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Abstract A nonpositive real matrix A = (aij)1≤i,j≤n is said to be totally
nonpositive (negative) if all its minors are nonpositive (negative) and it is
abbreviated as t.n.p. (t.n.). In this work a bidiagonal factorization of a non-
singular t.n.p. matrix A is computed and it is stored in an matrix represented
by BD(t.n.p.)(A) when a11 < 0 (or BD(zero)(A) when a11 = 0). As a converse
result, an efficient algorithm to know if an matrix BD(t.n.p.)(A) (BD(zero)(A))
is the bidiagonal factorization of a t.n.p. matrix with a11 < 0 (a11 = 0) is given.
Similar results are obtained for t.n. matrices using the matrix BD(t.n.)(A), and
these characterizations are extended to rectangular t.n.p. (t.n.) matrices. Fi-
nally, the bidiagonal factorization of the inverse of a nonsingular t.n.p. (t.n.)
matrix A is directly obtained from BD(t.n.p.)(A) (BD(t.n.)(A)).

Keywords Totally nonpositive matrix · totally negative matrix · inverse ·
bidiagonal factorization
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1 Introduction

A real matrix is called totally nonpositive (negative) if all its minors are non-
positive (negative) and it is abbreviated as t.n.p. (t.n.), see e.g. [4,5,7–9,17,19,
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25]. These matrices can be considered as a generalization of the partially neg-
ative matrices, that is, matrices with all its principal minors negative, which
are called N -matrices in economic models [3,22]. If, instead, all minors of a
matrix are nonnegative (positive) the matrix is called totally nonnegative (pos-
itive) and it is abbreviated as TP (STP). These matrices have a wide variety
of applications and they have been studied by several authors [1,6,10–14,16,
23,24].

Recently, in [2] an algorithmic characterization of nonsingular almost strictly
totally negative matrices is given through the Neville elimination. For t.n.p.
matrices, Huang [18] obtained a bidiagonal factorization of a nonsingular t.n.p.
matrix from the bidiagonal factorization of its inverse.

Now, in this paper we directly compute a bidiagonal factorization of a
nonsingular t.n.p. matrix, different from the bidiagonal factorizations given
in [18]. The main goal consists of directly compute the factorization using
the entries of the t.n.p. matrix A by applying the Neville elimination process
without pivoting.

The paper is organized as follows: in Section 2, we propose a bidiagonal
factorization of nonsingular t.n.p. matrices and we collect all elements of this
bidiagonal factorization in the square matrix BD(t.n.p.)(A) when a11 < 0 (or
BD(zero)(A) when a11 = 0). Furthermore, we introduce two algorithms with
quadratic cost that allow us to check if an matrix BD(t.n.p.)(A) (BD(zero)(A)),
with some specific properties, is the bidiagonal factorization of a t.n.p. matrix
with a11 < 0 (a11 = 0). In Section 3, from the bidiagonal factorization of
a nonsingular t.n.p. matrix A we determine the bidiagonal factorization of
the inverse of A. Finally, in Section 4 we extend the results of Section 2 to
rectangular t.n.p. (t.n.) matrices with arbitrary rank.

2 Bidiagonal factorization of nonsingular t.n.p. matrices

Let A = (aij) ∈ Rn×n be a nonsingular t.n.p. matrix. It is well-known, see
[4], that the entries of A are aij < 0, except for a11 ≤ 0 and ann ≤ 0. In this
section we obtain a bidiagonal factorization of A applying Neville elimination
and depending on a11 < 0 or a11 = 0. Neville elimination is a classical method
alternative to Gaussian elimination and consists of making zeros in a column
of a matrix by adding to each row an appropriate multiple of the precedent
one, instead of using just a row with a fixed pivot as in Gaussian elimination
(for a complete matricial description see [15]). This elimination technique plays
an important role when dealing with sign regular matrices including totally
nonnegative and totally nonpositive matrices and it has been used to get the
factorization of a nonsingular TP matrix as a product of bidiagonal matrices
(see [12]).

From now on, we denote by Ei(x) a bidiagonal matrix which differs from
the identity matrix only in its (i, i− 1) entry x (see, for example, [15]).
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2.1 A t.n.p. matrix with a negative (1, 1)-entry

A well-known result on nonsingular t.n.p. matrices with a negative (1, 1)-entry
proves that they have a unique LDU factorization applying Neville elimination
without pivoting [4]. Using this result, it is possible to construct a bidiagonal
factorization of this class of matrices.

Theorem 1 Let A = (aij) ∈ Rn×n be a nonsingular matrix with a11 < 0
and ann ≤ 0. Then, A is a t.n.p. matrix if and only if A admits the unique
bidiagonal factorization

A = Fn−1Fn−2 . . . F1DG1G2 . . . Gn−1 (1)

where D = diag(−d1, d2, . . . , dn), with d1, d2, . . . , dn > 0, and for i = 1, 2, . . . ,
n− 1, Fi (Gi) are the unit lower (upper) bidiagonal TP matrices defined by

Fn−j =



1
. . .

1
β1,n−j+1 1

. . .
. . .

βj−1,n−1 1
βj,n 1


, j = 1, 2, . . . , n− 1 (2)

with β1,2 > 0, . . . , β1,n > 0 and if βs,t = 0 then βs,h = 0, for all h > t, and

Gk =



1
. . .

1
1 α1,k+1

. . .

1 αn−k−1,n−1

1 αn−k,n

1


, k = 1, . . . , n− 1 (3)

with α1,2 > 0, . . . , α1,n > 0, and if αs,t = 0 then αs,h = 0, for all h > t.

Proof By [4, Theorem 2.1], if A is a t.n.p. matrix with a11 < 0 admits the
unique factorization A = LDU , where L is a unit lower triangular TP matrix,
D = diag(−d1, d2, . . . , dn), with di > 0 for i = 1, 2, . . . , n, and U is a unit
upper triangular TP matrix. Since L is a TP matrix by [12, equation (3.1) pp.
117] we know that it admits the unique bidiagonal factorization,

L = [En(β1,n)][En−1(β1,n−1)En(β2,n)] . . . [E2(β1,2)E3(β2,3) . . . En(βn−1,n)]
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where β1,2 > 0, . . . , β1,n > 0 and if βs,t = 0 then βs,h = 0, ∀h > t. Multiplying
the (Ei)’s inside the brackets we obtain the bidiagonal matrices

Fn−j = En−j+1(β1,n−j+1)En−j+2(β2,n−j+2) . . . En(βj,n)

given by the expression and conditions (2).
Analogously, the TP matrix U admits the unique bidiagonal factorization,

U = [ET
n (αn−1,n) . . . E

T
3 (α2,3) . . . E

T
2 (α1,2)] . . . [E

T
n (α2,n)E

T
n−1(α1,n−1)][E

T
n (α1,n)],

where α1,2 > 0, . . . , α1,n > 0 and if αs,t = 0 then αs,h = 0, ∀h > t. Multiplying
the (ET

i )’s inside the brackets we obtain the bidiagonal matrices

Gk = ET
n (αn−k,n) . . . E

T
k+2(α2,k+2)E

T
k+1(α1,k+1)

given by the expression and conditions (3). Therefore, A admits the unique
bidiagonal factorization given in (1).

