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ABSTRACT  

This paper addresses anisotropic dependence of effective thermal conductivity measured by a field 

thermal response test (TRT). That is a key parameter in the design of Ground-Coupled Heat Pumps 

(GCHP)    to heat and cool buildings. 

First, the paper provides a brief overview of the current technique of estimating thermal conductivity 

from a data obtained in TRT based on predictions for temperature from line source of heat in an isotropic 

ground.  Then, the solutions for   isotropic medium are used to develop this temperature transient method 

for stratified medium, where the angle between the ground surface and the sedimentary strata is arbitrary.  

In addition, the paper provides a new analytical exact solution for temperatures around finite line source 

(FLS) of heat in an anisotropic semi-infinite medium.  Approximate expressions for the temperature 

evolution during the test duration and for the steady state temperature are presented.    

   The limitations of the FLS method in stratified medium and recommendations for layout of multiple    

vertical or horizontal ground coupled heat exchangers or waste canisters in repository rock are discussed. 

  

 

 

 

 



 INTRODUCTION   

 Thermal conductivity of the ground is a key property when sizing of the ground coupled heat 

pump (GCHP) air-conditioning systems. For large commercial installations it is measured on a field 

borehole in a thermal response test (TRT) the scheme of which is shown in Figure 1.  Figure 1 represents a 

typical TRT test to measure the temperature response of the borehole heat exchanger (BHE) to a constant 

heat injection or extraction. A U-tube loop, through which a heat carrier fluid circulates, is inserted inside 

the borehole to approximately the same depth as the BHE planned for the site.   The outputs of the TRT are 

the inlet (Tin) and outlet (Tout) temperatures of the heat carrier fluid as a function of time (see Figure 1). The 

average change of fluid temperature is directly related to the rock/soil thermal conductivity around the well.   

To determine the rate at which heat is transferred into the ground its model is necessary that may account 

for underground water flows, temperature dependency of thermal conduction, variable thickness of the 

strata , id    see Figure 1.   The temperatures Tin and Tout, measured at the end points of the U-tube, are used 

to determine a mean value of thermal conductivity, averaged over the length of shallow BHE. The effective 

thermal conductivity   represents a number of the model parameters, when fitting the TRT data.   

  From the experimental data, and with an appropriate model describing the heat transfer between the 

fluid and the ground, the effective thermal conductivity of the surroundings is inferred. Thermal conduction 

of ground from a TRT data can be estimated with different models. The measured thermal conductivity of 

the ground depends on parameters of the model for the ground chosen for analysis through the effective 

thermal conductivity.       

The Kelvin's solution for temperature of the ground surrounding the borehole heat exchanger (BHE)             

modeled as an infinite line source (ILS), is the basis for the TRT in estimating the thermal properties of the 

ground. This approach is used further in the GCHP design standards of the International Ground Source 

Heat Pump Association (Bose et al.  1985). The cylinder heat source and line heat source (Carslaw and 

Jaeger 1959) model for BHE with parameter-estimating techniques are commonly applied for the design 

and analysis of vertical ground coupled systems (Bernier   2001).     

The Kelvin's concept assumes a homogeneous isotropic media surrounds the heat line source of a 

constant heat rate. However, vertical BHE systems are often installed in ground of multiple dipping layers 



(of rock or soil) with different thermal conductivities. For stratified media effective thermal conductivity in 

the ILS theory represents average thermal conductivity.      

  An algorithm proposed in (Sutton et al. 2001) for the performance of vertical BHE is based on 

analytical solution of an infinite cylindrical heat source model for horizontally stratified geologic 

formations.  These models for the BHE describe radial heat flow that implies only transverse conductivity 

to its axis.   

  

Figure 1.  In-situ  TRT schematic and formation layers. 

In general, the ground is an anisotropic medium whose thermal conductivity depends on the direction. 

Typically, the sedimentary soil or rock formations have the conductivity in one direction greater than in 

another: the heat flow passes more easily along the planes of deposition than across them and, thus, 

direction of heat flow does not coincide with the direction of the imposed temperature gradient.  The heat 

flow and temperature gradient are vector quantities related by the thermal conductivity tensor  in 

anisotropic media instead of scalar thermal conductivity in isotropic one.  

      It is necessary to determine thermal conductivity tensor of the ground with application to the estimation 

of temperature field. On a large scale it depends upon the average thermal conductivities parallel and 

perpendicular to bedding and its spatial orientation to the surface.  

A geophysical logging of wells is one of the methods presently used for identification of type of the 

ground,   and establishment of thermal conductivity distribution in depth   (Pribnow and Sass, 1995; Davis 



et al., 2007). In-plane thermal conductivity ||  and thermal conductivity    
normal to the bedding can be 

determined  
 
from parallel and series models, applicable for bedded sediments.   

Data on   thermal conductivities and anisotropy values, assembled from different areas around the 

world are available from literature (Deming, 1994).  These data are classified by rock name and origin. 

Thermal properties of samples extracted from identified layers are available from review articles (Pribnow 

and Sass, 1995).      

There are areas where only data on borehole cuttings are available.    The typical approach to the 

estimation of thermal conductivities is to carry out measurements in the laboratory on samples. The thermal 

conductivity tensor and   the anisotropy (defined as 
||2a




   ) can be obtained on oriented core, when 

measuring   by line source probe on the same sample face at multiply   angles to bedding (Pribnow and 

Sass, 1995; Popov et al., 1999).    

