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Abstract 

 The present work is focused on the development of binary blends from 

poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL). Miscibility, mechanical and 

thermal properties as well as blends morphology are evaluated in terms of the blend 

composition. Binary PHB-PCL blends were manufactured by melt compounding in a twin 

screw co-rotating extruder and injection molded. Composition of PHB-PCL covered the full 

range between individual polymers at 25 wt% increments. The obtained results show that PCL 

acts as an impact modifier thus leading to an increase in flexibility and ductility as the PCL 

content on PHB-PCL blends increases with a noticeable increase in elongation at break and on 

the energy absorption in impact conditions. The tensile strength and the elastic modulus 

decrease with increasing PCL content on PHB-PCL blends; nevertheless, the flexural strength 

and the flexural modulus reach highest values for PHB-PCL blends containing 25 wt% PCL, 

with a remarkable decrease over this composition. Analysis of fractured surfaces by FESEM 

and thermal properties obtained by DSC and TGA give clear evidences of the immiscibility of 

these two biodegradable polymers. Additionally, DSC results showed an increase in crystallinity 

of both PHB and PCL with regard to individual polymers for PHB-PCL blends containing 25 

wt% PCL. Furthermore, an increase in the degradation onset (T0) of about 30 ºC higher was 

detected for same blends. DMTA showed slightly shifted glass transition temperatures of each 

individual polymer thus indicating that although both PHB and PCL are not fully miscible, 

some interactions between them occur. 

 

Introduction 

 In the last decades, a remarkable increase in the use and consumption of polymeric 

materials has been detected; this increase has been particularly noticeable in the packaging 

industry. This fact has led to large waste generation around the world. An important fraction of 

these wastes are incinerated or poured into controlled landfills because of technical or 

economical reasons thus leading to important environmental problems such as waste removal 
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from environment, soil contamination or toxic gas emissions coming from incineration 

processes. This acts as leading force to the study, development and use of biobased and/or 

biodegradable polymers characterized by low environmental impact [1-3]. 

 Poly(hydroxybutyrate)-PHB is one of the most studied biopolymer from the family of 

poly(hydroxyalkanoates)-PHAs due to its biodegradability and biocompatibility [4]. It is an 

aliphatic polyester synthesized by controlled bacterial fermentation [5, 6]. It is characterized by 

a high crystallinity degree and a relatively high melt temperature, near 170 ºC [2, 6]. Despite 

this, its high production cost in comparison to commercial plastics, its high fragility due to high 

crystallinity, its relatively low melt viscosity as well as its thermal instability at moderate 

temperatures restrict its use [2, 7]. With the aim of improving some of its properties PHB has 

been blended with several biodegradable polymers such as poly(lactic acid)-PLA [2, 8], poly(p-

dioxanone)-PPD [5], poly(butylene succinate) (PBS) [9, 10], poly(ethylene succinate) (PES) 

[11] or poly(caprolactone)-PCL [12-14].  

The present work is focused on the use of poly(caprolactone)-PCL as co-component in 

binary PHB-PCL blends. Poly(caprolactone)-PCL is a readily biodegradable, semicrystalline 

thermoplastic polyester which is produced by the ring opening polymerization of caprolactone 

monomer by using a catalyst [15]. PCL is characterized by a low melting point around 60 ºC, a 

very low glass transition temperature, Tg at about -60 ºC; nevertheless, the thermal 

decomposition temperature is relatively high, with values around 350 ºC [16, 17]. With regard 

to its mechanical properties, PCL is extremely ductile with a high elongation at break value and 

low modulus [18, 19]. 

 Physical blends of polymers by melt compounding is a good and cost effective method 

to obtain materials with tailored properties [20]. Due to its high ductility, PCL offers attracting 

properties to PHB as it can reduce its low intrinsic fragility. PCL shows good miscibility 

behavior with a wide variety of polymers [21]; nevertheless, immiscibility with PHB has been 

reported in the literature together with different studies to increase compatibility between them 

[12, 13, 22, 23]. 
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 The main aim of this work is to study the PHB-PCL system in terms of miscibility as 

well as mechanical, thermal and morphological properties of PHB-PCL blends obtained by melt 

compounding in a twin screw co-rotating extruder. Mechanical properties of PHB-PCL blends 

are evaluated by tensile, flexural, impact and hardness tests as well as by dynamic mechanical 

thermal analysis (DMTA) using oscillatory rheometer with accessory for solid samples in 

torsion-shear mode. The effect of the blend composition on thermal properties has been 

evaluated by differential scanning calorimetry (DSC) and thermogravymetric analysis (TGA). 

