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ABSTRACT: This work deals with the technological and economic considerations 

required to select face milling vs. surface grinding operations in the manufacture of 

hardened steel flat surfaces for dies and moulds. In terms of technological considerations, 

factors such as component geometry, material and surface quality (dimensional tolerance 

and surface finish) are taken into account. The economic considerations include the cost 

of machine depreciation, labour and consumables (cutting tools in face milling vs. 

grinding wheels and dressing tool in surface grinding). A case study is presented based 

on the prismatic components in ceramic tile moulds and their associated manufacturing 

operations. Surface grinding and face milling experimentation was conducted on cold 

work steel AISI D3 (with hardness of 60 HRC) with aluminium oxide grinding wheels 

and coated tungsten carbide cutting tool, respectively. Technological attributes and 

economics of face milling are compared with surface grinding of this type of mould 

components. The main conclusion is that face milling with chamfered edge preparation 

in coated tungsten carbide tools is a competitive process, compared with surface grinding, 

in terms of product quality and economics. 
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1. Introduction 

1. 1. Motivation 

The High Speed Machining (HSM) technology is now redefined as High Performance 

Machining (HPM) (Arnone, 1998) to incorporate high accuracy and dynamic 

performance of the machines. HPM has been widely used in the manufacturing of 

aluminium aeronautical and automotive components. In the last decade, this process is 

being increasingly used in the manufacturing of dies and mould with hardened steels (30-

62 HRC), especially in die casting, plastic injection and forging industries. Advantages 

of HPM over hardened steels, in terms of productivity and quality, are well documented 

in literature (Fallbohmer et al., 2000; Altan et al., 2001; López de Lacalle et al., 2002). 

The traditional way of manufacturing parts with hardened steels begins with milling 

the work piece in the annealed state before heat treatment. Next, finishing processes as 

electro discharge machining, grinding and manual polishing are performed to achieve the 

specified geometries and surface qualities. It has been demonstrated that, by selecting the 

appropriate cutting parameters and cutting tools, finishing HPM operations can be 

performed after heat treatment and therefore, manufacturing routes can be shortened. By 

adopting HPM technology, lead times and costs can be reduced significantly, and 

companies can successfully challenge the competitive market of tooling. 

The objective of this work is to compare HPM operations against other traditional 

ones in order to achieve more economical products. The nomenclature used during this 

research is shown in Table 1 to make easy to the readers follow the proposal. 
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Symbol Description 
HSM High Speed Machining 
HPM High Performance Machining 
EDM Electro Discharge Machining 
HRC Hardness Rockwell C 
AISI American Iron and Steel Institute 
AISI D3 AISI Type D3 / JIS SKD1 / DIN 1.2080 / UNS T30403 / ASTM A681 / 

FED QQ-T-570 / SAE J437 (D2) / SAE J438 (D2) 
High-carbon, high-chromium steel. Virtually no deformation during 
hardening. High wear resistance which increases with C and V 
content. 
Tool Steel, oil-quenched from 980°C (1800°F), tempered at 200°C 

AISI D2 AISI Type D2 / UNS T30402 
High carbon, high chromium. 
Tool Steel, air-quenched from 1010°C, tempered from 200ºC to 
450°C. 

AISI D6 AISI D6 / DIN 1.2436. Tool steel, mould steel, die steel 
WC Wolframium (Tungsten) Carbide 
cBN Cubic Boron Nitride 
CAM Computer Aided Manufacturing 
CNC Computerized Numerical Control 
TG Total Grinding Time per lot 
TM Total Machining Time per lot 
TS General Production System Time per lot 
Tp Productive Time 
Tnp Non Productive Time 
Pu System Unit Productivity 
Q Material removed rate 
rnp Non Productive Time ratio 
CS General Cost  
CMi Machining Cost for i  
CGi Grinding Cost for i 
Dc Cutting diameter 
Vc  Cutting speed for machining 
F Feed rate (mm/min) 
ae Radial cutting depth (mm) 
ap Axial cutting depth (mm) 
Vs Cutting speed for grinding  
Ra Arithmetical mean roughness (µm) 
VB Tool flank wear (µm) 

Table 1. Nomenclature in order of apearance. 

1. 2. Related Work 

In the manufacture of die and mould components, a variety of cutting tools and 

operations are utilized, as shown in Fig.1. Studies regarding HPM on hardened steels have 

been concentrated mainly in profile milling and sculptured surface milling operations 

(Fallbohmer et al., 2000; Urbanski et al., 2000; Altan et al., 2001; López de Lacalle et al., 
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2002; Coldwell et al., 2003; Krajnik and Kopac, 2004; Vivancos et al., 2004; Iqbal et al., 

2006). 

Studies of face milling in hardened steels are more limited. Aslan (Aslan, 2006) 

studied face milling of AISI D3 (JIS SKD1 / DIN 1.2080) steel at 62 HRC and found that 

the best cutting performance in terms of flank wear and surface finish was reached by 

polycrystalline cubic boron nitride insert tools (Pc-BN), which were capable of removing 

material volume of 65 cm3 and generated a surface finish of Ra between 0.3 and 3 µm, for 

a flank wear up to 300 µm. 