Conversely, from the bidiagonal factorization

A = Fn−1Fn−2 . . . F1DG1G2 . . . Gn−1

we construct L and U in the following form

L = Fn−1Fn−2 . . . F2F1

U = G1G2 . . . Gn−2Gn−1

Since Fi (Gi), i = 1, 2, . . . , n−1, are unit lower (upper) bidiagonal TP matrices,
then L and U are unit lower (upper) triangular TP matrices. Then, we have
that A = LDU is a t.n.p. matrix by [4, Theorem 2.5]. �

By [4] and with an analogous reasoning, a similar factorization is obtained
for t.n. matrices with all parameters αi,j and βi,j positive.

Corollary 1 Let A = (aij) ∈ Rn×n be a nonsingular matrix with ann < 0. A
is a t.n. matrix if and only if A admits the unique bidiagonal factorization

A = Fn−1Fn−2 . . . F1DG1G2 . . . Gn−1

where D = diag(−d1, d2, . . . , dn), with di > 0, Fi (Gi), for i = 1, 2, . . . , n,
are unit lower (upper) bidiagonal TP matrices given by expressions (2) and
(3), respectively, and satisfying the conditions βi,j > 0 and αi,j > 0, for all
i = 1, 2, . . . , n− 1 and j = 2, 3, . . . , n.

Koev [20,21] denotes the bidiagonal decomposition of a TP matrix A as
BD(A) and he stores the nontrivial entries of BD(A) compactly in an n × n
matrix which he also refers to as BD(A). Now, we extend this notation to
t.n.p. matrices.
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Definition 1 Let A be an n× n nonsingular t.n.p. matrix with a11 < 0 and
ann ≤ 0. Using Theorem 1, we denote by BD(t.n.p.)(A) the obtained bidiagonal
decomposition of A and we store the entries of BD(t.n.p.)(A) in the n×nmatrix

BD(t.n.p.)(A) =



−d1 α1,2 α1,3 · · · α1,n−1 α1,n

β1,2 d2 α2,3 · · · α2,n−1 α2,n

β1,3 β2,3 d3 · · · α3,n−1 α3,n

...
...

...
...

...
β1,n−1 β2,n−1 β3,n−1 · · · dn−1 αn−1,n

β1,n β2,n β3,n · · · βn−1,n dn


(4)

where

di > 0, βi,j ≥ 0, αi,j ≥ 0 for i, j = 1, 2, . . . , n, (5)

β1,j > 0, α1,j > 0 for j = 2, 3, . . . , n, (6)

if βi,j = 0, (αi,j = 0) =⇒ βi,h = 0, (αi,h = 0) for all h > j. (7)

If A is a t.n. matrix then we obtain the bidiagonal decomposition BD(t.n.)(A),
with βi,j > 0 and αi,j > 0 for all i = 1, 2, . . . , n− 1 and j = 2, 3, . . . , n.

The converse of this result is not true in general, that is, an n× n matrix
BD(t.n.p.)(A), with the conditions given by (5), (6) and (7), is not always
the bidiagonal factorization of a t.n.p. matrix A with a11 = −d1 < 0, see the
following example. This is an important difference between TP (STP) matrices
and t.n.p. (t.n.) matrices.

Example 1 Consider the matrix

BD(t.n.p.)(A) =


−3 2 2 1 2
4 1 3 1 1
5 2 2 1 0
1 3 1 1 1
2 3 0 2 1

 .

Note that its entries verify the conditions (5), (6) and (7). Following Theo-
rem 1, we construct the bidiagonal matrices Fi and Gj , for i, j = 1, 2, 3, 4, and
the diagonal matrix D. Then, we have that

A = F4F3F2F1︸ ︷︷ ︸
L

DG1G2G3G4︸ ︷︷ ︸
U

=


−3 −6 −12 −12 −24
−12 −23 −43 −40 −77
−60 −113 −203 −178 −331
−60 −107 −165 −105 −149
−120 −196 −216 11 257

 ,

which is not a t.n.p. matrix because the (5, 4) and (5, 5) entries are positive.
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To know if an n × n matrix BD(t.n.p.)(A), with the conditions given by (5),
(6) and (7), is the bidiagonal factorization of a t.n.p. matrix A with a11 < 0
we only need to compute ann, see [4, Theorem 2.4]. If ann ≤ 0 then it is and
if ann > 0 it is not. Therefore, we present an algorithm that computes ann
directly from the elements of BD(t.n.p.)(A) without obtaining matrices Fi and

Gj , i, j = 1, 2, . . . , n − 1. From BD(t.n.p.)(A) we compute l(n) and u(n), that
is, the last row of L, and the last column of U , respectively, and after we
obtain ann as the product l(n)Du(n). The following equalities to construct the

last row of L, l(n) = [ln,1, ln,2, . . . , ln,n−1, 1] from BD(t.n.p.)(A) are used in
Algorithm 1:

ln,n−1 = β1,n︸︷︷︸
h
(n−1)
1

+ β2,n︸︷︷︸
h
(n−1)
2

+ · · ·+ βn−2,n︸ ︷︷ ︸
h
(n−1)
n−2

+βn−1,n︸ ︷︷ ︸
h
(n−1)
n−1

ln,n−2 = β1,n−1h
(n−1)
1︸ ︷︷ ︸

h
(n−2)
1

+β2,n−1

(
h
(n−1)
1 + h

(n−1)
2

)
︸ ︷︷ ︸

h
(n−2)
2

+ · · ·+

+ · · ·+ βn−2,n−1

(
h
(n−1)
1 + h

(n−1)
2 + · · ·+ h

(n−1)
n−3 + h

(n−1)
n−2

)
︸ ︷︷ ︸

h
(n−2)
n−2

ln,n−3 = β1,n−2h
(n−2)
1︸ ︷︷ ︸

h
(n−3)
1

+β2,n−2

(
h
(n−2)
1 + h

(n−2)
2

)
︸ ︷︷ ︸

h
(n−3)
2

+ · · ·+

+ · · ·+ βn−3,n−2

(
h
(n−2)
1 + h

(n−2)
2 + · · ·+ h

(n−2)
n−4 + h

(n−2)
n−3

)
︸ ︷︷ ︸

h
(n−3)
n−3

...

ln,2 = β1,3h
(3)
1︸ ︷︷ ︸

h
(2)
1

+β2,3

(
h
(3)
1 + h

(3)
2

)
︸ ︷︷ ︸

h
(2)
2

ln,1 = β1,2h
(2)
1︸ ︷︷ ︸

h
(1)
1
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Algorithm 1 (LastRow) It computes the last row of L directly from the
elements of an n × n matrix BD(t.n.p.)(A) in form (4) with the properties
given by (5), (6) and (7).

