1. Thesis outline and Objectives 17
 1.1. Thesis outline 17
 1.2. Objectives of the thesis 18
2. Introduction 23
 2.1. Energy context 23
 2.2. Utilization of natural gas 26
 2.3. Aromatic hydrocarbons production 30
 2.4. Zeolites as catalysts 34
 2.5. Methane dehydroaromatization over Mo/zeolite catalysts 37
 2.5.1. State and location of molybdenum in Mo/zeolite catalysts 42
 2.5.2. The nature of carbonaceous deposits 45
 2.5.3. Addition of different co-reactants on methane dehydroaromatization reaction 48
 2.6. H₂ pumping through proton-conducting ceramic membranes 52
 2.7. Methane dehydroaromatization over Mo/HZSM-5 catalyst with continuous H₂ removal or O₂ injection 56
 2.8. References 59
3. Methodology 69
 3.1. Reactants 69
 3.2. Zeolite preparation 69
 3.2.1. ZSM-5 zeolite 69
3.2.2. MCM-22 zeolite 71
3.2.3. IM-5 zeolite 72
3.2.4. ITQ-13 zeolite 73
3.2.5. TNU-9 zeolite 74
3.2.6. Chabazite zeolite 75
3.2.7. ZSM-22 zeolite 76
3.2.8. NU-87 zeolite 77
3.2.9. NU-85 zeolite 78
3.2.10. Mazzite zeolite 78
3.2.11. Beta zeolite 79
3.2.12. Mordenite zeolite 80

3.3. Catalyst manufacturing process 81
3.3.1. Granulated catalysts 81
 3.3.1.1. Mo incorporation to the zeolite 81
 3.3.1.2. Shaped of the catalyst 82
3.3.2. Extrudated catalysts 82
 3.3.2.1. Extrudated I catalyst 82
 3.3.2.2. Extrudated II catalyst 83

3.4. BaZr0.7Ce0.7Y0.2O3-δ dense ceramic membranes manufacture 83
3.4.1. Electrode preparation 84
 3.4.1.1. Mo5C/Cu/BZCY72 anode 85
 3.4.1.2. Copper anode 85

3.5. Characterization techniques 86
3.5.1. Nitrogen sorption analysis 86
3.5.2. Ammonia temperature programmed desorption (NH3-TPD) 86
3.5.3. Thermogravimetric and derivative thermogravimetric analyses (TGA/DTA) 87
3.5.4. Temperature programmed oxidation (TPO) ________________ 87
3.5.5. X-Ray Diffraction (XRD) ________________________________ 88
3.5.6. 27Al MAS NMR (Magic-Angle Spinning Nuclear Magnetic Resonance) ________________ 88
3.5.7. X-Ray Photoelectron Spectroscopy (XPS) ________________ 89
3.5.8. X-Ray Absorption Near Edge Structure (XANES) _____________ 90
3.5.9. Scanning Electron Microscopy (SEM) ______________________ 92
3.5.10. Elemental Analysis _______________________________________ 93
3.5.11. Fourier Transform Infrared Spectroscopy (FTIR) ____________ 93
3.5.12. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) ________________ 94
3.5.13. Gas Chromatography and Mass Spectrometry (GC-MS) ________ 94

3.6. Catalytic evaluation of methane dehydroaromatization ______ 95

3.6.1. Fixed Bed Reactor __ 95
 3.6.1.1. Experimental procedure ________________________________ 98
 3.6.1.2. Different operating conditions __________________________ 109
 3.6.1.2.1. Use of different co-feeding gas in the MDA reaction with
 the FBR __ 109
 3.6.1.2.1.1. Co-feeding of 6% of H_2 _____________________ 109
 3.6.1.2.1.2. Co-feeding of H_2O _______________________ 110
 3.6.1.2.1.3. Co-feeding of 2% of CO_2 ___________________ 111
 3.6.1.2.2. Use of different catalyst activation on MDA reaction with
 the FBR __ 112
 3.6.1.2.2.1. Pre-cooking of the 6% (wt.) Mo/HZSM-5 catalyst 112
 3.6.1.2.2.2. Catalyst activation with a gas mixture of CH_4:H_2, 1:4
 (vol. ratio) __ 113
 3.6.1.2.3. Catalyst regeneration with H_2 using the FBR ______ 113
3.6.1.2.4. Use of different space velocity and change the catalyst amount and the feed gas flow using the same space velocity (1500 mL·h⁻¹·g⁻¹) with the FBR ____________________________ 114

3.6.1.2.4.1. Use of different space velocity with the 6% (wt.) Mo/MCM-22 catalyst ____________________________ 114

3.6.1.2.4.2. Change the catalyst amount and the feed gas flow using the same space velocity with the 6% (wt.) Mo/HZSM-5 catalyst ____________________________ 115

3.6.2. Catalytic Membrane Reactor ____________________________ 115

3.6.2.1. Catalytic Membrane Reactor with continuous H₂ removal through BaZr₀.₇Ce₀.₃Y₀.₁O₃-δ tubular membranes _________________ 116