In the same work, ceramic tools specifically made of aluminum oxide (Al203) and 

TiCN (mixed ceramics), were capable of removing less material volume (8 cm3) and 

reaching a surface finish of Ra between 1.3 to 3µm, for a flank wear up to 300 µm, but 

their cost is about five or six times cheaper than cBN. The choice of other pure ceramic 

tools like Si3N4 is not recommended for face milling (i.e. some experimental works report 

catastrophic failures due to the chemical affinity with hardened steel and a lower hardness 

in comparison with Al203) [Liu, 2002].” 

Koshy, Dewes and Aspinwall (Koshy et al., 2002) tested face milling of AISI D2 at 

58 HRC with cBN tools and found acceptable tool life together with excellent surface 

finish in the range of 0.1 to 0.2 µm in Ra. However, the tools failed by fracture of the 

cutting edge and the authors concluded that for generating flat surfaces in hardened D2 

material. In addition, authors indicate the need for longer tool life would in order to make 

the process economically viable. 

Braghini and Coelho (Braghini and Coelho, 2001) tested c-BN tools to face mill AISI D6 

steel at 58 HRC, removing 15 cm3 of material with 300 µm of tool wear. In this case, 

surface finish was between 0.2 and 0.3 µm in Ra. Nevertheless, graphs presented in the 
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work show scattered points that prevent to state strong conclusions about surface quality 

and productivity.  

 

Fig.1. Cutting tool geometry, machining operations and their respective application in 

die and mould component manufacturing. 

 

There are only few papers found in literature which explore the economics of high 

performance manufacturing processes in the moulds and dies industry. Alam, Lee, 

Rahman and Sankaran (Alam et al., 2002) developed a decision algorithm as a help to 

choose when to use electro discharge machining (EDM) or High Performance Machining 
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(HPM) depending of variables such material hardness and surface finish required. Also, 

costs of these processes in the manufacturing of injection moulds have been analysed. 

Nevertheless, the algorithm is more suitable to process combinations of EDM and HPM 

and applies to particular types of cavities, considering some limitations and external 

factors. 

In regards to manufacturing process for hardened steels, there are a number of studies 

that compare the technical and economic capabilities of grinding vs. hard turning 

(Brinksmeier et al., 1998; Klocke et al., 2005), as shown in Fig. 2. When comparing HPM 

vs. surface grinding for hardened steels, similar criteria as those shown in Fig.2 should be 

used. However, an economic assessment of HPM vs. surface grinding, in the context of 

die and mould manufacture, is not available in the relevant literature. 

 

Fig.2. Capability comparison between hard turning and cylindrical grinding (adapted 

from Klocke 2005). 

López de Lacalle, Lamikiz, Salgado, Herranz and Rivero (López et al., 2002), provide 

some guidelines for the process planning for reliable HPM of moulds, and compare this 

process with EDM taking in account CAM programming, processing times and surface 



Vila et al 2012 IJPE Author version 

quality. The guidelines are dependent on CAM strategies for finishing operations with 

ball nose end mills and do not apply to other kinds of finishing operations. 

As we can see there is a need of developing a cost model in order to evaluate the 

economic implications of process planning in mould and die manufacturing. The 

literature shows an evolution of cost models applied to metal working that can help the 

process planning activity (Abdel-Malek & Asadathorn, 1996), that considered the 

influence of the process and machine tool selection in part tolerances and allowances. The 

present work was based on activity-based cost models proposed by Ben-Arieh and Qian 

(Ben-Arieh and Qian, 2003; Qian and Ben-Arieh, 2008) and Özbayrak (Özbayrak, 2004). 

These models allow determining the cost but do not help in decision making when 

alternative processes can be selected and parameters can change the cost of an operation 

and, therefore, the global cost. 

We can also find works about general cost models that can be applied or adapted to 

our specific case of die and mould manufacturing. For example, Cavalieri (Cavalieri et 

al., 2004) made a comparison between parametric and artificial intelligent models for the 

estimation of manufacturing costs for mechanical manufacturing of a specific automotive 

iron part. They developed a generic cost model that included fixed cost, scrap rates and 

manufacturing operation cost. The values of the coefficients of the models are determined 

with the help of artificial neural networks that requires huge amount of training data. 

More recently, another work established a cost model including the relations between 

the specification of the manufacturing features and the engaged costs of the 

manufacturing operations (H’mida, 2006). 

However, one of the most suitable works for our purpose is the contribution of 

Jönsson (Jönsson et al., 2008) that described, in a generic model, the influence of 
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technical factors on the manufacturing cost for a deterministic product development. The 

model gives some insights about a real scenario of manufacturing decision-making 

subject to organisational disturbances. 

Another contribution that supports our work is the applied cost analysis perspective 

of Folgado (Folgado et al., 2010), that compared by cost analysis two manufacturing 

processes for mould manufacturing, one based on high speed machining technology and 

the other based on a spray metal tooling (SMT) technology. The main finding of this work 

is that the later technology can be a sustainable solution for short batch parts because its 

initial investment cost. However, according to the cost model developed, for larger 

production volumes High Speed Machining is the best solution. The authors performed 

their analysis in aluminium moulds but in the tooling industry the most used moulds are 

made of hardened steel. 

