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Abstract 

Au nanoparticles (Au-NPs) were successfully synthesized and incorporated into the 

surface of a macroporous Ni electrode fabricated via galvanostatic electrodeposition at 

high current densities in order to produce hydrogen by means of alkaline water 

electrolysis. The developed electrodes were morphologically characterized by means of 

confocal laser scanning and field emission scanning electron microscopes. The 

electrocatalytic behaviour towards the hydrogen evolution reaction was studied by Tafel 

polarization curves and electrochemical impedance spectroscopy. It was clear that 

enlarging the real surface area of an electrode its catalytic activity was greatly enhanced. 

This improvement was further increased when Au-NPs were added to the macroporous 

Ni surface. In this case, the improvement was not only caused by enlarging the surface 

area but also by an improvement in the intrinsic catalytic activity of the alloy, as it was 

shown by the exchange current densities values, calculated from the real surface area. 

Keywords: porous electrodes, Au nanoparticles, HER, alkaline water electrolysis, EIS. 
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1. Introduction 

Nowadays, everybody is concerned about the shortage of fossil energy 

resources, and the importance of hydrogen as a “green” energy carrier, because it can be 

obtained directly from renewable energy sources by water splitting. In order to build up 

a hydrogen energy cycle for an environmentally friendly and sustainable economy it is 

mandatory to provide hydrogen at low cost. For this purpose, alkaline water electrolysis 

is one of the most promising methods to produce clean and renewable hydrogen. 

Nevertheless, intensive research effort must be addressed in the reduction of both 

operating/energetic and initial investments to large-scale hydrogen production by means 

of this technique [1–5]. 

The energetic costs of alkaline electrolysers can be reduced by diminishing the 

overpotentials of both hydrogen and oxygen evolution reaction (HER, and OER, 

respectively), which take place during the water electrolysis process. Focussing on the 

HER, noble metals such as platinum and ruthenium are the most active materials. 

However, their high cost goes against the fulfilment of low initial investment for the 

electrodic material. For this reason, in the last years, a lot of work has been centred in 

the synthesis of active noble metal-free electrocatalysts [6]. 

The electrode performance toward HER can be improved by increasing its 

intrinsic catalytic activity and/or enlarging the material surface area. One of the most 

tested cathodes for alkaline water electrolysers are Ni-based alloys, such us NiCo [7–

11], NiFe [12–15], NiMo [12,16–24], NiW [12,19,25,26], NiCu [27], NiAl [28,29], 

NiZn [30,31]; due to the relatively high catalytic activity of Ni, and aiming at the 

synergism in the catalytic behaviour of the different components in the metallic alloy. 

Moreover, the development of nanoparticle catalysts has had a great interest because it 

not only allows using a small amount of material, but also provides a larger active 
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surface area [32]. The metal nanoparticles need to be synthesized first and then 

assembled on the electrode [33]. The use of a macroporous electrode as a supporting 

material can reduce the dosage of noble metals [34]. This synthesis strategy has been 

successfully employed for HER. Amin et al. assembled dispersed silver nanoparticles 

(AgNPs) on titanium (Ti) substrates, yielding a better HER performance than bare 

platinum [32]. Abbaspour and Mirahmadi modified carbon paste electrodes with Fe and 

Ni mixed oxide nanoparticles. The obtained materials were renewable and showed a 

good stability. This, plus the low cost of Ni-ferrite NPs and facile large scale 

fabrication, postulated the Ni-ferrite NPs as a promising high-performance electro-

catalyst for the HER in acidic media [35]. Abbaspour and Norouz-Sarvestani 

electrodeposited Au-Pd bimetallic nanoparticles on microwave irradiated carbon 

ceramic electrodes (MWCCE). A superior performance for HER was reported for the 

composite material in comparison with individual non-alloyed Au and Pd catalysts [36]. 

