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Abstract

The theory of complex dynamics is usually applied to compare the global convergence
properties of different iterative methods, by obtaining the attraction basins for simple
polynomial equations in the complex domain. However, in this work, we use it in quite
another context: the study of a nontrivial nonlinear system that describes the motion of
interacting bodies in celestial mechanics, namely, Newtonian planar circular restricted
four-body problem and its relative equilibrium solutions. These have been investigated
from a dynamical point of view. New properties of the solutions of this system have
been obtained. Practical guidelines for efficient search of relative equilibrium solutions
of N-body problem have been given.

Keywords: N-body problem, Equilibrium points, Complex dynamics, Nonlinear
systems, Newton’s method, Series approximations

1. Introduction

The dynamics of different iterative methods for the solution of nonlinear equa-
tions has been widely studied (see, for example [1]-[3] and the references therein) by
analysing the properties of the rational functions in the complex plane that arise when
applying the method to polynomials of certain degree.

The dynamics in the real plane has been analyzed mainly for birational maps [4] or
quadratic maps [5]. The study in the real plane is more involved because the power-
ful tools of complex analysis such as Montel’s theorem [6] for holomorphic functions
cannot be applied here.

Our objective is to study the dynamics of Newton’s method applied to a nonlinear
system in R2 that is of interest in celestial mechanics. Our results show that the be-
haviour of the discrete dynamical system here considered resembles more the dynamics
of rational functions in the complex plane than that of the birational or quadratic maps
in the real plane.
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In the classical N-body problem, the search of relative equilibrium solutions is
a very intricate problem itself, because the number of real solutions increases very
quickly while the number of interacting bodies N grows and at present nobody knows
even how to find the number of all equilibrium solutions (or central configurations)
for arbitrary N. Only few such results are known for small N (N = 2,3,4) or for
some particular, for example, symmetric cases. The equations that determine relative
equilibrium solutions in the N-body problem are nonlinear algebraic equations and they
usually contain some geometric or dynamic parameters.

In this paper we consider the equilibrium solutions in the Newtonian planar circular
restricted four-body problem [7]-[9], formulated on the basis of Lagrange’s triangular
solutions. The system that determines the equilibrium positions of the body of infinites-
imal mass,

(
√

3x− y)
(

1− 1
(x2 + y2)3/2

)
+µ1

(√
3(x−1)+ y

)(
1− 1

((x−1)2 + y2)3/2

)
= 0

2y
(

1− 1
(x2 + y2)3/2

)
+µ2

(√
3(x−1)+ y

)(
1− 1

((x−1/2)2 +(y−
√

3/2)2)3/2

)
= 0,

(1)

has from 8 to 10 solutions, depending on two mass parameters µ1 and µ2. Parameters
µ1 and µ2 are mass ratios and are chosen in such a way to be varied from zero to one.
This system is of great interest because its study facilitates the construction of motion
theory of asteroids near Lagrange’s triangular libration points. In the solar system the
most known such configuration is formed by the Sun, Jupiter and Trojan asteroids.

Each equation defines a curve in the plane XY and the solutions are located at the
points of intersection of these two curves. On Figure 1 these curves are drawn in bold
solid and dashed lines, respectively, for the values of the parameters µ1 = 0.9 and µ2 =
0.05. The bigger points represent the canonical position of the three massive bodies,
denoted by P0, P1 and P2. The solutions are the remaining intersections, which are
labelled as S1 to S8. Points L1 to L5 are the equilibrium solutions of the corresponding
restricted three body problem, known as Lagrange’s libration points.

In order to determine the equilibrium points, we apply Newton’s method [10] to
this system, starting from a given initial approximation. Newton’s iterations generally
converge to a solution, but it is not easy to predict which one, as it depends on the
starting point. The attraction basin of a root is formed by the starting points which
Newton’s iterations converge to this root. We find that the attraction basins of the roots
of this system are very irregular, chaotic and full of noise, especially if parameters µ1
and µ2 are close to zero (the most interesting case for applications). This means that
the problem of choosing initial estimations for the iterative method is very sensitive
and needs careful consideration, because the next step is the stability analysis of every
solution under any values of parameters. We have confronted the numerical solutions
with the solutions obtained in the form of power series [11] in order to determine if the
series approximations are suitable as starting points for the Newton’s iterations.