Laboratory results are normally combined with in situ thermal conductivity measurements.    

Assessments of the thermal conductivities by laboratory methods are difficult to extrapolate to in-situ 

conditions for deep boreholes   (Pribnow and Sass, 1995). 

The line source method, used for thermal conductivity determination in both field and laboratory, 

provides ground thermal conductivity in the direction perpendicular to the line.      

In addition,   the mean dip angle   between bedding and surface is required for practical applications to 

define the average thermal conductivity tensor.    Small variations of dip in wells can be viewed in borehole 

imaging logs (Borehole Televiewer, Formation Micro Scanner) (Pribnow and Sass, 1995).  In practice, the 

value of dip angle can be estimated simply by examining the in situ cross section.  

When no data are available on the dip angle between the bedding formations and the earth’s surface, 

assessment of the temperature   in the BHE surroundings may be useful in the limiting cases of horizontal   

and vertical stratification.   Such estimation   defines upper and lower limits for average temperature field 

for the intermediate angle values from 0 to
2


.

 

   



 For geologic applications,  to measure thermal conductivity in vertical  direction, normal to the earth’s 

surface,  the model was developed  for arbitrary angle between  the ILS  and  the principal  direction of  

heat flow in  an infinite anisotropic medium   (Grubbe et al. 1983). 

       However, infinite-source models have some limitations. For long time periods the finite size 

effects need to be taken into account; otherwise the ILS models predict   unlimited increase of the 

temperature when time tends to infinity. The very introduction of the surface boundary has the effect of 

setting a steady-state (Bandos et al., 2009); this is beyond the scope of the infinite line-source models either 

for isotropic or anisotropic media. Three dimensional finite line source (FLS) model of the BHE in a semi- 

infinite medium (Carslaw and Jaeger, 1959) does account for vertical heat transfer with both the soil 

surface and deep earth.   

Design tools use the so called “g-function” introduced by Eskilson (1987), which represents the 

thermal response factor of the borehole to a constant heat pulse at the borehole periphery, i.e.  br r .  It is 

estimated at the BHE mid-point in simulations of GCHP systems because ILS method implies the 

temperature at the point far away from the BHE ends.   After Zeng et al. (2002), Lamarche and Beauchamp 

(2007) extended the g-function concept of Eskilson to analytical integral average g-function.    Further, the 

mean g-function has been approximated for a wide time range, providing its explicit steady state limit at 

any point and the finite size corrections during the test for bH r r  , i.e. in the borehole vicinity (Bandos 

et al. 2009).  The edge effects are due to the vertical heat flow along the borehole from the deep earth and 

its surface.  The thermal response of a borehole is proportional to the ratio of   z

eff

q


of two significant 

factors in almost all analytical g-functions for the short and long term time analysis of the BHE response 

(Javed et al., 2009).      

These FLS models have been limited in application to the infinite ground of either isotropic or 

anisotropic thermal properties,   whereas to the best of author knowledge, solution for the temperature in 

the semi-infinite anisotropic medium has never been known.  To assess properly the steady state 

temperature of the underground installation one needs to  account for principal directions of the heat flow 

in the ground.   It may be relevant to guarantee stability of operating the ground coupled   installation as 

well as the time  of   investment return. The financial reward of installing a geothermal system comes after 



the long term. The anisotropy effect on temperature in borehole surroundings also becomes significant for 

very long time values. 

In this context, line-source methods to estimate thermal conductivity include conducting laboratory 

experiments on rock and soil samples and/or performing field tests (Davis et al. 2007; Popov et al. 1999).   

It should be noted, however, that the ILS based method was developed for rocks layered non perpendicular 

to the ILS (Grubbe et al. 1983). In geologic applications it is widely used for calculation of terrestrial heat 

flow density, while in geothermal applications it is necessary to determine the borehole temperature for the 

design purposes. However, for both applications of this method   do not account for the fact that the earth’s 

surface can make arbitrary angle with the sedimentary bedding. The ILS method in an infinite anisotropic 

medium was proposed to determine the vertical component of thermal conductivity  along the ILS 

embedded in rocks layered non perpendicular to it (Grubbe et al. 1983). However, this method cannot 

describe exactly the temperature field in an anisotropic half-space without accounting for a boundary 

condition on the ground surface.   

Further refinement of the FLS approach is desirable for anisotropic semi-infinite medium; anisotropic 

corrections to the g-function reveal how rocks are layered to the surface.   Moreover, bedding angle 

dependence on temperature response is of significant importance for long-term underground energy 

systems. It may be important, when estimating maximum temperatures tolerated in nuclear waste 

repositories or aquifer thermal energy storages (Hörmark and Claesson 2005; Sundberg and Helström 

2009).         

The effect of anisotropy of heat flow in a multi-layer geological formation on the temperature around 

the vertical line heat source at an arbitrary dip angle of the strata to the earth surface is the subject of this 

paper. It has practical implications for the estimate of test data, the steady-state temperature field and for 

the selection of orientation of vertical bore field. 

