Stone compactification of additive generalized-algebraic lattices

XUEYOU CHEN, QINGGUO LI AND ZIKE DENG∗

ABSTRACT. In this paper, the notions of regular, completely regular, compact additive generalized algebraic lattices ([7]) are introduced, and Stone compactification is constructed. The following theorem is also obtained.
Theorem: An additive generalized algebraic lattice has a Stone compactification if and only if it is regular and completely regular.

2000 AMS Classification: 06B30, 06B35, 54D35, 54H10

Keywords: additivity, generalized way-below relation, lower homomorphism, upper adjoint.

1. Introduction

The notions of directed sets, way-below relations, continuous lattices, algebraic lattices were introduced in [12], and applied in the study of domain theory, topological theory, lattice theory, etc..

As a generalization, D. Novak introduced the notions of generalized continuous lattices (M-continuous lattices) and generalized algebraic lattices in [15].

In the study of topological theory and lattice theory, many researchers are interested in the topological representation of a complete lattice. For example: suppose \((X, T)\) is a topological space, all open sets \(T\) of a topological space may be viewed as a frame, and a frame may also be viewed as an open sets lattice. For the theory of Frame (Locales), please refer to [13].

On the other hand, suppose \((X, C)\) is a co-topological space. \(C\) is the set of all closed subsets. D. Drake, W. J. Thron and S. Papert considered \(C\) as a complete lattice \((C, \cup, \cap, \emptyset, X)\) ([11, 16]). But unfortunately the correspondence between complete lattices and \(T_0\)-topological spaces is not one-to-one.

∗This work was partially supported by the National Natural Science Foundation of China (Grant No. 10471035/A010104) and Natural Science Foundation of Shandong Province (Grant No. 2003ZX13).
To solve the problem, Deng also investigated generalized continuous lattices on the basis of [1, 11, 15, 16]. He introduced the notions of maximal systems of subsets, additivity property, homomorphisms, direct sums, lower sublattices in [5, 6, 9, 10]. Finally, the question was settled in [7, 8]. He obtained the equivalence between the category of additive generalized algebraic lattices with lower homomorphisms and the category of T_0-topological spaces with continuous mappings.

This paper is a sequel of [2, 7, 8]. In Section 2, we begin with an overview of generalized continuous lattices, Deng’s work, which surveys Preliminaries. In Section 3, we introduce the notions of regular, completely regular and compactness on an additive generalized algebraic lattice, and obtain a Stone compactification.

2. Preliminaries

We introduce some notions for each area, i.e., generalized continuous lattices and additive generalized algebraic lattices.

In [15], D. Novak introduced the notions of generalized way-below relations and systems of subsets.

Let (P, \leq) be a complete lattice, \prec is said to be a generalized way-below relation if (i) $a \prec b \Rightarrow a \leq b$, (ii) $a \leq b \prec c \leq d \Rightarrow a \prec d$.

Obviously, it is a natural generalization of the notion of a way-below relation ([12]).

$M \subseteq 2^P$ is said to be a system of subsets of P, such that $\{a\} = S$, where $\{a\} = \{b \mid b \leq a\}, \downarrow S = \uparrow \{a \mid a \in S\}$.

There are three kinds of common used system of subsets: (i) the system of all finite subsets, (ii) the system of all directed sets and (iii) the system of all subsets.

By means of the notion of systems of subsets, he defined a generalized way-below relation. Suppose M is a system of subsets. For $a, b \in P$, a is said to be way-below b with respect to M, in symbols $a \prec_M b$, if for every $S \in M$ with $b \leq \vee S$, then $a \in \downarrow S$.

Clearly \prec_M is a generalized way-below relation induced by M ([15]). We will denote \prec_M as \prec.

(P, \prec) is called a generalized continuous lattice, if for every $a \in P$, we have $a = \vee \downarrow a$, where $\downarrow a = \{b \mid b \prec a\}$.

$a \in P$ is called a compact element, if $a \prec a$. Let $K(\prec) = \{a \in P \mid a \prec a\}$.

(P, \prec) is called a generalized algebraic lattice, if for every $a \in P$, we have $a = \vee \{a \cap K(\prec)\}$. Further study, see [1, 17].

