters on X.
Analogously, Fω denotes the class of countably based filters (set unspecified)
and Fω(X) the family of countably based filters on X. The class of principal
filters is denoted F1. A filter is free if its intersection is empty. If D is a class of
filters, we denote by D∅ the class of free D-filters. We denote by F∅ the free
part F ∨ (

⋂
F)

c
of a filter F , and by F• its principal part

⋂
F . One or the

other may be the degenerate filter {∅}↑ = 2X . We always have F = F∅ ∧F•,
with the convention that G ∧ {∅}↑ = G.

Let D be a class of filters and let A and B be two families of subsets of a
space X. We say that A is D-compact at B if

D ∈ D, D#A=⇒adhXD#B.

If B = {X}, we drop ‘at B’ and if B = A, we say that A is D-selfcompact.
Notice that a subset A of X is compact (resp. countably compact, Lindelöf)
if and only if {A} is D-selfcompact for the class D = F of all (resp. the class
D = Fω of countably based, the class D = F∧ω of countably deep) filters. Com-
pactness relative to the class F1 of principal filters is trivial only for principal
filters. It becomes an important concept for general filters. For instance, it is
instrumental in characterizing convergence in terms of compactness.

Lemma 2.1. Let X be a space and let F ∈ F(X). The following are equivalent:

(1) x ∈ limX F ;
(2) F is compact at {x};
(3) F is F1-compact at {x}.

Recall that X is Fréchet if, for each A ⊂ X and each x in the closure of A,
there exists a sequence (xn)n∈N on A converging to x. A space X is Fréchet if
and only if its neighborhood filters are Fréchet filters in the following sense: a
filter F is Fréchet if

A#F =⇒ ∃H ∈ Fω,H#A and H ≥ F .
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Similarly, a space X is strongly Fréchet if, for each x ∈
⋂

n∈N
cl An with a

decreasing sequence (An)n∈N of subsets of X , there exists xn ∈ An such that
x ∈ lim(xn)n∈N. A space X is strongly Fréchet if and only if its neighborhood
filters are strongly Fréchet filters in the following sense: a filter F is strongly
Fréchet if

D#F ,D ∈ Fω =⇒ ∃H ∈ Fω,H#D and H ≥ F .

Fréchet and strongly Fréchet filters are instances of the following general
concept. Let D and J be classes of filters.

A filter F is called D to J meshable-refinable, or a (D/J)#≥-filter, if

(2.1) D ∈ D,D#F =⇒ ∃J ∈J,J#D and J ≥ F .

Similarly, a filter F is called D to J sup-meshable, or a (D/J)#∨-filter, if

(2.2) D ∈ D,D#F =⇒ ∃J ∈J,J#D ∨F .

A filter F is called D to J meshable, or a (D/J)#-filter, if

(2.3) D ∈ D,D#F =⇒ ∃J ∈J,J#D.

Let J be a set of filters on a set X. By X ⊕J we mean the set X ∪J endowed
with the topology in which all points of X are isolated and the neighborhood
filters of the points J of J are of the form NX⊕J({J }) = J ∧{J }. By the very
definition of X ⊕ J, we have

Proposition 2.2. A free filter on X is D to J meshable if and only if the filter
it generates is D-compact in X ⊕ J.

A space X is D-based if its neighborhood filters are D-filters; it is (D/J)-
accessible if it is (D/J)#≥-based. With J being the class of countably based

filters, (D/J)#≥-filters are Fréchet (resp. strongly Fréchet, productively Fréchet

[5], weakly bisequential and bisequential filters), whenever D stands for the class
of principal (resp. countably based, strongly Fréchet, countably deep and all)
filters [1], [6].

The notion of total countable compactness was first introduced by Z. Froĺık
[2] for a study of products of countably compact and pseudocompact spaces.
The property has been rediscovered under various names by several authors
(see [11, p. 212]). A topological space is totally countably compact if every
countably based filter has a finer (equivalently, meshes a) compact countably
based filter. The name comes from total nets of Pettis. As one of the possible
generalizations of total countable compactness of a set, we say that a filter F is
compactly countably meshable (at A) if for every countably based filter H#F ,
there exists a countably based filter C#H which is compact (at A).