This paper presents (I) exact solution for the FLS thermal response function of a borehole that takes 

into account the geometrical disposition of the earth surface and the sedimentary bedding; (II) approximate 

expressions for the mean temperature of the vertical BHE for the times corresponding to the TRT duration 

as well as to the long times in the limiting cases of horizontal and vertical stratification to the earth's 



surface.  Results on the time-series expansion for the temperature around the   finite line-source in an 

anisotropic semi-infinite medium - including the existence of a steady-state limit – are also discussed. 

PROBLEM STATEMENT               

For the line-source analysis of TRT data, the ground is assumed to be a homogeneous isotropic 

medium characterized by scalar thermal conductivity  .  For the stratified geologic regime, this assumption 

is extended to the thermal conductivity tensor that characterizes anisotropic medium.   The heat flow and 

temperature gradient are vector quantities related by the thermal conductivity tensor ik    (Carslaw and 

Jaeger, 1959). The heat flow in the i-th direction   iQ  at a given point of the anisotropic medium is given by   

3

1
= /i ik kk

Q T x


     

It is assumed that the heat flow in the stratified ground proceeds as if the media were homogeneous, i.e. the 

thermal conductivity tensor is homogeneous, but anisotropic.    

This paper considers heat flow along the vertical z- axis, which is perpendicular to the surface of the 

semi-infinite region, as shown in Figure 1. The heat is realised at a constant rate along the z-axis of the 

Borehole Heat Exchanger (BHE), modelled as the Finite Line- Source (FLS), and is  transferred by thermal 

conduction along the preferential directions in the semi-infinite region.   In the anisotropic model the 

equation of heat diffusion, generally, is not invariant under spatial rotation about the z-axis of the vertical 

BHE. The subsurface temperature, T, is governed by the heat conduction equation:  

23 3

1 1

( , ) ( , )
( ) ( ) ( ( ) ( )), 0, 0 (1)ik z

i k k i

T x t T x t
C q x y z z H for t z

t x x
   

 

 
      

  


 

 where   1 2 3( , , ) ( , , )x x x x x y z      is the coordinate vector,  and zq  is the heat flux density per  length unit 

of the BHE of radius br , where ( )x  is the Dirac delta function characterized by the property  

( ) ( ) 0x f x




 for all functions f, ( )z  is the unit step function, which is zero for z <0 and unity for z >0 

. The initial condition and boundary condition on the surface are given by: 

0 0( , 0) , ( , , 0, ) (2)T x t T T x y z t T   
 



 

Typically, the line-source of heat is introduced as boundary condition on the cylindrical surface 

 11 22 13= / / /
2

z

b

q
T x T y T z

r 

          

and not as a heat generation term of Equation  (1) in this equivalent formulation of problem (Carlaw and 

Jaeger, 1959).    

 We address the simplest case of anisotropy in which the thermal conductivity is the same for all 

directions of a plane X'Y and differs in the Z' direction noted in Figure 2.  Two components of the thermal 

conductivity for heat flow through the ground in a direction perpendicular and parallel to the bedding plane 

are denoted by  and || , respectively. The in-plane thermal conductivity || is larger than orthogonal 

component of thermal conductivity tensor   (Davis et al. 2007; Popov et al. 1999), but this study is valid 

for any anisotropy ratio.   

 

 

Figure 2.  Direction of X', Y, Z'  principal axes of the thermal conductivity tensor. The XY plane 

represents the ground surface at the  dip angle    from the X'Y plane. 

In order to formulate the problem around the BHE inserted into the ground so that its surface is at 

angle    to the bedding plane one needs to find the conductivity tensor in the chosen axes. The  thermal 

conductivity tensor is diagonal  in the  X', Y, Z'  coordinates  shown in Figure 2. These three directions are 

called the principal axes of the thermal conductivity tensor: 

3

1

(3)k ik

k

    



with the   1 ||  , 2 ||    and
 3    components.  

To find the conductivity tensor ij in the chosen axes X, Y and Z (so that the BHE axis is at angle    

to the Z' axis)  one performs a rotation of tensor  in Equation  3:     

3 3

1 1

= (4)ij ki k mk mj

m k

R R
 

     

by the orthogonal matrix mjR  describing the rotation between two sets of axes shown in Figure 2.  This is 

given by (Hastie et. al 2001):  

cos 0 sin

0 1 0 (5)

sin 0 cos

R

  
 

  
    

 

Making use of the transformation defined above one gets              

2 2
|| ||

||

2 2
|| ||

0 ( ) 2 / 2

= 0 0 (6)

( ) 2 / 2 0

sin cos sin

sin cos sin

 

 

        
 
  
 
        

                     

The coefficient  11  is the thermal conductivity coefficient for the heat flow in the X direction due to a 

gradient in the direction X.  It also gives rise to a heat flow in the vertical direction due to the presence of 

the off-diagonal coefficient   13 .  

3 31 33= / /Q T x T z       

The anisotropy factor causes the distortion of the temperature gradient at the surface of multilayered 

ground and around the BHE bottom, because the heat flow is not normal to the isotherms.   

Throughout the paper the following normalization was used 

33/ , , 1, 2,3 (7)ij ij i j     

  The temperature field is thus defined by the solution of Equations 1, 2 with the   above   matrix in 

Equation 6.   If the angle  0   (or / 2 ),  the axes coincide with appropriate symmetry directions of 

a multilayered ground, this matrix   becomes  diagonal one, where   0    (or    / 2 )  correspond 

to horizontal (or vertical) stratification of the ground.   



