
Copyright Institute of Electrical and Electronics Engineers (IEEE)

"(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."
Spatial In-Body Channel Characterization
Using an Accurate UWB Phantom

Carlos Andreu, Sergio Castelló-Palacios, Concepcion Garcia-Pardo, Alejandro Fornes-Leal, Ana Vallés-Lluch, and Narcís Cardona

Abstract—Ultra-wideband (UWB) systems have emerged as a possible solution for future wireless in-body communications. However, in-body channel characterization is complex. Animal experimentation is usually restricted. Furthermore, software simulations can be expensive and imply a high computational cost. Synthetic chemical solutions, known as phantoms, can be used to solve this issue. Nevertheless, achieving a reliable UWB phantom can be challenging since UWB systems use a large bandwidth and the relative permittivity of human tissues are frequency dependent. In this paper, a measurement campaign within 3.1–8.5 GHz using a new UWB phantom is performed. Currently, this phantom achieves the best known approximation to the permittivity of human muscle in the whole UWB band. Measurements were performed in different spatial positions, in order to also investigate the diversity of the in-body channel in the spatial domain. Two experimental in-body to in-body (IB2IB) and in-body to on-body (IB2OB) scenarios are considered. From the measurements, new path loss models are obtained. Besides, the correlation in transmission and reception is computed for both scenarios. Our results show a highly uncorrelated channel in transmission for the IB2IB scenario at all locations. Nevertheless, for the IB2OB scenario, the correlation varies depending on the position of the receiver and transmitter.

Index Terms—Body area network, in-body communications, path loss, ultra-wideband (UWB) phantom, uncorrelated channel.

I. INTRODUCTION

Wireless body area networks allow the interconnection between independent nodes located either inside or over the body skin or further. With regard to in-body communications, establishing a proper link with a capsule endoscope [1] or with a pacemaker [2] are examples of technological advances achieved in the last decades. In spite of these healthcare developments, current standards for these kinds of communications do not allow high data rate wireless connections, which are common in the current telecommunication services [3]. The IEEE 802.15.6 standard normalized the frequency bands for each propagation scenario. Concretely, the Medical Implant Communication Service (MICS) band was chosen to enable communication between in-body devices. The MICS frequency band (402–405 MHz) has a relatively good wave propagation conditions through biological tissues [4]. Nevertheless, this band is constrained to the use of narrowband systems. Particularly, the Industrial, Scientific and Medical (ISM) radio band (2400–2483.5 MHz) has been considered as a candidate in order to enhance the in-body communications in next-generation devices [5]. However, these multipurpose bands are widely used for WLAN and WPAN networks so that interferences between services could be produced. Thus, ultra-wideband (UWB) frequency range has emerged as a future potential candidate for in-body communications [6]. The UWB frequency spectrum covers from 3.1 to 10.6 GHz and its main benefits are high data rate, low power consumption, and the low-cost of its transceivers [7]. Nevertheless, the main drawback of UWB for in-body applications is the high attenuation of human body tissues, which dramatically increases with the increment in frequency [8]. Hence, an accurate UWB in-body channel characterization is relevant in order to establish a proper link between future UWB implantable nodes.

Implanting devices into human subjects in order to carry out propagation measurements is not possible due to ethical and physical reasons. Then, some research works have performed in vivo measurements using living animals such as pigs [9]–[11]. However, the high cost of each surgical procedure and the restrictions in animal experiments are enough arguments to seek other solutions. In the literature, studies based on simulation measurements using human voxel models can be found [12]. Nevertheless, software simulations are not able to reproduce all the channel conditions. Besides, such software simulations can be an expensive solution as well as imply a high complex computational cost. On the other hand, chemical solutions, which emulate the electromagnetic behavior of human body tissues (i.e., complex relative permittivity), have been used in order to recreate the propagation through human tissues [5]. These mimicking materials are known as “phantoms” and have been used in previous propagation studies [13]. Nevertheless, the results obtained with these phantoms are far from the results obtained with living tissues [10]. Even though there are many phantoms that can reproduce the propagation medium with a relative accuracy within narrow frequency bands, only a few are provided for wide frequency bands. An aqueous solution of sugar has been reported as a UWB phantom [14], but its...
behavior is far from the real values reported in [8]. Other attempts have been made for wideband phantoms, but their accuracy decreases as frequency increases [15]. In particular, the reported phantoms of muscle for widebands show a quite bad approximation above 4–5 GHz [16], mainly regarding the conductivity part.