Hsieh et al. compared two different routes to deposit silver nanoparticles on oxidized 

carbon paper electrodes. From the results, microwave-assisted fabrication offered a fast 

and simple synthesis method with high activity for alkaline fuel cells with respect to the 

thermal reduction strategy [37]. Zheng and Mathe prepared single crystal tungsten oxide 

(WO3) nanoparticles via a microwave-assisted method supported on carbon black. The 

overall experimental results revealed that the electrocatalytic activity for HER on 

WO3/C is six order magnitude higher than those obtained with carbon black in 1 M 

KOH [38].  

In the present work nanoparticles of gold have been successfully synthesized 

with a simple method and incorporated to a macroporous Ni electrodes with a thermal 

treatment. In this way, we combine the use of Ni as a support, which exhibits the best 

electrocatalytic activity among the non-noble materials and its highly porous structure, 
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and Au nanoparticles which can further enhance the electrocatalytic activity. The 

presence of Au nanoparticles has been confirmed by means of field emission scanning 

electron spectroscopic microscopy (FE-SEM) and Energy-Dispersive X-Ray (EDX) 

analysis. The electrocatalytic behaviour towards HER was assessed by pseudo-steady-

state polarization curves and electrochemical impendance spectroscopy (EIS) in alkaline 

media.  
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2. Experimental 

2.1 Preparation of electrodes 

Macroporous Ni electrodes have been obtained by means of electrodeposition at 

high current densities as it is described in our previous work [10], and briefly 

summarised as follows. First, the stainless steel AISI 304 substrate material is polished 

until mirror surface and cleaned with NaOH (degreased) and HCl (stripping). Then, in 

order to increase the adherence of the stainless steel substrate, the electrode is 

anodically treated in H2SO4 and electrodeposited with a thin nickel deposit from a 

Wood’s nickel solution. Afterwards, the electrodeposition at high current density (1 A 

cm-2) is carried out from a bath containing 48 g L-1 NiCl2·6H2O and 170 g L-1 NH4Cl, 

the pH of this solution was 4.5. A large-area graphite electrode of high purity was used 

as a counter-electrode, and an Ag/AgCl (3 M KCl electrolyte) electrode was used as 

reference. The experiments were carried out by means of an AUTOLAB 

PGSTAT302N potentiostat/ galvanostat. Then, the Au nanoparticles were synthesized 

and added to one of the developed electrode surface (Macroporous Ni-Au NPs).  

In order to obtain Au nanoparticles, a 2.5·10-4 M tetrachloroauric acid solution 

was prepared and heated to 100 ºC. 25 mL of a 0.5 wt.% sodium citrate were added at 

the hot solution. The citrate ions are responsible for the reduction of Au (III) ions to Au 

(0) and also for being complexing agents of the formed nanoparticles. Thus, the 

nanoparticle colloidal suspension is stabilized. 

The supporting macroporous Ni electrode was coated with gold slurry by dip 

coating. Prior to the coating, the gold suspension was modified to increase viscosity and 

lower surface tension by addition of Hydroxyethyl Cellulose (0.5 wt.%) and BYK 347 

(1 wt.%). Then the electrode was dip coated four times allowing it to dry between the 
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immersions. Finally, the electrode was treated thermally in a tubular furnace at 350 ºC 

for 1 hour under a nitrogen atmosphere.  

The particle size distribution of gold suspension was analyzed by Dynamic Light 

Scattering (Zetasizer Nano S90, UK). The surface morphology of the developed 

electrodes were studied by means of an OLYMPUS LEXT OLS3100-USS confocal 

laser scanning microscope, and A ZEISS ULTRA 55 FE-SEM coupled with an EDX 

analysis was used to observed the morphology and to confirm the presence of the Au 

nanoparticles on the electrode surface.  

2.2 Electrochemical measurements 

The electrocatalytic behaviour of the developed materials was studied by means 

of pseudo-steady-state polarization curves and EIS. These tests were performed in 30 

wt.% KOH previously deaerated by bubbling N2 during 15 minutes.   