The rest of the paper is organized as follows. In section 2 we analyse the behaviour
of the iterations of Newton’s method for the solution of system (1) for different values
of the parameters µ1 and µ2 by obtaining the basins of attraction. Section 3 is devoted
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Figure 1: Solutions of the four-body problem for µ1 = 0.9 and µ2 = 0.05.

to the construction of series approximations to the solutions. In section 4 we assess the
suitability of such approximations as starting points for the Newton’s iterations to con-
verge to the corresponding solution and the last section is devoted to the conclusions.

2. Attraction basins for Newton’s method

Let us recall some concept on dynamics. If G : Rn −→Rn is Fréchet differentiable,
given x ∈ Rn, then the orbit of x is the set

{x,G(x),G2(x), . . . ,Gp(x), . . .}.

A point x f ∈ Rn is a fixed point of G if G(x f ) = x f . Let DG(x) the Jacobian of
F. If ∥DG(x f )∥ < 1 the fixed point is attracting and if DG(x f ) = 0 the fixed point is
superattracting.

Let x f be an attracting fixed point of G. The attraction basin of x f is the set of points
whose orbits tend to that fixed point.

Consider a system of nonlinear equations F(x) = 0, where F : Rn −→ Rn is a
Fréchet differentiable function. The application of Newton’s method to the solution of
the system can be interpreted as a discrete dynamical system xk+1 = G(xk) where G is
the operator in Rn given by

G(x) = x−DF(x)−1F(x).

3



Figure 2: Bifurcation curve in the plane (µ1,µ2).

Under the conditions of Kantorovich’s theorem, the zeros of F are superattracting
points of G.

Here we consider the iterative function G obtained by applying Newton’s method
to system (1) for given values of the parameters µ1 and µ2 and explore some of the
properties of the attraction basins of the solutions.

In order to find the attraction basins, we fix a pair of values to the parameters, take
the points of a mesh in a rectangle in the plane XY as initial estimations and iterate
Newton’s method until the tolerance is satisfied or the maximum number of iterations
is reached. Assigning a colour to each solution of system (1), we give that colour to all
the starting points whose Newton’s iterations converge to the corresponding solution.
In this way we visualize the attraction basins of the roots, which have been previously
obtained numerically, by applying the algorithms proposed in [11].

In [7] the authors analyse the number of solutions of the system for different values
of parameters µ1 and µ2 finding a bifurcation curve that divides the rectangle (µ1,µ2)∈
[0,1]× [0,1] in two zones, as seen on Figure 2. For parameter values below the curve,
the system presents 8 solutions, 10 above the curve in the upper part and 9 along it.
It is interesting to see how the basins change with the number of solutions and what
happens near the bifurcation curve.

Fixing the value of µ1 = 0.9 and giving different values to µ2, we examine different
cases for the solutions. The bifurcation curve appears about µ2 = 0.44. For lower
values of µ2 there are 8 solutions and for higher values 10. In Figures 3 and 4 we
compare the basins of attraction of Newton’s method for µ2 = 0.438 and µ2 = 0.442,
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Figure 3: Below the bifurcation curve, for µ1 = 0.9, µ2 = 0.438, there are 8 basins of attraction.

one below the bifurcation curve and the other above it. In the first case there are 8
basins. In the centre of the image, the basins are quite intricate, indicating the proximity
of the bifurcation. The second case, for µ2 = 0.442, presents 10 attraction basins. The
fuzzy zones in the former figure are mainly occupied by basins corresponding to the
two new equilibrium points.

When the parameter values are very different, the basins become asymmetric as
shown in Figure 5 corresponding to the parameter values µ1 = 0.9 and µ2 = 0.0001.

For small values of the parameters, the basins are very intricate. The bigger the
parameters, the simpler the basins, but they always have a fractal appearance. If µ1 =
µ2, then the basins present a symmetry of axis y = x/

√
3. Figures 6 and 7 compare the

attraction basins for big and small values of the parameters.
The basins geometry indicates the difficulty to choose a suitable starting point that

guarantees the convergence of the iterative method to the desired solution. Figures
8 shows that for some solutions there are points very close to them belonging to the
attraction basin of another solutions.

Nevertheless, Newton’s method almost always converges to a solution, indepen-
dently of the parameter values and the starting point, which is quite remarkable given
the complexity of the system of equations.

The following result gives information about the boundedness of the attracion bassins.

Theorem 1. The iteration function G of Newton’s method applied to system (1) has at
most one unbounded basin.