The UWB frequency band aims at enhancing the current in-body applications. In order to improve the UWB channel performance, channel diversity of these systems can be exploited. For instance, current UWB systems have achieved accurate localization techniques [17]. These techniques benefit, among other features, from the diversity of the channel. These localization techniques can be influenced due to the correlation between receivers [18]. In the literature, many research works devoted to study the diversity performance of off-body systems can be found [19]. However, to the best of the authors’ knowledge, not many studies about the UWB in-body channel diversity considering experimental scenarios are addressed in literature.

This paper aims at contributing to the UWB in-body channel characterization within 3.1–8.5 GHz using a new realistic UWB phantom, which emulates the electromagnetic behavior of human muscle, as described in [8], with high accuracy in the whole frequency band considered [20]. Two in-body scenarios are considered depending on the location of the receiving antenna: in-body to in-body (IB2IB) and in-body to on-body (IB2OB) scenarios. Besides, a large amount of measurements has been provided by means of a novel spatial experimental setup using a 3-D automatic positioner. Hence, the path loss for both IB2IB and IB2OB can be characterized with high accuracy. Moreover, the correlation in transmission and reception is assessed from the measurements. For correlation in transmission, the channel impulse responses between different transmitting antenna positions are considered for a fixed position of the receiving antenna. The correlation at the receiving side is computed in an analogous form.

The remainder of this paper is organized as follows. In Section II, the measurement setups as well as the methodology are detailed. In Section III, the experimental path loss models for each scenario are presented. Section IV shows the correlation in transmission and reception for each scenario. Finally, Section V summarizes the conclusion obtained from this paper.

II. MEASUREMENT SETUP AND METHODOLOGY

A. Experimental Scenarios

With regard to the location of the antennas, two different scenarios were emulated.

1) IB2IB, where both antennas are considered to be located inside the human body.

2) IB2OB, where the in-body antenna is considered to be located inside the body, whereas the on-body antenna is placed over the human body surface.

B. UWB Phantom

Since the operation environment of these antennas is supposed to be the human body, in which it is not possible to test them, it becomes necessary to employ a tissue-equivalent medium. In this case, as muscle is the main human tissue or at least the future propagation medium for most wireless applications, a muscle-mimicking phantom was considered for our experiments. Keeping in mind that the antennas must be introduced and moved inside the phantom due to our scenarios, the required phantom should be liquid. For this purpose, the phantom proposed here is an aqueous solution of 54.98% acetonitrile and 1.07% NaCl, which owns the targeted conditions [20] and is easily prepared as follows: first, salt and acetonitrile were poured into a beaker in their corresponding amount, and then the required mass was filled with water and stirred for ten minutes until dissolution. This phantom was designed at 24 °C. At such temperature, our solution reproduces the dielectric values of the human muscle that were characterized at body temperature, as reported in [8]. The variation of its dielectric properties with temperature is about ±0.08 units per degree celsius for the dielectric constant and ±0.11 units per degree for the loss factor. The key of this phantom is the use of acetonitrile, a polar molecule that gets dielectric constant values similar to those of muscle within a wide frequency band. Moreover, the addition of salt increases the loss factor so the tissue’s behavior is better imitated in both parts of the complex relative permittivity

$$\varepsilon_r = \varepsilon'_r - j\varepsilon''_r \quad (1)$$

where ε'_r is the dielectric constant and ε''_r is the loss factor. In Fig. 1, the complex relative permittivity of our muscle phantom is compared with the reported measured values for a real muscle tissue [8].

This phantom is, to the best of the authors’ knowledge, the most accurate imitation for the human muscle within the
in vivo can be used as an implanted transmitting antenna as well as we refer to this antenna as a large antenna. This antenna further details of this antenna are given in [21]. Hereinafter, 1 cm along the x-, y-, and z-axes, respectively. Considering the step resolution as well as the distance between each antenna and the internal container’s walls, the distance between the antenna centers d can be computed. During measurements, the positioner stopped in each location until the VNA had finished the acquisition. In order to control and synchronize the positioner and the VNA to perform the measurements, a software package was designed in Visual Studio. Fig. 4 depicts the measurement setup particularized for the IB2IB scenario. The large antenna was placed in the middle of the y-axis, at 8 cm away from the container’s wall located behind it (x-axis), and at a height of 8.6 cm from the container’s floor (z-axis). The miniaturized antenna was located in a xyz mesh of 11 × 11 × 2 measurement points. In the case of the IB2OB scenario, the large antenna was located over the external container’s wall. In this scenario, two different setups were considered as follows.