The pseudo-steady-state polarization curves consist of a potentiodynamic scan at 

1 mV s-1, from a cathodic potential of -1.6 V (vs. Ag / AgCl) until the equilibrium 

potential. These curves were performed at different temperatures from 30 ºC to 80 ºC. 

EIS measurements were accomplished after the corresponding polarization curves at 30, 

50 and 80 ºC, in the frequency range of 10 kHz to 5 mHz, with ten frequencies per 

decade and a sinusoidal signal of 10 mV peak-to-peak. The complex nonlinear least 

square (CNLS) fitting of the impedance data was carried out with the ZView 3.0 

software package. 
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3. Results and discussion 

3.1 Nanoparticle and morphology characterization 

The particle size distribution of Au nanoparticles in suspension shows a sharply 

monomodal conformation in the range of 10 and 50 nm, as shown in Figure 1a. The 

characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. The gold 

suspension was analyzed by SEM (Fig. 1b). It was observed a homogeneous 

distribution of spherical particles. 

Figure 2 shows the FE-SEM images obtained by the back-scattered electrons 

signal at different magnifications. In Fig. 2a it can be observed the typical Ni sponge-

like macrostructure obtained by electrodeposition at high current densities, with 

spherical holes with diameters ranging between 100 and 200 µm, as previously reported 

[10,39–41]. In Fig. 2b, Au nanoparticles homogeneously distributed on top of Ni 

macrostructure can be distinguished as white spots. A 0.88 at.% of Au onto the 

electrode surface was measured by EDX analysis. Additional dip coating cycles were 

carried out in order to increase the Au loading, nevertheless, the acidic environment of 

this procedure lead to lower Au aggregation and changes in the macrostructure as a 

consequence of Ni corrosion. Figure 2 also shows the 3D confocal laser micrographs 

before (Fig. 2c) and after (Fig. 2d) the Au NPs modification. Slight differences can be 

observed on the matrix of the electrode surface, which can be attributed to both the dip 

coating and following thermal treatment. Therefore, the Au NPs aggregation does not 

affect the overall macroporous morphology. 
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3.2 Polarization measurements 

The electrocatalytic behaviour towards the HER of the developed macroporous 

Ni electrode modified with Au nanoparticles (Macroporous Ni-Au NPs) and without 

modification (Macroporous Ni) was studied by means of pseudo-steady-state 

polarization curves and EIS and compared with a commercial smooth Ni electrode. 

These techniques allow obtaining the most relevant kinetic parameters and the real 

electrochemically active surface area, and then concluding about the intrinsic catalytic 

activity of the developed electrodes.  

Figure 3 shows the polarization curves recorded in KOH 30 wt.% at 30 ºC and 

80 ºC on the investigated electrocatalysts: smooth Ni, macroporous Ni and macroporous 

Ni-Au NPs. The information obtained from the Tafel polarization data demonstrates 

that the macroporous electrodes are more active for HER, showing the macroporous Ni-

Au NPs the best performance. Curves showed a classical Tafelian behaviour, indicating 

that the HER on these electrodes is purely kinetically controlled reaction and it can be 

described by using the Tafel equation [40–43]: jba log+=h , where h (V) represents 

the overpotential responsible of the current density j (A cm-2), b (V decade-1) is the 

Tafel slope, and a (V) is the intercept, related to the exchange current density j0 (A cm-2) 

by the equation: 0log)/()3.2( jFRTa ´= a . In turn, the charge transfer coefficient, a, 

can be obtained from the Tafel slope by using the relation: )/()3.2( FRTb a-= , where 

R is the gas constant and F, the Faraday constant. By fitting the linear part of the Tafel 

curves recorded on the developed electrodes these kinetic parameters were obtained. 

