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ABSTRACT 
The flexibility introduced by evolutionary algorithms (EAs) has allowed the use of virtually 
arbitrary objective functions and constraints – even when evaluations require, as for real-world 
problems, running complex mathematical and/or procedural simulations of the systems under 
analysis. Even so, EAs are not a panacea. Traditionally, the solution search process has been 
totally oblivious of the specific problem being solved, and optimization processes have been 
applied regardless of the size, complexity, and domain of the problem. In this paper, we justify 
our claim that far-reaching benefits may be obtained from more directly influencing how 
searches are performed. We propose using data mining techniques as a step for dynamically 
generating knowledge that can be used to improve the efficiency of solution search processes. In 
this paper, we use Kohonen SOMs and show an application for a well-known benchmark 
problem in the water distribution system design literature. The result crystalizes the conceptual 
rules for the EA to apply at certain stages of the evolution, which reduces the search space and 
accelerates convergence. 
 
Keywords: non-standard optimization problem, evolutionary algorithm, knowledge-based 
system, SOM, water distribution 
 
1 INTRODUCTION 
 
Optimization permeates every human endeavor, in particular, science and technology. The main 
interest is usually placed in solving real-world problems. However, the closer a problem is to 
reality, the more complex it becomes. Complexity derives from a number of facts: coexistence 
of various (in general, conflicting) objectives; objectives defined by complex mechanisms (not 
only functions, but also procedures); sensitive constraints that are difficult to meet (perhaps 
needing simulation to be represented); nonlinear expressions (frequently associated with lack of 
smoothness and even continuity); dependence of many decision variables (multi-
dimensionality); coexistence of various types of decision variables (mixed Boolean-integer-
real); uncertainty (both for the model and the problem data); multi-modality (coexistence of 
many good non-optimal solutions), etc. Classical optimization techniques (including classical 
numerical methods for optimization) have shown an obvious inability to meet their objectives. 
During the last two decades a plethora of new derivative-free approaches based on various 
natural (social, biological, etc.) principles have shown better performances when tackling some 
categories of real-world problems. Sometimes they are grouped together under the general 
umbrella of evolutionary algorithms (EAs) and include: genetic algorithms (GA) [1]; ant colony 
optimization (ACO) [2]; particle swarm optimization (PSO) [3]; simulated annealing [4,5]; 
shuffled complex evolution [6]; harmony search [7]; and memetic algorithms [8]. 
 
Unlike most of the classical optimization algorithms, evolutionary algorithms enable the use of 
any form of quantitative (numerical) assessment of the desired objectives without conditioning 
the approach to the problem [9, 10]. The flexibility introduced by EAs has allowed the use of 
virtually any objective function, even when evaluations require, as is the case of many real-
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world problems, running complex mathematical and/or procedural simulations of the systems 
under analysis. There is an extensive literature of examples within all fields of engineering and 
science, and more specifically in the water industry, and in particular urban hydraulics (the field 
of expertise of the authors) regarding design, calibration, energy saving, etc. See, among many 
other references in the water industry [11, 7, 12-19]. 
 
Typically, an EA considers a population of candidate solutions and applies algorithm-specific 
rules that are iterated through generations in an attempt to improve the fitness of at least one 
individual (which will hopefully hit the optimum). Despite its virtues, each EA has its own 
drawbacks and is better adapted to some problems than to others. The heuristics behind a certain 
evolutionary algorithm endow its elements with specific capabilities for efficiently solving some 
types of problems, while being clearly inefficient with problems of a different nature. This fact 
indicates that, firstly, their rules apply better to certain problems than to others; and, secondly, 
that even if the population of solutions does evolve, the way it evolves is somehow static and 
does not dynamically adapt to the specific search process. This is one of the reasons why many 
researchers develop variants of the basic forms of some EAs that adapt better to different 
problems. Another reason derives from the parameters on which every EA is based. These 
parameters condition the way an EA works. Fine-tuning those parameters to obtain better results 
from evolutionary algorithms is, in many cases, part of a hand-made meta-process where 
specialists, using their experience or recommendations from the literature, start changing 
parameters, testing algorithm performances, perhaps performing sensitivity analyses, and 
eventually keeping the best parameter set of values. There are methods that skip these 
cumbersome processes by using adaptive and self-adaptive parameters; for example, algorithms 
ASO [20] and TRIBES [21] are based on free-parameter versions of PSO; in [22], a support 
vector machine was trained to generate PSO parameters while the solution space of a problem 
was explored. Other self-tuning algorithms have also been developed [23-26]. Despite these 
attempts, many recent optimization methods (including their variants) still use parameters that 
are adjusted a priori, frequently undergoing very expensive processes. 
 