In the following the grounds of these types will be considered as well as the ground strata at any dip 

angle  to the surface.  

ANISOTROPIC DIFFUSION IN SEMI-INFINITE MEDIUM. LINE HEAT SOURCE THEORY 

  This section is focused on the generalization of the analytical solutions of the thermal conduction 

problem for isotropic medium  to  the solutions  for anisotropic semi- infinite medium representing multi-

layered ground. 

We introduce the common methods for TRT estimations and highlight their limitations due to the 

isotropy  assumption.  

Solution for Finite Line Heat Source in Isotropic Medium 

 The   exact solution for temperature response from the isotropic ground, where the thermal tensor is 

diagonal, 
ik ik  , can be written    (Bandos et. al 2009): 

2

0

/ 4

( , , ) = {2 ( ) ( ) ( )} (8 )
4

uz

r t

q z H z H z
T r z t T erf erf erf u e udu a

r r r






 
  

 

and its integration  over the length of the BHE gives:  

0

0

2
2 2 2 24

/ 4

1
ˆ< ( , ) >= ( , ), ( )

2

(8 )

1 1
ˆ( , ) {4 ( ) 2 (2 ) (3 4 ) }

2

H

z

u
h u h u

r t

q
T r t T g h t T T z dz

H

b

e
g h t erf hu erf hu e e du

uhu





 
 

   

    




 

Both the exact solution and  its average  represented in such a form recover straightforwardly the ILS 

result in the  limit  H      

2 2 2

2

4
( ) {ln }, 5 (9)

4 4 4

z zq qr t r H
Ei for t

t r




    
       

 There are some approaches of deriving analytical expressions for Equation 8a   (Eskilson, 1987)  to 

overcome time consuming numerical calculation of  the  above integrals  and  to get insight  on physical 

interpretation of the heat transfer processes.   It can be seen that there are two characteristic scales of time, 



namely, 2

zt H  , 2

r bt r  .  Early time values (i.e. 5 rt t ) are of the order of one day,  whereas typical 

thermal test durations range from 40 to over 200 hours (Sutton et al., 2001).  Thus, the duration of TRTs 

conform to what are called intermediate times ( r zt t t  ) to distinguish them from very long times ( zt t ) 

that would approach those corresponding to steady-state conditions. Time of steady-state attainment is 

infinite and finite for the ILS and FLS, respectively.  Furthermore, the approximation of the average ground 

temperature for the times corresponding to the TRT (i.e., for  5 r zt t t   ) is given by: 

2

0 2 2

4 4
< ( , ) >= 3 (10)

4 4

z z

b

z

q tt t r r
T r t T ln for r r H

t H tr H




  

   
            

      

  This expression for the average temperature of the BHE differs from the classical one   by the finite-size 

corrections, which vanish in the limiting case of H → ∞. The comparison between the numerical results of 

FLS and ILS models applied to the same experimental data showed that, as predicted by Bandos et al.   

(2009), the  thermal conductivity value of the ground is overestimated by the ILS model (Bandos et al., 

2011).   In addition,  error in estimating  the thermal conductivity  between two models can be  found 

analytically.  

Evaluating TRT is based on the linear logarithmic time dependence for the temperature from the ILS 

theory.    From Equations 9 and 10 one can find  

2
3

1 (1 ) 1, 5
4

(11)

ln ln
,

4 ( , ) 4 ( , )

FLS

b b

r zILS

z

FLS ILSz z

b b

r rt
for t t t

t t H

q qt t

T r t T r t



 

 
 

     

 
 
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Here ILS and  FLS    are the effective thermal conductivities estimated with the ILS and the 

approximation of the mean FLS models, respectively.

 

Therefore, the estimate from the TRT with the mean 

FLS model gives a lower value for the log-derived thermal conductivity than the one predicted by the ILS 

model; the relative error is proportional to the square root of the small parameter 1
z

t

t
  for test durations.

 

The explicit steady state borehole temperature was derived amid the approximate expressions for the 

mean ground temperature   over a wide range of time values (Bandos et al. 2009).     
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To proceed further, the anisotropy effect on the TRT estimate and the long time temperature profile are 

considered for horizontally and vertically alternating formations and in general case for layers non-parallel 

to the ground surface. 

  Solution for Finite Line Heat Source in Anisotropic Medium 

  This section, firstly, addresses to the simple case when a main direction of the thermal conductivity 

coincides with the vertical direction, perpendicular to the surface, while in-plane bedding plane is 

horizontal,  i.e. parallel to the surface.  Secondly, we introduce mean temperature method for  the 

horizontal  strata, 0  , i.e. parallel to the surface,  present the closed form temperature solution around 

FLS  for  strata  at any dip angle to it and conclude with the limiting case of vertical stratification, 

/ 2 .   