1) Setup IB2OB.1: The on-body antenna (large antenna) was fixed in the center of the external container’s wall, whereas the in-body antenna (miniaturized antenna) was located in a xyz mesh of 19 × 19 × 3 measurement points (see Fig. 3).
Setup IB2OB.2: The on-body antenna was located in an initial position (in orange in Fig. 5) and moved away λ, 2λ, 4λ, and 8λ in the y-axis, where λ is the wavelength corresponding to the central frequency of the frequency band under analysis considering the propagation speed inside the phantom.

E. Data Processing

From the measurements, the path loss of each scenario was calculated. It should be highlighted that non-direct paths and wall reflections were highly attenuated due to the lossy propagation medium. Besides, only those S_{21} samples 10 dB above the noise level were taken into account. As a consequence, the received power can be considered to be practically the direct path contribution. The path loss was computed as follows:

$$PL_{\text{dB}} = -10 \log_{10}(\text{mean}(|H(f)|^2))$$

(2)

with $H(f)$ being the frequency transfer function in N resolution points computed as $H(f) = |S_{21}|e^{-j\angle S_{21}}$, where $|S_{21}|$ and $\angle S_{21}$ are module and phase in radians of the S_{21}, respectively.

The correlation coefficient between two different channel impulse responses, $h_{d_1}(\tau)$ and $h_{d_2}(\tau)$, was obtained as the maximum of the correlation as follows:

$$\rho_{d_1,d_2}(\tau) = \frac{E[h_{d_1}(\tau) \cdot h_{d_2}^*(\tau)]}{\sqrt{E[|h_{d_1}(\tau)|^2]} \cdot E[|h_{d_2}(\tau)|^2]}$$

(3)

where $E[\cdot]$ is the expectation operation value and $h_{di}(\tau)$ is the impulse channel response for a distance between antennas d_i, obtained from the IFFT of the $H(f)$ within N points.

III. Path Loss Results

In this section, the path loss models as a function of distance between antennas for both experimental setups are presented.

A. IB2IB Scenario

In Fig. 6, the path loss obtained from the measurements for the IB2IB scenario is shown. From Fig. 6, one can observe that the best fit is achieved with a linear approximation model as

$$PL_{\text{dB}} = PL_0 + \alpha \cdot d_{\text{cm}} + X_{\sigma_{IB2IB}}$$

(4)

where PL_0 is the value of the path loss when the distance between antenna centers d tends to 0, α is a fitting parameter, and $X_{\sigma_{IB2IB}}$ is the shadowing term for IB2IB scenario. In this case, PL_0 (dB) = 45.03 dB and $\alpha = 4.57$ dB/cm. Fig. 7 shows the cumulative distribution function of the measurements. It can be noted that the empirical model of shadowing can
be fitted by means of a normal distribution with zero mean and standard deviation $\sigma = 4.26 \ (N(0, \sigma))$. It is important to note that the path loss is given from $d = 3 \ \text{cm}$ to $d = 8 \ \text{cm}$ because most of the measurements above $8 \ \text{cm}$ were at noise level.

As evidenced by our results, the path loss model has been well fitted by a linear approximation model. These results are in agreement with other research works, which were carried out in other frequency bands [5]. However, the set of measurements presented in this paper and those performed in [5] have been performed within different frequency bands and bandwidths. Indeed, there is a lack of measurements for IB2IB configurations within UWB frequency band in the literature.

B. IB2OB Scenario

The path loss values obtained for the IB2OB case are shown in Fig. 8. In this case, the path loss was fitted by means of a log-distance model since the measurement points follow this trend within the measured distances. The log-distance equation is given by the following expression:

$$PL(dB) = PL_{0, \text{ref}} + 10\gamma \log_{10} \left(\frac{d}{d_{\text{ref}}} \right) + X_{\sigma_{\text{IB2OB}}} \quad (5)$$

where $PL_{0, \text{ref}}$ is the path loss value in a reference distance d_{ref} equal to $1 \ \text{cm}$, γ is the path loss exponent, d is the distance between antenna centers, and $X_{\sigma_{\text{IB2OB}}}$ is the shadowing term for the IB2OB scenario. In this case, the parameters of the log-distance equation were $PL_{0, \text{ref}} = 47.84 \ \text{dB}$ and $\gamma = 1.98$. From Fig. 9, one can also observe that the shadowing also follows a normal distribution with zero mean and $\sigma = 1.2$.