Require: n, BD(t.n.p.)(A) ∈ Rn×n

1: H := BD(t.n.p.)(A)
2: q := 0
3: for i = 1 to n− 1 do
4: q := q +H(n, i)
5: K(n− 1, i) := H(n, i)
6: end for
7: l(n, n− 1) := q
8: for t = n− 2 to 2 step −1 do
9: q := H(t+ 1, 1)K(t+ 1, 1)
10: K(t, 1) := q
11: p := K(t+ 1, 1)
12: for j = 2 to t do
13: p := p+K(t+ 1, j)
14: K(t, j) := H(t+ 1, j) p
15: q := q +K(t, j)
16: end for
17: l(n, t) := q
18: end for
19: l(n, 1) := H(2, 1)K(2, 1)
20: return l(n) = [l(n, 1), l(n, 2), . . . l(n, n− 1), 1]

Theorem 2 The computational cost of Algorithm 1 is 3
2 n

2 − 11
2 n+ 5.

Proof Analyzing Algorithm 1 we observe the following operations:

- for of line 3 runs n− 1 times with one sum each time.
- for of line 8 runs n−3 times. In each time there is one arithmetic operation
and an inner for in line 12, which runs t − 1 times with 3 arithmetic
operations each time.

- Finally, a product in line 19.

Then, the total computational cost to obtain l(n) is

O = n− 1 +

n−2∑
t=2

1 +

t∑
j=2

3

+ 1 =
3

2
n2 − 11

2
n+ 6.

�

Example 2 Consider the following 5× 5 matrix

BD(t.n.p.)(A) =


−4 2 2 1 2
4 1 3 1 1
5 2 2 1 0
1 3 1 1 1
2 3 0 2 1

 ,

by applying Algorithm 1 we obtain
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l(5, 4) = β1,5 + β2,5 + β3,5 + β4,5 = 2 + 3 + 0 + 2 = 7

l(5, 3) = β1,4β1,5 + β2,4(β1,5 + β2,5) + β3,4(β1,5 + β2,5 + β3,5)

= β1,4β1,5 + β2,4β1,5 + β2,4β2,5 + β3,4β1,5 + β3,4β2,5 + β3,4β3,5 = 22,

graphically is,

-  -4

 ! ! 4 1

 ! "! ! 5     2 2

 ! "! #! ! 1     3     1 1

 ! "! #!$$$$$ %!$$$$ ! 2     3     0     2 1

 !=  !  "###+  ! "#$$$+  !  "###+  ! "#$$$+  ! "#$$$

+  !  "## = 1 . 2 + 3 . 2 + 3 . 3 + 1 . 2 + 1. 3 = 22

l(5, 2) = β1,3β1,4β1,5 + β2,3(β1,4β1,5 + β2,4(β1,5 + β2,5))

= β1,3β1,4β1,5 + β2,3β1,4β1,5 + β2,3β2,4β1,5 + β2,3β2,4β2,5 = 44,

and graphically is,

-  -4

 ! ! 4 1

 ! "! ! 5     2 2

 ! "! #! ! 1     3     1 1

 ! "! #!$$$$$ %!$$$$ ! 2     3     0     2 1

 !=  !  "  #$$$+  ! "# "$%%%+  !  " #$%%%+  !  "  #$$

= 5 . 1 . 2 + 2 . 1 . 2 + 2 . 3 . 2 + 2 . 3 . 3 = 44
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Finally,
l(5, 1) = β1,2β1,3β1,4β1,5 = 40.

and graphically,

-  -4

 ! ! 4 1

 ! "! ! 5     2 2

 ! "! #! ! 1     3     1 1

 ! "! #!$$$$$ %!$$$$ ! 2     3     0     2 1

 !=  !  "  #  $ = 4 . 5 . 1 . 2 = 40

Then, l(5) = [l(5, 1), l(5, 2), l(5, 3), l(5, 2), 1] = [40, 44, 22, 7, 1].

Now, the following algorithm checks if an square matrix BD(t.n.p.)(A) in
the form (4), with the conditions given by equations (5), (6) and (7), is the
bidiagonal factorization of a t.n.p. matrix A with a11 = −d1 < 0. Its compu-
tational costs is O(n2).

Algorithm 2 (IsTnp) It tests if an square matrix BD(t.n.p.)(A) in form (4)
with the properties given by equations (5), (6) and (7), is the bidiagonal fac-
torization of a t.n.p. matrix A with a11 = −d1 < 0

Require: n, BD(t.n.p.)(A) ∈ Rn×n

1: H := BD(t.n.p.)(A)
2: l := LastRow(H,n)
3: u := (LastRow(HT , n))T

4: ann := l diag(diag(H))uT

5: if ann ≤ 0 then
6: BD(t.n.p.)(A) is the bidiagonal factorization of a t.n.p. matrix A
7: else
8: BD(t.n.p.)(A) is not the bidiagonal factorization of a t.n.p. matrix A
9: end if

Corollary 2 The computational cost of Algorithm 2 is 3n2 − 8n+ 7.

Proof To compute the element ann as follows,

ann = l(n)Du(n) = −d1ln,1u1,n + (d2ln,2u2,n + · · ·+ dn−1ln,n−1un−1,n + dn)︸ ︷︷ ︸
x

= −d1ln,1u1,n + x,
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it is necessary 3(n − 1) operations between products and sums. Then, the
computational cost is

O =

(
3

2
n2 − 11

2
n+ 5

)
︸ ︷︷ ︸

to compute l

+

(
3

2
n2 − 11

2
n+ 5

)
︸ ︷︷ ︸

to compute u

+3(n− 1)

= 3n2 − 8n+ 7.

�

Remark 1 Note that if an square matrix BD(t.n.)(A) in form (4) has all its
elements greater than zero except for the negative (1, 1)-entry, Algorithms 1
and 2 also allow us to check if this matrix is the bidiagonal factorization of a
t.n. matrix A.

Remark 2 Algorithms 1 and 2 check in a very efficient way if BD(t.n.p.)(A)
(BD(t.n.)(A)) is the bidiagonal factorization of a t.n.p. (t.n.) matrix A with
a negative (1, 1)-entry. Therefore, they are useful to generate this kind of
matrices.

Example 3 In Example 2, we have obtained

l(5) = [l(5, 1), l(5, 2), l(5, 3), l(5, 2), 1] = [40, 44, 22, 7, 1].

Applying the same procedure to
(
BD(t.n.p.)(A)

)T
we obtain u(5) = [8, 19, 8, 4, 1]T .

Since,

D = diag(BD(t.n.p.)(A) = diag(−4, 1, 2, 1, 1)

then, a5,5 = l(5)Du(5) = −63 < 0, that is, BD(t.n.p.)(A) is the bidiagonal
factorization of a t.n.p. matrix.

Note that, the only difference between the matrices of Examples 1 and
2 is the (1, 1)-entry. If a11 = −3 then the matrix BD(t.n.p.)(A) is not the
bidiagonal factorization of a t.n.p. matrix. Otherwise, if a11 = −4 then the
answer is affirmative.