More generally, in order to maximize the number of cases handled by the
result, we introduce the following key notion:

Let D and J be classes of filters. A filter F is called compactly D to J

meshable (at A), or F is a compactly (D/J)#-filter, if for every D-filter D#F
there exists a J-filter J#D which is compact (at A).

It turns out to be the notion permitting characterizations of filters whose
product with every D-compact filter (of a certain class) is D-compact . With
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various instances of D and J, the concept is also instrumental in the characteri-
zation of a wide variety of notions, from total countable compactness, total Lin-
delöfness and total pseudocompactness [12] to Fréchetness, strong Fréchetness,
productive Fréchetness and bisequentiality [4], and properties of maps and their
range (see [10] for details). In particular, we have

Proposition 2.3. Let D and J be classes of filters on a space X. The following
are equivalent.

(1) X is (D/J)-accessible;
(2) for every D ∈ D, adhD ⊂

⋃
{limJ : J#D,J ∈ J} ;

(3) x ∈ limF =⇒ F is compactly D to J meshable at {x}.

We also note that

F compactly (D/J)# =⇒ F D-compact =⇒
X is (D/J)-accessible

F compactly (D/J)#

F compact =⇒
F∈(D/J)#≥

F compactly (D/J)# .

In particular, a countably compact filter on a strongly Fréchet space is com-
pactly countably meshable and a bisequential filter is compactly F to Fω me-
shable if and only if it is compact.

If D and J are two classes of filters, we say that J is D-composable if for any X
and Y, the (possibly degenerate) filter HF generated by {HF : H ∈ H, F ∈ F}
belongs to J(Y ) whenever F ∈J(X) and H ∈ D(X × Y ), with the convention
that every class of filters contains the degenerate filter. If a class D is D-
composable, we simply say that D is composable. Notice that

(2.4) H#(F × G) ⇐⇒ HF#G ⇐⇒ H−G#F ,

where H−G = {H−G = {x ∈ X : (x, y) ∈ H and y ∈ G} : H ∈ H, G ∈ G}↑.
Observe also [6] that a composable class of filters that contains principal

filters is stable under finite products.

3. A Product Theorem

Theorem 3.1. Let D be a composable class of filters containing all principal
filters and let J be a D-composable class of filters. Let A ⊂ X. The following
are equivalent.

(1) F is a compactly (J/D)#- filter at A ⊂ X ;
(2) for every space Y , every B ⊂ Y and every J-filter G which is D-compact

at B, the filter F × G is D-compact at A × B;
(3) for every space Y , every B ⊂ Y and every J-filter G which is D-compact

at B, the filter F × G is F1-compact at A × B.

Moreover, if F ∈ (J∅/D∅)#∨, then the above are also equivalent to:

(4) for every space Y and for every D-compact J-filter G, the filter F × G
is D-compact at A × Y.
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Proof. (1) =⇒ (2).
Let D be a D-filter such that D#F×G. As J is D-composable, D−G is a J-filter
and D−G#F . Since F is a compactly (J/D)#-filter at A, there exists a D-filter
C#D−G which is compact at A. Now DC#G and DC is a D-filter, so that there
exists a filter M#DC which is convergent to some y in B and meshes with DC.
The filter D−M meshes with C, which is compact at A. Therefore, there exists
U#D−M which is convergent to some point x in A. The filter U ×M meshes
with D and converges to (x, y) ∈ A × B.

(2) =⇒ (3) is clear, as F1 ⊂ D and (3) =⇒ (4) is clear.
(3) =⇒ (1).

If F is not compactly (J/D)# at A, then there exists a J-filter J#F such
that for every D-filter D#J , there exists an ultrafilter UD ≥ D such that
limUD ∩ A = ∅. Consider the topological space Y =X ⊕ {UD : D#J , D ∈ D}.

Then the filter Ĵ generated by J on Y is D-compact at B = {UD : D#J ,

D ∈ D} but F × Ĵ is not F1-compact at A × B. Indeed, ∆ = {(x, x) : x ∈

X} ⊂ X × Y is in F1 and ∆#F × Ĵ because F#J . But adh∆ ∩ A × B = ∅.
Indeed, if H is a filter on ∆, then there exists a filter H0 on X such that H is
generated by {{(x, x) : x ∈ H} : H ∈ H0}. If (x,UD) ∈ limX×Y H ∩ (A × B)
then UD ∈ limY H0 (and x ∈ limX H0). Hence as a filter on X, H0= UD, so
that limX H0 ∩ A = ∅. Thus x /∈ A.