As mentioned above, the path loss model obtained from our measurements follows a logarithmic trend as the distance between antennas increases. Chávez-Santiago et al. [6] proposed a path loss model from 0 to 12 cm within 1 to 6 GHz in a heterogeneous medium by means of a software simulation. As it can be checked, our path loss model is similar to that obtained in [6] within the same distance range. However, absolute values of the path loss are different due to the different antennas used in both experiments.

García-Pardo et al. [10] compared phantom-based and in vivo measurements in an IB2OB scenario using the phantom described in [14]. As can be seen, the propagation losses in [10] are higher than those obtained using the new phantom. That is by the fact that the dielectric values of the new phantom are close to those obtained by Gabriel [8]. On the contrary, the phantom proposed in [14] overestimates the losses as concluded in [10].

IV. Correlation Coefficients

The diversity of the channel in transmission and reception is assessed throughout this section. For this purpose, the correlation coefficients in each scenario are computed.

A. IB2IB

For IB2IB scenario, the correlation in transmission for transmitters located in the same xy plane is shown in Fig. 10. In this case, the position of the reference impulse channel response was located at the center of the xy plane at $z = 0$. The distance between antenna centers at this reference location—denoted by subscript d_1 in (2)—was $d_1 = 5.77 \ \text{cm}$. From Fig. 10, it can be deduced that the correlation decreases rapidly as the distance increases in both x- and y-axes. Moreover, one can observe that the correlation drops below 0.3, when the transmitting antenna location is more than $1 \ \text{cm}$ away.
from the location of the reference transmitter. It should be mentioned that the resolution distance between the measured transmitter positions is 1 cm.

Fig. 11 shows the correlation in transmission for transmitters located at different xy planes. The reference channel impulse response was correlated with those located in an upper plane. This upper plane was separated at a distance Δz (1 cm). It can be noted that the correlation is lower than 0.3 for all the positions in the upper plane. Hence, it can be concluded that the channel is highly uncorrelated at different antenna heights.

B. IB2OB

In the IB2OB scenario, the correlation in transmission was calculated in the same manner as in the previous case, considering the setup IB2OB.1. Thus, the reference position was located again at the center of the xy plane at $z = 0$, being the distance between antenna centers in this case of $d_1 = 14.83$ cm. Thus, the values of the correlation coefficients are shown in Fig. 12. As can be observed, the correlation in the same xy plane is high in those positions close to the reference one. Thus, the IB2OB channel can be considered to be uncorrelated for transmitting positions separated approximately more than 5 cm in each axis.

Fig. 13 shows the correlation in transmission when the position between transmitters was Δz (1 cm) and $2\Delta z$ (2 cm) from the reference position in the z-axis. It can be noted that the correlation is lower as the distance between planes in the z-axis increases. This effect can be observed from Fig. 13(a) and (b). On the one hand, in Fig. 13(a), the correlation was reduced with respect to the case of $z = 0$ for all positions. On the other hand, in Fig. 13(b), where the separation distance in the z-axis was $2\Delta z$, uncorrelated signals were found whatever the separation of transmitting positions.

In order to evaluate the correlation in reception, the setup IB2OB.2 was considered (see Section II-D). Table I shows the correlation coefficients for different receiving antenna positions (see Fig. 5) as a function of different transmitting antenna locations along the x-axis. It should be mentioned that for location 0, the transmitting antenna was located again