1. 3. Objective 

The objective of this study is to develop selection criteria, based on industrial practice 

and experimentation with state-of-the-art machining technology, to support process 

planning in terms of selecting face milling vs. surface grinding for manufacture of 

hardened steel flat surfaces in dies and moulds. The following sections show the proposed 

methodology and a case study associated to ceramic tile moulds with hardened AISI D3 

steel components with a hardness of 60 HRC. 

2. Methodology 

Due to a better heat dissipation and lower cutting forces, HPM is a process with higher 

material removal rates, higher surface quality and more geometrical precision in 

comparison with the traditional machining processes.  The evolution of tool and machine 
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design and construction technologies has allowed increasing certain parameters (Table 

2). This However, HPM faces significant challenges in terms of tool life and potential 

changes in workpiece surface layer properties (Fallbohmer et al., 2000). Nevertheless, 

tool rooms which establish this process successfully in their manufacturing routes will 

have shorter cycle times and, therefore, will react faster to market demands. In order to 

aid the decision making of process planners, the following sections include technological 

and economic considerations that must be taken into account for process selection for the 

flat surface finishing of dies and moulds. 

 

Manufacturing Process Machining 
Operation General milling operation for hardened steels 
Tool End Mill 
Material AISI D2 60 HRC 

 
PARAMETERS TRADITIONAL HIGH PERFORMANCE 

Speed  900 rpm up to 10,000 rpm 
Cutting speed 20 m/min 

(up to 100 m/min) 
70 m/min 
(up to 500 m/min) 

Chip load up to 0.2 mm/tooth  up to 0.5 mm/tooth 
Radial Depth of Cut Dc < 0.5·Dc 
Axial Depth of Cut 0.4 Dc Dc 
Tolerances 50 µm 20 µm 
Ra 3 µm 0.1 µm 

Table 2. Comparative of typical values of parameters for hardened steels (Koshy, 2002; 
Coldwell et al., 2003; Toh, 2006; Ciurana et al., 2008). 

 

2. 1. Technological Considerations 

Often, decisions regarding the selection of the most appropriate process (grinding or 

HPM) for mold manufacturing are based on the experience of individuals. Several 

parameters and constraints that influence the selection can be found or are mentioned in 
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literature, catalogues or even in industry know-how, but there are no standard rules or 

guidelines to help in this selection process. 

The main considerations should be the following: 

• Mould material. Material hardness is one of the most important selection parameters 

when deciding what manufacturing process to use. Grinding can be used with all 

materials, excluding soft or gummy materials (Bralla, 1999; Swift and Booker; 

2001). Although HPM has a more limited applicability, documented studies show 

that all kinds of tool geometries (ball end mill, toroidal end mill, end mill and face 

mill) can be applied on tools steels up to a hardness of 60-62 HRC. 

• Mould component geometry. In general, intricate and complex geometries in mould 

cavities, as well as sharp internal corners or internal corners with small radii can be 

very difficult or even impossible to obtain either with grinding or HPM. In those 

cases, other alternatives such as EDM should be considered.  The scope of this study 

is limited to prismatic components with flat surfaces and 2D profiles in hardened 

tool steel. For these component geometries, the use of grinding or HPM becomes 

appropriate. Grinding has more limitations in relation to complex geometries and 

profiles than HPM.  There are some other die and mould geometry elements that 

will influence decision making. The need of high length to diameter (L/D) ratios 

will lead to poor tool performance due to stiffness and run-out problems. It is 

generally preferable the use of tools with as small L/D ratio as possible. Access to 

the different surfaces to be machined must also be taken into account, since the 

surface grinding process requires an open surface. For machining a given 2D profile, 

only HPM is a viable process. There might be restrictions when manufacturing parts 
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are difficult to position and hold in the machine. Since cutting forces for grinding 

are lower, holding might be easier in this case. 

• Geometrical tolerance & surface finish. Finally, important issues are the required 

geometrical tolerance and surface finish. According to the literature, up to 

0.008 mm in flat capability (Wright, 2001) and surface finish Ra between 0.025 and 

1.6 µm (Bralla, 1999, Swift and booker, 2001) are possible depending on the type 

of abrasive machining process. With HPM, some works show that surface finish Ra 

between 0.15 µm and 6 µm can be obtained, in sculptured milling operations 

(Urbanski et al., 2000; Vivancoset al., 2004; Koshy et al., 2002, Alam et al., 2002), 

Ra between 0.4 and 1.4 µm in profile milling operations (Iqbal et al., 2006), and Ra 

between and 0.2 to 3 µm in face milling operations (Braghini and Coelho, 2001; 

Koshy et al., 2002; Aslan, 2006). 

• Tool Material. Typical tool materials for machining tool steels are coated WC, 

cermet, ceramics and cBN (Koshy et al., 2002; Krajnik and Kopac, 2004). 