However, better adjustments to the parameters of an EA is not the final solution. We suggest 
that this solution will come from influencing more directly the way a search is performed. In 
effect, EAs have been frequently accused of using solution search processes that completely 
ignore the specificities of the problem being solved. As a result, optimization processes have 
been insensitively applied and ignore the size, complexity, and domain of the problem. 
 
In this paper, we justify our claim that far-reaching benefits will be obtained from more directly 
influencing the way the search is performed, since algorithms that adapt their behavior to the 
problems they are intended to solve will have more chances to succeed. This can be achieved by 
combining EA performances with the introduction of knowledge based on the domain of the 
problem being solved. Specifically, this paper proposes using Kohonen self-organizing feature 
maps (SOMs) [27] on sets of solutions evaluated after batches of generations from a single run 
of an EA in order to extract knowledge intended initially to be used by the following 
generations. This approach is applied to a very important optimization problem in hydraulics, 
namely, the optimum design of water distribution networks (WDNs).  
 
The paper is organized as follows. After this introduction we present the problem of the 
optimum design of a WDN, emphasizing its inherent complexities, which are used to exemplify 
the approach we propose. A short description of the evolutionary approach used is then 
presented. We then motivate and describe our approach. Finally, we demonstrate the approach 
performance on a very well-known benchmark of the WDN design literature, namely the Hanoi 
problem. The paper concludes with conclusions and references. 
 
 
 



2 MODEL PROBLEM: OPTIMUM DESIGN OF A WATER DISTRIBUTION 
NETWORK 
 
A mathematical description of a general simulation-based multi-objective optimization problem, 
considering uncertainties derived from changing environmental and operating conditions (see 
[28] for an overview of the state of the art in the field of robust optimization) may take the 
following form: 

 
Optimize F(x, ) = (f1(x, ), …, fm(x, ))t 

 
subject to 
 gi(x,) > 0, i = 1,2, …, k  
 hj(x,) = 0, j = 1,2, …,l  
 
where fi, i = 1, …, m, are the objectives, and gj and hj are k and l inequality and equality 
constraints, respectively, which depend on the vector x of decision variables and , the 
uncertainty state vector. Decision vectors belong to the decision or search space S ⊆ Թd of 
decision variables, x1, …, xd, and the uncertainty state vector belongs to certain state uncertainty 
set, Us. The vector function, F(x, ) takes its values on the objective space F(S,Us) ⊂ Թm, its m 
components representing the various objective functions considered. The symbol t is the matrix 
transposition operator. Both the optimization criteria fk, and the constraint functions gi and hj 
may require multi-level computer simulations. 
 
To gain specificity we now present the specific problem addressed in the case study of this 
paper. 
 
 
2.1 Optimum design of a water distribution network 

 
Water supply system design is a wide and open problem in hydraulic engineering that may 
involve the addition of new elements in a system: the rehabilitation or replacement of existing 
elements; decision-making on operation, reliability, and protection of the system; among other 
actions. Designs are necessary to carry out new configurations, or to enlarge or improve existing 
systems to meet new conditions [29-31, 9]. 
 
For the sake of simplicity we limit ourselves here to consider just one objective, namely, the 
cost of the network components, and two constraints, namely a form of satisfying water demand 
quality and the compulsory adherence to hydraulic equations. We deliberately leave aside other 
important aspects in WDN design such as the various aspects related to the resilience of the 
system during stressed conditions, aspects that the authors have dealt with before [32,33]. 
 
 
2.1.1 Cost of components 
 
A general objective cost function includes several terms, several scenarios or working 
conditions, and a time horizon for the whole infrastructure. The function 
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includes various individual working conditions (wc) that depend on the values adopted by two 
types of variables, namely, demand models and roughness coefficient values, which capture 

most of the uncertainty of the problem; kPwc represents the probability for the k-th working 



condition. Typically, independent random variables are used to model both types of variables. 
Under the assumption that the design is made to work for Ndm demand models and Nrc sets of 
roughness coefficient values, the design is performed for Nwc = Ndm×Nrc working conditions. 