2.2. Additive Generalized Algebraic Lattices.

Suppose (P, \prec) is a generalized continuous lattice, Deng introduced the notion of a maximal system of subsets generated by \prec, that is,
Stone compactification of additive generalized-algebraic lattices

3. Stone Compactification

In the section, \((P, \prec)\) denotes an additive generalized algebraic lattice. It is \(T_0\), but not \(T_1\) ([7]). \(K(\prec)\) is the set of all compact elements of \((P, \prec)\).

Definition 3.1. For \(a \in P\), \(a^* = \bigwedge \{x | a \lor x = 1\}\)
Note 1. Since \((P, \prec)\) is a complete lattice, we have \(a \lor 1 = 1\) for every \(a \in P\), so the existence of \(a^*\) is obvious.

Proposition 3.2.

(1) \(\forall a \in P,\ a \lor a^* = 1\)
(2) \(a \land b \Rightarrow b^* \leq a^*\)
(3) \(a \land b = 0 \Rightarrow a \leq b^*\)

Proof. (1) \(\forall y \in K\langle\prec\rangle\), if \(y \prec a\), then \(y \prec a \lor a^*\). If \(y \not\prec a\), then \(\exists x \in \{x \mid a \lor x = 1\},\ y \prec y \leq 1 = a \lor x\). Since \((P, \prec)\) is additive, we have \(y \prec x\), which implies \(y \prec a^*\). Hence \(y \prec a \lor a^*\). Furthermore \((P, \prec)\) is algebraic, \(1 = \lor(\lor 1 \land k(\prec))\), we obtain \(a \lor a^* = 1\).

(2) It is clear.

(3) \(\forall y \prec a\), if \(y = 0\), certainly \(y \prec b^*\). If \(y \neq 0\), \(a \land b = 0\), so \(b \land y = 0\), which implies \(y \not\prec b\). By (1), we have \(y \prec 1 = b \lor b^*\). Since \((P, \prec)\) is additive, so \(y \prec b^*\). Thus

\[
a = \lor \downarrow a = \lor \{y \mid y \prec a\} \leq b^*
\]

Note 2. On \((P, \prec)\), \(\forall a \in P,\ a \land a^* = 0\) is false in general.

We introduce the notion of regular on \((P, \prec)\).

Definition 3.3. \((P, \prec)\) is said to be regular, if for \(x \in K\langle\prec\rangle\), \(b \in P,\ x \neq b\), then \(x \land b = 0\).

Note 3. Let \((X, T)\) be a point-set topological space, if \(\forall z \in X,\ a \subseteq X,\ z \not\in A\) if and only if \(\{z\}^- \not\subseteq A\), which equivalent to \(\{z\}^+ \not\in A\) according to the definition of \(\prec\).

If \((X, T)\) is regular, then there exist \(U, V\) two open sets, such that \(z \in U, A \subseteq V\) and \(U \cap V = \emptyset\). We obtain \(\{z\}^- \cap A = \emptyset\). Otherwise if \(\{z\}^- \cap A \neq \emptyset\), there exists \(y \in \{z\}^+ \cap A\), so \(y \in A \subseteq V\). By \(y \in \{z\}^+\), we have \(\{z\} \cap V \neq \emptyset\), thus \(z \in V\), a contradiction.

Definition 3.3 coincides with the above definition when \((X, C)\) is a co-topological space.

The notion of compactness is defined as follows.

Definition 3.4. \((P, \prec)\) is said to be compact if for every \(D \subseteq P,\ \land D = 0\) implies that there exists a finite subset \(D_0 \subseteq D\) satisfying \(\land D_0 = 0\). That is to say, if \(D\) has the finite intersection property, then \(\land D \neq 0\).

We introduce the notions of a scale, completely regular on \((P, \prec)\).

Definition 3.5. A family of elements \(\{c_\alpha \in P \mid \alpha \in [0, 1] \& \alpha\) is a rational number\) is called a scale of \((P, \prec)\), if it satisfies: for \(\alpha < \beta\), we have \(c_\alpha \prec c_\beta\).

For \(a, b \in P\), if there exists a scale \(\{c_\alpha\}\), such that \(a \leq c_0,\ c_1 \leq b\). We denote the relation by \(a \prec b\).