Proof: Let (x0,y0) a point far enough from the origin and (x1,y1) the result of a New-
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Figure 4: Above the bifurcation curve, for µ1 = 0.9, µ2 = 0.442, two new basins appear.

Figure 5: Basins asymmetry for µ1 = 0.9, µ2 = 0.0001.
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Figure 6: Attraction basins for µ1 = µ2 = 0.9.

Figure 7: Attraction basins for µ1 = 10−3 and µ2 = 10−4.
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Figure 8: Detail of the attraction basins of solution S1 for µ1 = 10−3 and µ2 = 10−4 showing nearby points
belonging to other basins.

Figure 9: Detail of the attraction basin of solutions S4 for µ1 = 10−3 and µ2 = 10−4.
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ton’s iteration on system (1). If we consider the linear system

(
√

3x− y)+µ1

(√
3(x−1)+ y

)
= 0

2y+µ2

(√
3(x−1)+ y

)
= 0,

(2)

one step of Newton’s method, independently from the starting point, gives the solution

x̄ =
µ1 +µ2/2

1+µ1 +µ2

ȳ =

√
3µ2/2

1+µ1 +µ2
.

The iterate (x1,y1) is very close to (x̄, ȳ) because, for (x0,y0) big enough, both
F(x0,y0) and DF(x0,y0) are very close to the corresponding values in system (2). Thus,
all the points far enough from the origin will be in the same attraction basin as (x̄, ȳ),
so that, the other basins will be bounded. �

Observe that (x̄, ȳ) is the centre of mass of the physical system of the three bodies.
For not too small values of µ1 and µ1, the centre of mass is in the attraction basin of
the solution closer to it. For example, for µ1 = 0.1,µ2 = 0.01, taking starting points
far enough from the origin, Newton’s iterations converge to S5(0.7176,0.0006) that is
the solution closer to the centre of mass. However, for µ1 = µ2 = 0.001 the unbounded
basin corresponds to the root S4(0.8665,0.5003) whose distance to the centre of mass
is 1, but there are two different solutions closer to it, namely S2(0.4662,0.8074) and
S5(0.9323,0.0) at distance 0.93.

Figures 10 and 11 show a wide view of the attraction basins for the considered
parameter values.

3. Power series solutions

This section is devoted to the construction of a solution in the form of a power
series. If we are interested mostly in case µ1 > µ2 then it is expedient to expand the
power series in terms of a small parameter µ2. In this way the expansions will be more
accurate. But if it is required to consider the case µ1 < µ2 then the accuracy would be
better if the power series expansion were carried out in terms of small parameter µ1.

So, for small values of µ2, the roots S(x,y) of system (1) can be approximated [12]
by the partial sums sn = (un,vn) of a power series

x ≃ un =
n

∑
j=0

x jµ jk
2 = x0 + x1µk

2 + x2µ2k
2 + x3µ3k

2 + . . .+ xnµnk
2 ,

y ≃ vn =
n

∑
j=0

y jµ jk
2 = y0 + y1µk

2 + y2µ2k
2 + y3µ3k

2 + . . .+ ynµnk
2

(3)

where the zero approximation of the root (x0,y0) is determined by the condition µ2 = 0.
These expansions theoretically should give better estimations while n grows, assuming
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Figure 10: Attraction basins for µ1 = 0.1 and µ2 = 0.01.

Figure 11: Attraction basins for µ1 = µ2 = 0.001
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that the corresponding series converge. As it was shown [13] in 1912, the series for the
restricted three-body problem is convergent, but the rate of convergence is extremely
slow.

When µ2 = m2/m0 = 0 then it means that the masses of two bodies are equal to
zero, and there are only two bodies with nonzero masses. Therefore the considered
restricted four-body problem is reduced to the famous restricted three-body problem
[14], which has five equilibrium solutions known as libration points. It means that there
are exactly five zero approximations (x0,y0) for the expansions (6). The coordinates of
three collinear libration points of Euler’s type, L1, L2 and L3 are dependent on µ1. The
two triangular libration point of Lagrange’s type, L4(1/2,

√
3/2) and L5(1/2,−

√
3/2)

do not depend on µ1. In this paper, for convenience, we take only Lagrange’s triangular
libration points as zero approximations in (6).