Miscibility has been assessed by thermal analysis together with morphological characterization 

by field emission scanning electron microscopy (FESEM). 

 

Experimental 

Materials 

Poly(hydroxybutyrate)-PHB under the trade name P226E (Mw=426,000 Da) was 

supplied by Biomer (Krailling, Germany). Poly(caprolactone)-PCL commercial grade CAPA 

6500 (Mw=50,000 Da) was supplied by Perstorp Holdings AB (Malmö, Sweden). 

 

PHB-PCL blend preparation 

 PHB and PCL pellets were dried in an air circulating oven for 24 h at 70 ºC and 40 ºC 

respectively before further processing in order to remove moisture. The appropriate amounts of 

each polymer in the blends was weighed and mechanically mixed in a zip bag. After this, the 

pellet mixtures were compounded in a twin screw co-rotating extruder with a temperature 

profile ranging from 160 ºC (hopper) to 175 ºC (die) and a screw speed of 40 rpm. The extruded 

material was cooled in air and subsequently was pelletized in a plastic mill. The compounding 

was further processed by injection molding in a Mateu & Solé mod. Meteor 270/75 (Barcelona, 

Spain) at 175 ºC to obtain standard samples for testing. The blend composition ranges from 

individual PHB and PCL polymers to different compositions with 25 wt% increment. Table 1 

summarizes the compositions for all the PHB-PCL blends manufactured. 
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Table 1 

 

Mechanical properties of PHB-PCL blends 

The tensile and flexural properties of PHB-PCL biodegradable blends were obtained 

using an electromechanical universal test machine Ibertest ELIB 30 from S.A.E. Ibertest 

(Madrid, Spain) with a 5 kN load cell at room temperature, following the guidelines of ISO 527 

and ISO 178 standards respectively. The crosshead speed was set to 5 mm min
-1

. 

The impact absorbed energy was measured in accordance with ISO 179 standard; 

impact tests were carried out on “V” notched samples (“V” at 45 º and a notch radius of 0.25 

mm) in a 1 J Charpy impact pendulum by Metrotec S.A. (San Sebastian, Spain).  

Hardness of PHB-PCL blends was determined in a Shore D hardness durometer mod. 

676-D from J. Bot Instruments (Barcelona, Spain) according to ISO 868. 

The values reported for all mechanical parameters were obtained for, at least, five different 

samples and averaged. 

 

Thermal properties of PHB-PCL blends 

Thermal characterization of PHB-PCL blends was carried out by differential scanning 

calorimetry (DSC) and thermogravymetric analysis (TGA). Thermal transitions were obtained 

by DSC in a Mettler Toledo 821 from Mettler-Toledo Inc. (Schwerzenbach, Switzerland). 

Samples sizing 7-9 mg were placed in standard 40 L Al crucibles and subjected to an initial 

temperature program from -50 ºC up to 180 ºC at a constant heating rate of 10 ºC min
-1

 and after 

this, temperature was maintained at 180 ºC for 2 min and subsequently cooled to -50 ºC at a 

cooling rate of -10 ºC min
-1

 to remove previous thermal history. Then, samples were subjected 

to a second thermal program from -50 to 300 ºC at 10 ºC min
-1

. DSC tests were carried out in 

nitrogen atmosphere (66 mL min
-1

). The melt temperature of PHB and PCL was determined by 

considering the information provided by the second heating ramp. The crystallinity degree of 

both PHB (Xc, PHB) and PCL (Xc, PCL) in the blends was calculated by following Eq. (1) where 
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Hm is the fusion enthalpy and H0 is the enthalpy related to the corresponding 100 % 

crystallinity (theoretical value) polymer; these values were assumed as 146 J g
-1

 [1] for PHB 

and 156.8 J g
-1

 [3] for PCL. Finally, “w” represents the weight fraction of PHB and PCL in each 

PHB-PCL blend. 