\((P, \prec)\) is said to be completely regular, if \(\forall a \in P,\ a = \land \{b \mid a \prec b\}\).
Suppose \((P_{\alpha}, \prec_{\alpha})\) is a family of additive generalized algebraic lattices, \(\alpha \in \Lambda\) (a index set), then \((\Pi P_{\alpha}, \prec_{\Pi})\) is the direct product, and \(pr_{\alpha} : \Pi P_{\alpha} \rightarrow P_{\alpha}\), \(\forall a \in \Pi P_{\alpha}, pr_{\alpha}(a) = a_{\alpha}, pr_{\alpha}\) is onto upper adjoint. \(q_{\alpha} : (P_{\alpha}, \prec_{\alpha}) \rightarrow (\Pi P_{\alpha}, \prec_{\Pi})\) is the lower homomorphism of \(pr_{\alpha}\) ([9]).

By the definitions of \(pr_{\alpha}\) and \(q_{\alpha}\), we know that \(q_{\alpha}\) preserves the generalized way-below relation, and obtain the following proposition.

Proposition 3.6. Suppose \((P_{\alpha}, \prec_{\alpha})\) is regular, completely regular for every \(\alpha \in \Lambda\), then \((\Pi P_{\alpha}, \prec_{\Pi})\) is also regular, completely regular.

Proof. It is trivial. \(\square\)

Since every inclusion mapping is a lower homomorphism, it is obvious that every lower sublattice of regular, completely regular \((P, \prec)\) is also regular, completely regular.

Proposition 3.7 (Tychonoff product theorem).

Suppose for every \(\alpha \in \Lambda\), \((P_{\alpha}, \prec_{\alpha})\) is compact, then \((\Pi P_{\alpha}, \prec_{\Pi})\) is also compact.

Proof. It is similar to Bourbaki’s proof ([14]).

(1) Let \(B \subseteq \Pi P_{\alpha}\) be the maximal with respect to the finite intersection property ([14])

(2) \(pr_{\alpha} : \Pi P_{\alpha} \rightarrow P_{\alpha}\) is the onto upper adjoint, then for some \(\alpha \in \Lambda\), \(\{pr_{\alpha}(b) \mid b \in B\}\) also has the finite intersection property. Since \((P_{\alpha}, \prec_{\alpha})\) is compact, by Definitions 3.4, \(\bigwedge \{pr_{\alpha}(b) \mid b \in B\} \neq 0\), so there exists \(c \in K(\prec_{\alpha})\), \(c \neq 0, c \prec \bigwedge \{pr_{\alpha}(b) \mid b \in B\}\).

(3) \(q_{\alpha}\) is the lower homomorphism of \(pr_{\alpha}\), so by \(c \prec_{\alpha} pr_{\alpha}(b)\), we obtain \(q_{\alpha}(c) \prec b\) for every \(b \in B\), and \(q_{\alpha}(c) \neq 0, q_{\alpha}(c) \in \Pi P_{\alpha}\). Thus \(\bigwedge B \neq 0\), which shows that \((\Pi P_{\alpha}, \prec_{\Pi})\) is compact. \(\square\)

Suppose \(I = [0, 1]\), the topology on \(I\) induced by \(\rho(x, y) = |x - y|\). \(C_{I}\) denotes the family of all closed subsets, thus \((I, C_{I})\) is a co-topology on \(I\).

According to Proposition 4.2 ([7]), let \(Q = \{\{r\}^{-} \mid r \in [0, 1]\}\), \(M(Q)\) generated by \(Q\). \(C_{I}\) ordered by inclusion relation, forms a complete lattice. The generalized way-below relation \(\prec_{I}\) induced by \(M(Q)\), and \(M(\prec_{I}) = M(Q)\). Then \((C_{I}, \prec_{I})\) is an additive generalized algebraic lattice. By Definitions 3.3, 3.4 and 3.5, \((C_{I}, \prec_{I})\) is regular, completely regular and compact. Furthermore, by Propositions 3.6 and 3.7, \((\Pi C_{I}, \prec_{\Pi})\) is also regular, completely regular and compact.

By [7] Lemma 4.5, the system of subsets \(M(\prec_{I})\) is the collection of classes of closed subsets such that the union of any class is still closed. i.e., \(\forall S \subseteq \bigcup S\) for every \(S \in M(\prec_{I})\), and \(\bigcup S \subseteq C_{I}\).

By the property of closed sets, for \(D \subseteq C_{I}\), we have \(\bigwedge D = \bigcap D \subseteq C_{I}\).