Depending on the application, geometric features, type of operation (profiling, face 

milling, contouring) and other variables, some tool materials are more suitable than 

others. For example, cBN cutting tools are not suitable for intermittent profiling 

because they can suffer catastrophic failure. In comparison, WC cutting tools 

present shorter tool life but their wear is progressive and can be better controlled at 

medium cutting speeds (Dogra et al., 2011). 

2. 2. Focus on Flat Surfaces in Hardened Tool Steel 

Based on the scope of this study, from the range of machining operations provided by 

HPM, the work is focused only on face milling operations. Based on geometrical 

constraints, the choice of grinding, milling or a combination of both is only applicable in 
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the case of flat surface on die and mould components. Therefore, process alternatives and 

case studies will be focused only on flat surfaces in hardened tool steels for the rest of the 

discussion in this article. 

Once the material and mould component geometry indicate that machining and 

grinding are applicable, the next deciding factor is quality (geometrical tolerance and 

surface finish). Based on the collected literature (Bralla, 1999, Swift and Booker, 2001, 

Webster, 2005), Fig. 3 shows the three different ranges of surface roughness and the 

recommended process for flat surface on hardened tool steels. For relatively rough finish 

(Ra>1 µm), machining is the process of choice (Ra>1 µm). For relatively fine surface 

finish (Ra<0.2 µm), grinding is the process of choice. For the range of Ra between 0.2 and 

1 µm, there are three viable options: grinding only, machining only, and a combination 

of machining and grinding. 

The specific selection will depend on the process economics (cost and productivity), 

which in turn will depend on a number of factors (Fig. 3). More details about the 

interaction of these factors will be described in the following sections. 
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Fig. 3. Recommended processes as a function of surface roughness for flat surfaces on 

hardened tool steels. 

2. 3. Economic Considerations - Productivity and Cost Analysis  

The development of the macro process plan for this case has allowed the definition of 

some alternatives (Fig.4). The figure shows the process plan alternatives for flat surfaces 

on hardened steel and a surface roughness range Ra between 0.2 to 1.0 µm. For each type 

of process, and associated machine tool, the operations are classified into: 

• The Material Removal Phase involves the actual contact between cutting tool / 

grinding wheel and mould component metal. The material removal phase is the only 

one that will impact the productive times. 

• The Support Functions Phase aggregates all those functions needed at the machine 

for production, but without actual material removal. Examples of support functions 
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include tool changes, grinding wheel redressing and machine setup. All CNC 

programs require non-cutting motions for tool/grinding wheel positioning. These 

motions are part of the non-productive times. Besides, process disturbances and 

other activities are included in this phase in order to simplify the model. 

• The Materials Handling Phase includes workpiece load/unload and on line 

inspection. These functions also add up to the non-productive times. 

The relative cost and productivity of the different phases in machining and/or grinding 

will determine the best process for a given case. Oversimplified analysis should be 

avoided, especially in regards to the consideration of more advanced and expensive 

technology in cutting tools / grinding wheels and machines. There are several documented 

studies that show how the use of more advanced expensive cutting tools / grinding wheels 

and machines result in a lower unit cost once the complete system is assessed (Rowe and 

Morgan, 2004). 

 

Fig. 4. Process plan alternatives for flat surfaces on hardened steel and a surface 

roughness range Ra between 0.2 to 1.0 µm. 
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In terms of productivity, for the three processes plans shown in Figure 2.2, the general 

production system time (TS) per lot, is composed of the sum of total machining time (TM) 

and total grinding time (TG), as expressed in equation (1): 

 GMS TTT +=  (1) 

For each term of this sum, productive and non-productive parameters have been 

defined in order to obtain an equation that will consider the type of operation. The factors 

related to productive and non-productive times in machining and grinding are defined in 

Table 3. 

 

 Machining Grinding 
Productive Time,  

Tp 
tRM: Roughing operation time tRG: Roughing operation time 
tFM: Finishing operation time tFG: Finishing operation time 
NWp: Number of parts per lot NWp: Numbers of parts per lot 

Non-productive Time,  
Tnp 

TLM: Setup per lot TLG: Setup per lot 
THM: Workpiece handling per lot THG: Workpiece handling per lot 
TTcM: Tool change per lot TWcG: Tool change per lot 

Table 3. Factors related to the productive and non-productive time 
 

Once defined these parameters and in order to consider the combination of machining 

and grinding, each separate process is defined with a roughing and finishing component 

as expressed in equations (2) and (3),  

 )()( 121 TcMHMLMWpFMRMM TTTpNtptpT +++⋅⋅+⋅=  (2) 

 )()( 443 WcGHGLGWpFGRGG TTTpNtptpT +++⋅⋅+⋅=  (3) 

 

The matrix shown in Table 4 indicates the binary factors to generate the different 

process plans that will customize the expressions 2 and 3. 
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Alternative Rough 
Milling 

Finish 
Milling  

Rough 
Grinding 

Finish 
Grinding 

p1 p2 p3 p4 
Process Plan M 1 1 0 0 
Process Plan G 0 0 1 1 
Process Plan M+G 1 0 0 1 

Table 4. Matrix representation of process plan alternatives for flat surfaces on hardened 
steel and a surface roughness range Ra between 0.2 to 1.0 µm. 