These conditions have individual probabilities, kPwc , k = 1, …, Nwc, given by the product of the 
corresponding probabilities regarding demand models and roughness values. This function also 
considers the operational costs of the network, COper, along a certain temporal horizon and this 
obliges the use of the amortization rates, axxx, to multiply any of the investment costs, namely, 
Cpipe, Cpump, Cvalve, and Ctank, representing costs for pipes, pumping systems, valves, and storage 
tanks, respectively. 
 
In general, CWSN is a non-linear, partially stochastic function that is dependent on continuous, 
discrete, and binary variables. 
 
Although a wide range of decision variables may be considered, for the sake of simplicity the 
basic variables of the problem that we consider here are the diameters of the new pipes, together 
with a number of options in terms of rehabilitation of pipes (with several available alternatives, 
such as replacement, simply duplication, or no action, with their associated costs), 
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where L, as said, is the number of pipes, which includes the cost of new pipes and the cost of 
rehabilitating existing pipes. This function, besides contributing most of the total cost, exhibits 
the characteristics we are interested in underlining. 
 
It is a function of D, the vector of diameters of the L pipes (both new and rehabilitated) in the 
network; c(·) represents the cost per meter, which depends on the diameter, Di, of pipe i, and li 
is the length of pipe i. Note that Di is chosen from a discrete set of commercially available 
diameters, and c(·) is a non-linear (discrete) function of diameter. There are various 
rehabilitation options (no rehabilitation, relining, duplication, and replacement being the most 
common). Rehabilitation costs are also non-linear. 
 
Costs corresponding to rehabilitation options and to other elements (tanks, pumps, valves and 
operation) are also typically non-linear (see [34], for example). 
 
 
2.1.2 Satisfaction of water demand quality 
 
WDN design is typically performed subject to several performance constraints in order to 
achieve an adequate service level. The most used constraint requires a certain minimum 
pressure level at each node of the system. Other constraints may include minimum or maximum 
pipe flow velocities, and minimum concentrations of chlorine, for example. 
 
There are various ways of expressing a lack of compliance with conditions of pressure, velocity, 
disinfectant, etc. A general weighted expression for penalties takes the form 
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where each Pk accounts for the global lack of compliance for any of the n considered problem 
magnitudes with an associated constraint: 
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Here, u(k) is the vector of values of a certain problem magnitude u (node pressure, pipe flow 
velocity, sensor disinfectant concentration, etc.) related to the demand nodes, the lines or any 
other points (mainly sensors) used to sample specific variables. In the case of pressure, K equals 
N, the number of demand nodes; in the case of flow velocity K = L, the number of pipes, etc. 

For variables with values greater than some reference value, )(
ref
ku , the associated individual 

terms vanish, and the Heaviside step function H is used in this explicit expression for this 
purpose. 
 
Thus, (3) represents a weighted sum of lack of compliance for various variables associated with 
the WDN. Parameters k help normalize the importance of the different scales between the 
various variables, and this enables a more meaningful aggregation of different types of 
constraint violation and can also be used to balance the importance among them. Extensions of 
(4) may be provided to consider maximum bounds for the variables. Expressions such as (3) 
enable the consideration of any objective, the most common being minimum nodal pressure, 
minimum pipe velocity, and minimum level of chlorine at specific points if water quality is 
included in the optimization. Expression (3) is a function of the selected pipe diameters through 
the hydraulic model presented in the next subsection. 
 
For many years nodal and pipe constraints were considered as hard constraints in the sense that 
they should be strictly satisfied. Nevertheless, the possibility of violating by a small degree 
some of these constraints opens the door to various strategies for adopting sub-optimal designs 
or soft solutions that may be more acceptable from other (global, strategic, or political, for 
example) perspectives. This is a new source of uncertainty, in this case, making the borders 
between feasible and non-feasible areas fuzzy. Here we only consider hard constraints. 
 
