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Lower homomorphisms on additive generalized
algebraic lattices
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∗

Abstract. In this paper, with the additivity property ([8]), the
generalized way-below relation ([15]) and the maximal system of sub-
sets ([6]) as tools, we prove that all lower homomorphisms between two
additive generalized algebraic lattices form an additive generalized al-
gebraic lattice, which yields the classical theorem: the function space
between T0-topological spaces is also a T0-topological space with re-
spect to the pointwise convergence topology.
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1. Introduction

The notions of a directed set, a way-below relation, a continuous lattice and
an algebraic lattice were introduced in [12], and applied in the study of domain
theory, topological theory, lattice theory, etc.

As a generalization, D. Novak introduced the notions of a system of subsets,
a generalized way-below relation, and defined a generalized continuous lattice
(M-continuous lattice) and a generalized algebraic lattice in [15].

In the study of topological theory and lattice theory, many researchers are
interested in the topological representation of a complete lattice. For example:
suppose (X, T ) is a topological space. All open sets T of a topological space
may be viewed as a frame and a frame may also be viewed as an open set
lattice. About Frame (Locale) theory, see ([13]).

On the other hand, suppose (X, C) is a co-topological space and C the set of
all closed subsets of a topological space on X . D. Drake, W. J. Thron, S. Papert
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considered C as a complete lattice (C,∪,∩, ∅, X)([11, 16]). But unfortunately
the correspondence between complete lattices and T0-topological spaces is not
one-to-one.

To solve the problem, on the basis of [1, 11, 15, 16], Deng also investigated
generalized continuous lattices. He introduced the notions of the maximal sys-
tem of subsets, additivity property, and homomorphisms in [5, 6, 7, 10]. Finally,
the question was settled in [8, 9], He obtained the equivalence between the cate-
gory of additive generalized algebraic lattices with lower homomorphisms and
the category of T0-topological spaces with continuous mappings.

This paper is a sequel of [2, 3, 4, 8, 9]. In section 2, we begin an overview
of generalized continuous lattices, Deng’s work, and some separation axioms,
which surveys as Preliminaries. In section 3, we prove that all lower homomor-
phisms between additive generalized algebraic lattices form a additive general-
ized algebraic lattice, and investigate some results about separation axioms.

2. Preliminaries

We introduce some notions for each area, i.e., generalized continuous lattices
and additive generalized algebraic lattices.

2.1. Generalized Continuous Lattices.

In [15], D. Novak introduced the notions of a generalized way-below relation
and a system of subsets.

Let (P,≤) be a complete lattice, ≺ is said to be a generalized way-below
relation if (i) a ≺ b ⇒ a ≤ b, (ii) a ≤ b ≺ c ≤ d ⇒ a ≺ d.

Obviously, it is a natural generalization of a way-below relation ([12]).
M ⊆ 2P is said to be a system of subsets of P , if for a ∈ P , there exists

S ∈ M , such that ↓ a =↓ S, where ↓ a = {b | b ≤ a}, ↓ S = ∪{↓ c | c ∈ S}.
There are three kinds of common used system of subsets: (i) the system of all
finite subsets, (ii) the system of all directed sets and (iii) the system of all
subsets.

By means of the notion of a system of subsets, he defined a generalized way-
below relation. Suppose M is a system of subsets. For a, b ∈ P , a is said to be
way-below b with respect to M , in symbols a ≺M b, if for every S ∈ M with
b ≤ ∨S, then a ∈↓ S.

Clearly ≺M is a generalized way-below relation induced by M ([15]). We
will denote ≺M as ≺.

(P,≺) is called a generalized continuous lattice, if for every a ∈ P , we have
a = ∨ ⇓ a, where ⇓ a = {b | b ≺ a}.

a ∈ P is called a compact element, if a ≺ a. Let K(≺) = {a ∈ P | a ≺ a}.
(P,≺) is called a generalized algebraic lattice, if for every a ∈ P , we have
a = ∨{↓ a ∩ K(≺)}. For further study, see [1, 17].
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2.2. Additive Generalized Algebraic Lattices.