 

Another definition is the proportion between productive time (Tp), and non-

productive time (Tnp). In this work, it is defined in the equation (4) as the non-productive 

time ratio (rnp), 

 p

np
np T

T
r =

 (4) 

During the productive time (Tp), there is continuous contact between the cutting tool 

(grinding wheel) and the metal. Therefore, the material removal rate (volume of material 

removed in unit time, Q) is defined based on the productive time only. The system unit 

productivity (Pu) is therefore defined in equation (5), based on the material removed rate 

or based on manufacturing system time (TS) per lot and the workpiece material volume 

(Vwp), 

 S

wpwp

np
u T

NV
r

QP =
+

=
1  (5) 

If we define the cost for each tool and manufacturing process depending on the 

productive and non-productive factors (Table 5), we can express the general cost of the 

manufacturing system for the entire lot, excluding raw material cost and overhead (CS), 

with the following equation: 

 GTMTGPMPS CCCCC +++=  (6) 
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 Machining Grinding 
Machine Cost Associated to  

Productive and  
Non-Productive Time 

CMP: Machining process cost CGP: Grinding process cost 
HMP: Machining process hourly 
rate  

HGP: Grinding process hourly 
rate 

Cutting Tool / Grinding 
Wheel Wear Cost 

CMT: Cost of machining tools CGT: Cost of grinding wheels 

Table 5. Factors related to the machine and cutting tools/grinding wheel cost. 
 

In this equation 6 the machining (CMP) and grinding machine cost (CGP) are calculated 

considering the total time of the individual operation as it can be seen in equations (7) 

and (8),  

 MPMMP HTC =  (7) 

 GPGGP HTC =  (8) 

 

As a result, the proposed economic model for our manufacturing system includes all 

the cost related to productive and non-productive time (Table 5). The model includes the 

cost associated to the consumption of cutting tools and grinding wheels considering the 

overheads of broken tools and damaged edges that implies a slight increment of the edge 

cost determined by the tool manufacturer. Therefore, in terms of the production facility, 

the manufacturing system unit cost (Cu) is defined in equation (9) as follows:  

 wpwp

S
u NV

CC =
 (9) 

 

The portion of cost due to the associated machine tool can be defined in equation (10) 

as machining unit cost (CuMP), and in equation (11) as grinding unit cost (CuGP), 

 u

MP
uMP P

HC =
 (10) 
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 u

GP
uGP P

HC =
 (11) 

The complete unit cost needs to add raw material and administrative overhead. The 

concepts of System Unit Productivity (Pu) and System Unit Cost (Cu) are summarized at 

Fig. 5 as related to the phases of metal removal, support functions and materials handling. 

 

 

Fig. 5. System unit productivity and cost. 

2. 4. Experimental Evaluation 

In order to compare technical aspects and process economics, as described in the previous 

section, there is a need for experimental data (such as cutting tool / grinding wheel 
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consumption, material removal rate, etc.) under specific process condition.  Cost models 

such as those of Lee, Rowe and Wang (Rowe and Morgan, 2004, Lee and Shin, 2000, 

Wang and Liang, 2005) provide more details about those relevant process conditions 

needed for specifying grinding and machining operations. 

In the case of the current study, experimental evaluation was conducted with both 

surface grinding and face milling (schematically shown in Fig. 6). The face milling 

process was evaluated using a cutting tool with indexable coated WC inserts, under 

different machining conditions. The experimental data related to the surface grinding 

process was collected from an actual mould shop operation. The following sections 

describe the results from the experimental evaluation and the economic implications of 

the different process plan alternatives, as described in Fig. 4. 

The geometry selected for the experiments was determined by the manufacturer and 

the setup tried to reply the production environment with the design requirements of 

tolerances and allowances established by the process planners. 
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Fig. 6. Experimental evaluations with face milling and surface grinding on hardened 

tool steel. 

3. Case studies with hardened AISI D3 steel 

The case studies are based on components required for ceramic tile moulds (Vila et al., 

2005). This type of moulds requires several prismatic components with hardness of 60 

HRC. The following sections deal with the process plan alternatives presented in Fig. 3. 

3. 1. Process Plan with Grinding (G) 

The experimental setup is graphically explained in Fig. 7 and it shows the flat surface 

reciprocating grinding in the context of mould shop operations. All the operation 

parameters are detailed in the Table 6. A lot of 12 parts was ground in approximately 240 

min. Each part has dimensions of 390 x 33.5 x 33.5 mm and 0.4 mm of stock removal on 

the four long sides (21 cm3/part of workpiece material removed per part). The grinding 

wheel material is sintered microcrystalline aluminium oxide with vitrified bonding and 

F370 grit size. The first reason of this selection is that the analysis was conducted through 

a real case study provided by an industrial company operating in the mould sector. The 

second reason of this selection is that sintered aluminum oxide abrasives present 

significant advantages compared to their fused counterparts – particularly in term of life 

– and are much less expensive than superabrasives. When properly used, sintered 

abrasives can also result in significantly increased volumetric removal rates, reduced 

forces and lower work surface temperature during grinding. It is frequently a viable 

alternative to cBN, particularly in light of the ease of truing and dressing, and the initial 

wheel cost. (Webster, 2004) 
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At a cutting speed Vs of 31 m s-1, the total workpiece material removed was 252 cm3 for 

the 12 part lot, while the grinding wheel usage was 48 cm3 (0.7 mm of grinding wheel 

usage in diameter on an average diameter ds of 437 mm and wheel width bs of 100 mm). 