Another important parameter that it was obtained to evaluate the catalytic activity of the 

electrodes was the overpotential at a fixed current density of -100 mA cm-2, h100. For an 

electrode, the lower the overpotential at a fixed current density, the lower the amount of 
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energy required to produce a given amount of hydrogen, that is, the higher the catalytic 

activity of the electrode. 

It is well known that HER in alkaline solution proceeds via the mechanism 

consisting of the formation of an adsorbed hydrogen intermediate, MHads (Volmer 

reaction, Eq. (1)), followed by an electrochemical (Heyrovsky reaction, Eq. (2)) and/or 

a chemical hydrogen desorption step (Tafel reaction, Eq. (3)):  

-- +®++ OHMHeMOH ads2  (1) 

-- ++®++ OHMHeMHOH ads 22  (2) 

MHMHMH adsads 22 +®+  (3) 

where M is a free site on the metal surface.  

The kinetic parameters calculated from the polarization curves are shown in 

Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Kinetic parameters of the HER obtained 
from the polarization curves and EIS recorded in 
30 wt.% KOH solution at different temperatures 

Catalyst Temperature (ºC) 
30 50 80 

Smooth Ni 
b1 (mV dec-1) 255.7 240.3 249.8 
b2 (mV dec-1) 97.9 107.5 171.4 
i0 (µA cm-2) 0.07 0.44 4.77 
α 0.61 0.60 0.41 
η100 503.1 470.4 555.0 
Macroporous Ni 
b (mV dec-1) 101.1 114.3 127.5 
i0 (mA cm-2) 0.02 0.11 1.04 
α 0.59 0.56 0.55 
η100 348.2 347.1 252.8 
Macroporous Ni-Au NPs 
b (mV dec-1) 137.7 158.9 202.7 
i0 (mA cm-2) 1.46 4.37 22.55 
α 0.44 0.40 0.35 
η100 249.2 211.8 130.2 
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A single value of Tafel slopes were observed for the developed electrodes, in 

contrast with the polarization curves recorded on the smooth Ni electrode, which 

displays two potential-dependent regions related to the HER. The Tafel slopes at 

overpotentials less cathodic than approximately -200 mV (b1) are quite high, which may 

indicate the presence of some oxides on the surface of the Ni electrode [12,44]. 

As it can be seen from Table 1, the Tafel slope values ranging between 98 and 

138 mV dec-1 at 30 ºC, close to the theoretical 120 mV dec-1 and the charge transfer 

coefficient is around 0.5, indicating that the HER on these electrodes takes place by 

means of the Volmer-Heyrovsky mechanism [45,46]. The macroporous Ni electrode 

modified with Au NPs shows the highest j0 and the lowest h100 values, showing the 

highest overall catalytic activity, better than those values reported by Qian et al. [47]. 

However, the catalytic activity evaluated with the parameters described above is related 

to the geometric electrode area and not to the real electrochemical area, therefore it can 

not conclude on the intrinsic catalytic activity of the developed electrodes. EIS permits 

to assess the real electrochemically active surface of the developed electrodes by giving 

the roughness factor, rf, as the ratio between the double layer capacitance of a rough 

electrode and the double layer capacitance of a smooth electrode, which is 20 µF cm-2 

[45,48]. 

Figures 4.a and 4.b show the Nyquist representation of the impedance response 

on the macroporous Ni and Macroporous Ni-Au NPs. This response is characterized by 

two semicircles, i.e. two time constants. The diameter of the semicircle obtained at high 

frequency is practically constant with the overpotential while the diameter of the 

semicircle obtained at lower frequencies diminishes as the overpotential applied 

increases. This is due to the fact that the adsorption process is facilitated and the charge-

transfer process dominates the impedance response as the potential increases. Hence, 
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having into account the values of α and the Tafel slopes determined from the 

polarization curves, and the information extracted from the EIS experiments, it can be 

concluded that the HER is controlled by the Volmer-Heyrovsky mechanism [46,49]. 