Suppose (P,≺) is a generalized continuous lattice. Deng introduced the
notion of a maximal system of subsets generated by ≺, that is,

M(≺) = {S ⊆ P | ∀a ∈ P with a ≺ ∨S, then a ∈↓ S}.
Suppose (P,≺) is a generalized algebraic lattice. Deng defined a new prop-

erty: (P,≺) is additivity, if for a, b, c ∈ P with a ≺ b∨ c implies a ≺ b or a ≺ c

([8, 9]).
He investigated the connection between additive generalized algebraic lat-

tices and T0-topological spaces as follows.
On one hand, suppose (P,≺) is a generalized algebraic lattice, let X = K(≺),

and T : P → 2X , T (a) =↓ a ∩ K(≺). If (P,≺) is additive, then T satisfies: (1)
T (0) = ∅, (2) T (1) = X , (3) for S ∈ M(≺) = M(K(≺)), T (∨S) = ∪T (S),
(4) for S ⊆ P, T (∧S) = ∩T (S), (5) T (a ∨ b) = T (a) ∪ T (b).

If C = T (P ), then (X, C) is a T0 co-topological space, and (P,≺) is isomor-
phic to (X, C) (see [8, 9]).

On the other hand, assume (X, C) is a co-topological space and let
Q = {{x}− | x ∈ X} be the collection of closure of all singletons. Clearly
Q is a ∨−base for C, i.e., a ∈ C, a is a closed subset, and we have a = ∨ ↓ a.

M(Q) = {S | S ⊆ X, for a ∈ Q, a ≤ ∨S we have a ∈↓ S} is a system
of subsets induced by Q, then (C,≺M(Q)) is a additive generalized algebraic
lattice with K(≺M(Q)) = Q. In this case, a ≺M(Q) b, for a, b ∈ C if and only

if a ⊆ {x}− for some x ∈ b. It is clear that ≺M(Q) is the specialization order
([12]) which is essentially in topological theory and domain theory.

Furthermore, (C,≺M(Q)) is an example of additive generalized algebraic
lattice. For another example in commutative ring, see [9].

Suppose (P1,≺1), (P2,≺2) are two generalized continuous lattices.
h : P1 → P2 is said to be a lower homomorphism if it preserves arbitrary
joins and the generalized way-below relations. Thus a lower homomorphism h

is residuated. If g be its upper adjoint, we have (g, h) is a Galois connection
([7]).

The lower homomorphism also corresponds to the closed mapping. So he
obtained the equivalence between the category of additive generalized algebraic
lattices with lower homomorphisms and the category of T0-topological spaces
with continuous mappings in [8, 9].

From the point of view of Deng’s work ([8, 9]), an additive generalized alge-
braic lattice is an algebraic abstraction of a topological space. Thus topological
theory may be directly constructed on it. The work will benefit the study of
the theory of topological algebra and the possible application on additive gen-
eralized algebraic lattices. In [2, 3, 4], we constructed Stone compactification,
Tietze extension theorem, Separation axioms.

In this paper, we will prove that all lower homomorphisms between additive
generalized algebraic lattices form an additive generalized algebraic lattice.

In [2, 3, 4], we defined some separation axioms.
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Definition 2.1. (P,≺) is said to be regular, if for x ∈ K(≺), b ∈ P , x 6≺ b,

then x ∧ b = 0.

Definition 2.2. A family of elements 〈cα | α ∈ [0, 1] & α is a rational number 〉
is called a scale of (P,≺), if it satisfies: for α < β, we have cα ≺ cβ.

For a, b ∈ P , if there exists a scale 〈cα〉, such that a ≤ c0, c1 ≤ b. We use

the symbol a � b to indicate the relation.

(P,≺) is said to be completely regular, if ∀a ∈ L, a = ∧{b | a � b}.

Definition 2.3. (P,≺) is said to be normal, if for a, b ∈ P , a ∧ b = 0, then

there exist c, d ∈ P , such that a ∧ c = 0, b ∧ d = 0 and c ∨ d = 1.

For other notions and results cited in this paper, see [2, 3, 4, 8, 9, 15].

3. Lower homomorphisms

Definition 3.1. Suppose P1 and P2 are two additive generalized algebraic lat-

tices. ∀p ∈ K(≺1), q ∈ K(≺2), we define

〈p, q〉(a) =

{

q if p ≺1 a

0 if p 6≺1 a
∀a ∈ P1.

Lemma 3.2. 〈p, q〉 is a lower homomorphism.