3.6.2.1.1. Experimental procedure ____________________________ 121

3.6.2.1.2. Operating conditions of each experiment with CMR-TM ____________________________ 125

3.6.2.2. Catalytic Membrane Reactor with Quartz Tube (CMR-QT) __ 128

3.6.2.2.1. Experimental procedure ____________________________ 129

3.6.2.2.2. Different operating conditions ____________________________ 130

3.6.2.2.2.1. Use of different space velocities with the CMR-QT ____________________________ 130

3.6.2.2.2.2. Co-feeding of H₂ using the CMR-QT ________ 131

3.7. References ____________________________ 132

4. Effect of the zeolite on MDA reaction __________ 137

4.1. Different HZSM-5 zeolites with 3% (wt.) of Mo ____________ 137

4.1.1. Effect of the Si/Al ratio ____________________________ 142

4.1.2. Effect of the crystal size ____________________________ 143

4.2. Effect of the Mo content on the best HZSM-5 ____________ 144
4.3. Different zeolites versus the best HZSM-5 with 3% (wt.) Mo _______ 148
4.4. MCM-22 versus the best HZSM-5 with 6% (wt.) Mo___________ 153
4.5. Conclusions ___________________________ 163
4.6. References ____________________________ 165

5. Effect of the catalyst activation on MDA reaction _____ 169
5.1. 6% (wt.) Mo/HZSM-5 catalyst ____________________________ 169
5.2. 6% (wt.) Mo/MCM-22 catalyst ____________________________ 173
5.3. Conclusions ___________________________ 177
5.4. References ____________________________ 178

6. Effect of the space velocity on MDA reaction _______ 183
6.1. Effect of the 6% (wt.) Mo/HZSM-5 catalyst amount and the feed gas flow using a space velocity of 1500 mL·h⁻¹·g⁻¹__ 183
6.2. Effect of the space velocity on MDA reaction using the 6% (wt.) Mo/MCM-22 catalyst _____________________________ 186
 6.2.1. Effect of the space velocity using the standard activation _____ 186
 6.2.2. Effect of the space velocity using the new activation _______ 189
6.3. Conclusions ___________________________ 195
6.4. References ____________________________ 196

7. Effect of the co-feeding gas on MDA reaction _______ 199
7.1. Effect of co-feeding H₂O____________________________ 199
 7.1.1. Thermodynamic study of co-feeding H₂O_______________ 199
7.1.2. Effect of co-feeding H₂O over 6% (wt.) Mo/HZSM-5 catalyst on MDA reaction___ 202

7.1.3. Effect of co-feeding H₂O over 6% (wt.) Mo/MCM-22 catalyst on MDA reaction___ 206

7.1.3.1. Effect of co-feeding 1.08% of H₂O after different times on stream in dry conditions for the 6% (wt.) Mo/MCM-22 catalyst ____________ 206

7.1.3.2. Effect of co-feeding 1.08% and 0.86% of H₂O over 6% (wt.) Mo/MCM-22 catalyst___ 212

7.2. Effect of co-feeding H₂ ___ 225

7.2.1. Thermodynamic study of co-feeding H₂ __________________________ 225

7.2.1.1. Thermodynamic study of co-feeding H₂ without and with the addition of H₂O __ 227

7.2.2. Effect of co-feeding 6% of H₂ with the standard activation of the catalyst __ 230

7.2.3. Effect of co-feeding H₂ over the 6%Mo/MCM-22 catalyst with the new activation ___ 235

7.2.3.1. Effect of co-feeding different concentrations of H₂ without and with H₂O addition __ 240

7.3. Effect of co-feeding CO₂ ___ 246

7.3.1. Thermodynamic study of co-feeding CO₂ _________________________ 247

7.3.2. Effect of co-feeding 2% of CO₂ over 6% (wt.) Mo/zeolite catalysts on MDA reaction __ 248

7.4. Conclusions ___ 255

7.5. References __ 259
8. Effect of catalyst regeneration with H_2 on MDA reaction

8.1. Effect of the 6%Mo/HZSM-5 catalyst regeneration with H_2 _______ 263
 8.1.1. Effect of the 6%Mo/HZSM-5 catalyst regeneration with H_2 in dry
 conditions ________________________________ 263
 8.1.2. Effect of the 6%Mo/HZSM-5 catalyst regeneration with H_2 in wet
 conditions ________________________________ 266

8.2. Effect of the 6%Mo/MCM-22 catalyst regeneration with H_2 in dry
 conditions ________________________________ 269

8.3. Conclusions ________________________________ 272

8.4. References ________________________________ 272

9. Effect of the catalyst manufacturing process on MDA
 reaction ________________________________ 275

9.1. Granulated catalysts obtained by different procedures: 6%Mo/HZSM-5
 and 6%Mo/MCM-22 ________________________________ 275

9.2. Extrudated catalyst obtained by a new procedure: 6%Mo/MCM-22 ___ 283

9.3. Conclusions ________________________________ 290

9.4. References ________________________________ 291

10. Effect of H_2 removal through $\text{BaZr}_{0.7}\text{Ce}_{0.2}\text{Y}_{0.1}\text{O}_{3-\delta}$ tubular
 membranes on MDA reaction __________________________ 295

10.1. Effect of H_2 removal through $\text{BaZr}_{0.7}\text{Ce}_{0.2}\text{Y}_{0.1}\text{O}_{3-\delta}$ tubular membrane on
 MDA reaction __________________________ 296
10.2. Effect of the anode type on the BZCY72 tubular membrane on MDA reaction with H₂ removal 311
10.3. Effect of the temperature on MDA reaction with H₂ removal 317
10.4. Effect of co-feeding 10% of H₂ on MDA reaction with H₂ removal 325
10.5. Effect of the current density applied on the electrochemical cell on MDA reaction with H₂ removal 331
10.6. Conclusions 337
10.7. References 340

11. Conclusions 345

List I Figures 353
List II Tables 367
List III Abbreviations 375
Resumen/Resum/Summary 379
Scientific Contribution 387
Agradecimientos/Acknowledgements 389