Therefore, the grinding ratio G was 5.25 on this operation. Under these conditions, the 

average of surface roughness obtained in surface grinding was Ra of 0.30 µm, close to the 

expected with the process plan (Fig. 3). 

In terms of productivity measures, the part handling and inspection time takes about 

50% of the operation. The non contact grinding wheel motions and redressing take 

approximately 36 min. for the complete lot. The actual material removal time for the 12 

part lot is approximately 84 min. Therefore, the material removal rate Q is approximately 

3 cm3/min (specific material removal rate Q’ is approximately 0.5 mm3 mm-1 s-1). All the 

results in characterization of the flat surface reciprocating grinding are within normal 

operation parameters of this process as reported in the relevant literature (Webster, 2004.). 

 

Fig. 7. Experimental setup in flat surface grinding. 

 
WORKPIECE 

Alloy AISI D3 / JIS SKD1 / DIN 1.2080  
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Hardness 60 HRc 
Number of workpieces 
per lot 12 

Workpiece geometry 390 x 33.5 x 33.5 mm  
    

GRINDING WHEEL 
ISO Specification 3SK 370 1H12 VEZ1 
Material Microcrystalline Aluminium Oxide 
Bond Vitrified 
Grit Size F370 
Average diameter  ds = 437.5 mm 
Width bs= 100 mm 

CUTTING CONDITIONS 
Wheel speed Vs= 31 m s-1 
Transversal feed rate Vz= 350 m min-1 
Workpiece feed rate Vw=  14.2 m min-1 
Oil-based cooling fluids 

MACHINE TOOL 
Model TRTM2500 DANOBAT 
Type Reciprocating grinding machine 

Table 6. Experimental Fixed Conditions for Process Plan with Grinding (G). 
 

3. 2. Process Plan with Face Milling (M) 

The experimentation was conducted with a double column machining centre suited for 

mould component manufacturing (the experimental setup is shown in Fig.8 and Table 7). 

A block of AISI D3 steel (60 HRC) was face milled with successive passes. Detailed 

measurements of tool wear, surface roughness, and geometrical tolerance, were 

conducted in order to characterize the process and determine the optimal operation 

conditions (equipment for measurements is shown in Table 8). After this previous cutting 

conditions optimizing procedure and according to the surface finish reached in a previous 

study (Siller et al., 2009) cutting speed was set to Vc of 75 m min-1 and feed per tooth was 

fixed at fz = 0.066 mm. These conditions will assure obtaining tolerances and allowances 

as the process plan expected previously (Fig. 3).  
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Fig. 8. Experimental setup in face milling. 
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WORKPIECE 

Alloy AISI D3 / JIS SKD1 / DIN 1.2080  

Hardness 60 HRc 
Geometry 250 x 250 mm block 
CUTTING TOOL 
Cutter Type Face Milling (22 mm bore) 
Adaptation BT 40 
Overhand Distance 55.00 mm 
Max. Diameter 52.00 mm 
Min. Diameter 33.10 mm 

Insert Geometry 
γ=13 deg, α=7deg, κn=12.6 deg, 
r1=2.075 mm, r2=19.75 mm, 
ds=12.7 mm 

Edge Preparation dch= 450 µm  γch= -19 deg 
Coating WC - PVD AlCrN coat 

CUTTING CONDITIONS 
Cutting Speed Vc = 75 m/min 
Feed rate fz = 0.066 mm 
Axial Depth of Cut ap= 0.40 mm 
Radial Depth of Cut ae= 31.25 mm 
Single cutting edge 
Cooled air for chip evacuation 

MACHINE TOOL 
Model DECKEL MAHO DMC70V 
Structure double column 
Axis Travel 700 x 550 x 500 mm 

Spindle 15,000 rpm  
(with temperature control) 

Table 7. Experimental Fixed Conditions for Process Plan with Face Milling (M). 
 

TOOL WEAR / COMPOSITION 
Stereo Microscope NIKON  MZ12 
Scanning Electron 
Microscope LEO 440i, OXFORD 

SURFACE ROUGHNESS 
Profilometer MITUTOYO SURFTEST 301 

3D MEASUREMENT 
Measuring Probe Renishaw MP12 

Table 8. Measurement Equipment for Process Plan with Face Milling (M). 
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In order to generate a good surface finish, the insert has a special design composed of 

large radii on the sides (r2 = 19.75 mm), joined by smaller radii (r1 = 2.08 mm) and 

circumscribed in a square with ds= 12.7 mm per side (Fig. 9). The nominal cutting edge 

angle provided by the cutter is κn = 12.6 deg. The cutting edge preparation is shown in 

section A-A of Fig. 9. The chamfer size is dch = 450 µm with a corresponding angle 

γch=- 19 deg. The clearance angle is α = 7 deg. The insert material is micro grain WC 

with PVD AlCrN coating. In order to facilitate comparison with results reported in the 

literature, a single insert was used in all testing (z=1). 