Lemma 3.8. For \(a, b \in P\), suppose \(a \prec b\), then there exists a lower homomorphism \(h : (P, \prec) \rightarrow (C_{I}, \prec_{I})\), such that \(a \leq g(0)\) and \(g(I) \leq b\).
Proof. The upper adjoint \(g : (C_1, \prec_1) \rightarrow (P, \prec) \) is first defined. Since \(a \prec b \), then there exists a scale \(\{c_\alpha\} \), such that \(a \leq c_0, c_1 \leq b \) and \(c_\alpha \prec c_\beta \) for \(\alpha < \beta \). This implies \(\{c_\alpha\} \) is an increasing function of \(\alpha \).

For \([\alpha, \beta] \in C_1 \), \(g([\alpha, \beta]) = e_\alpha \wedge d_\beta \), where \(e_\alpha = \nu_{r \geq \alpha} c_r \), \(d_\beta = \nu_{r < \beta} c_r \). By [5] Theorem 3, we obtain \(F \lor \text{Lemma 4.5} \).

(1) For \((C_1, \prec_1) \), the closed interval is \([\alpha, \beta] \), and the elementary closed set \(F_\lambda = \bigcup_{i=1}^n [\alpha_i, \beta_i] \), the closed set \(F = \cap F_\lambda \). Since for every \(S \in M(\prec_1) \), by [7] Lemma 4.5, \(\forall S = \cup S \). So for every \(S \in M(\prec_1) \), we have \(g(S) \in M(\prec) \).

(2) By \(\forall S = \cup \) \(S \), we obtain \(g(\forall S) = g(\cup S) = \forall g(S) \) for every \(S \in M(\prec_1) \).

(3) Since for \(S \subseteq C_1 \), \(\forall S = \cap S \), we know that \(g \) also preserves arbitrary meets, i.e., \(g(\land S) = \land g(S) \).

By the above proof, \(g \) is an upper adjoint. Thus \(h : (P, \prec) \rightarrow (C_1, \prec_1) \) is a lower homomorphism.

\[
\begin{align*}
g(I) &= g([0,1]) = e_0 \wedge d_1 \leq b \\
g(0) &= g([\{0\}]) = e_0 \wedge d_0 \geq a.
\end{align*}
\]

Proposition 3.9 (Tychonoff embedding theorem).

Suppose \((P, \prec) \) is an additive generalized algebraic lattice, then \((P, \prec) \) is regular, completely regular iff \((P, \prec) \) is isomorphic to a lower sublattice of \((\Pi C_1, \prec_{\Pi}) \).

Proof. By Proposition 3.6, \((\Pi C_1, \prec_{\Pi}) \) is regular, completely regular, and every lower sublattice of \((\Pi C_1, \prec_{\Pi}) \) is also regular, completely regular, so the proof is trivial.

On the other hand, suppose \((P, \prec) \) is an additive generalized algebraic lattice, let \(S = \{(g_a, h_a) \mid g_a : (C_1, \prec_1) \rightarrow (P, \prec) \text{ is an upper adjoint, } h_a : (P, \prec) \rightarrow (C_1, \prec_1) \text{ is a lower homomorphism of } g_a, S \neq \emptyset \} \).

Taking:
\(H : (P, \prec) \rightarrow (\Pi C_1, \prec_{\Pi}) \) the direct product of \((C_1, \prec_1) \) by index set of \(S, \forall a \in P, H(a) = \Pi h_a(a) \).

By the property of \(\{h_a\} \), \(H \) is also a lower homomorphism, so \(G : (\Pi C_1, \prec_{\Pi}) \rightarrow (P, \prec) \) is the upper adjoint of \(H \).

We show \((P, \prec) \) is isomorphic to a lower sublattice of \((\Pi C_1, \prec_{\Pi}) \), it suffices to prove \(H \) is one-to-one on \(K(\prec) \).

\(\forall x, y \in K(\prec), x \neq y, \) then we may assume \(x \neq y \). Since \((P, \prec) \) is regular, so \(x \wedge y = 0 \), which follows that \(H(x) \neq H(y) \).

Thus \((P, \prec) \) is isomorphic a lower sublattice of \((\Pi C_1, \prec_{\Pi}) \), which generated by \(H(K(\prec)) \), and \(H(K(\prec)) \subseteq K(\prec_{\Pi}) \).

Proposition 3.10 (Stone compactification).