(4) =⇒ (1) if F ∈ (J∅/D∅)#∨. Indeed, if F is not compactly (J/D)# at A,
then the filter generated by J on Y = X ⊕ {UD : D#J , D ∈ D} (constructed

as in (3) =⇒ (1)) is D-compact . Since F ∈ (J∅/D
∅)#∨, there exists a free

D-filter D0#J ∨ F . The filter ̂D0 ×D0 generated on X × Y by D0 × D0 is

a D-filter by composability of D [6]. Moreover
(

̂D0 ×D0

)
#(F × J ) . But

adhX×Y

(
̂D0 ×D0

)
∩ (A × Y ) = ∅. Indeed, consider an ultrafilter finer than

̂D0 ×D0, which can be written U × U . As D0 is free, U converges in Y only if
U = UD for some D ∈ D such that D#J . But in this case, limX U ∩A = ∅. �

Observe that (3) =⇒ (1) only uses F1⊂ D and no other composability as-
sumption.

Notice that in the special case where J = D, the condition F ∈ (J∅/D∅)#∨

is always verified. Therefore, in the case J = D = Fκ, and A = X, we get

Corollary 3.2. The product filter F×G is κ-compact for every κ-compact and
κ-based filter G if and only if F is a compactly (Fκ/Fκ)#-filter.

In particular, if κ = ω, we obtain the announced result on the productivity
of countable compactness at the level of filters.
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Corollary 3.3.

(1) The product filter F ×G is countably compact for every countably based
and countably compact filter G if and only if F is compactly countably
meshable.

(2) Let F be a countably based filter. The product filter F ×G is countably
compact for every strongly Fréchet and countably compact filter G if
and only if F is compactly countably meshable.

Proof. (2) follows from the simple observation that if F is a countably based
and compactly (Fω/Fω)#-filter, then it is also a compactly ((Fω/Fω)#≥ /Fω)#-
filter. �

In particular, if F = {X}, we obtain that the product of a totally count-
ably compact space with not only countably compact spaces but also strongly
Fréchet countably compact filters is countably compact, generalizing [11, The-
orem 2]. More generally, the part (1 =⇒ 3) of Theorem 3.1 applied to principal
filters F = {X} and G = {Y }, for various instances of D = J allows to recover
results of J. Vaughan [11], and also to provide new variants. For instance:

Corollary 3.4. The product of a Lindelöf space and a compactly (F∧ω/F∧ω)-
meshable space is Lindelöf.

Denote by O(A) the family {O open: ∃A ∈ A, A ⊂ O} whenever A is a
family of subsets of a space X . Further, O(D) will denote the class of D-filters

D such that D = O(D)
↑
. A topological space X is feebly compact if and only if

{X} is O(Fω)-compact . Completely regular feebly compact spaces are called
pseudocompact.

Corollary 3.5. The product of a compactly (O(Fω)/O(Fω))-meshable space
and a feebly compact space is feebly compact.

Other applications of Theorem 3.1 to results of stability under product of
local topological properties (like Fréchetness and its variants) and of maps
(variants of perfect maps and of quotient maps) are presented in [9].

4. D-exotic filters

This section is devoted to a discussion of the additional assumption that F ∈
(J∅/D∅)#∨ in point (4) of Theorem 3.1. The very fact that such an additional
condition is needed is surprising. In our experience with D-compact filters,
this is the only instance we know of, where it makes a significant difference to
consider D-compact filters at a proper subset of X or simply D-compact filters
(that is, at X). As noticed before, this condition is always fulfilled if D = J.

Let D be a class of filters. A filter F is D-exotic if every ultrafilter U finer
than F is D-deep, that is, D∈ D and D ≤ U implies that D• ∈ U . Notice that
every fixed ultrafilter is D-exotic, whatever the class D is. A D-exotic filter is
non-trivial if it has a finer free D-deep ultrafilter. Recall [6] that a class J of
filters is D-steady if J ∨ D ∈ J whenever J ∈ J and D ∈ D.
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Theorem 4.1. Let D be an F1-steady class of filters and let F be a filter on
X. The following are equivalent.

(1) F is D-exotic;
(2) D• 6= ∅ whenever D is a D-filter D meshing with F ;
(3) F is D-compact on X endowed with the discrete topology.