This impedance response was correctly modelled by the equivalent circuit of two 

time constants in series (2TS) proposed by Chen and Lasia [49], consisting of the 

solution resistance, RS, in series two parallel CPE-R elements. This circuit connects the 

high frequency CPE-R element with the electrode porosity and low frequency CPE-R to 

the kinetics of the hydrogen evolution reaction. The double layer capacitance of a 

porous electrode is given by the expression of Brug [50]: 

22 /1)1(11
2 ]))/(([ nn

ctpSdl RRRQC --- ++= , where Q2 and n2 are the parameters of the 

constant phase element at low frequencies; Rp is the resistance of the first CPE-R 

element related to the porosity and Rct is the resistance of the second CPE-R, which is 

related to the charge transfer resistance.   

The parameters of the equivalent circuit were obtained by the adjustment of 

CNLS with the software Zview 3.0 and are shown in Table 2. According to the c2 values 

and the concordance between the experimental (symbols) and the fitting (lines) data it can be 

concluded that the 2TS equivalent circuit correctly model the EIS response on the developed 

electrodes. With respect to the parameters related to the HF CPE-R element, Rp slightly 

increase with the overpotential, while Q1 diminishes. This behaviour is associated to the 

porous response [51]. For the LF semicircle, both Q2 and Rct decrease with the 

overpotential which is consistent with the charge- transfer phenomenon. 

The roughness factor values calculated from the double layer capacitance value 

for the developed electrodes are also included on Table 2. As can been observed both 

macroporous electrodes have a roughness factor in the same order of magnitude and the 
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slightly differences may be due to the difference of the bubbles formed during the 

electrodeposition process. 

In order to evaluate the intrinsic catalytic activity of the electrode is necessary to 

obtain the kinetic parameters related to the electrochemically active area and not to the 

geometric area. Therefore the exchange current densities values corrected with the 

roughness factor, j0’ were obtained for the developed macroporous electrodes and are 

plotted on Figure 5 in Arrhenius representation. As can be seen from this Figure, the 

Macroporous Ni-Au NPs electrode has j0’ values between one and two orders of 

magnitude higher than both nickel electrodes; manifesting his higher intrinsic catalytic 

activity.   

 

Table 2. EEC parameters obtained by fitting EIS experimental spectra recorded at various overpotentials and 
temperatures in 30 wt.% KOH solution on the investigated electrocatalytic coatings 

Catalyst 
Temperature / ºC 

30 80 
Macroporous Ni 
h  / mV 0 -63 -112 -162 0 -56 -105 -153 
c2 1.35·10-3 9.29·10-4 5.93·10-4 4.18·10-4 1.41·10-3 7.56·10-4 5.97·10-4 3.19·10-4 
RS / W cm2 0.44 0.44 0.45 0.45 0.25 0.25 0.26 0.26 
Rp / W cm2 0.63 0.51 0.49 0.51 0.12 0.12 0.14 0.16 
Q1/mW-1cm-2sn 28.3 21.5 20.2 20.3 11.3 11.9 9.7 10.4 
n1 0.65 0.68 0.69 0.68 0.85 0.83 0.83 0.80 
Rct / W cm2 182 99 60 34 20.3 16.5 9.07 3.75 
Q2/mW-1cm-2sn 19.6 15.4 14.0 13.0 18.3 15.3 11.6 9.9 
n2 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.95 
Cdl / mF cm-2   14.8 11.1 10.0 9.3 12.3 11.2 8.4 7.4 
rf 742 557 499 465 615 560 421 372 
Macroporous Ni-Au NPs 
h  / mV 0 -70 -94 -161 0 -56 -96 -133 
c2 6.23·10-4 2.58·10-4 1.52·10-4 6.07·10-5 4.08·10-4 1.75·10-4 2.25·10-4 1.65·10-4 
RS / W cm2 0.49 0.49 0.49 0.49 0.31 0.31 0.32 0.32 
Rp / W cm2 0.32 0.36 0.37 0.49 0.09 0.12 0.12 0.13 
Q1/mW-1cm-2sn 23.5 18.0 16.7 19.8 10.7 11.3 9.6 6.7 
n1 0.68 0.68 0.68 0.65 0.86 0.81 0.81 0.83 
Rct / W cm2 18.7 11.0 7.7 2.0 1.16 0.85 0.70 0.52 
Q2/mW-1cm-2sn 16.0 10.5 8.7 6.5 22.6 16.1 12.9 11.2 
n2 0.92 0.93 0.94 0.98 0.86 0.89 0.89 0.89 
Cdl / mF cm-2   11.1 7.5 6.4 5.7 10.3 8.2 6.2 5.5 
rf     554 373 318 286 515 411 309 273 
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Intrinsic activation energy (Ea’) obtained at equilibrium potential (η=0), with the 