Proof. First, we have to show that 〈p, q〉 preserves arbitrary join.
Suppose {aα} ⊆ P1. If p ≺1

∨

aα, we obtain 〈p, q〉(
∨

aα) = q. Since P1 is
additive, by p ≺1

∨

aα, there exists aα0
, such that p ≺1 aα0

. So 〈p, q〉(aα0
) = q,

thus 〈p, q〉(
∨

aα) = q =
∨

〈p, q〉(aα).
If p 6≺1

∨

aα, then 〈p, q〉
∨

aα = 0. By this, we have p 6≺1 aα for every α. So
〈p, q〉(aα) = 0, which implies that 〈p, q〉(

∨

aα) = 0 =
∨

〈p, q〉(aα).
Second, we have to prove that 〈p, q〉 preserves the generalized way-below

relation.
Given a, c ∈ P1, and a ≺1 c, if p ≺1 a, then p ≺1 c, we have 〈p, q〉(a) = q,

〈p, q〉(c) = q, thus 〈p, q〉(a) ≺2 〈p, q〉(c); if p 6≺1 a, p ≺1 c, then 〈p, q〉(a) = 0,

〈p, q〉(c) = q, thus 〈p, q〉(a) ≺2 〈p, q〉(c); if p 6≺1 a, p 6≺1 c, then 〈p, q〉(a) = 0,

〈p, q〉(c) = 0, thus 〈p, q〉(a) ≺2 〈p, q〉(c).
By the above proof, we obtain that 〈p, q〉 also preserves the generalized way

below relation. �

By Lemma 3.2, 〈p, q〉 is a lower homomorphism. Let gpq be its upper adjoint.
Then (〈p, q〉, gpq) is a Galois connection.

Let [P1 → P2] be the set of all lower homomorphisms from P1 to P2 and
suppose h1, h2 ∈ [P1 → P2]. Then we may define h1 ∨ h2 : P1 → P2, for every
p ∈ K(≺1), (h1∨h2)(p) = h1(p)∨h2(p). Similarly, (h1∧h2)(p) = h1(p)∧h2(p).
So [P1 → P2] is a complete lattice with the minimal element 0 and the maximal
element 1, where 0(p) = 0, 1(p) = 1 for every p ∈ K(≺1).

We also define h1 ≤ h2, if for every p ∈ K(≺1), we have h1(p) ≤2 h2(p),
where ≤2 is the partial order on P2. Similarly, h1 ≺∗ h2, if for every p ∈ K(≺1),
we have h1(p) ≺2 h2(p).
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Lemma 3.3. ≺∗ is a generalized way below relation on [P1 → P2].

Proof. We have to show (1) and (2),
(1) h1 ≺∗ h2 ⇒ h1 ≤ h2,

(2) h1 ≤ h2 ≺∗ h3 ≤ h4 ⇒ h1 ≺∗ h4.
The proof is trivial.

�

Lemma 3.4. 〈p, q〉 is a compact element of [P1 → P2].

Proof. By the definition of ≺∗, the proof is trivial. �

Clearly, K(≺∗) = {〈p, q〉 | p ∈ K(≺1), q ∈ K(≺2)}.

Lemma 3.5. If h is a lower homomorphism, then ∀p ∈ K(≺1), h(p) ∈ K(≺2).

Proof. See [8, 9]. �

Lemma 3.6. If h ∈ [P1 → P2], q ≤2 h(p), we have 〈p, q〉 ≺∗ h.

Proof. ∀a ∈ P1, 〈p, q, 〉(a) =

{

q if p ≺1 a

0 if p 6≺1 a

If p ≺1 a, 〈p, q〉(a) = q ≤2 h(p) ≤2 h(a); if p 6≺1 a, 〈p, q〉(a) = 0 ≤2 h(a).
Thus we have 〈p, q〉(a) ≤2 h(a) for all a ∈ P1, thus 〈p, q〉 ≤ h. By Lemma 3.4,
since 〈p, q〉 is a compact element, we obtain 〈p, q〉 ≺∗ h. �

Lemma 3.7. If h ∈ [P1 → P2], if p ∈ K(≺1), then h(p) = 〈p, h(p)〉(p).

Proof. For p ∈ K(≺1), since h is a lower homomorphism, h(p) ∈ K(≺2) (see
[8]). Thus we have h(p) = 〈p, h(p)〉(p). �

Note 1.
∨

〈pα, qα〉 does not preserve the way below relation in general.

Example 3.8. Without the assumption of additive property, Lemma 3.7 does
not hold.

Suppose P1, P2 are two classical algebraic lattices [12]. If K(≺2) 6= P2, there
exists e ∈ P2, e 6∈ K(≺2). Since P2 is algebraic, there exists a directed set
{qα} ⊆ K(≺2), such that e = ∨qα. We define

〈0, qα〉 : P1 → P2, ∀x ∈ P1, 〈0, qα〉(x) = qα.
ce : P1 → P2, ∀x ∈ P1, ce(x) = e.
It is easy to show that {〈0, qα〉} is also a directed set in [P1 → P2], which

preserves the way-below relation, but ce = ∨〈0, qα〉 does not hold.