 

𝑋𝑐 (%) = 100 ×  [
∆𝐻𝑚

∆𝐻0∙𝑤
]     Eq.1 

 

 Thermogravymetric analysis was carried in a TGA/SDTA 851 horizontal thermobalance 

from Mettler-Toledo (Schwerzenbach, Switzerland). Samples sizing 7-9 mg were placed in 

standard alumina crucibles and subjected to a heating program from 30 ºC to 600 ºC at a heating 

rate of 10 ºC min
-1

 in nitrogen atmosphere (constant flow rate of 66 mL min
-1

). The onset 

degradation temperature (T0) was determined at 2 wt% mass loss and the maximum rate 

degradation temperature (Tmax) was obtained by analyzing the DTG curves (first derivative of 

TGA curve). 

 

Field Emission Scanning Electron Microscopy (FESEM) 

A field emission scanning electron microscope (FESEM) ZEISS ULTRA55 (Oxford 

instruments) at an acceleration voltage of 2 kV was used to observe fractured surfaces of 

samples subjected to a cryofracture process. Cryofractured samples of each blend were 

subjected to a selective extraction of PCL with acetone. Firstly, all samples were dried in an air 

circulation air oven at 40 ºC for 24 h and subsequently immersed in acetone for additional 24 h 

at room temperature to selectively remove the PCL portion which allows a better distinguish of 

the phase distribution in the blend [24]. Prior to sample observation of the samples before and 

after selective extraction, surfaces were covered with a thin layer of platinum in vacuum 

conditions with a sputter coater. 

 

Dynamic mechanical thermal analysis (DMTA) of PHB-PCL blends 
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 Dynamic mechanical thermal analysis (DMTA) in torsion mode was carried out in an 

oscillatory rheometer AR G2 from TA Instruments (New Castle, USA). Rectangular samples 

sizing 40x10x4 mm
3
 were subjected to a dynamic temperature program from -100 to 150 ºC at a 

constant heating rate of 2 ºC min
-1

 at a frequency of 1 Hz and constant deformation () of 0.1%. 

The evolution of the storage modulus (G’), loss modulus (G”) and damping factor (tan ) were 

followed in terms of increasing temperature. 

 

Results and discussion 

Mechanical properties 

 Mechanical properties (tensile and flexural) of PHB-PCL blends system are summarized 

in Table 2. 

 

Table 2 

 

 With regard to tensile properties, we can see that individual PHB is characterized by a 

remarkable higher tensile strength and elastic modulus if compared to raw PCL, but, obviously, 

lower deformation ability as it can be derived by the relatively low elongation at break value of 

8.1%. PHB is a rigid polymer. As we have indicated, the soft and flexible nature of PCL allows 

its use as impact modifier for rigid polymers such as PHB. As the PCL content on PHB-PCL 

blends increases, we observe a decrease in both tensile strength and elastic modulus values but, 

in contrasts, the elongation at break (ductile properties) is remarkably improved. In fact, raw 

PCL and high PHB-PCL blends with high PCL content (PHB25/PCL75) didn’t break; samples 

covered the maximum displacement of the machine with elongation values over 1000% [25]. As 

it can be observed, for PHB-PCL composites with less than 50 wt% PCL, the elongation at 

break is relatively low and presence of PCL leads to a slight increase in elongation at break 

from values of 8.1% (raw PHB) up to 17.6% for PHB-PCL blends with 50 wt% PCL. It is 

expectable that PHB is the matrix in these blends composition as the blend properties are mainly 
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defined by PHB. Nevertheless, for compositions with high PCL content the elongation at break 

increases up to values over 1000% and it is expectable that PCL acts as matrix. So that matrix 

inversion occurs for PCL contents higher than 50 wt% as the properties of the blend are clearly 

defined by PCL for these composition ranges. PCL acts as an impact modifier with a 

remarkable increase in flexibility and ductility as PCL content increases and, specifically for 

composition with more than 50 wt% PCL. 