  

 Mean temperature approximations at horizontal stratification   

It is assumed that the thermal conductivity of horizontally stratified ground   takes on different values 

in the horizontal  (in-plane) direction, 1 2 ||= =   , and in the vertical z direction, 3 =   , which are the 

diagonal components of the thermal conductivity tensor with zero off-diagonal elements, 

= , = 1,2,3ik k ik k   .  The problem of heat diffusion in horizontally stratifed geologic regime ( 0  ) 

is subject to the conditions specified in Equation 2. Its solution is invariant under spatial rotation about the  

axis  of the vertical BHE as it is in the case of the isotropic medium. Furthermore, after a transformation

|| /z z    , Equation 1  takes the same form as the equation for the isotropic homogeneous ground 

with the thermal conductivity  ||   
 as for the primary line source model.  This transformation reduces  the 

heat conduction problem in the horizontally stratified anisotropic ground to the one in the isotropic semi-

infinite medium of the thermal conductivity ||  and diffusivity || ||= / C  . Thus the solutions for the 



anisotropic ground can be obtained from Equations 8a, 8b for the isotropic soil by substituting  

|| /z z    supplemented by the || /H H    rescaling; hence, the   resulting depth is stretched 

for the horizontal stratification for ||  . 

  Approximate expressions for ground temperature, averaged over the BHE depth, were derived to use 

(instead of temperature at the mid-point) over a wide range of time values (Bandos et al. 2009).  Then, after 

applying the above described transformations, the average ground temperature response for the time in the 

interval corresponding to the TRT (i.e. for 2 2 2

|| ||/ 4 4r t H a   ) can be written as: 

0 || ||

|| ||

3 1
< ( , ) >= (4 ) 4 (12)

4 4

zq r
T r t T ln Fo Fo for r aH

aH Fo
 

 

   
       
    

 

where 2

|| /a    is the in-plane conductivity  scaled by the normal conductivity,   
||

|| 2

t
Fo

r


  is the 

Fourier number that refers to a radial distance r    from the borehole center, not to the borehole radius 
br  , 

which defines characteristic time 
rt . The TRT measures a multiplier for logarithm of time that is a function 

of model parameters.    Effective thermal conductivity   is such a function   that is inversely proportional to 

logarithmic derivative from the temperature in the intermediate-time interval.     From the above equation 

effective thermal conductivity eff measured by the line source method equals to the thermal conductivity 

in direction parallel to bedding (to the ground surface for horizontal stratification) || . Note that the  log- 

derived thermal conductivity is equal to the only parameter of the isotropic model of the ground:  eff  .   

The effects of the finite source size  (described by the last three terms in the right hand side of 

Equation 12 for intermediate time values)  depend on  the anisotropy  a , vanish  in the limiting case 

H      and are smaller  than  those in the isotropic model  ( 1a  ) for ||   .   

Application of the same scale transformations to the approximation derived   for the long times 

(Bandos et al. 2009), when approaching the steady-state conditions, the integral average temperature 

response at the radial distance  r  from the borehole center is given by: 

2 3/2 22 2 2 2 2
|| 2

0 || ||

|| || ||

( / ) 1 / ( ) ( , )
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This equation provides time-asymptotic approach to the steady-state of the designed geothermal 

system, whereas Equation 12 is applicable to analysis of the TRT data in the intermediate-time interval.  It 

is noteworthy to mention  that the effective thermal conductivity ||=eff    defines thermal response of the 

BHE  embedded in horizontally stratified ground in the the intermediate and the long-time intervals.    

Furthermore, both above approximations for the mean BHE response depend on anisotropy through the 

ratio
aH

r
. There are two characteristic times  

2

||

r

  
and 

2 2 2

||

H a H C

 
  for anisotropic diffusion in the radial 

and   axial directions, respectively; these directions coincide with the   principal axes for horizontal 

stratification.  

Exact solution for the mean steady-state temperature in the dimensionless form of   ˆ ( )S

aH
g

r
 reveals 

anisotropy effect at any radial distance from borehole center.  Using the expansion we arrive at the 

following result for anisotropy correction to the steady state temperature from isotropic and anisotropic 

models, which can be used in the vicinity of borehole, i.e. r H  

1
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The symbol O(x) denotes terms proportional to x and higher powers of x.   This comparison is done for

||eff    .  

Throughout the paper the following parameters were used in the numerical calculations: = 1a .4 

for the anisotropy case (Davis et. al 2007) and   
61.16 10   m2/s, 4.3  W/(mK). How anisotropy of 

the ground thermal conductivity influences the time dependence of the temperature distribution around the 

vertical BHE penetrating strata is shown in Figure 3. Exact temperature profiles along the borehole 

calculated for the horizontal stratification are presented in Figure 3a at various time values  from 1.5 

months to 12 years.    Figure 3a   shows that maximum temperature  along the BHE for || / >1   

(anisotropic case) becomes noticeably higher than that for = 1a  (isotropic case) as the time increases. That 

is due to decreased heat transfer from the bottom of the borehole.  

 

 



 

 

 

 

(a)                                                               (b) 

      

Figure 3. Comparison between thermal response g-functions at br r =0.1m around the borehole 

penetrating horizontal strata ( 0)  from two models: isotropic model ( ||    )   and anisotropic 

model ( 2

|| a  , 0  ; ||  ) of the ground.  (a) Profiles of the g-function  versus the   natural 

logarithm  of time  / st t  and  the dimensionless coordinate /z H  along the borehole; (b) Mid-point (z=H/2) 

(gray line) and mean g-functions from the isotropic model   and  mean  g-function from the  anisotropic 

model  versus the  natural logarithm  of time.  Exact solutions calculated for constant heat injection are 

shown in the range:  2 2 2

|| ||5 / /br t H a   ,  ||  .  The time is scaled by  2 / (9 )st H   (Eskilson, 

1987). 