If moreover D is composable and contains fixed ultrafilters, then the above
conditions are equivalent to

(4) for every space Y , and for every D-compact D-filter G , the filter F ×G
is D-compact in X × Y with discrete X.

Proof. (1) =⇒ (2).
Let D#F be a D-filter. Then there exists an ultrafilter U finer than both F and
D. Since F is D-exotic, U is D-deep so that D• ∈ U and consequently D• 6= ∅.

(2) =⇒ (3) because adhD = D• in the discrete topology of X.
(3) =⇒ (1).

Let U be an ultrafilter finer than F and let D∈ D with D ≤ U . Then D#F so
that adhD = D• 6= ∅. Observe that D• ∈ U . Otherwise, (D•)c ∈ U and we
would have (D•)

c
#D. Hence D∅ would be a free D-filter meshing with F and

so having empty adherence in the discrete topology of X. Hence U is D-deep.
(2) =⇒ (4).
Let X carry the discrete topology, let G be a D-compact D-filter on Y and

let D ∈D such that D#(F × G) . If D is composable, then D−G ∈ D. More-
over D−G#F . By (2), (D−G)

•
6= ∅. Let x ∈ (D−G)

•
. Then D{x}#G and

D{x} ∈ D, so that there exists a convergent filter L meshing with D{x}. Then(
{x}↑ × L

)
#D and {x}↑ × L is X × Y convergent. Hence adhX×Y D 6= ∅.

(4) =⇒ (2).
If F is not D-exotic, then there exists a free D-filter D#F . The filter D is
convergent, hence compact in Y = X⊕{D}. However, F×D is not D-compact.
Indeed, the filter generated by {(x, x) : x ∈ D}D∈D on X × Y is a D-filter
meshing with F × D, but its adherence in X × Y is empty if X carries the
discrete topology, since any filter finer than D is free, hence does not converge
in X. �

Corollary 4.2. Let D be an F1-steady class of filters. A filter F /∈ (J∅/D
∅

)#∨

if and only if there exists a free J-filter J meshing with F such that F ∨ J is
D-exotic.

So the assumption that F ∈ (J∅/D
∅

)#∨ in Theorem 3.1 is empty, if non-
trivial D-exotic filters do not exist. This is often the case, as shown by the
following observation.

Proposition 4.3. Let X be an infinite set. If the class D(X) of filters contains
the cofinite filter C on X, then there is no free D-deep ultrafilter on X, and
therefore, no non trivial D-exotic filter on X.

Proof. Assume that U is a free D-deep ultrafilter. Then U ≥ C because U is
free. Since C ∈ D, C• ∈ U and therefore C• 6= ∅; a contradiction. �
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Notice that if D ⊂ J are two classes of filters, then every J-exotic filter is also
D-exotic. In other words, if there is no non-trivial D-exotic filter, then there is
no non-trivial J-exotic filter. As the cofinite filter on an infinite set is almost
principal, hence productively Fréchet [6], the class of D-exotic filters is trivial
when D is the class of almost principal, of productively Fréchet, of strongly
Fréchet, of Fréchet, of countably tight, or of countably fan-tight filters, among
others (see [6] for details). Recall that a filter F is almost principal [6] if there
exists F0 ∈ F such that |F\F0| < ω for every F ∈ F .

This, however, does not take care of the case D = Fω. In fact, the existence
of Fω-exotic filters depends on the cardinality of the underlying set. Recall
that the cardinality of X is measurable if there exists a countably additive
{0, 1}-measure on 2X . The free ultrafilter formed by the sets of measure 1 is
then Fω-deep.

Theorem 4.4. The following are equivalent:

(1) card (X) is measurable;
(2) the cofinite filter on X is not a bisequential filter;
(3) there exists a non trivial Fω-exotic (ultra)filter on X ;
(4) there exists an Fω-compact (ultra)filter on X with the discrete topology;
(5) X endowed with the discrete topology is not realcompact.

Proof. (1) ⇐⇒ (2) is proven in [8, Example 10.15] though in the following
different language: the one point compactification of a discrete space X is
bisequential if and only if card(X) is not measurable. As the one point com-
pactification of X is X ⊕ C, its bisequentiality amounts to that of the filter
C. (1) ⇐⇒ (3) is clear and (3) ⇐⇒ (4) follows from Theorem 4.1. Finally
(1) ⇐⇒ (5) is [3, Theorem 12.2]. �

Consequently, if the cardinality of the set is non measurable, then the class
of (F/Fω)#≥-exotic filters, and therefore that of Fω-exotic filters is trivial.