exchange current densities corrected with respect to the roughness factor (j0’), is a 

widely used parameter in electrocatalysis to compare the catalytic activity of an 

electrode in a given electrolyte [52]. The lower the activation energy, the lower the 

energy requirements for hydrogen production. The Ea’ is related to the kinetic 

coefficient by means of the Arrhenius equation: RT
Ea

Aek
'

-
= . Due to the fact that the 

current density is proportionally related to the kinetic coefficient, the activation energy 

can be obtained by the following equation: 
TR

EAj a 1
303.2
'''log 0 ×
×

-= , where A’ is a 

constant in the operating conditions. Therefore, the intrinsic activation energy for the 

investigated electrodes can be obtained from the slope of the linear regression 

expressions showed on Figure 5. Both Ni electrodes present almost the same slope; it is 

the same intrinsic activation energy value, which is 75.0 kJ mol-1. On the other hand, the 

Macroporous Ni-Au Nps electrode manifests a significantly lower slope, resulting of a 

51.9 kJ mol-1 intrinsic activation energy value. From these obtained values it is clear 

that the gold nanoparticles on the electrode surface improve the intrinsic catalytic 

activity of the Ni electrodes.  
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Conclusions 

Ni macroporous electrode was synthesized by galvanic deposition at high 

current densities and then modified with Au nanoparticles to evaluate their 

electrocatalytic behaviour towards the HER in alkaline media by means the pseudo-

steady-state polarization curves and EIS. Main results of this research allowed us to 

enhance that:  

1. Au nanoparticles have been successfully synthesised and characterized, 

manifesting a homogeneous distribution of spherical particles. 

2. Macroporous Ni electrodes have the typical macrostructure which 

corresponds to the Ni electrodes obtained at high current densities and the 

incorporation of Au nanoparticles seems not to affect the macrostructure. 

3.  From Tafel polarization data it is clear that the Macroporous Ni-Au NPs 

electrocatalyst shows higher catalytic activity towards the HER than the 

smooth and macroporous Ni electrodes. 

4. EIS permits to obtain the electrochemically active area by means of the 

roughness factor value, rf, and to conclude about the intrinsic catalytic 

activity by means the exchange current densities values corrected to the rf. 

From these values it is clear that the Au nanoparticles improve the intrinsic 

catalytic activity of the Ni electrodes.  

5. From both Tafel polarization and EIS data it is possible to conclude that 

HER on the Au-modified macroporous Ni electrocatalysts proceeds via the 

Volmer-Heyrovsky mechanism. 

6. The intrinsic activation energy values allow also concluding that the Au 

nanoparticles improve the intrinsic catalytic activity of the macroporous Ni 

electrodes. 
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Figure 3. Linear Tafel polarization curves recorded on the investigated electrocatalytic 
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Figure 4. Nyquist representation of the impedance data obtained in 30 wt.% KOH 

solution at 50ºC for a. Macroporous Ni electrode and for b. Macroporous Ni-Au Nps. 

Figure 5. Arrhenius representation for the investigated electrocatalytic coatings in 30 

wt.% KOH solution. 
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