Figure 3b shows that the g-function estimated at the  BHE mid-point (Eskilson, 1987)   and averaged  

response function are rather close to each other  for  the isotropic  medium ( ||  ) and to the mean 

temperature response  function for the anisotropic medium in the intermediate-time interval.     There is the 

increase of the mean temperature   evaluated from Equation 13 for the horizontal stratification of 

sufficiently low   value: = 1.4a  compared to the mean  temperature , but  this temperature remains 

lower than    mid-point  temperature at = / 2z H    for the isotropic case.  



Notice that the higher the scaled thermal conductivity || /  in the horizontal direction,   the later is the 

onset of the asymptotic behavior when attaining steady state. Therefore, evaluation of thermal conductivity 

from the TRTs provides primarily effective thermal conductivity in the horizontal direction, while thermal 

conductivity in the vertical direction noticeably manifests itself for the long time values. 

 

  

Temperature solution for FLS in a half-space of axial anisotropy at arbitrary dip angle 

The problem for ground layered non-parallel to the surface can be solved by using exact 

correspondences between the isotropic and anisotropic solutions.  It is easy to check that the transformation 

of   coordinates  

  213

11 13
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  

    
    


   

reduces Equation 2 to the  heat  conduction equation in  an isotropic medium. Formulation in the new 

coordinates  1 2 3( , , )y y y y is given by: 
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where  
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with exactly the same  initial and boundary conditions : 

0 1 2 3 0( , 0) , ( , , 0, ) (16)T y t T T y y y t T     

Equations 15, 16 formulate the problem for an inclined line-source of heat strength 33

det
z zq q


 


 in the 

semi-infinite medium of the unit thermal conductivity, where    denotes tilting angle of the line source 

with the 3y axis  (Cui et al., 2006) in the mapped space (not shown  in Figure 2).    



 Since its solution is known (Cui et al., 2006), the solution in the physical space x   can be obtained   

directly by   back transformation from the y  coordinate space as: 
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where   
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      , 2 2 4 cos (18)r r z z 
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 and   {0,0, cos }x z    is the vector along the line-source of  the length / cosH   . 

 Note also that the tilting angle  in the transformed space   can be expressed through   the dip angle   as 

follows 
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 For the TRT analysis the above solution   ( , )T x t obtained for the finite-line source in anisotropic medium 

was approximated and compared with that from the isotropic FLS model in a wide time range starting from 

the intermediate times.  

We proceed to derive expression that allows the calculation of an effective thermal conductivity as a 

function of bedding direction.     

Effective thermal conductivity, measured by the vertical line-source method: the layers are non parallel 

to the ground surface.   To compare the results of evaluating the thermal conductivity for isotropic medium 

with that developed here for anisotropic medium, the ground temperature in the vicinity of the mid-point of 

the finite depth BHE was calculated. 

Series of  ( , )T x t  in time about a mid-point depth (up to the exponentially small correction terms) 

can be written as:  
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and
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This expansion is valid for time values in the interval  
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Figure  4.  Effective scaled thermal conductivity versus the angle   between the ground surface and 

sedimentary planes, see Figure 2, for 1.4a  .      

 Equation 22 represents that effective thermal conductivity as a function of   the thermal 

conductivity components and the structure of ground (dip angle).     Effective thermal conductivity eff

depends on the angle   between the FLS and the axis of symmetry, as it is shown in Figure 4.  This result 

for the eff
 
at the intermediate time values is consistent with the ILS prediction for the perpendicular 

thermal conductivity measured   in ground bedding non-parallel to the surface   (Grubbe et. al 1983).    In 

geologic applications, the interpretation  of  Equation  22 enables determination of the thermal conductivity 

in a  certain  direction from the tensor components,  when  measuring anisotropy of rock samples in the 

laboratory at various angles  (Pribnow and Sass, 1995).   



Let us stress that  the  estimate of thermal conductivity is defined  by the logarithmic derivative of 

the   TRT data  and should be identified with the  effective conductivity from a  model. So, using 

anisotropic model one should write  

            2 1
11 ||

2 1

ln( / )
= = (24)

4 ( ) ( )

z
eff

q t t

T t T t
  

 
         

while for isotropic model the right hand side is equal just to  .                                                                              

  Figure 4   illustrates that the   ground thermal conductivity from the TRT varies significantly from the 

maximum value ||eff   for the horizontal stratification to the minimum value ||eff    as angle     

tends from 0 to    / 2 .   

The following shows how the anisotropy influences the steady-state temperature distribution 

around the line-heat source and   long-term performance of underground installation due to vertical heat 

transfer effects with the surface and the deep earth.  

Steady–state temperature field around LS penetrating layers at any angle to the ground 

surface.  Retaining the first leading term in the expansion of the integral in Equation 17 we arrive at the 

following result for FLS, which can be used for the long-time values (i.e. for 33 / cost H  ): 
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This result, describing the steady state temperature field of one borehole, embedded in 

multilayered semi-infinite medium at arbitrary angle of the bedding relative to the surface, agree with the 

result derived from the isotropic FLS model (Zeng et al. 2002).  In  the limiting case, when   tends to  , 



the proposed  Equation 25  recovers  the well known result  for  the steady state limit  (SSL)    of the 

temperature  in the isotropic model.   