2.2 A t.n.p. matrix with a zero (1, 1)-entry

Now, we consider nonsingular t.n.p. matrices with a11 = 0. For these matrices,
a distinct bidiagonal factorization can be obtained by using the matrix Q in
the constructive process, where Q is the identity matrix except for the first

2× 2 principal block equal to

(
0 −1

−1 0

)
.
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Theorem 3 Let A = (aij) ∈ Rn×n be a nonsingular t.n.p. matrix with a11 = 0.
Then, A can be uniquely factorized as

A = En(β1,n)En−1(β1,n−1) . . . E3(β1,3)QFn−2 . . . F1DG1G2 . . . Gn−1 (8)

where D = diag(d1, d2, . . . , dn), with di > 0 for i = 1, 2, . . . , n. Et is a bidia-
gonal matrix which differs from the identity only in its (t, t−1) entry β1t > 0,
for t = 3, 4, . . . , n. Fn−j is the following nonnegative bidiagonal matrix

Fn−j =



1
. . .

1
β2,n+2−j 1

. . .
. . .

βj−1,n−1 1
βj,n 1


, j = 2, . . . , n− 1, (9)

such that βs,t = 0 ⇒ βs,h = 0 ∀ h > t, and Gk is the following nonnegative
bidiagonal matrix

Gk =



1
. . .

1
1 α1,k+1

. . .

1 αk−1,n−1

1 αk,n

1


, k = 1, . . . , n− 1, (10)

with α1,2 > 0, . . . , α1,n > 0 and such that αs,t = 0 ⇒ αs,h = 0 ∀ h > t.

Proof Note that all entries ai1 < 0, for all i = 2, 3, . . . , n (see [7]). We apply
the first iteration of the Neville elimination and multiply by the matrix Q.
Then, we obtain the following matrix A1,

A1 = QE3(−β1,3) . . . En−1(−β1,n−1)En(−β1,n)︸ ︷︷ ︸
E(1)

A = QE(1)A,

or equivalently,

A1 =



−a2,1 −a2,2 · · · −a2,n−1 −a2,n

0 −a1,2 · · · −a1,n−1 −a1,n

0 a
(1)
3,2 · · · a

(1)
3,n−1 a

(1)
3,n

...
...

...
...

0 a
(1)
n−1,2 · · · a(1)n−1,n−1 a

(1)
n−1,n

0 a
(1)
n,2 · · · a

(1)
n,n−1 a

(1)
n,n


,
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with a
(1)
i,j ≥ 0. The matrix A1 is TP because if we apply Binet-Cauchy (see

[13, Theorem 3.1]), then:

1. For all k = 1, 2, . . . , n,

det(A1)[1, 2, . . . , k] = det(QE(1)A)[1, 2, . . . , k]

=
∑

∀γ∈Qk,n

det(Q)[1, 2, . . . , k|γ] det(E(1)A)[γ|1, 2, . . . , k]

= det(Q)[1, 2, . . . , k] det(E(1)A)[1, 2, . . . , k]

= −det(E(1)A)[1, 2, . . . , k]

= −
∑

∀γ∈Qk,n

det(E(1))[1, 2, . . . , k|γ] det(A)[γ|1, 2, . . . , k]

= −det(E(1))[1, 2, . . . , k] det(A)[1, 2, . . . , k]

= −det(A)[1, 2, . . . , k] > 0.

2. For all β ∈ Qk,n, k = 1, 2, . . . , n,

det(A1)[1, 2, . . . , k|β] = det(QE(1)A)[1, 2, . . . , k|β]
=

∑
∀γ∈Qk,n

det(Q)[1, 2, . . . , k|γ] det(E(1)A)[γ|β]

= det(Q)[1, 2, . . . , k] det(E(1)A)[1, 2, . . . , k|β]
= −det(E(1)A)[1, 2, . . . , k|β]
= −

∑
∀γ∈Qk,n

det(E(1))[1, 2, . . . , k|γ] det(A)[γ|β]

= −det(E(1))[1, 2, . . . , k] det(A)[1, 2, . . . , k|β]
= −det(A)[1, 2, . . . , k|β] ≥ 0.

3. For all α ∈ Qk,n, k = 1, 2, . . . , n,

det(A1)[α|1, 2, . . . , k] = det(QE(1)A)[α|1, 2, . . . , k]
= det(QE(1)A)[α1, α2, . . . , αn|1, 2, . . . , k]

=


α1 > 1 → = 0
α1 = 1 → = det(QE(1)A)[1, α2, . . . , αn|1, 2, . . . , k]
= −a21 det(QE(1)A)[α2, . . . , αn|2, . . . , k]

Using [5], if α2 > 2 we have that,

det(QE(1)A)[α2, . . . , αn|2, . . . , k] ≥ 0
⇓

−a21 det(QE(1)A)[α2, . . . , αn|2, . . . , k] ≥ 0

Using [7], if α2 = 2 we have that,

det(QE(1)A)[2, . . . , αn|2, . . . , k] ≥ 0
⇓

−a21 det(QE(1)A)[2, . . . , αn|2, . . . , k] ≥ 0
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Therefore, A1 is a TP matrix. Applying [12], A1 can be decomposed uniquely
as follows,

A1 = Fn−1Fn−2 · · ·F1DG1G2 · · ·Gn−1

where D = diag(d1, d2, . . . , dn), with di > 0 for i = 1, 2, . . . , n, Fn−1 = In.
Fk, Gh, k = 1, 2, . . . , n − 2, h = 1, 2, . . . , n − 1 are analogous to matrices (9)
and (10), respectively. Then, A can be decomposed uniquely as

A = En(β1,n)En−1(β1,n−1) · · ·E3(β1,3)QFn−2 · · ·F1DG1G2 · · ·Gn−1. �
If A is a nonsingular t.n.p. matrix with a11 = 0, then it is not possible to

obtain a LDU factorization by applying Neville elimination without pivoting.
From the factorization (8) we can construct a quasi LDU factorization of A,
that is A = LQL̃DU where L, L̃ and U are TP matrices, as in the case when
a11 < 0. This factorization and Theorem 4 allow us to give other characteriza-
tion of this class of matrices similar to the expression obtained when a11 < 0
(see [4]).

Corollary 3 Let A ∈ Rn×n be a nonsingular t.n.p. matrix with a11 = 0.
Then, A can be uniquely factorized as

A = LQL̃DU (11)

where L and L̃ are unit lower triangular TP matrices, D is a positive diagonal
matrix and U is a unit upper triangular TP matrix.

Proof Consider the factorization (8) ofA. We define L = En(β1,n) En−1(β1,n−1)

. . . E3(β1,3), L̃ = Fn−2 . . . F1 and U = G1G2 . . . Gn−1, then the result follows.
�

The converse of Theorem 3 is not true in general, because the (n, n)-entry
of A can be positive. Next result proves the converse by adding the necessary
condition that the (n, n)-entry of A must be nonpositive.

Theorem 4 Let A = LQL̃DU ∈ Rn×n be a matrix where ann ≤ 0, L,
L̃ (U) are unit lower (upper) triangular TP matrices with positive entries
below (above) the main diagonal and D = diag(d1, . . . , dn) with di > 0,
i = 1, 2, . . . , n. Then, A is t.n.p. with a11 = 0.

Proof Using the matrix H = diag(−1,−1, 1 . . . , 1) we have

LQL̃D = L(QL̃H)(HD)

= L



0 1
1 0

0 −l̃3,2 1

0 −l̃4,2 l̃4,3
...