 

 

Fig. 9. Cutting tool: insert and cutting edge parameters. 

 

From the technical point of view, the results of the experimentation were satisfactory. 

The following technical aspects of face milling in hardened AISI D3 steel were evaluated: 
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• Process Reliability and Tool Deterioration. The cutting tool deterioration is 

presented as a regular flank wear without chipping, providing excellent process 

reliability (see Figure 3.4).  Under cutting conditions of Vc = 75 m min-1 and fz = 

0.066 mm, towards the end of tool life, a significant notch wear appears near the 

region along the cutting edge (κmax) that corresponds to the axial depth of cut ap. 

The ISO standard for tool life evaluation of face milling inserts [26] recommends a 

tool life criterion of 800 to 1,200 µm for localized wear. Normal practice shows that 

wear land of 600 microns in localized VB and 300 microns in uniform VB is used, 

when the roughness is the target. Therefore a conservative criterion of VBmax = 300 

µm was used in order to compare results with previous related work (Aslam, 2006, 

Braghini and Coelho, 2001). For this case, the tool life was 26.26 min that 

corresponds to a machined volume of B = 15 cm3 after approximately 5 passes. 

• Surface Roughness. For the experimental conditions tested in face milling, the 

surface roughness observed was Ra between 0.10 and 0.20 µm (see Figure 3.4). This 

level of surface roughness is comparable to that obtained with the surface grinding 

operation on the same workpiece material (Ra = 0.30 µm). As shown in Figure 3.4, 

the surface roughness for Vc = 75 m min-1 is consistent regardless of having a large 

localized flank wear on the cutting tool. 

• Geometrical Tolerance. According with the results of the dimensional 

measurements with the touch probe, the flatness variations on a face milled surface 

of 235 x 157 mm were approximately +/- 15 µm. Compared with the achievable 

geometrical tolerances of surface grinding (Swift and Booker, 2001), the face 

milling results are within the normal working capability of surface grinding. 
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In this study, there was no evaluation of surface integrity in terms of residual stresses 

and metallurgical changes due to process heat generation. However, previous studies in 

milling of hardened steels show that the heat generated by this process is not severe 

enough to produce a micro structural change in the workpiece material (Axinte and 

Dewes, 2002, Rodriguez et al., 2004). 

 

Fig. 10. Cutting tool deterioration and surface roughness for face milling - Process 

Plan M. 

3. 3. Process Plan with Combination of Grinding and Face Milling (G+M) 

With the same setup and fixed conditions of the previous experiment (Fig. 8) an 

experiment was conducted, with the purpose of increase material removal rate of the face 

milling operation, and performs a subsequent operation of surface grinding in order to 

improve the surface finish Ra achieved with face milling. In this alternative the objective 
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of the face milling operation is not good surface quality but obtaining economical 

advantage with a quicker operation that will allow the final grinding operation. Therefore, 

cutting speed was set to Vc of 100 m min-1 and feed per tooth was fixed at fz = 0.088 mm, 

under the assumption that with these parameters the productivity will be better and surface 

quality will be improved with a further grinding operation and according previous 

experimentation results (Siller et al 2009). Using the same tool life criteria explained 

before, the tool life was 17.73 min that corresponds to a machined volume of B = 21 cm3 

after approximately 7 passes, before notch wear appears near the region along the cutting 

edge (κmax) that corresponds to the axial depth of cut ap. Note in Figure 3.5 that the surface 

finish was Ra between 0.10 and 0.30 µm, and shows more variability than the previous 

experiment, which results in a less reliable process in terms of surface quality control. 

Once the face milling operation was terminated, the work piece with stock material is 

ready for a last pass in the reciprocating surface grinding machine. This process plan 

involves material handling and support functions which must be avoided or improved in 

order to decrease non productive time. 
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Fig. 11. Cutting tool deterioration and surface roughness for face milling - Process Plan 

G+M. 

4. Discussion 

For flat surfaces on hardened tool steel, the comparison of the two process plans 

developed in this study and previously published results are given in Table 9 and Fig. 12. 

Some assumptions used in the preparation of this comparative table include: 

• For the cases of face milling, the experimental evaluation was conducted with a 

single cutting edge. The material removal rate used in the calculations is based on 

the number of cutting edges available in the cutter. 

• The non-productive time ratio rnp was based on the actual mould shop production 

operations with grinding. The same value of rnp=1.9 was assumed in the face milling 

process plans.  
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• The cost of the machine tool hourly rate has been calculated taking into account 

several real values as machine cost, interest rate, term of lease, monthly payment, 

property taxes, insurance, repairs, maintenance, electricity and space used. The 

machine tool hourly rate was set to the same value in all cases. 

• The cost of milling inserts for WC and cBN are reference values based on several 

sources like tool suppliers, well known tool makers catalogues and scientific 

literature (Pytlak, 2010).  

• The tool life in face milling operations was based on a maximum localized flank 

wear of 300 µm, nevertheless the tool can be used beyond that limit with no 

significant change in surface quality of the work piece. 