2.1.3 Adherence to hydraulic equations 
 
Several formulations are available (see, for example, [35]) to mathematically model pressurized 
water systems, especially for the large systems found in even medium-sized cities, since it 
involves solving the continuity and energy equations associated with the system. These 
equations constitute a coupled system of many simultaneous nonlinear equations. One 
formulation considers the N − 1 continuity equations, which are linear, plus the L energy 
equations, typically non-linear: 
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As already stated, N is the number of demand junctions, and L is the number of lines in the 
system. In addition, Ni is the number of nodes directly connected to node i; Qi is the demand 
associated to node i; k1 and k2 represents the end nodes of line k, which carries an unknown 
flowrate qk and is characterized by its resistance Rk, which depends on qk through the Reynolds 
number (the non-linearity of the energy equations arises not only from the quadratic term, but 
also from the function Rk). Hk1 and Hk2 piezometric heads at nodes k1 and k2 are unknown for 
consumption nodes and are given for fixed head nodes. The complete set of equations may be 
written, by using block matrix notation such as 
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where A12 is the connectivity matrix describing the way demand nodes are connected through 
the lines. Its size is L × Np, Np being the number of demand nodes; q is the vector of the 
flowrates through the lines; H the vector of unknown heads at demand nodes; A10 describes the 
way fixed head nodes are connected through the lines and is an L × Nf matrix, Nf being the 
number of fixed head nodes with known heads in the components of Hf, and Q is the Np-
dimensional vector of demands. Finally, A11(q) is an L × L diagonal matrix, with elements 

iiiiiii qABqRa / , with Ri = Ri(qi) being the line resistance, and Ai , Bi coefficients 
characterizing a pump potential in the line. 
 
System (6) is a non-linear problem, whose solution is the state vector x = (qt, Ht)t (flowrates 
through the lines and heads at the demand nodes) of the system. 
 
Since most water systems involve a huge number of equations and unknowns, system (6) is 
usually solved using some gradient-like technique. Various tools to analyze water networks 
using gradient-like techniques have been developed. Among them, EPANET2 [36] is used in a 
generalized way by hydraulic engineers around the world. It is clear that this complex set of 
constraints constitutes a process that must be built-in within the optimization problem, and 
implemented through a sophisticated tool that develops the hydraulic simulation. 
 
 
3 SOME WEAKNESSES OF EVOLUTIONARY APPROACHES 
 
Problems like the one described in the previous section may be categorized among the so-called 
non-standard optimization problems [37], which are being increasingly used in engineering 
optimization and, in general, in real-world optimization problems. One of the main 
characteristics of this category of problems is that relevant optimization criteria, as well as 
prescribed constraints, can only be evaluated by virtue of computer simulations (simulation-
based optimization). Although it is universally accepted that no general strategy to solve 
different types of problems in an equally efficient manner exists, or even can be expected to be 
designed (see the No Free Lunch Theorem in [38]), EAs offer a number of advantages [9] that 
make them suitable for tackling general problems. The main advantages of various EAs have 
been gathered by the authors into a software platform called ASO2, for agent swarm 
optimization [19]. To put it in a nutshell: multi-agent systems, and the necessary adaptation to 
multi-objective performance (including human interaction) have been built in ASO; in addition, 
ASO integrates various algorithms in runtime. The mixture of different algorithms and the 
incorporation of new agents in runtime within ASO are possible because ASO makes use of 
parallel and distributed computing to enable the incorporation of new agents, as well as the 
asynchronous behavior of agents. Moreover, self-adaptive parameter control is also 
implemented in ASO, meaning that the parameters of various metaheuristics are incorporated 
into the representation of the solution and, thus, the parameter values evolve together with the 
population solutions. As a result, the combination of self-adaptive algorithms is better able to 
find the best solution to the problem in hand. This approach is used as a high level concept for 
flexibly and consistently hybridizing various strategies of optimization– so that better solutions 
can be found by cooperation. We call ASO an evolutionary hybridized platform of self-adaptive 
algorithms (EHPSA).  
 
Nevertheless, a better adjustment of the parameters of an EA is not the ultimate solution in 
itself, and the best solution will come from influencing more directly the way searches are 
performed. In effect, each EA uses a solution search process that completely ignores the 
specificities of the problem being solved. As a result, optimization processes are applied 
insensitively – no matter the size, complexity, and domain of the problem. Although a powerful 
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hybridization of EAs, as implemented in ASO, injects increased diversity into the solution 
possibilities, it is not enough. 
 
To solve a simulation-based optimization problem efficiently, interaction between the 
optimization expert, who must be endowed with proven experience and an extensive knowledge 
of the problem, and the implemented optimization mechanism is critical. 
 