...
...

0 −l̃n−1,2 l̃n−1,3 · · · 1

0 −l̃n,2 l̃n,3 · · · l̃n,n−1 1




−d1 0 . . . 0 0
0 −d2 . . . 0 0
...

...
...

...
0 0 . . . dn−1 0
0 0 . . . 0 dn


= TD̄.

The matrix T = LQL̃H satisfies,
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1. The principal submatrix T [3, 4, . . . , n] is TP.
2. The first elements of the first column ti,1, for i = 2, 3, . . . , n, is positive.
3. The elements of the second column ti,2, for i = 3, 4, . . . , n are nonpositive

because, det(T [i|2]) = det((LQL̃H)[(i|2]) = −det(LQL̃)([(i|2]) ≤ 0.
4. For all α ∈ Qk,n, k = 2, 3, . . . , n,

det(T [α|1, 2, . . . , k]) = det((LQL̃H)[α|1, 2, . . . , k])
= det((LQL̃)[α|1, 2, . . . , k])
=

∑
∀γ∈Qk,n

det(L[α|γ]) det((QL̃)[γ|1, 2, . . . , k]).

Since L̃ is TP we have that det((QL̃)[γ|1, 2, . . . , k]) is
(a) equal to 0, if 2 ̸∈ γ.
(b) equal to −det((QL̃)[γ3, . . . , γk|3, . . . , k]) ≤ 0, if 2 ∈ γ and 1 ̸∈ γ.
(c) equal to −det((QL̃)[γ2, . . . , γk|2, . . . , k]) ≤ 0, if 2 ∈ γ and 1 ̸∈ γ.
Since L is also TP, then

det(T [α|1, 2, . . . , k]) ≤ 0, ∀α ∈ Qk,n, k = 2, 3, . . . , n.

Therefore, A can be factorized as

A = TD̄U

where U is a unit upper triangular TP matrix, D̄ = diag(−d1,−d2, d3, . . . , dn),
with di > 0, for i = 1, 2, . . . , n, and T is the block lower triangular matrix

T =



0 1
1 0
t3,1 −t3,2 1
t4,1 −t4,2 t4,3 1
...

...
...

...
tn−1,1 −tn−1,2 tn−1,3 tn−1,4 · · · 1
tn,1 −tn,2 tn,3 tn,4 · · · tn,n−1 1


,

such that T [3, 4, . . . , n] is a TP matrix and det(T [α|1, 2, . . . , k]) ≤ 0, for all
α ∈ Qk,n, k = 2, 3, . . . , n. By [7, Theorem 2], then A is a t.n.p. matrix with
a11 = 0. �

Next, we extend the notation given in Definition 1 to nonsingular t.n.p.
matrices with a zero (1, 1)-entry.

Definition 2 The unique bidiagonal decomposition of an n × n nonsingular
t.n.p. matrix A with a11 = 0, given in Theorem 3, is denoted by BD(zero)(A)
and stored in the n× n matrix

BD(zero)(A) =



d1 α1,2 α1,3 · · · α1,n−1 α1,n

0 d2 α2,3 · · · α2,n−1 α2,n

β1,3 β2,3 d3 · · · α3,n−1 α3,n

...
...

...
...

...
β1,n−1 β2,n−1 β3,n−1 · · · dn−1 αn−1,n

β1,n β2,n β3,n · · · βn−1,n dn





On the characterization of totally nonpositive matrices 15

where

di > 0, βi,j ≥ 0, αi,j ≥ 0 for i, j = 1, 2, . . . , n, (12)

β1,i > 0, α1,j > 0 for i = 3, 4, . . . , n, j = 2, 3, . . . , n, (13)

if βi,j = 0, (αi,j = 0) =⇒ βi,h = 0, (αi,h = 0) for all h > j. (14)

Similar to Example 1 for the case a11 < 0, an n × n matrix BD(zero)(A),
with the conditions given by (12), (13) and (14), is not always the bidiagonal
factorization of a t.n.p. matrix A with a11 = 0. To know if A is t.n.p. we
compute ann directly from the elements of BD(zero)(A). If we obtain ann ≤ 0
then A is t.n.p.

First of all, we give Algorithm 3, similar to Algorithm 1, that computes

the last row of L(zero). The elements l
(zero)
n,j , for j = n − 1, n − 2, . . . , 3, are

computed as in Algorithm 1, but the elements l
(zero)
n,2 and l

(zero)
n,1 are obtained

in the following way:

l
(zero)
n,2 = β2,3

(
h
(3)
1 + h

(3)
2

)
l
(zero)
n,1 = −β1,3h

(3)
1

Then, we have got the following algorithm of, at most, O(n2).

Algorithm 3 (LastRowzer) It computes the last row of L(zero) =
En . . . E3QFn−2 . . . F1 directly from the elements of an n × n matrix
BD(zero)(A)

Require: n, BD(zero)(A) ∈ Rn×n

1: H := BD(zero)(A)
2: Apply Algorithm 1 from lines 2 to 18
3: l(n, 1) := H(2, 1) (K(3, 1) +K(3, 2))
4: l(n, 2) := H(3, 2)K(2, 1)

5: return l
(n)
(zero)

= [l(n, 1), l(n, 2), . . . l(n, n− 1), 1]

Now, we present the next algorithm, which is basically Algorithm 2 applied
to BD(zero)(A) with the command LastRowzer(H,n) instead of BDt.n.p.(A)
with the command LastRow(H,n).
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Algorithm 4 (IsTnpZero) It tests if an square matrix BD(zero)(A) with the
properties of Definition 2, is the bidiagonal factorization of a t.n.p. matrix A
with a11 = 0

Require: n, BD(zero)(A) ∈ Rn×n

1: H := BD(zero)(A)
2: l := LastRowzer(H,n)
3: u := (LastRowzer(HT , n))T

4: ann := l diag(diag(H))uT

5: if ann ≤ 0 then
6: BD(zero)(A) is the bidiagonal factorization of a t.n.p. matrix A
7: else
8: BD(zero)(A) is not the bidiagonal factorization of a t.n.p. matrix A
9: end if

Corollary 4 The computational cost of Algorithm 4 is 3n2 − 8n+ 5.

In this Section we have obtained a characterization of the nonsingular
t.n.p. matrices from its bidiagonal factorization, extending the known results
for TP matrices. Algorithms 2 and 4 give an effective procedure to check if
a matrix with the properties of Definition 1 or Definition 2 is the bidiagonal
factorization of a t.n.p. matrix A with a11 < 0 or a11 = 0, respectively.

3 Bidiagonal factorization of the inverse of a t.n.p. matrix

In this section, we compute the bidiagonal factorization of the inverse of a
nonsingular t.n.p. matrix A directly from BD(t.n.p.)(A) or BD(zero)(A).

Theorem 5 Let A ∈ Rn×n be a nonsingular t.n.p. matrix, then A−1 can be
uniquely factorized as

1. If a11 < 0,

A−1 = Un−1Un−2 . . . U1D(neg)L1L2 . . . Ln−2Ln−1 (15)

2. If a11 = 0,

A−1 = Un−1Un−2 . . . U1D(zero)L1L2 . . . Ln−2QL(zero) (16)

where D(neg) = diag(−1/d1, 1/d2, . . . , 1/dn), D(zero) = diag(1/d1, 1/d2, . . . , 1/dn),
with di > 0 for i = 1, 2, . . . , n.