One can see that the steady state temperature is proportional to the z

eff

q


 in addition to the BHE 

response function on anisotropy, dip angle and borehole depth.   The effect of anisotropy manifests itself in 

the steady state conditions, whereas thermal conductivity values obtained by fitting the same TRT data to 

anisotropic solution, Equation (20),   and isotropic solution, Equation (9),   are identical.     The steady state 

BHE response is strongly influenced by anisotropy.  

Figure 3   shows that the steady state temperature profile along the borehole depth at the horizontal 

stratification exceeds that for the isotropic ground, as one might expect for ||    .  

The following section addresses the specific case of vertically stratified geologic regime,  i.e.  for 

/ 2    and thus 13 0 .                                          

Mean temperature approximations at vertical stratification   

The effect of anisotropy on   vertical temperature dependencies increases with increasing of the dip 

angle for typical situation: ||   . Indeed, let there be strata parallel to the plane  YZ
  

depicted in Figure 2. 

The thermal conductivity of  such vertically stratified ground takes smaller values in the X direction,  

1 =   ,  than  in the  in-plane  direction, 2 3 ||= =    (Polubaronova-Kochina 1962). These define the 

principal components of the thermal tensor.  The exact temperature solution is presented by Equation 17 at 

0 ;  it  is not invariant under spatial rotation about the  axis of the vertical BHE  as  at the  horizontal 

stratification of the previous section.  Notice that the effective thermal conductivity attains minimum value: 

||eff   .  Furthermore, substituting 
||

/x x   
 
and   

2 2 2r r x a y  
 
 into Equation 8b one 

can also get the solution for the temperature field integrated along the same borehole depth H . Indeed, 

under   the conditions in Equation 23, the mean thermal response at 0  is represented by the 

approximation in the transient regime . 
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Here 2

|| || || ||/ , /t H C     and  r   is defined by Equation 21 at 2

11 221/ , 1a   .  Notice that   

isotherms of the mean thermal response function around  the borehole, where r  is constant .  Furthermore,  

due to  1 ( )a r r   the effective ratio of the BHE depth to r  is shortened for the vertical stratification 

with respect to /H r  for the isotropic medium and the edge corrections become more pronounced.   The 

steady state limit from Equation 8b or 21  for
2 2

||>> ( , ) /t max H r   can be wriiten  in the following 

form. 
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There are two characteristic times  
2

||

r

  
and 

2 2

|| ||

H H C

 
  for anisotropic diffusion in the radial and   

axial directions, respectively. 

Exact solution for the mean steady-state temperature in the dimensionless form of   ˆ ( )S

H
g

r
  is valid at 

any distance from borehole center.  Using the expansion of the  ˆ ( )S

H
g

r
  for large values of the  

H

r
  we 

arrive at the following result for anisotropy correction to the steady state temperature from isotropic and 

anisotropic models    
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This correction is derived for  ||eff     and valid in the vicinity of borehole.  Equations HS and VS 

provide anisotropy corrections for the mean borehole temperature in explicit form in the limiting cases of 

horizontal and vertical stratifications, respectively 

Figure 5  presents the time-dependence of the exact mid-point g-function and average g-functions for 

isotropic ground and average g-functions for the vertical stratification at ||  .  Futhermore, as shown in 

Figure 5,  point x=0.1m; y=0  has lower  value of  mean thermal response function  than  point x=0; 

y=0.1m in the   uniform   in – plane direction y. Notice that,  although the physical distance is the same  as 



derived from the line heat source, the ratio /r H  is different at these two points causing  splitting   mean ĝ

function curve calculated for an isotropic ground in two branches shown in Figure 5. 

 

 

 Figure 5. Comparison between the borehole response functions from two models of medium with 

vertical strata.  Mid-point (z=H/2) (gray line) and mean g-functions from the isotropic model  ( ||   

)  and mean  ĝ -functions in the X and Y directions from the  anisotropic model ( 2

|| a  , / 2  ) 

versus the natural logarithm of time.  Exact solutions calculated for constant heat injection are shown in the 

range:  2 2 2

|| ||5 / /br t a H   , ||  . 

This behavior attributed to the fact that the thermal conductivity parallel to the layers is higher than 

that perpendicular to the bedding plane,  suggests  that row of boreholes should be aligned along the 

direction X  to enhance conditions of the heat exchange with  a multilayered ground as comparison shows 

also in Figure 6.         

   Many sedimentary and metamorphic laminated rocks are strongly anisotropic (Davis et al., 2007): 

the thermal conductivity in parallel to bedding planes of these rocks is 2-3 times higher than that 

perpendicular to bedding (Deming, 1994; Popov et al., 1995).   This proposal on layout of the borehole raw 

is not referred to the anisotropy values less than unity also reported (Davis et al., 2007).   

 Although anisotropy value: a=1.4 in  the given examples is common, our solution is valid for any 

thermal conductivity anisotropy.    