 The evolution of flexural properties is similar to those observed in tensile mode. 

Individual PHB offers higher flexural strength and modulus values than individual PCL; 

nevertheless, we can see slight differences as the only addition of 25 wt% PCL leads to a slight 

increase in both flexural strength (from 36.7 MPa to 38.5 MPa) and modulus (from 1515 MPa 

to 1605 MPa) which represents a percentage increase of almost 5% and 6% respectively. Higher 

PCL content on blends than 25 wt% lead to the expected behavior with decreasing mechanical 

resistant properties such as flexural strength and modulus and an improvement on deformation 

properties. 

 Fig. 1 shows the evolution of the impact absorbed energy (Charpy pendulum) and Shore 

D hardness for the PHB-PCL blends system. The absorbed energy is directly related to the 

ability of the material to absorb energy during the fracture in impact conditions, mainly due to 

deformation before fracture, so that, this property is representative for ductility while Shore D 

hardness is representative for resistance. The evolution of the absorbed energy follows similar 

tendency as that observed for elongation at break. We detect a slight increase from 2 J m
-2

 

(individual PHB) up to values around 3.5 J m
-2

 for PHB-PCL blends with 50 wt% PCL and a 

remarkable increase for higher PCL content (values around 10.6 J m
-2

 for PHB-PCL blends with 

75 wt% PCL) up to the maximum value achieved by individual PCL (15.1 J m
-2

). In general 

terms we can conclude that addition of PCL leads to an improvement on ductile behavior of 

PHB-PCL blends which is more evident for compositions with more than 50 wt% PCL. As 

expected, Shore D hardness offers opposite behavior as it is a mechanical resistant property. 

PHB is characterized by a Shore D of 57.3 whilst PCL is much softer with a Shore D value of 
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46.5. As the PCL content on PHB-PCL blends increases we observe a decrease in Shore D 

values and this decrease is more evident for composition with more than 25-50 wt% 

 

Fig. 1 

 

Thermal properties of the PHB-PCL blends system 

Fig. 2 shows a comparative plot of the DSC curves of the PHB-PCL blends system with 

varying composition. Fig. 2(a) shows the cooling curves after removal of thermal history and 

Fig. 2(b) shows the DSC curves corresponding to the second heating cycle and the base curve 

for determining the values of ΔHm for PHB, PCL and their blends (unnormalized values and 

normalized values with respect to the sample weight), the melt temperatures (Tm) as well as the 

crystallinity degree (Xc); all these values are shown in Table 3. As it can be seen in Fig. 2(b), 

individual PHB shows two melt peaks: one located at 168.3 ºC which is related to the melting of 

PHB and a small one peak at 52.3 ºC which can be attributable to some low molecular weight 

additive in the formulation [26, 27]. With regard to the glass transition temperature, typical 

values of Tg for PHB are located between the 2-7 ºC range. We can see a slight change in the 

base line in a wide temperature range covering -10 ºC to 10 ºC but no clear evidence of the Tg is 

detected. With regard to individual PCL we observe a unique peak located at 59.3 ºC and the Tg 

can’t be detected as it is below -50 ºC [16]; for this reason, Tg study was conducted by using 

DMTA. DSC of the PHB-PCL blends system show a clear evidence of the immiscibility of 

these two biodegradable polymers as two individual peaks located at the typical temperature 

values of each melting point can be detected: one at about 170 ºC attributable to PHB and other 

melt peak located at about 60 ºC which is related to the melting of PCL. Table 3 shows that as 

the PCL content on PHB-PCL blends increases, a slight increase in both melt peak temperatures 

of PHB (Tm PHB) and PCL can be detected (Tm PCL). 

The normalized melt enthalpy (∆Hm) for both polymers, obtained in the second heating 

cycle, was used to calculate the crystallinity degree of each material in the blends. Crystallinity 

plays an important role in mechanical performance of PHB, PCL and their blends. The 
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percentage crystallinity of individual PHB (Xc PHB) is higher than 55% while the percentage 

crystallinity of raw PCL (Xc PCL) is about 46%. The percentage crystallinity of each polymer in 

the blends is slightly higher for PHB-PCL blends with 25 wt% PCL the percentage crystallinity 

of PHB (Xc PHB) changes from 55.1% up to 58.2% and the value of (Xc PCL) changes from 46.4% 

to 51.3%. The percentage crystallinity of each polymer for all the rest blend compositions is 

slower as observed in Table 3. That’s why we have previously observed a slight increase in 

flexural strength and modulus in PHB-PCL blends with 25 wt% PCL. 

