Contents

A	bstra	nct			i		
R	\mathbf{esum}	ien			iii		
R	\mathbf{esum}	L			v		
A	bbre	viation	and Ac	cronyms	vii		
N	otati	ons an	d Conve	entions	ix		
A	ckno	wledgr	nents		xiii		
1	Introduction and scope						
	1.1	Introd	luction .		1		
	1.2	Motiv	ation and	scope of the thesis $\ldots \ldots \ldots \ldots \ldots \ldots$	2		
	1.3	Organ	ization of	f the thesis \ldots \ldots \ldots \ldots \ldots \ldots \ldots	4		
2	Mathematical and Physical						
	Fou	ndatio	ons in Ro	bom Acoustic			
	Simulation						
	2.1	Introduction					
	2.2	Mathe	Iathematical foundations				
	2.3	.3 Physical foundations					
		2.3.1	Euler ar	nd conservation of mass equation	12		
		2.3.2	Solution	is to the wave equation	15		
			2.3.2.1	Plane waves	16		
			2.3.2.2	Spherical waves	17		
	0.4	C	2.3.2.3	Acoustic energy, intensity and source power	19		
	2.4	Some	sound pro	pagation considerations in enclosures	21		
		2.4.1	Bounda	Well immediate and etim fester and et	22		
			2.4.1.1	sorbing coefficient	22		
			2.4.1.2	Fundamental conditions for physically rep-			
				resentable impedance model	24		

			2.4.1.3	The locally reacting impedance problem	25	
			2.4.1.4	Hard-backed layer of porous material		
				impedance	28	
		2.4.2	Sound so	purce modeling	31	
			2.4.2.1	Directive sources	31	
			2.4.2.2	Some basic directive sources: from monopoles		
				to quadripoles \ldots \ldots \ldots \ldots \ldots \ldots	33	
	2.5	Room	acoustics	as an inhomogeneous boundary value problem	39	
	2.6	Discus	ssion		40	
3	Roc	om Ace	oustics			
	\mathbf{Sim}	ulatio	n Techni	ques	43	
	3.1	1 Introduction				
	3.2	Geom	etrical me	thods	44	
		3.2.1	Ray-trac	ring method \ldots \ldots \ldots \ldots \ldots \ldots \ldots	45	
		3.2.2	Image-so	purce method	46	
		3.2.3	Hybrid a	and alternative geometrical methods	47	
	3.3	Wave	methods i	in the frequency domain	49	
		3.3.1	Finite E	lement Method	49	
		3.3.2	Boundar	y Element Method	51	
	3.4	Wave	methods i	in the time domain \ldots \ldots \ldots \ldots \ldots	51	
		3.4.1	Suitabili	ty of the discrete-time methods for room acous-		
			tic simul	lation: a survey	52	
		3.4.2	Alternat	ive methods in discrete-time modeling	57	
	3.5	Discus	ssion		59	
4	Dis	crete 7	Гime-bas	ed Methods		
	for	Room	Acoustie	c Simulation	61	
	4.1	Introd	luction		62	
	4.2	The F	inite-Diffe	erence Time-Domain (FDTD) method	63	
		4.2.1	Grid Dis	spersion	68	
		4.2.2	Stability	*	70	
		4.2.3	The FD'	TD method in a homogeneous medium	72	
		4.2.4	The FD'	TD method in an inhomogeneous medium .	73	
	4.3	The D	Digital Wa	veguide Mesh (DWM) method	76	
		4.3.1	Plane wa	aves in the DWM model	80	
	4.4	Equivalence between the FDTD and DWM methods 8				
	4.5	Hybrid models				
	4.6	Sound	l propagat	tion simulation through discrete-time methods	88	

	4.7	Wave	Digital F	ilters	96
		4.7.1	A WDF	variables approach	96
		4.7.2	Wave di	gital elements	97
		4.7.3	Wave di	gital element interconnection	99
	4.8	Discus	ssion		102
5	Free	quency	-Depend	dent Boundary	
	Cor	ndition	s for Dis	screte-Time Methods	105
	5.1	Introd	luction .		106
	5.2	Bound	itions in the DWM method	107	
		5.2.1	Previous	s approaches	107
		5.2.2	Physical interpretation of the use of the reflection fac-		
			tor as a	boundary condition	112
			5.2.2.1	Examples	115
		5.2.3	Realizat	ion of a LRI model in a DWM based on angle	
			detection	n	118
			5.2.3.1	Angle detection	119
			5.2.3.2	Filter compensation	124
			5.2.3.3	Examples	126
			5.2.3.4	Limitations of the method	127
		5.2.4	ion of a LRI model in a DWM based on mix-		
			ing mod	eling strategies	129
			5.2.4.1	Mixing modeling strategy	129
			5.2.4.2	Impedance model	131
			5.2.4.3	Model description	133
			5.2.4.4	Analysis of the system	138
			5.2.4.5	Examples	141
	5.3	Bound	lary cond	itions in the FDTD method	147
		5.3.1	3.1 Previous approaches		
		5.3.2	Propose	d method	149
			5.3.2.1	Interaction between FDTD and wave variable	es149
			5.3.2.2	Coupling model	152
			5.3.2.3	Examples	152
	5.4	Experimental evaluation of boundary conditions in a DWM 16			160
		5.4.1	ement set-up	161	
		5.4.2	Simulati	ion set-up \cdot	163
		5.4.3	Discussi	on of the results	164
	5.5	Discussion			165

6	Directive Sources								
	in Discrete-Time Methods								
	6.1 Introduction								
	6.2	Sinusoidal directive sources	171						
		6.2.1 Examples	174						
		6.2.2 Influence of the mesh dispersion	179						
	6.3	Broadband directive sources	183						
		6.3.1 Examples	185						
	6.4	Discussion	194						
7	Conclusions								
	and	Future Research Lines	195						
	7.1	Summary and conclusions	195						
	7.2 Contributions of this thesis								
	7.3 Future research lines								
\mathbf{A}	A note on the dispersion								
	of some discrete-time methods								
в	Software implementation								
	B.1	Mesh definition	207						
		B.1.1 Verifying the mesh modeling	209						
		B.1.2 Example	211						
	B.2	Graphical user interface	212						
	B.3	Parallelization process	215						
		B.3.1 Parallel architectures	217						
		B.3.2 Hardware and software used in the experiments	217						
	B.4 Computational cost and memory requirements								
Bi	Bibliography								