Proposition 3.9. ∀h ∈ [P1 → P2], h =
∨

p∈K(≺1)

∨

q≤2h(p)

〈p, q〉.

Proof. For every a ∈ P1 and since P1 is generalized algebraic, we have
a = ∨{p | p ∈ K(≺1)}, and h preserves arbitrary joins. Thus it suffices to prove
that for every p ∈ K(≺1), h(p) =

∨

p∈K(≺1)

∨

q≤2h(p)

〈p, q〉(p) =
∨

q≤2h(p)

〈p, q〉(p).

Since q ≤2 h(p), we have 〈p, q〉(p) = q ≤2 h(p). By Lemma 3.7, 〈p, h(p)〉(p) =
h(p), we obtain h(p) =

∨

q≤2h(p)

〈p, q〉(p). �
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Proposition 3.10. Suppose P1 and P2 are two generalized algebraic lattices.

Then [P1 → P2] is a generalized algebraic lattice.

Proof. By Proposition 3.9, we have h = ∨(↓ h∪K(≺∗)) for h ∈ [P1 → P2]. So
[P1 → P2] is a generalized algebraic lattice. �

Proposition 3.11. [P1 → P2] is additive.

Proof. Suppose 〈p, q〉 ∈ K(≺∗), h1, h2 ∈ [P1 → P2], and 〈p, q〉 ≺∗ h1 ∨ h2. We
have 〈p, q〉(p) = q ≺2 (h1 ∨ h2)(p) = h1(p) ∨ h2(p). Since P2 is additive, we
have q ≺∗ h1(p), or q ≺∗ h2(p). By this, we obtain 〈p, q〉 ≺∗ h1, or 〈p, q〉 ≺∗ h2.
Thus [P1 → P2] is additive. �

By Propositions 3.10 and 3.11, we obtain [P1 → P2] is an additive gener-
alized algebraic lattice. From the point of of view of topological theory, the
result corresponds to the classical theorem: the function space between two
T0-topological spaces is also T0-topological space with respect to the pointwise
convergence topology.

Proposition 3.12. If (P2,≺2) is regular, then [P1 → P2] is also regular.

Proof. For 〈p, q〉 ∈ K(≺∗), h ∈ [P1 → P2], if 〈p, q〉 6≺∗ h, by the definition
of 〈p, q〉, we have 〈p, q〉(p) 6≺2 h(p), so q 6≺2 h(p). Since (P2,≺2) is regular,
we obtain q ∧ h(p) = 0, which implies that 〈p, q〉 ∧ h = 0, thus [P1 → P2] is
regular. �

Proposition 3.13. If (P2,≺2) is completely regular, then [P1 → P2] is also

completely regular.

Proof. For h1 � h2, by the definition of ≺∗, it is equivalent to: for every p ∈
K(≺1), h1(p)�h2(p). Since (P2,≺2) is completely regular, so h1(p) = ∧{h2(p) |
h1(p)�h2(p)}, which implies that h1 = ∧{h2 | h1�h2}. Proposition 3.13 holds.

�

Proposition 3.14. If (P2,≺2) is normal, then [P1 → P2] is also normal.

Proof. If h1, h2 ∈ [P1 → P2], and h1 ∧ h2 = 0, then for any p ∈ K(≺1),
h1(p) ∧ h2(p) = 0.

For h1(p) ∧ h2(p) = 0, since (P2,≺2) is normal, there exist cp, dp ∈ P2,
such that h1(p) ≺2 cp, h2(p) ≺2 dp, and cp ∨ dp = 1. Let hcp

=
∨

q≺2cp

〈p, q〉,

hdp
=

∨

q≺2dp

〈p, q〉, so h1 ≺∗ hcp
and h2 ≺∗ hdp

.

Let hc = ∧p∈K(≺1)hcp
, hd =

∨

p ∈ K(≺1)hdp
. It is easy to prove h1 ≺∗ hc,

h2 ≺∗ hd, and hc ∨ hd = 1. Thus [P1 → P2] is also normal. �

Based on the above work, we constructed Tietze extension theorem in [3].

Proposition 3.15 (Tietze extension theorem).
(P,≺) is normal iff for every closed lower sublattice (Q,≺Q) of (P,≺), and a

lower homomorphism h : (Q,≺Q) → (CJ ,≺J), there exists a lower homomor-

phism H : (P,≺) → (CJ ,≺J), such that H |Q = h
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The proof can be seen in [3].
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