 

Fig. 2 

Table 3 

 

 Thermogravymetric curves (TGA) of both individual PHB and PCL as well as the PHB-

PCL blends are shown in Fig. 3(a) and the main thermal parameters regarding degradation are 

summarized in Table 4. As it can be observed, PCL degrades in a single step process with an 

onset degradation temperature (T0 PCL) of 359.5 ºC and a maximum degradation rate temperature 

(Tmax PCL) of 415.5 ºC [28]. On the other hand, PHB degradation proceeds in several stages due 

to the formulation of the commercial polymer which contains plasticizers, nucleating agents and 

stabilizers [26]. The onset degradation temperature (T0 PHB) for PHB is 231.3 ºC and the 

maximum rate (Tmax PHB) is achieved at 290 ºC. These values are remarkably lower than those 

obtained for individual PCL thus giving clear evidence of the lower thermal stability of PHB if 

compared to PCL. The TGA curves for PHB-PCL blends occurs in two different stages 

attributable to PHB and PCL. The first degradation stage is related to PHB degradation and the 

second stage, located at higher temperatures is related to PCL degradation with slight changes in 

the characteristic degradation temperatures corresponding to each polymer. This is also a clear 

evidence of the lack of strong interactions between the two biodegradable polymers thus giving 

evidence of immiscibility (or very low miscibility). In general terms we can see that presence of 

PCL leads to a slight increase in the thermal stability of PHB. Although PHB and PCL show 

very restricted miscibility as revealed by the DSC analysis, PCL is characterized by a 
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remarkable high thermal stability compared to PHB and all blends with PCL show a slight 

increase in the thermal onset degradation temperature which could be related to somewhat 

interactions between the two components thus it is possible to expect phase separation with a 

PCL rich phase with very low content on PHB chains and in the same way, a PHB rich phase 

with very low amounts of dissolved PCL chains. This fact could be responsible for the slight 

increase in the thermal stability of PHB rich phase and conversely, a slight decrease in the onset 

degradation temperature of the PCL rich phase. We can see in Table 4, how the onset 

degradation temperature (T0) is increased from 231.3 ºC (individual PHB) up to values in the 

260-270 ºC for PHB-PCL blends with PCL content in the 25 – 75 wt% range. Similar tendency 

(but less intense) can be observed for the maximum thermal degradation rate (Tmax) for both 

PHB and PCL. With regard to the maximum degradation rate temperature of PHB, Tmax PHB 

changes from 290.0 ºC (individual PHB) up to values of 296.8 ºC for PHB-PCL blends with 75 

wt% PCL. The maximum degradation rate temperature for PCL (Tmax PCL) changes in a very 

narrow range from 413.8 ºC to 415.5 ºC for blend composition containing 75 wt% PCL. 

 Derivative thermogravymetric curves (DTG) are shown in Fig. 3(b) and we can observe 

the peak temperatures corresponding to the maximum weight loss rate. DTG curves of PHB-

PCL blends are characterized by two main peaks attributable to PHB degradation (low 

temperature) and PCL degradation (high temperature). As it has been previously discussed, the 

maximum degradation rate temperature for PHB (Tmax PHB) slightly increases while the 

maximum degradation rate temperature for PCL remains in a very narrow temperature range 

(413-415 ºC). 

 

Fig. 3 

Table 4 

 

Morphological characterization of PHB-PCL blends system 

 Fig. 4 shows FESEM images of cryo-fractured surfaces of PHB, PCL and their blends 

in terms of the PCL content. We can observe a clear fragile fracture surface due to cry-fracture 
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conditions. Fracture surface of individual PHB can be seen in Fig. 4(a) and it is characterized by 

different immiscible components in the commercial formulation. As we have indicated, this 

commercial PHB grade is composed of plasticizers and other components which are not fully 

miscible in PHB [26] thus resulting in very small spherical formations (lower than 500 nm). 