L(zero) =



1
0 1
−β13 1

. . . 1
. . .

. . .

−β1,n−1 1
−β1,n 1


.
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For j = 1, 2, . . . , n− 1,

Ln−j =



1
. . .

1
−βj,j+1 1

. . .
. . .

−βj,n−1 1
−βj,n 1


, (17)

and for k = 1, . . . , n− 1,

Un−k =



1
. . .

1
1 −αk,k+1

. . .

1 −αk,n−1

1 −αk,n

1


(18)

where the elements αjk, βjk and di are the corresponding entries of BD(t.n.p.)(A)
or BD(zero)(A).

Proof 1. If a11 < 0 we know by [4] that A admits the factorization A =
LDU , where L (U) is a unit lower (upper) triangular TP matrix, and D =
diag(−d1, d2, . . . , dn), with di > 0 for i = 1, 2, . . . , n. Since L and U are TP
by applying [12] we have that

L =

n−1∏
j=1

(
j+1∏
i=n

Ei(βji)

)
and U =

1∏
j=n−1

(
j+1∏
i=n

ET
i (αji)

)

where β1,2 ≥ 0, . . . , β1,n ≥ 0, α1,2 ≥ 0, . . . , α1,n ≥ 0 and if βs,t = 0 then
βs,h = 0, ∀ h > t, and if αs,t = 0 then αs,h = 0, ∀ h > t. From these
expressions and reordering the corresponding products we obtain

L−1 = [En(−βn−1,n)][En−1(−βn−2,n−1)En(−βn−2,n)] . . .

. . . [E2(−β1,2)E3(−β1,3) . . . En(−β1,n)]

U−1 = [ET
n (−α1,n)E

T
n−1(−α1,n−1) . . . E

T
2 (−α1,2)][E

T
n (−α2,n) · · ·ET

3 (−α2,3)] . . .

. . . [ET
n (−αn−2,n)E

T
n−1(−αn−2,n−1)][E

T
n (−αn−1,n)]

Multiplying the (Ei)’s inside the parentheses we obtain the bidiagonal matrices

Ln−j = Ej+1(−βj,j+1)Ej+2(−βj,j+2) . . . En(−βj,n)

Un−k = ET
n (−αk,n)E

T
n−1(−αk,n−1) . . . E

T
k+1(−αk,k+1)
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given by expressions (17) and (18). Therefore,

A−1 = (LDU)−1 = Un−1Un−2 . . . U1︸ ︷︷ ︸
U−1

D(neg)︸ ︷︷ ︸
D−1

L1L2 . . . Ln−2Ln−1︸ ︷︷ ︸
L−1

.

2. If a11 = 0 by Corollary 3 we know that A can be factorized as A = LQL̃DU ,
where L = En(β1,n)En−1(β1,n−1) . . . E3(β1,3), with β1,3 ≥ 0, . . . , β1,n ≥ 0,

D = diag(d1, d2, . . . , dn), with di > 0, for i = 1, 2, . . . , n, and L̃ (U) is a unit
lower (upper) triangular TP matrix. Applying [12] we have

L̃ =

n−1∏
j=2

(
j+1∏
i=n

Ei(βji)

)
and U =

1∏
j=n−1

(
j+1∏
i=n

ET
i (αji)

)

such that, α1,2 ≥ 0, . . . , α1,n ≥ 0 and if βs,t = 0 then βs,h = 0, ∀ h > t, and if
αs,t = 0 then αs,h = 0, ∀ h > t. Similar to the above case we obtain that

A−1 = Un−1Un−2 . . . U1︸ ︷︷ ︸
U−1

D(zero)︸ ︷︷ ︸
D−1

L1L2 . . . Ln−2︸ ︷︷ ︸
L̃−1

QL(zero)︸ ︷︷ ︸
L−1

. �

With an analogous reasoning, a similar factorization is obtained for the
inverse of a t.n. matrices with all parameters αi,j and βi,j positive.

Corollary 5 Let A = (aij) ∈ Rn×n be a t.n. matrix, then A−1 can be facto-
rized as

A−1 = Un−1Un−2 . . . U1D(neg)L1L2 . . . Ln−2Ln−1 (19)

where D(neg) = diag(−1/d1, 1/d2, . . . , 1/dn), and the elements αjk, βjk and di
are the corresponding entries of BD(t.n.)(A).

In the next definition we denote by BD(t.n.p.)(A
−1) or BD(zero)(A

−1) the
bidiagonal factorization of the inverse of a t.n.p. matrix A given by equation
(15) or (16), depending on the (1, 1)-entry is a11 < 0 or a11 = 0. We also
introduce BD(t.n.)(A

−1) for t.n. matrices.

Definition 3 1. The unique bidiagonal decomposition of the inverse of an
n × n nonsingular t.n.p. matrix A, with a11 < 0, given in Theorem 5 by
equation (15), is denoted by BD(t.n.p.)(A

−1) and stored in the n× n matrix

BD(t.n.p.)(A
−1) =



−1/d1 −β1,2 −β1,3 · · · −β1,n−1 −β1,n

−α1,2 1/d2 −β2,3 · · · −β2,n−1 −β2,n

−α1,3 −α2,3 1/d3 · · · −β3,n−1 −β3,n

...
...

...
...

...
−α1,n−1 −α2,n−1 −α3,n−1 · · · 1/dn−1 −βn−1,n

−α1,n −α2,n −α3,n · · · −αn−1,n 1/dn


with positive main diagonal except for the (1, 1)-entry equal to −1/d1 < 0,
and BD(t.n.p.)(A

−1)(i, j) ≤ 0 for all i, j = 1, 2, . . . , n, with i ̸= j.



On the characterization of totally nonpositive matrices 19

If A is a t.n. matrix then the bidiagonal decomposition of its inverse
BD(t.n.)(A

−1) has positive main diagonal except for the (1, 1)-entry equal to
−1/d1 < 0 and BD(t.n.)(A

−1)(i, j) < 0 for all i, j = 1, 2, . . . , n, with i ̸= j.
2. The unique bidiagonal decomposition of the inverse of an n×n nonsingular
t.n.p. matrix A, with a11 = 0, given in Theorem 5 by equation (16), is denoted
by BD(zero)(A

−1) and stored in the n× n matrix

BD(zero)(A
−1) =



1/d1 0 −β1,3 · · · −β1,n−1 −β1,n

−α1,2 1/d2 −β2,3 · · · −β2,n−1 −β2,n

−α1,3 −α2,3 1/d3 · · · −β3,n−1 −β3,n

...
...

...
...

...
−α1,n−1 −α2,n−1 −α3,n−1 · · · 1/dn−1 −βn−1,n

−α1,n −α2,n −α3,n · · · −αn−1,n 1/dn


with positive main diagonal and BD(t.n.p.)(A)(i, j) ≤ 0 for all i, j = 1, 2, . . . , n,
with i ̸= j.