EAs have not generally taken advantage of this characteristic and, as a result, have been bound 
to analyze a larger solution space than necessary. Including expert know-how may reduce the 
search space and, as a result the solution is not only more efficient, but also closer to reality. 
Efficiency stems from the fact that just checking a number of usually simple rules embodying 
expert knowledge avoids many expensive calculations or simulations (hydraulic simulations in 
the application we present in this paper). Moreover, the fact that the rules have strong problem-
dependent meaning definitely takes the solution closer to reality. For example, in the application 
considered in this paper one rule just states that downstream pipe diameters must not be larger 
than upstream pipe diameters – while this may be reasonable from an engineering point of view, 
it is not necessarily reasonable for the random assignment approach typically used by EAs. 
 
To illustrate these ideas we succinctly show, by using a simple example, namely the benchmark 
network shown in Figure 1 [39], the reduction of the search space achieved when applying this 
rule. We omit here most of the specific data for this problem, which may be found elsewhere, 
since it is not relevant to our current purpose. Let us just mention that the problem specifications 
present a set of 14 candidate diameters for any of the 8 pipes (numbered P1 to P8) of the 
network. As a consequence, an algorithm facing the analysis of all the possibilities should be 
confronted with a number of 8^14 = 1 475 789 056 ≈ 1.476×109 candidate solutions. 
Meanwhile, the solution space when the rule is applied embraces just 1.46 % of this number, 
that is to say, 2.15×107 candidate solutions. Given the simplicity of the example, it is clear from 
an engineering point of view that the process will be able to find the best solutions. 

Figure 1. Alperovits and Shamir’s benchmark network 
 
Other rules may be considered to further facilitate the process of finding solutions, (see [19] and 
the references therein). These are examples of rules that, obviously, reflect the nature of the 
problem in hand. 
 
The attractiveness of this approach is endangered by several disadvantages. For example, it is 
not trivial to convey expert knowledge to the algorithm; and no changes can be enforced 
without changing the existing source code or adding more code to the software supporting the 
algorithms. In addition, injecting problem-related knowledge to be combined with evolutionary 
techniques requires the active participation of specialists from the problem domain. For a 
specific problem, it may be hard to suitably devise knowledge to be included in order to 
improve the solution search process without a good understanding of the problem specificities. 
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Moreover, even having a deep understanding of the problem domain it may be hard to shape 
specific knowledge to work efficiently in combination with evolutionary techniques. The 
proposal of this paper is to include (automatic) data mining techniques as a step for dynamically 
generating knowledge that can be used to improve the efficiency of solution search processes. 
 
4 THE RATIONALE BEHIND THE PROPOSAL 
 
The rationale behind our proposal is the following. During the execution of EAs, typically the 
number of solutions evaluated represents quite a small percentage of the total solution space 
corresponding to the problem being solved. Nevertheless, the number of solutions evaluated is 
still considerable, and most evolutionary techniques use just a small number of them at a time. 
Many of the solutions evaluated during the search process are “forgotten” after one generation, 
and the combined experience of several generations is typically not well exploited. 
 
Data mining (DM) techniques can enable deeper insight into the many “good” solutions that 
have been simply glimpsed and rapidly disregarded because they were dominated by better 
solutions during an ephemeral moment in the evolution process. Our claim is that by exploring a 
database obtained by suitably recording certain of those disregarded solutions, data mining 
techniques can help better understand and describe how a system could react or behave after the 
introduction of changes. 
 
The proposal of this paper is to use DM techniques as a step for dynamically and automatically 
generating knowledge that can be used to improve the efficiency of solution search processes. 
 
Thus, in this paper we explore the idea of combining the way evolutionary algorithms work 
with the introduction of knowledge discovery from a suitable database of solutions visited 
during previous steps of the optimization process. 
 
The description of the process, summarized in Figure 2, is the following. 

 
Figure 2. Putting knowledge extraction and EAs to work together 
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The typical operation of an EHPSA aided by the knowledge extraction we propose is the 
following. When initializing the EHPSA only random solutions are available. As a result, there 
is no possibility of knowledge extraction and the EHPSA, using its own search mechanisms 
(and perhaps some clear expert rules), must work during several iterations to produce and 
collect new solution candidates. After this number of iterations, a database (DB) must have been 
created. The EHPSA will then stop the search, and the knowledge extraction algorithm will be 
launched to work on the DB. Hopefully, a number of pieces of knowledge will be obtained that 
will be used to guide the EHPSA during a new batch of iterations. Then a new DB of candidate 
solutions will be available. Again the knowledge extraction algorithm will probably produce 
new knowledge that, in its turn, will be used during the subsequent process of iteration. 
Assuming that injecting this knowledge will accelerate the convergence of the EHPSA, and 
taking into account that the EHPSA is controlled by a certain termination condition, it is 
expected that only a limited number of knowledge extraction processes will be eventually 
performed. When to stop the EHPSA and launch a knowledge extraction process is a matter that 
will need further insight and the target should be automatic execution.  
 