With regard to PHB-PCL blends morphology, we can clearly see phase separation between 

PHB and PCL thus giving clear evidence of the immiscibility (or very low miscibility) of these 

two biodegradable polymers. For all intermediate compositions we observe a matrix phase and 

dispersed circular shapes sizing between 2 and 10 m (we don’t observe the typical spherical 

droplets and holes of immiscible polymers, due to the cryofracture process which also breaks 

dispersed spherical droplets) corresponding to the dispersed phase. In PHB-PCL blend with 25 

wt% PCL, Fig. 4(b), the spherical droplets are higher than those observed in PHB-PCL blends 

in which PCL is the main component and acts as matrix. In addition, for the PHB-PCL blend 

with 25 wt% PCL we can see the lack of interaction between PCL droplets and the surrounding 

PHB matrix, Fig. 4(b). The largest droplets can be observed in Fig. 4(c) which corresponds to 

PHB-PCL blend with 50 wt% PCL. As it can be seen in Fig. 5, we observe a small ring around 

the dispersed phase which can be representative for some miscibility between the two polymers. 

In such Fig. 5 it is clearly detectable the generalized lack of interactions between the two 

polymers. 

 

Fig. 4 

Fig. 5 

 

With the aim of analyzing the surface morphology, a selective extraction process was 

done with acetone for a period of 24 h to selectively dissolve PCL [24]. In Fig. 6(a) and 6(b) we 

can see how the small PCL droplets have been fully dissolved leading to formation of small 

voids on the fractured surface while larger PCL droplets have not been fully attacked leading to 

a flake-like structure. The blend composition with 25 wt% PCL (PHB75/PCL25) shows that 

PCL is highly dispersed in the PHB matrix that was not clearly detectable by conventional 
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FESEM without previous selective attack of the PCL rich phase. With regard to the blend 

compositions with 50 wt% PCL (PHB50/PCL50) we see that PCL acts as the matrix in the 

blend with the typical flake morphology described before. Such morphology is also observed 

for PCL rich blend with 75 wt% PCL. In both cases, the selective extraction with acetone leads 

to appearance of small PHB spherical droplets immersed in the PCL matrix. 

 

Fig. 6 

 

Dynamic mechanical thermal analysis (DMTA) 

Fig. 7 shows the evolution of the storage modulus (G’), the loss modulus (G”) and the 

damping factor (tan ) for individual PHB and PCL as well as their blends in terms of 

increasing temperature. As one can see in Fig. 7(a), the storage modulus decreases with 

temperature. PHB is stiffer than PCL and that’s why the G’ curve corresponding to PHB is 

shifted to high values. The storage modulus for PHB shows two main steps: one located at 

around -7 ºC which is related to its glass transition temperature (Tg PHB) and another one in the 

temperature range comprised between 55 ºC and 60 ºC which can be attributable to some 

commercial additive in PHB [26]. With regard to the storage modulus evolution for PCL, a 

remarkable decrease can be detected once its glass transition temperature (Tg PCL) is surpassed at 

around -53 ºC. This dramatic drop in G’ values for PCL can also be observed in PHB/PCL 

blends high PCL content (50 wt% and 75 wt%) while not so remarkable peak is observable for 

blends with 25 wt% PCL. The storage modulus for blends with high PCL contents reaches 

values nearby 0 MPa once the melt temperature of PCL (Tm PCL) has been surpassed (around 60 

ºC) which also gives evidences that PCL acts as the matrix for a polymer blend composition of 

50 wt% PCL. The blend composition with 25 wt% PCL (PHB75/PCL25) shows at room 

temperature, similar storage modulus to that obtained for individual PHB but a remarkable 

decrease is detected at temperatures higher than 60 ºC in which, PCL melt occurs. As we can 

see, as the PCL content increases, G’ curves are moved to lower values thus indicating that PCL 

provides an impact modifier effect on PHB. 