4 Rectangular t.n.p. matrices

Given an n × m matrix A with rank r, it is said that A satisfies the WRC
condition when it can be transformed into diagonal form by Neville elimination
without permutations of rows or columns. This property allows us to compute
the LDU factorization of A, applying Neville elimination without pivoting,
where L and U also satisfy the WRC condition and its r first rows or columns,
respectively, are linearly independent.

It is known that the bidiagonal factorization of the rectangular TP matrix
which satisfies the WRC condition can be compacted, see [12,15,21]. When
A is nonsingular t.n.p. matrix, then it satisfies the WRC condition and its
bidiagonal factorization can be compacted as we have seen in Theorem 1.

In [5] the authors prove that if A = (aij) ∈ Rn×m is a t.n.p. matrix
with a11 < 0 and rank(A) = r ≤ min{n,m} then, it admits a full rank
decomposition in echelon form A = LDU , where L ∈ Rn×r is a unit lower
echelon TP matrix, D = diag(−d1, d2, . . . , dr) with di > 0 for i = 1, 2, . . . , r,
U ∈ Rr×m is a unit upper echelon TP matrix and rank(L) = rank(U) =
r. Unfortunately, if A does not satisfy the WRC condition then L and U
neither, and therefore it is not possible to give a bidiagonal factorization of A
in compact form. In the following theorem we give the condition that allows
us characterize the rectangular t.n.p. matrices from its compact bidiagonal
factorization.

Theorem 6 Let A = (aij) ∈ Rn×m be a matrix with all entries negative except
for a nonpositive (n,m) entry, rank(A) = r ≤ min{n,m} and satisfying the
WRC condition. A is a t.n.p. matrix if and only if A admits a unique bidiagonal
factorization

A = Fn−1Fn−2 . . . F1

[
D Or×(m−r)

O(n−r)×r O(n−r)×(m−r)

]
G1G2 . . . Gm−1 (20)
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where D = diag(−d1, d2, . . . , dr), with di > 0, and Fi (Gi) are unit lower
(upper) bidiagonal TP matrices, i = 1, 2, . . . , n. Furthermore, for i = 1, 2, . . . ,
n− r, we have

Fi = Ei+1(β1,i+1)Ei+2(β2,i+2) . . . Ei+r(βr,i+r),

and for i = n− r + 1, n− r + 2, . . . , n− 1,

Fi = Ei+1(β1,i+1)Ei+2(β2,i+2) . . . En(βn−j,n).

with β1,2 > 0, . . . , β1,n > 0 and if βs,t = 0 then βs,h = 0, for all h > t. For
j = 1, 2, . . . ,m− r we have

Gj = ET
j+n(αn,j+n)E

T
j+n−1(αn−1,j+n−1) . . . E

T
j+1(α1,j+1)

and for j = m− r + 1,m− r + 2, . . . ,m− 1,

Gj = ET
m(αm−j,m)ET

m−1(αm−j−1,m−1) . . . E
T
j+1(α1,j+1)

with α1,2 > 0, . . . , α1,m > 0, and if αs,t = 0 then αs,h = 0, for all h > t.

Proof The proof is similar to the Theorem 1, taking into account that A sa-
tisfies the WRC condition. �

Example 4 Consider the t.n.p matrix,

A =


−109 −218 −109 −109 −109
−218 −435 −217 −216 −215
−109 −217 −107 −102 −96
−109 −216 −102 −80 −53
−109 −215 −96 −53 0

 .

A admits the following full rank decomposition in echelon form

A = LDU =


1 0 0
2 1 0
1 1 1
1 2 5
1 3 10


−109 0 0

0 1 0
0 0 1

 1 2 1 1 1
0 1 1 2 3
0 0 1 5 10

 .

Note that A satisfies the WRC condition and therefore L (U) also satisfies it.
Since L (U) is a TP matrix from its bidiagonal factorization in compact form
we obtain the bidiagonal factorization in compact form of A, then

A = F4F3F2F1

[
I3×3

O2×3

]
D[I3×3 O3×2]G1G2G3G4

= F4F3F2F1

[
D O3×2

O2×3 O2×2

]
G1G2G3G4



On the characterization of totally nonpositive matrices 21

where Fi, Gj ∈ R5×5 for i, j = 1, 2, 3, 4, and they are defined as

F1 = E2(2)E3(1/2)E4(2) G1 = ET
4 (2)E

T
3 (1/2)E

T
2 (2)

F2 = E3(1/2)E4(2)E5(1/2) G2 = ET
5 (1/2)E

T
4 (2)E

T
3 (1/2)

F3 = E4(1)E5(1) G3 = ET
5 (1)E

T
4 (1)

F4 = E5(1) G1 = ET
5 (1).

In the next example we consider a t.n.p. matrix without the WRC condition
and we show that its bidiagonal factorization can not be compacted.

Example 5 Consider the following t.n.p. matrix

A =


−7 −7 −7 −7
−14 −14 −14 −14
−7 −6 −6 −5
−7 −5 −5 −3
−7 −4 −4 0


which admits the full rank factorization in echelon form

A = LDU =


1 0 0
2 0 0
1 1 0
1 2 0
1 3 1


−7 0 0

0 1 0
0 0 1

 1 1 1 1
0 1 1 2
0 0 0 1

 .

From this factorization, it is easily seen that A does not satisfy the WRC
condition. Note that L can be factorized in the following form

L = E5(1)E4(1)E3(1/2)E2(2)︸ ︷︷ ︸
∈R5×5

C
{2}
5 E4(1)E3(1)︸ ︷︷ ︸

∈R4×4

C
{3}
4

where C
{k}
s is the s× (s− 1) matrix obtained by removing the k-th column to

the identity matrix Is×s, and U is factorized as

U = UT
3 (1)︸ ︷︷ ︸

∈R3×3

F
{3}
4 ET

2 (1)E
T
3 (1)E

T
4 (1)︸ ︷︷ ︸

∈R4×4

where F
{k}
s is the (s− 1)× s matrix obtained by removing the k-th row to the

identity matrix Is×s. Therefore, A is given by the expresion

A = E5(1)E4(1)E3(1/2)E2(2)C
{2}
5 E4(1)E3(1)C

{3}
4 DUT

3 (1)F
{3}
4 ET

2 (1)E
T
3 (1)E

T
4 (1).

which can not be compacted as in Example 4.

Similar to Definition 1 for nonsingular t.n.p. matrices, we can extend the
compact notation of the bidiagonal factorization of rectangular t.n.p. matrices
satisfying the WRC condition.
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Definition 4 The unique bidiagonal decomposition of an n×m t.n.p. matrix
A, with a11 < 0, rank(A) = r and satisfying the WRC condition, given in
Theorem 6, is denoted by BD(t.n.p.r.)(A) and stored in the n×m matrix

BD(t.n.p.r.)(A) =



−d1 α1,2 α1,3 · · · α1r α1,r+1 . . . α1,m

β1,2 d2 α2,3 · · · α2r α2,r+1 . . . α2,m

β1,3 β2,3 d3 · · · α3r α3,r+1 . . . α3,m

...
...