Corollary 4.5. Let X be a set of non measurable cardinality and let F be a
bisequential filter on X. Then F × G is countably compact for every countably
compact filter G if and only if F is compact.

Proof. In view of Theorem 3.1 and Theorem 4.4, F × G is countably compact
for every countably compact filter G if and only if F is a compactly (F/Fω)#-
filter. As observed before, this condition is equivalent to compactness for a
bisequential filter. �

Corollary 4.6. Let X be a set of non measurable cardinality and let F be a

filter on X. Let F̂ denote the filter generated by F on the space X ⊕{F}. Then

F̂ × G is countably compact for every countably compact filter G if and only if
F is bisequential.

Proof. If F is bisequential, then F̂ is both compact and bisequential on X ⊕
{F}. In view of Corollary 4.5, F̂ ×G is countably compact for every countably
compact filter G.
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Conversely, if F is not bisequential, then there exists an ultrafilter U0 finer
than F such that every countably based filter D coarser than U is not finer than
F . In other words, for every countably based D ≤ U , there exists FD ∈ F such

that F c
D#D. Let UD denote an ultrafilter of D∨F c

D. The filter Û0 generated by

U0 on Y = X ⊕ {UD : D ∈ Fω,D ≤ U0} is countably compact. But F̂× Û0

is not countably compact. Indeed, there exists a free countably based filter D
coarser than U0 on X, because the cardinality of X is non measurable. The

filter D̃ generated on (X ⊕ {F}) × Y by {(x, x) : x ∈ D, D∈ D} is countably

based and meshes with F̂× Û0. But adh(X⊕{F})×Y D̃ = ∅. Indeed, if a filter

finer than D̃ has a convergent Y -projection then its Y -projection is one of the
ultrafilters UD. Then its (X ⊕ {F})-projection is also UD and therefore does
not mesh with F . Consequently, the (X ⊕ {F})-projection does not converge
in X ⊕ {F}. �

On the other hand, if the cardinality of X is measurable, an Fω-deep ul-
trafilter on X defines a P -point in the Čech-Stone compactification βX of the
discrete topological space X. Therefore, the set of ultrafilters finer than an
Fω-exotic filter is a closed subset of P -points of the compact set βX, hence a
compact set of P -points. But every countably compact space of P -points is
finite [3, 4.K.1]. Therefore:

Proposition 4.7. If the cardinality of X is measurable, the Fω-exotic filters
on X are the infima of finitely many Fω-deep ultrafilters on X.

Neither Theorem 4.4 nor Proposition 4.3 apply to the question of existence of
non-trivial F∧ω-exotic filters. However, we observe that F∧ω-exotic ultrafilters
can exist only on a countable set. Indeed,

Proposition 4.8. Let X be an uncountable set. If the class D(X) contains the
cocountable filter Cω then there is no non-trivial D-exotic filter that does not
contain any countable set.

Proof. Let F be a D-exotic filter that does not contain any countable set. There
is a free ultrafilter U finer than F which does not contain any countable set.
Therefore, U ≥ Cω. Moreover, as an ultrafilter of F , it is D-deep, and Cω ∈ D,
so that C•

ω ∈ U . A contradiction, because C•
ω = ∅. �

In particular, the cocountable filter on an uncountable set is countably deep.
Therefore F∧ω-exotic filters must contain a countable set. Moreover, no F∧ω-
filter on a countable set is free, so that every filter containing a countable set
is F∧ω-exotic.

Corollary 4.9. A free filter is F∧ω-exotic if and only if it contains a countable
set.

As a final remark on D-exotic filters, notice that a class D of filters generating
many D-exotic filters cannot contain the cofinite filter or the cocountable filter.
Roughly speaking, it seems that a naturally defined class of filters that does not
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contain the cofinite filter would have to be defined either in terms of cardinality
of a base — in which case the existence of exotic filters implies the existence
of measurable cardinals — or in terms of depth of the filter, in which case the
class would contain the cocountable filter. So, in the latter case, the question
of existence of exotic filters is, in a sense, reduced to sets of small cardinality.
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