Suppose \((P, \prec) \) is regular, completely regular, then there exists a regular, completely regular compact additive generalized algebraic lattice \((\beta P, \prec_{\beta}) \), such that \((P, \prec) \) is isomorphic to a dense lower sublattice of \((\beta P, \prec_{\beta}) \).
Proof. By Proposition 3.9, \((P, \prec)\) is isomorphic to a lower sublattice of \((\Pi C_1, \prec_\Pi)\). Let \((\beta P, \prec_\beta)\) be the closure of the lower sublattice, and the compactness of \((\beta P, \prec_\beta)\) follows from Proposition 3.7. \hfill \Box

In general, \((\beta P, \prec_\beta)\) is said to be a Stone compactification of \((P, \prec)\).

Note 4. Clearly, if the generalized way-below relation \(\prec\) satisfies the interpolation property, then \((P, \prec)\) is completely regular by The Choice Axiom.

As the end of this paper, we embark on an alternative description of \((\beta P, \prec_\beta)\) by means of ideals of \((P, \prec)\).

Definition 3.11. \(I \subseteq P\) is said to be an ideal if (1) for any finite \(E \subseteq I\), \(\forall E \in I\), (2) \(z \in I, x \leq z\) implies \(x \in I\).

\(\text{Idl}(P)\) denotes all ideals of \(P\), and certainly \(\text{Idl}(P)\) is a complete lattice, the order is the inclusion order.

\[\forall I \in \text{Idl}(P), \downarrow I = \{J \mid J \subseteq I\}, \text{where } J \subseteq I \text{ iff } J \subseteq I \]

Definition 3.12. For \(I, J \in \text{Idl}(P)\), a binary relation on \(\text{Idl}(P)\) is defined as: \(I \prec^* J\) if and only if \(\forall I \prec \forall J\) holds on \((P, \prec)\).

Lemma 3.13 ([15]). \(\prec^*\) is a generalized way-below relation on \(\text{Idl}(P)\).

Proof. (1) \(I \prec^* J\) if and only if \(\forall I \prec \forall J\) holds on \((P, \prec)\). Then \(\forall a \in I, a \leq \forall I \prec \forall J\), so \(a \in J\), that is, \(I \subseteq J\).

(2) \(I_1 \leq I_2 \prec^* I_3 \leq I_4\), which implies that \(\forall I_1 \leq \forall I_2 \prec \forall I_3 \leq \forall I_4\) holds on \((P, \prec)\). So we have \(\forall I_1 \prec \forall I_4\), thus \(I_1 \prec^* I_4\). \hfill \Box

Lemma 3.14. \(\text{Idl}(P)\) is algebraic.

Proof. For \(I, J \in \text{Idl}(P)\), \(I \prec^* J\) implies \(\forall I \prec \forall J\) on \((P, \prec)\). Since \((P, \prec)\) is algebraic, there exists \(c \in K(\prec)\), such that \(\forall I \leq c \leq \forall J\). Furthermore \(\downarrow c \in \text{Idl}(P)\).

By \(c \in K(\prec)\), so \(c \prec c\) on \((P, \prec)\), hence \(\downarrow c \prec^* \downarrow c\) on \(\text{Idl}(P)\). i.e., \(\downarrow c \in K(\prec^*)\) by Definition 3.11.

Considering \(I \leq \downarrow c \leq J\) and \(\downarrow c \in K(\prec^*)\), thus \((\text{Idl}(P), \prec^*)\) is algebraic. \hfill \Box

Lemma 3.15. \(\text{Idl}(P)\) is continuous.

Proof. It is trivial ([4]). \hfill \Box

Lemma 3.16. \(\text{Idl}(P)\) is additive.

Proof. For \(I \prec^* J_1 \vee J_2\), where \(I, J_1, J_2 \in \text{Idl}(P)\), then on \((P, \prec)\), \(\forall I \prec \forall (J_1 \vee J_2) = (\forall J_1) \vee (\forall J_2)\) holds. Since \((P, \prec)\) is additive, it follows that \(\forall I \prec \forall J_1\) or \(\forall I \prec \forall J_2\), thus \(I \prec^* J_1\) or \(I \prec^* J_2\), which proves Lemma 3.16. \hfill \Box

Proposition 3.17. \((\text{Idl}(P), \prec^*)\) is an additive generalized algebraic lattice.