...
...

...
...

β1,r β2,r β3,r · · · dr αr,r+1 . . . αr,m

β1,r+1 β2,r+1 β3,r+1 · · · βr,r+1 0 . . . 0
...

...
...

...
...

...
β1,n β2,n β3,n · · · βr,n 0 . . . 0


where

di > 0, for i = 1, 2, . . . , r,

β1,i > 0, α1,j > 0, for i = 2, 3, . . . , n, j = 2, 3, . . . ,m,

if βs,t = 0, (αs,t = 0) =⇒ βs,h = 0, for all h > t (αs,h = 0, for all h > t).

Given an n ×m matrix BD(t.n.p.r.)(A), to check when this matrix can be
the bidiagonal factorization of a rectangular t.n.p. matrix A with a11 < 0, we
need to obtain l(n) and u(m). Then, anm is the product

anm = l(n)
[

D Or×(m−r)

O(n−r)×r O(n−r)×(m−r)

]
u(m)

= [ln,1 ln,2 . . . ln,r]D


u1,m

u2,m

...
urm


To compute the last row of matrix L from the matrix BD(t.n.p.r.)(A), we

apply the Algorithm 1 if rank(A) = n. Otherwise, we apply the following
algorithm similar to Algorithm 1.
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Algorithm 5 (LastRowRectangular) It computes the last row of L directly
from the n×m matrix BD(t.n.p.r.)(A) with the properties of Definition 4 and
with r < n.
Require: n, r, BD(t.n.p.r.)(A) ∈ Rn×m

1: H = BD(t.n.p.r.)(A)
2: q = 0
3: for i = 1 to r do
4: q = q +H(n, i)
5: K(n− 1, i) = H(n, i)
6: end for
7: l(n, n− 1) = q
8: for t = n− 2 to 2 step −1 do
9: q = H(t+ 1, 1) ∗K(t+ 1, 1)
10: K(t, 1) = q
11: p = K(t+ 1, 1)
12: s = min{t, r}
13: for j = 2 to s do
14: p = p+K(t+ 1, j)
15: K(t, j) = H(t+ 1, j) ∗ p
16: q = q +K(t, j)
17: end for
18: l(n, t) = q
19: end for
20: l(n, 1) = H(2, 1) ∗K(2, 1)
21: return l(n) = [l(n, 1) l(n, 2) . . . l(n, n− 1) 1]

Theorem 7 The computational cost of Algorithm 5 is

• if r < n− 1, then O = 3nr − 3
2r

2 − 7
2r − 2n+ 3.

• if r = n− 1, then O = 3
2n

2 − 11
2 n+ 5.

Proof The number of operations of this algorithm is:
• if r < n− 1,

O = (r − 1) +

r∑
t=n−2

1 +

r∑
j=2

3

+

2∑
t=r−1

1 +

t∑
j=2

3

+ 1

= 3nr − 3

2
r2 − 7

2
r − 2n+ 3.

• if r = n− 1,

O = (n− 2) +
2∑

t=n−2

1 +
t∑

j=2

3

+ 1

=
3

2
n2 − 11

2
n+ 5.

�
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Now the following algorithm checks when a rectangular matrix BD(t.n.p.r.)(A)
with the properties of Definition 4, can be the bidiagonal factorization of a
rectangular t.n.p. matrix A with a11 < 0 and r < min{n,m}. Its computa-
tional costs is O(nr).

Algorithm 6 (IsTnpRectangular) It checks if an n×m matrix BD(t.n.p.r.)(A),
with the properties of Definition 4, is a bidiagonal factorization of a rectangular
t.n.p. matrix A with a11 < 0 and r < min{n,m}.
Require: n, m, r, BD(t.n.p.r.)(A) ∈ Rn×m

1: l = LastRowRectangular(H,n, r)
2: u = (LastRowRectangular(HT ,m, r))T

3: G = H(1 : r, 1 : r)
4: anm = l(1 : r) ∗ diag(diag(G)) ∗ u(1 : r)
5: if anm ≤ 0 then
6: BD(t.n.p.r.)(A) is the bidiagonal factorization of a t.n.p. matrix A
7: else
8: BD(t.n.p.r.)(A) is not the bidiagonal factorization of a t.n.p. matrix A
9: end if

As in the square case, we obtain the following result, whose proof is straight-
forward.

Corollary 6 The cost of Algorithm 6 is

• if r < min{n− 1,m− 1}, then O = (3r − 2)(n+m)− 3r2 − 4r + 5.

• if r = n− 1, then O = 3nm− 3n− 5m+ 6.

• if r = m− 1, then O = 3nm− 3m− 5n+ 6.

Remark 3 If r = n, Algorithm 6 can be applied to compute the last row of L,
but using l = LastRow(H,n) instead of l = LastRowRectangular(H,n, r).
Similarly, when r = m we can used Algorithm 6 to compute the last column of
U replacing u = (LastRowRectangular(HT ,m, r))T by u = (LastRow(HT ,m))T .

Remark 4 If A = (aij) ∈ Rn×m is a t.n. matrix, note that a11 < 0 and r =
min{n,m}, then we can apply Algorithm 6 taking into account the comments
of Remark 3.

Remark 5 We can obtain similar results of this section when we consider a
t.n.p. matrix A = (aij) ∈ Rn×m with a11 = 0 and rank(A) = r ≤ min{n,m}.

5 Conclusions

We have extended the principal representation of TP (STP) matrices as pro-
ducts of bidiagonal matrices to nonsigular t.n.p. (t.n.) matrices and the ex-
tension to rectangular t.n.p. (t.n.) matrices with the WRC condition. From
these decompositions we can compute easily the bidiagonal factorization, and
therefore the inverse, of nonsingular t.n.p. (t.n.) matrices.
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6. R. Cantó, B. Ricarte, A.M. Urbano. Characterizations of rectangular totally and strictly
totally positive matrices. Linear Algebra and its Applications 432 (2010) 2623–2633.
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16. M. Gassó, J.R. Torregrosa. A totally positive factorization of rectangular matrices by
the Neville elimination. SIAM J. Matrix Anal. Appl. 25 (2004) 86–994.

17. R. Huang, D. Chu. Total nonpositivity of nonsingular matrices. Linear Algebra and its
Applications 432 (2010) 2931–2941.

18. R. Huang, D. Chu. Relative perturbation analysis for eigenvalues and singular values of
totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 36(2) (2015) 476–495.

19. S. Karlin. Total nonpositivity. Stanford University Press, Stanford, 1968.
20. P. Koev. Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J.

Matrix Anal. Appl. 27(1) (2005) 1–23.
21. P. Koev. Accurate computations with totally nonnegative matrices. SIAM J. Matrix

Anal. Appl. 29(3) (2007) 731–751.
22. T. Parthasarathy. N -matrices. Linear Algebra and its Applications 139 (1990) 89–102.
23. J.M. Peña. Test for recognition of total positivity. SeMA Journal 62(1) (2013) 61–73.
24. A. Pinkus. Totally Positive Matrices. Cambridge University Press, 2010.
25. R. Saigal. On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl.

Math. 23 (1972) 46–60.