Following [11], in order to find the coefficients (x j,y j), j = 1,2, . . . of the expan-
sion and determine the value of exponent k, it is required to substitute expressions (6)
into (1), to expand each equation into a power series in terms of µ2, and to equate the
coefficients of the terms with identical powers of the left and right sides of each equa-
tion. Finally, we obtain a system of equations in the desired coefficients (x j,y j). Note
that in the neighborhood of point x0 = 1/2,y0 =

√
3/2, a solution of system (1) in form

(6) exists only for k = 1/3 and it is required to immediately substitute (1/2,
√

3/2) for
the zero approximation (x0,y0) into formula (6), since the coefficients of µ2 in (1) turn
to infinity at this point. The two first equations of this obtained system contain only x1
and y1 and have the form

x1

(
−3µ1 +

4(
x2

1 + y2
1

)
3/2

−3

)
+3

√
3(µ1 −1)y1 = 0, (4)

3
√

3(µ1 −1)x1 + y1

(
−9µ1 +

4(
x2

1 + y2
1

)
3/2

−9

)
= 0.

One can find out that equations (7) have four real solutions and it is possible to write
them in explicit form. The third and fourth equations of the system that determines
coefficients (x j,y j) depend only on x1,x2,y1,y2 and have the following form:

x2
1

(
21(µ1 −1)− 32x2(

x2
1 + y2

1

)
5/2

)
+6x1y1

(
√

3(µ1 +1)− 8y2(
x2

1 + y2
1

)
5/2

)
+

+4x2

(
−3µ1 +

4y2
1(

x2
1 + y2

1

)
5/2

−3

)
−3(µ1 −1)

(
11y2

1 −4
√

3y2

)
= 0, (5)

12
√

3(µ1 −1)x2 + x2
1

(
3
√

3(µ1 +1)+
16y2(

x2
1 + y2

1

)
5/2

)
+

+6x1y1

(
−11µ1 −

8x2(
x2

1 + y2
1

)
5/2

+11

)
−

− 32y2
1y2(

x2
1 + y2

1

)
5/2

+9
√

3µ1y2
1 −36µ1y2 +9

√
3y2

1 −36y2 = 0.
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The system (8) is linear in x2,y2, so after substituting the corresponding solution of
(7) into (8), this system will still have four solutions. The corresponding fifth and sixth
equations contain only x1,x2,x3,y1,y2,y3 and they are quite cumbersome, so we do not
write these equations here. But they are also linear in x3,y3 and so, the general system
for determining x j,y j remains to still have four solutions.

We denote by si
j = (ui

j,v
i
j) the point whose coordinates are the j-th partial sums (6)

corresponding to the i-th set of coefficients, i = 1, . . .4.
For example, for µ1 = 0.3 (x0 = 1/2, y0 =

√
3/2, k = 1/3) the corresponding

coefficients in (6) can be written as a set of four subsets

{x1 =−1.09303,y1 = 0.430598,x2 =−0.601083,
y2 =−0.176974,x3 =−0.520212,y3 =−0.81574} ,
{x1 = 0.246611,y1 = 0.625996,x2 =−0.0418395, (6)
y2 = 0.140344,x3 = 0.029317,y3 =−0.0633965} ,

{x1 =−0.246611,y1 =−0.625996,x2 =−0.0418395,
y2 = 0.140344,x3 =−0.029317,y3 = 0.0633965} ,
{x1 = 1.09303,y1 =−0.430598,x2 =−0.601083,

y2 =−0.176974,x3 = 0.520212,y3 = 0.81574}

Expanding around the second zero approximation x0 = 1/2,y0 =−
√

3/2 we obtain
a unique solution of the form

x ≃ u3 =−
(µ1 −1)

((
659

√
3−783

)
µ2

1 +
(
3942−152

√
3
)

µ1 +659
√

3−783
)

µ3
2

59049µ3
1

−

−
(
12

√
3−95

)(
µ2

1 −1
)

µ2
2

729µ2
1

+

(√
3−9

)
(µ1 −1)µ2

27µ1
+

1
2
, (7)

y ≃ v3 =−
√

3
2

+

(
3
√

3−1
)
(µ1 +1)µ2

27µ1
+

+

((
17

√
3−36

)
µ2

1 +
(
90−218

√
3
)

µ1 +17
√

3−36
)

µ2
2

2187µ2
1

−

−
(µ1 +1)

((
1917

√
3−1627

)
µ2

1 +
(
3592−5238

√
3
)

µ1 +1917
√

3−1627
)

µ3
2

59049µ3
1

.

Note that the value of exponent k is equal to unity for this starting point. The
approximations (u j,v j) generated by (10) are denoted by s−j .