14 
 

With regard to the loss modulus (G”) and damping factor (tan ), Fig. 7(b) and 7(c) 

show their corresponding evolutions with temperature. PHB-PCL blends show two peaks that 

are attributable to PHB and PCL which in turn, gives evidences of immiscibility or poor 

miscibility of both polymers in the amorphous regions. The first peak, located at -53 ºC is 

representative for the glass transition temperature of PCL (Tg PCL) and the other main peak is 

located at around -7 ºC and corresponds to the glass transition temperature of PHB (Tg PHB). 

Nevertheless, it can be observed that the glass transition temperature of each polymer in the 

blend is slightly different if compared to the individual material which could be attributable to 

some interactions between both polymers. 

 

Fig. 7 

 

Conclusions 

The main aim of this research work was the development of PHB blends with PCL to 

improve the high intrinsic fragility of PHB. The obtained results show that PCL acts as an 

impact modifier thus providing higher flexibility and ductility and, obviously, a decrease in 

mechanical resistant properties such as strength and modulus. As the PCL content in PHB-PCL 

blends increases, we observe an increase in the impact absorbed energy as well as the elongation 

at break in tensile tests. This increase is particularly remarkable for PHB-PCL blends with more 

than 50 wt% PCL. The elongation at break changes from 11.2% up to values over 1000% for a 

blend composition of 75 wt% PCL. With regard to flexural strength and modulus, we observe a 

slight increase for the blend containing 25 wt% PCL. This is related to crystallization 

phenomena and the DSC study revealed a noticeable increase in the crystallinity degree (Xc) of 

both PHB and PCL for this particular blend composition. PHB and PCL have been proved to be 

immiscible as FESEM of cryo-fractured samples revealed. Such immiscibility is also evident by 

DSC and TGA analysis. DSC study does not show significant changes in the melt peak 

temperature for PHB and PCL and TGA analysis of PHB-PCL blends shows a slight 
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improvement on the typical degradation temperatures but it is not significant. The TGA study 

also reveals the relatively low thermal stability of individual compared to PCL but the addition 

of PCL to PHB promotes slight improvement on the typical degradation temperatures of PHB. 

Dynamic mechanical thermal analysis (DMTA) confirmed the very low miscibility between 

these polymers with two glass transition temperatures located at around -53 ºC and -7 ºC for the 

PCL-rich phase and PHB-rich phase respectively. Nevertheless, some slight changes in the Tg 

values are observed which could be representative for some PHB-PCL interactions. 
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Figure legends 

Fig. 1 Impact energy and Shore D hardness values for the PHB-PCL blends system in terms of 

the PCL content 

Fig. 2 DSC thermograms during the (a) cooling scan and (b) second heating scan of PHB-PCL 

blends system 

Fig. 3 (a) TGA and (b) DTG curves of PHB-PCL blends system 

Fig. 4 FESEM images at 5000x of cryo-fractured surfaces of PHB-PCL blends: (a) 

PHB100/PCL0; (b) PHB75/PCL25; (c) PHB50/PCL50; (d) PHB25/PCL75; (e) PHB0/PCL100. 

Fig. 5 FESEM images of cryo-fractured surface of PHB50/PCL50 at 25000X  

Fig. 6 FESEM images of cryo-fractured surfaces of PHB-PCL blends subjected to a selective 

extraction with acetone: (a) PHB75/PCL25 (5000x); (b) PHB75/PCL25 (25000x); (c) 

PHB50//PCL50 (5000x); (d) PHB50//PCL50 (25000x); (e) PHB25//PCL75 (5000x); (f) 

PHB25//PCL75 (25000x) 

Fig. 7 DMTA (torsion mode) curves of PHB-PCL blends system: a) storage modulus (G’); b) 

loss modulus (G”) and c) damping factor, (tan δ)  
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Table captions 

Table 1 Composition of PHB-PCL blends and labelling of each composition 

Table 2 Tensile and flexural properties of the PHB-PCL blends system 

Table 3 Thermal parameters of PHB-PCL blends system obtained by differential scanning 

calorimetry (DSC) 

Table 4 Thermal degradation parameters of PHB-PCL blends system obtained by 

thermogravymetric analysis (TGA) 