Proof. By Lemmas 3.14, 3.15, 3.16. \hfill \Box

Lemma 3.18. For any regular \((P, \prec)\), \(\text{Idl}(P)\) is also regular.
Proof. It is obvious that on \((\text{Idl}(P), \prec^*)\), \(K(\prec^*) = \{ \downarrow x \mid x \in K(\prec) \}\). Then \(\forall \downarrow x \in K(\prec^*), \forall J \in \text{Idl}(P)\), if \(\downarrow x \not\prec^* J\), which implies \(x \not\prec \forall J\) by Definition 3.11.

Since \((P, \prec)\) is regular, \(x \in K(\prec), \forall J \in P, x \not\prec \forall J\), then \(x \wedge (\forall J) = 0\). So we obtain that \(\downarrow x \wedge J = 0\). It follows that \(\text{Idl}(P)\) is regular. \(\Box\)

For \(I \in \text{Idl}(P)\), \(I\) is called completely regular, if \(\forall a \in I\), there exists \(b \in I\), such that \(a \prec b\). Let \(R(P) = \{ I \) is completely regular in \(\text{Idl}(P)\}\), then we have

Lemma 3.19. Suppose \((P, \prec)\) is completely regular, then \((R(P), \prec^*)\) is also completely regular.

Proof. It is trivial. \(\Box\)

Lemma 3.20. Suppose \((P, \prec)\) is compact, then \((R(P), \prec^*)\) is also compact.

Proof. For a family \(\{ I_\alpha \mid \alpha \in \Lambda \}\) satisfying \(\land I_\alpha = 0\). Since \((P, \prec)\) is a complete lattice, \(I_\alpha = \lor \{ \downarrow x \mid x \in I_\alpha \}\), we may assume \(I_\alpha = \downarrow a_\alpha\). Then \(\land I_\alpha = \land (\land a_\alpha)\), thus \(\downarrow (\land a_\alpha) = 0\), it follows that \(\land a_\alpha = 0\).

Furthermore \((P, \prec)\) is compact, by Definition 3.4, there exist \(a_1, a_2, \ldots, a_m\) satisfying \(\land a_i = 0\). By this, it is easy to prove \(\land \{ \downarrow a_i \} = 0\). that is, \(\land _{i=1}^m I_i = 0\). Thus \((R(P), \prec^*)\) is compact. \(\Box\)

Proposition 3.21. Suppose \((P, \prec)\) is compact, regular and completely regular, then \((P, \prec)\) and \(R(P)\) are isomorphic.

Proof. By Lemmas 3.18, 3.19, 3.20, and \(h : P \rightarrow R(P), \forall a \in P, h(a) = \downarrow a = \{ b \mid b \prec a \}\), certainly \(h(a) \in R(P)\).

\(a \prec b\) holds on \((P, \prec)\) if and only if \(h(a) \prec^* h(b)\) holds on \((R(P), \prec^*)\). Since \((P, \prec)\) is continuous, \(\forall a \in P, a = \lor \downarrow a\), so \((P, \prec)\) is embedded into \(R(P)\), and \(h\) preserves the generalized way-below relation. It is trivial to prove \(h\) is one-to-one. \(\Box\)

By Proposition 3.10, suppose \((P, \prec)\) is compact, regular, completely regular, then \((\beta P, \prec_\beta)\) and \((R(P), \prec^*)\) are also isomorphic.

By Propositions 3.10 and 3.21, the following theorem is also obtained.

Theorem 3.22. An additive generalized algebraic lattice \((P, \prec)\) has a Stone compactification iff it is regular, completely regular.

Note 5.

1. According to [3], the class of generalized continuous lattices includes completely distributive lattices and traditional continuous lattices ([15]) as its special cases.

2. According to [4], the traditional algebraic lattice is generalized algebraic lattice ([4]), and completely distributive lattice is also generalized algebraic lattice ([4]).
ACKNOWLEDGEMENTS

We are grateful to the editor for his valuable comments and suggestions.

REFERENCES

Received December 2005
Accepted May 2006

XUEYOU CHEN (chenxueyou0@yahoo.com.cn)
College of Mathematics and Information Science, Shandong University of Technology, Zibo, shandong 255012, P. R. CHINA.

QINGGUO LI
College of Mathematics and Economics, Hunan University, Changsha, Hunan 410012, P. R.CHALSA.

ZIKE DENG
College of Mathematics and Economics, Hunan University, Changsha, Hunan 410012, P. R.CHINA.