Various DM techniques that handle large volumes of data, as well as scanning available 
information and tracking down understandable and useful knowledge have been devised. In this 
paper we explore Kohonen SOMs [27]. 
 
The map of Kohonen is known as an important paradigm of an unsupervised neural network for 
analyzing data [27]. A Kohonen map is a two dimensional array of neurons that are fully 
connected with the input vector and organized in a square or hexagon. Hexagonal arrangement 
is advised because at the end of the learning process it provides better visualization of the 
structure of the input space [40]. 
 
The topology preserving property is obtained by a learning rule involving the winning neuron 
and its neighbors in the update process. Therefore, nearby neurons learn to activate when 
presented with similar patterns. The learning algorithm follows the pattern of competitive 
models, but the update rule produces an output layer in which the topology of the input patterns 
is preserved. This means that if two patterns are close in the input space (in the sense of some 
similarity measure, such as measures used in winner-take-all strategies) their corresponding 
active neurons are also topologically close in the output layer. A network that performs this 
function is called a map of characteristics. These maps not only group the input patterns in 
clusters but also visually describe the relationship between the clusters of the input space. 
 
During training, the network allocates a position to the neurons on the map based on the effect 
of the dominant feature of the input pattern. For this reason, Kohonen maps are called self-
organizing maps (SOMs). 
 
If the input space is highly dimensional, as is the case of real-world optimization objectives, 
Kohonen maps can be interpreted as projectors of neurons onto a two-dimensional array that 
takes into account the probability density of the data and preserves the topology of the original 
input pattern. Preserving the topology of the original input pattern is a great advantage for 
visualizing results.   
 
In this paper we use the implementation of SOMs in R, through the xyf function [41]. The R’s 
xyf function obtains SOMs from data consisting of a set of independent variables and a 
dependent variable. It is also said that it is a type of supervised SOM. For the set of independent 
variables, a network is first trained in an unsupervised manner and, then, on the same network, 
the values of the dependent variable are projected. This allows better identification of 
characteristic patterns. In this study, the independent variables correspond to the diameters of 
the pipes and other decision variables, and the dependent variable is the cost of each solution.  
 
 



5 APPLICATION TO THE HANOI NETWORK  
 
The Hanoi water distribution problem is a very well-known benchmarking problem in the WDN 
design field and has been often approached in the literature, see [42, 34, 43-46] among many 
others. To gauge the effectiveness of our proposal, we will consider this same problem. Figure 3 
contains a representation of the network. We now describe the characteristics of this network. 
 

Figure 3. Hanoi network 
 
 
5.1 Problem description 
 
The network consists of one fixed head source (reservoir), 34 pipes numbered P1 to P34, and 31 
demand nodes, numbered N2 to N31, subject to one load condition given by the demand 
associated with the nodes. Tables 1 and 2 include, respectively, the candidate diameters, and the 
pipe and node data (node thickness and color in Figure 3 represents the associated node 
demand). Furthermore, the network has three grids and two ramified branches. One has to find 
the diameters for the 34 pipes such that the total cost of this network is minimal and the pressure 
at each consumption node is at least 30 m. The complete setting can be found in [47].  
 

Table 1. Commercial diameter for the design of Hanoi network 
 

Diameter (mm) Diameter (inches) Unit Cost ($/m) 

304.8 12 45.726 
406.4 16 70.4 
508 20 98.378 

609.6 24 129.333 
762 30 180.748 
1016 40 278.28 

Tank 



Table 2. Pipe and node data for the Hanoi network 

Pipe Length (m) Pipe Length (m) Node Demand (m3/h) Node Demand (m3/h) 
1 100 18 800 1 -19940 17 865 
2 1350 19 400 2 890 18 1345 
3 900 20 2200 3 850 19 60 
4 1150 21 1500 4 130 20 1275 
5 1450 22 500 5 725 21 930 
6 450 23 2650 6 1005 22 485 
7 850 24 1230 7 1350 23 1045 
8 850 25 1300 8 550 24 820 
9 800 26 850 9 525 25 170 

10 950 27 300 10 525 26 900 
11 1200 28 750 11 500 27 370 
12 3500 29 1500 12 560 28 290 
13 800 30 2000 13 940 29 360 
14 500 31 1600 14 615 30 360 
15 550 32 150 15 280 31 105 
16 2730 33 860 16 310 32 805 
17 1750 34 950     

 
According to the objective and the constraints adopted in this study, which coincide with the 
benchmark problem requirements, the optimization problem may be stated as 

Minimize 
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s.t. the hydraulic conditions given by (6). 
 