4. Initial estimations

The objective of this section is to assess the suitability of the series approximations
of the solutions as starting points for the Newton’s iterations to converge to the desired
solution.

We consider a discrete mesh of pairs (µ1,µ2) in the rectangle [0,1]× [0,1]. For
each point in the mesh, we compute the Newton’s iterations starting from a partial sum
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Figure 12: The series approximations s3
j of any order j are S3-suitable for all (µ1,µ2).

of the series considered in the former section and see if they converge and to which
solution.The pairs (µ1,µ2) for which si

j belongs to the attraction basin of Sk constitute
the Sk-suitability region of the j-th partial sum of the series i.

The results can be displayed by using surfaces in three dimensions. The first two
dimensions correspond to the parameter values. The height and the colour of a point
are the abscissa and the ordinate of the last Newton’s iteration. As the equilibrium
points vary continuously with the parameters, sharp changes in the surface height or
colour indicate the parameter values for which the iterations converge to the different
solutions. Oppositely, a smooth surface shows that the iterations converge to a given
(variable) solution for all the parameter values. To ease the interpretation, the surface is
projected on the (µ1,µ2)-plane so that the information can be related to the parameter
values.

Let us first examine the series approximations to the equilibrium points S1,S2,S3
and S4 generated by formula (6). The approximations of s3

j for j = 0,1, . . . and for
any values of the parameters µ1 and µ2 are S3 suitable in the sense above defined, as it
can be seen in Figure 12. This figure is shown in three dimensions, where the height
represents the abscissa of the last iteration and the colour its ordinate.

The other equilibrium points do not present such a simple behaviour. For the equi-
librium point S1, the partial sums s1

j provide suitable estimations for µ1 > 0.25. For
µ1 < 0.2, the suitability region depends on the order of the sum, as shown in Figures
13 and 14. Experimentally we find that the estimations are suitable for µ2 ≤ 20µ2

1 .
Figures 15 and 16 show the suitability regions near the origin.

On the contrary, for S2, small values of µ1 are in the suitability region of s2
j , whereas

for µ1 close to 1, the series approximations are not suitable. The suitability region
grows with the order of the partial sum, as shown in Figures 17 and 18.
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Figure 14: Suitability region for S1 of the third degree approximation s1
3.
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Figure 15: Detail of the S1-suitability region of s1
1 near the origin.

Figure 16: Detail of the S1-suitability region of s1
3 near the origin.
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Figure 19: Suitability region for S4 of the approximation s4
1.

The behaviour for S4 is similar to that of S1, but in this case, the suitability region
shrinks as the order increases (see Figures 19 and 20).

The series (10) produces in general S7-suitable estimates, but they are not better
than the zero term of the series, (1/2,−

√
3/2), which is S7 suitable for almost all

(µ1,µ2). There is only a small region where the convergence to S7 is not guaranteed
for the zero term, for 0 < µ1 < 0.01, whereas taking as starting points higher order
terms of the series s−j , the convergence requires conditions such as µ2 < µ1. Figures
21 and 22 show the suitability regions for the zero term, and for the fifth order term,
respectively. In the first one, the unsuitability zone is difficult to appreciate, whereas
the second figure presents two zones of convergence to different solutions and an in-
termediate zone comprised between two lines, where the behaviour of the iterations is
more complex. In Figure 23 you can see a magnification of the non-suitability region
for the zero term that appears for very small values of µ1 but reaches relatively high
values of µ2.

5. Conclusions

We have analysed the attraction basins of the equilibrium solutions of the restricted
four-body problem (1). Due to the complexity of the attraction basins, it is difficult to
guarantee that a starting point will converge to the desired solution. By using series
expansions one can obtain approximations for the solutions that can be used as starting
point for Newton’s iterations. We have presented a graphical analysis of the behaviour
of different series approximations obtaining the suitability regions for different orders
and equilibrium points. In particular, we have seen that the partial sums of series (10)
do not provide better estimations for Newton’s method than its zero term. Summing up,
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Figure 21: Suitability region for S7 of the approximation s−0 .
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Figure 22: Suitability region for S7 of the approximation s−5 .

Figure 23: Unsuitability zone for S7 of the zero term s−0 .
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we have studied the non-trivial situation when applying Newton’s method for finding
numerical solutions of the nonlinear system that describes a real application in celestial
mechanics. A priori, it is difficult to guarantee the convergence to the required solution.
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