 Current Study 
Process Plan G 
Surface Grinding  

(Al2O3 wheel) 
60 HRC 

Current Study 
Process Plan M 

Face Milling (WC) 
60 HRC 

Aslan 2006 
Process Plan M 

Face Milling (cBN) 
62 HRC 

Vc=75 m min-1 Vc=200 m min-1 
     

Pr
od

uc
tiv

ity
 

In
di
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to

rs
 

Material Removal Rate,  
Q (cm3 min-1) 

 
3.0 

0.6 (z=1) 
3.0 (z=5) 

2.18 (z=1) 
4.37 (z=2) 

Non-productive Time 
Ratio, rnp 

1.9 1.9 1.9 

Manufacturing System 
Unit Productivity,  

Pu (cm3 min-1) 

 
1.05 

 
1.04 

 
1.53 

     

C
os

t  
In

di
ca

to
rs

 

Machine Tool Hourly Rate 
(€ hr-1) 

15.00 15.00 15.00 

Machine Tool Unit Cost,  
CuMP or CuGP (€ (cm3)-1) 

0.24 0.24 0.16 

Cost per Grinding Wheel 
(€) 

767.00 N/A N/A 

Ground Workpiece 
Material per Wheel (cm3)  

45,000 N/A N/A 

Cost per Cutting Edge 
(€/edge) 

N/A 2.50 30.00 

Tool Life per Cutting Edge 
(cm3) 

N/A 15.62 65.00 

Cutting Tool / Grinding 
Wheel Unit Cost, 

 CuMT or CuGT (€ (cm3)-1) 

0.017 0.16 0.46 

Manufacturing System 
Unit Cost,  

Cu (€ (cm3)-1) 

0.26 0.40 0.63 
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Table 9. Cost and productivity comparison of surface grinding vs. face milling for flat 
surfaces on hardened tool steel AISI D3 (60-62 HRC). 

 
 

 

Fig. 12. Economic evaluation of face milling for AISI D3 Steel (60 HRC) and 

comparison with surface grinding operation and literature results for D3 steel (62 HRc). 

 

The following issues should be discussed about results given in the comparative 

table: 

• Manufacturing system unit cost vs. productivity in grinding vs. face milling. Results 

of this study show that the productivity reached by face milling is almost the same 

that the reached by surface grinding, even by using conservatives cutting parameters 

to maintain surface quality in control. In the case of the manufacturing system unit 

cost, in spite of the fact that face milling is more expensive than surface grinding, 

the gradual reduction of costs in the manufacturing of tungsten carbide inserts will 

improve this indicator. 



Vila et al 2012 IJPE Author version 

• Manufacturing system unit cost vs. productivity in WC vs. cBN face milling. 

Nevertheless the cBN tool exhibited better productivity than the WC tool, it is 

required more experimentation in order to assure the reliability cBN in face milling 

operations. Also, the use cBN inserts is still expensive for this kind of machining 

operation. 

The model presented in this work can be implemented in several industrial scenarios 

where finishing operations of hardened steel are performed. These operations are very 

common within the manufacturers of moulds and equipment parts for ceramic materials 

forming. Manufacturing process plans explored in this work are viable alternatives for 

suppressing the intermediate polishing processes, with its associated cost and time. The 

current approach for manufacturing process plan selection is limited by the need of 

extensive experimental data. For the future work we should be able to develop a dynamic 

method that could meet manufacturing shop floor needs to be more adaptive in each case. 

 

5. Conclusions and future work 

5. 1. Contributions 

The main contribution of this research is the demonstration of the face milling process 

viability versus the surface grinding for the finishing of hardened steels flat surfaces 

components. The development of advanced tools with new geometrical configuration 

and materials has been made possible this technological approach.  

Taking up again the comparison of technical and economic capabilities of grinding 

vs. hard turning (Figure 1.2) made by Klocke (Klocke et al., 2005)) and adopting it for 

surface grinding versus face milling of hardened steels, the process reliability, surface 

roughness and productivity of face milling with tungsten carbide coated inserts are 
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competitive factors when deciding the adoption of this technology in tool rooms and shop 

floors dedicated to the manufacturing of moulds and dies. Furthermore, the use of cooled 

air for chip evacuation has less environmental impact in comparison to oil and water 

based fluids used as coolants in surface grinding. Finally, geometrical tolerances reached 

by face milling are broader in comparison with the reached by surface grinding, but this 

factor depends on temperature control of the spindle and precision of the machine tool. 

5. 2. Future Work 

The study of high performance machining of hardened steels must be thorougly studied 

through the experimentation of face milling operations with advanced cutting tools made 

by cBN and must include economical comparisons with high performance flat surface 

grinding with cBN wheels, processes available but not widely implemented in the die and 

mould industry due to the investment needed to carry out their technological demands.  

By the evaluation of other machining operations on tool steels in their hardened state, 

like profiling, drilling, threading and sculptured surface milling, considering cost and 

productivity analysis, it will be possible to suggest the integration of the whole process 

plan of material removal operations in a single machine tool, wich means important cycle 

time and cost savings in the manufacturing of die and mould components. 
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