<table>
<thead>
<tr>
<th>λ</th>
<th>2λ</th>
<th>4λ</th>
<th>8λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-5\Delta x$</td>
<td>0.62</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>$-4\Delta x$</td>
<td>0.55</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>$-3\Delta x$</td>
<td>0.34</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>$-2\Delta x$</td>
<td>0.57</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>$-\Delta x$</td>
<td>0.63</td>
<td>0.42</td>
<td>0.29</td>
</tr>
<tr>
<td>0</td>
<td>0.65</td>
<td>0.46</td>
<td>0.27</td>
</tr>
<tr>
<td>Δx</td>
<td>0.66</td>
<td>0.46</td>
<td>0.22</td>
</tr>
<tr>
<td>$2\Delta x$</td>
<td>0.67</td>
<td>0.44</td>
<td>0.19</td>
</tr>
<tr>
<td>$3\Delta x$</td>
<td>0.69</td>
<td>0.45</td>
<td>0.20</td>
</tr>
<tr>
<td>$4\Delta x$</td>
<td>0.71</td>
<td>0.47</td>
<td>0.23</td>
</tr>
<tr>
<td>$5\Delta x$</td>
<td>0.73</td>
<td>0.49</td>
<td>0.22</td>
</tr>
</tbody>
</table>
at the center position of the xy plane. The rest of locations corresponds to \(\Delta x \) steps from location 0 of the transmitter. From Table I, one can deduce that the correlation coefficients are lower as the distance between receiving antennas is higher. Besides, the correlation is below 0.5 for a separation distance between receivers above \(\lambda \). It can be noted that the correlation decreases rapidly as the distance between receivers increases as concluded in [24].

Likewise, Table II shows the correlation coefficients between receiving antennas when the position of the transmitting antenna was varied in the y-axis. In this case, the correlation also decreases when the distance between receiving antennas increases. As in the previous case, the correlation is below 0.5 for a distance above \(\Delta y \), whatever be the position of the transmitting antenna in the y-axis.

<table>
<thead>
<tr>
<th>(\Delta y)</th>
<th>(\lambda)</th>
<th>(2\lambda)</th>
<th>(4\lambda)</th>
<th>(8\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5(\Delta y)</td>
<td>0.67</td>
<td>0.46</td>
<td>0.22</td>
<td>0.18</td>
</tr>
<tr>
<td>-4(\Delta y)</td>
<td>0.68</td>
<td>0.48</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>-3(\Delta y)</td>
<td>0.66</td>
<td>0.48</td>
<td>0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>-2(\Delta y)</td>
<td>0.58</td>
<td>0.42</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td>-(\Delta y)</td>
<td>0.54</td>
<td>0.35</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>0</td>
<td>0.53</td>
<td>0.37</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>2(\Delta y)</td>
<td>0.53</td>
<td>0.39</td>
<td>0.32</td>
<td>0.10</td>
</tr>
<tr>
<td>3(\Delta y)</td>
<td>0.50</td>
<td>0.42</td>
<td>0.31</td>
<td>0.17</td>
</tr>
<tr>
<td>4(\Delta y)</td>
<td>0.47</td>
<td>0.41</td>
<td>0.32</td>
<td>0.10</td>
</tr>
<tr>
<td>5(\Delta y)</td>
<td>0.44</td>
<td>0.37</td>
<td>0.29</td>
<td>0.09</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In this paper, a set of phantom-based measurements within 3.1–8.5 GHz is presented. As a novelty, a new UWB phantom that mimics the permittivity values of human muscle tissue in the whole UWB frequency band with high accuracy was used. Using this new phantom, the IB2IB and IB2OB scenarios were considered. In order to perform the measurements, an automatic three-axis positioner was used. Thus, a large amount of measurements with high location accuracy were obtained in order to characterize the UWB in-body channel. Two path loss models for the IB2IB and IB2OB scenarios were obtained. In the IB2IB case, the path loss model, which best fitted the measurements for distances between antennas ranging from 3 to 8 cm, was a linear model. In contrast, the path loss was fitted by a log-distance model from 3.1 to 8.5 cm, was a linear model. In contrast, the path loss was fitted by a log-distance model from 5.5 to 20 cm for the IB2OB scenario.

The diversity of the UWB in-body channel was also investigated by means of the calculation of the correlation coefficients for both scenarios. In the IB2IB case, the correlation in transmission was below 0.5 regardless of the distance to the reference transmitter. For the IB2OB scenario, our findings revealed that the use of two receiving antennas separated more than \(\lambda \) is essential to obtain uncorrelated channel impulse responses in reception. With regard to the correlation coefficients between transmitting antennas, it is lower when the transmitters are located in different \(z \) planes for the same xy position. For future work, it would be crucial to manufacture other human phantoms such as fat and skin. In this manner, the effects of the heterogeneity of the human tissues on UWB channel characterization will be checked. These results could be contrasted with simulations using human voxel models.

REFERENCES