The first summation corresponds to the cost of the pipes, and the second to the penalty for lack 
of pressure condition satisfaction. The factor  that multiplies with the pressure difference pi = 
pmin − pi represents a fixed value, which becomes effective (by using the Heaviside function H) 
whenever the minimal pressure requirement is not met. Note that in this model the individual 
penalties grow linearly with pi. The variables in the problem are the diameters pertaining to the 
new pipes of the network or those of the rehabilitated pipelines. One therefore deals with 
determining the values which minimize the total cost of the pipelines – while complying with 
the minimal pressure requirements of the network. 
 
Furthermore, this simple variant for the design of a water supply system forms an NP-complete 
problem; the solution space is so large that in practice analysis of all the possibilities is not 
feasible due to the huge amount of computational time required. 
 
 
5.2 Application of the proposed synergy between EHPSA and SOMs 
 
To apply the process described in Figure 2, one run of ASO with a population of 100 
individuals was launched for 150 generations. This generated a database with 15000 registers. 
Thirty-five columns constituted the fields of the database, which correspond to values for the 
diameter for each of the 34 pipes in the network, plus the objective value, corresponding to the 
cost of the network summed with the penalty incurred for not satisfying the minimum pressure 
value of 30m. 
 
In this approach, following engineering criteria derived from knowledge on the specific field of 
the case study, we discretized a priori the objective field into four categories to obtain a 
qualitative cost attribute. The first category included the current excellent solutions, 
corresponding to registers with objectives between 0 and 3% over the cheapest solution in the 
database; then good solutions included those registers with objectives between 3% and 5% over 



the cheapest solution; poor solutions were those with a cost between 5% and 15% over the 
cheapest solution; and, finally, the remaining solutions constituted the class of bad solutions. 
 
A network with a hexagonal topology of 5×8 neurons (Figure 4) was then trained and based on 
this DB, and using the xyf function, the pipe diameters were independent variables and the 
qualitative cost was the dependent variable. 
 

Figure 4. SOM after 150 iterations. In inset A the solutions in the database are 
clustered; graphs in inset B provide a rough visual representation of the neuron 
codebooks; inset C shows, for each neuron, the average distance between the samples 
mapped into the neuron and the codebook of the neuron; finally, the number of 
samples mapped in each neuron are represented in inset D. 

 
Figure 4 shows the trained network. The red curves in the neurons of inset B are representations 
of the codebooks of the neurons. High points in these curves represent big diameters and low 
points small diameters. In this SOM, current economic solutions are found in neurons on the 
bottom left part of the SOM, as shown on inset A, which gathers almost all the current excellent 
and good solutions in the DB. Note how the codebooks of these solutions are comprised of 
diameters lower than those of other solutions. This is clearly evident in inset B when comparing, 
for example, neurons on the bottom left (such as the one surrounded by a circle) with neurons 
on the upper right of the map, corresponding to more expensive solutions. 
 
The codebook of the neuron that gathers most of the current good solutions is now obtained. It 
corresponds to the bottom leftmost neuron (marked with a circle in all the insets): observe, 
looking at inset D, the large number of excellent solutions concentrated in this neuron. Also 
observe the quality of this clustering. In effect, inset C provides this interesting qualitative 
information. This inset represents, for each neuron, the mean distance between each sample 
mapped into the neuron and the neuron codebook: the lower the associated value, the better the 
identification of the mapped samples with the codebook. We can observe how the bottom 
leftmost neuron, containing most of the excellent solutions, exhibits a low value for that mean 
distance – meaning that the corresponding codebook suitably represents those samples. The 
codebook of this neuron is given by the values in the shaded squares in Figure 5. 
 
The codebook corresponding to this neuron is then used to extract straightforward rules 
regarding the pipes analyzed. Specifically, these pipes are assigned the values given by the 
codebook of the winning neuron. In any case, a small amount of randomness must be 
considered instead of taking the codebook values as hard rules to apply. 
 
After implementing these rules, the EHPSA continues with the iteration. In the specific run we 
are describing convergence for the EHPSA+SOM occurred at iteration 223. The optimum was 



then obtained. It corresponds to a network with a cost of 6.545325 million dollars and pipe 
diameters as noted in Figure 5 (non-shaded squares). It is worth noting that a new SOM was 
obtained using the new database collected during this last part of the iteration process. This map 
is represented in Figure 6. The codebook for the neuron gathering most of the good solutions 
completely coincides with the diameters associated with the best solution. 

 
Figure 5. Hanoi network with codebooks for the first and second SOMs  

 

 
Figure 6. SOM portraying the last iteration steps (see caption of Figure 4 for more 

detailed information). 
 
A second aspect is worth mentioning: the ease with which a SOM can be generated, even for a 
relatively large DB. The SOMs presented in Figures 4 and 6 converged in about 15 seconds 



with an Intel(R) core computer with 2.70 GB of usable RAM. As a consequence, rule extraction 
through SOMs is much cheaper than running the EPANET simulations because of the avoided 
iterations. We can here conclude that rules may be easily generated that have not been evaluated 
using expert knowledge. Their evaluation is only based on data and structure of patterns found. 
We claim that, in addition to expert knowledge, these rules may be of great interest in helping 
EAs restrict the search to more promising areas and so reducing the size of the search space.  
 
A third interesting point is the following. When comparing the SOMs of Figures 4 and 6 the 
different distribution of the various types of solutions is easily observable. In the SOM in Figure 
4, just after iteration has started, the diversity of the current solutions is low (which can be seen 
by the relatively large number of neurons that have captured (current) excellent and good 
solutions). In contrast, the SOM of Figure 6 shows the final portrait of the evolutionary history 
– diversity has increased, and as a result, excellent and good solutions are relatively scarce and 
concentrated in few neurons. 
 
To provide an extra support to the approach herein presented, we now describe a comparison 
performed with and without the use of SOMs in terms of the number of iterations. In fact, in the 
same run a replica of the swarm at iteration 150 was launched in a different computational 
thread to continue performing EHPSA iteration without adding the rules obtained from the 
SOM after the stop at iteration 150. Curves for evolution of costs with iteration are shown in 
Figure 7. We can observe how after injecting the knowledge obtained from the SOM built after 
iteration 150, the algorithm with rules rapidly reduces the cost, thus converging faster, while the 
conventional algorithm takes longer to converge. 
 

 
Figure 7. Evolution histories with and without knowledge injection for the Hanoi problem 

 
 
6 CONCLUSIONS 
 
This paper explores the use of data mining techniques (obtained from a suitable database of 
solutions generated by an EA) to guide the search towards more problem-relevant solutions that 
improve search efficiency. We have specifically applied SOMs to a database obtained when 
trying to obtain the best design for a water distribution network used in the literature as a 
benchmark, namely, the Hanoi network.  



 
The results are very promising and show a very attractive approach to improving evolutionary 
search in real-world optimization problems. To further and efficiently develop the ideas 
described in this paper a number of research lines should be explored. 
 
Firstly, the scalability of the approach herein presented should be demonstrated by applying it to 
bigger problems, closer to what is understood as real-world problems. Incorporating any 
additional objective or reliability assessment to deal with real cases does not require major effort 
from the implementation point of view [14]. The algorithm is prepared to discover the insides of 
problems independently of the objective function under analysis. One of the largest advantages 
of this evolutionary approach is that it can work practically with any objective function. 
Nevertheless, depending on the case, the injection of problem-dependent knowledge directly 
from specialists in the field could help the algorithm significantly reduce its computational 
effort in finding good solutions. 
 
Secondly, updating techniques should be developed for maintenance of the discovered 
knowledge during the whole optimization process, and so avoid completely re-mining the data 
on the whole updated database every time new and better solutions are obtained by the EA. The 
database must undergo periodic updates (at least during the first stages of the search), and such 
updates should not invalidate existing knowledge. 
 
Finally, since the whole process, in general, will require progressive knowledge collection and 
revision, achieving efficient parallel computing is deemed a necessity, since, the data 
transmission required for reaching global decisions can be prohibitively large, thus significantly 
compromising the benefits achievable from parallelization. 
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