 

 



(a)                                                              (b) 

        

Figure 6.  Comparison between isotherms curves of   steady-state  ĝ -functions from two  3 borehole 

configurations (with an inter-borehole distance of 3 m and H=50 m) at the / 2  : (a) along the 

direction X; (b) along the direction Y, shown in Figure 2.  

 

CONCLUDING REMARKS, SUMMARY AND DISCUSSION 

 Results have been presented of a study of the thermal response from multilayered ground 

modeled as an anisotropic medium to constant heat pulse from the finite line source.  This study discusses 

anisotropic dependence of both effective thermal conductivity measured by TRT and the steady state 

temperature field around vertical  FLS in the arbitrary oriented strata with respect to the surface of the 

semi-infinite medium. 

What is actually measured for the intermediate time values of the TRTs is the effective thermal 

conductivity  of the soil/rock formation in the direction perpendicular to the borehole axis.   We have 

provided effective conductivity as a function of the inclination angle, which should prove to be useful for 

the geothermal applications.   In addition,  we have shown that the dip angle  and the anisotropy factor 

influence the steady-state temperature field of the designed installation.  Therefore, it may be a discrepancy 

between the real temperature spatial distribution   around vertical or horizontal GCHP systems in the steady 

state conditions and its prediction of the isotropic model with thermal conductivity value obtained from the 

short time TRT, but without using the data of anisotropy and dip of the bedding.  



   The exact solution accounting for anisotropy, its asymptotic behavior and the steady state 

expression for the temperature obtained here for any dip angle between the surface and the bedding should 

prove to be useful for designing multiple borehole configurations in stratified medium.   

Analytical formulae have been obtained for the asymptotic behavior of the average  temperature in 

horizontally and vertically stratified   ground  for intermediate- and long- time scales.   The suggested 

corrections for anisotropic effects (Equations HS and VS) may give errors, when estimating the steady state 

average temperature by the isotropic model. 

In these limiting cases the proposed   response functions in Equations 13, 29 can be easily applied 

to estimate maximum and minimum of the mean steady state temperature field of an arbitrary borehole 

configuration using the superposition principle.   

Due to the fact that the thermal conductivity of ground is higher along the  layers the average thermal 

response method provides the  lowest estimation for the dimensionless response  function approaching 

steady-state limit; that is reached in the direction across the layers at the vertical  stratification. This 

conclusion is relevant when choosing a proper configuration to minimize temperature between vertical 

sources of heat from data about the geometrical disposition of the layers and the surface.    To this objective 

the proposal consists  in  disposing a row of vertical heat sources  normally to the  lines  of  strata 

intersection  with  the surface  rather than  along them at any values of the dip angle.   This 

recommendation regards also selection of orientation for   horizontal GCHP systems.   The analytical 

formulae for the temperature allow flexibility in the estimation of the temperatures within and around a 

repository of nuclear waste in anisotropic rock.   

  

NOMENCLATURE 

a




  = thermal conductivity anisotropy factor  

 

C = volumetric heat capacity of ground, Jm−3K−1 

 

Ei = exponential integral 

0

2
ˆ ( , )

eff

z

g T r t T
q


   

     

= generalized thermal response function for br r  

  



||

|| 2

t
Fo

r


  = in-plane Fourier number 

  

H = depth of the borehole heat exchanger (BHE), m 

 

 r = radial coordinate, m 

 

rb = radius of the BHE, m 

 

r  = coordinate vector, m 

 

zq                                           = heat flow per unit length, Wm–1 

Q                                            = vector of heat density per unit area, Wm–2 

2 /r bt r    = short time scale for the BHE, s 

2

s

H
t


  = steady-state time scale, s  

 

tz = H2/α = isotropic time scale for the BHe, s  
2

|| ||/t H   = in-plane time scale for the BHE, s  

T = temperature of ground (K or C) 

 

T0 = undisturbed ground temperature (K or C) 

 

z  = vertical axial coordinate, m 

 

Greek letters 

 

/ C    = isotropic thermal diffusivity,   m2/s 

|| || / C    = in-plane thermal diffusivity,   m2/s 

 

   = delta function  

 
2

11 13      = dimensionless parameter 

 

33/     = dimensionless thermal conductivity tensor  
 

   = Euler’s constant 

 

eff  =Equation  20, effective thermal conductivity, W (Km)–1 

 

||  = in-plane thermal conductivity  (parallel to bedding plane), W (Km)–1 

 

   = normal  thermal conductivity ( normal to bedding plane ), W (Km)–1 

 

   = three-dimensional thermal conductivity tensor, W (Km)–1 

 

( )He z   = unit step function  

 

  = angle between the surface and strata,  

 



13arccos



  = dimensionless parameter   

Subscripts 

 

||  = direction parallel to  bedding 

 

s  = steady-state 

 

Superscripts 

   

0

1
... ( ... )

H

dz
H

     = integral mean 
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Figure captions  
 

Figure 1.  In-situ TRT schematic and formations layers. 

Figure 2.  Direction of X', Y, Z’ principal axes of the thermal conductivity tensor. The XY plane 

represents the ground surface at the dip angle    from the X'Y plane. 

Figure 3. Comparison between thermal response g-functions at br r =0.1m around the borehole 

penetrating horizontal strata ( 0)  from two models: isotropic model ( ||  )   and anisotropic model (

2

|| a  ) of the ground.  (a) Profiles of the g-function  versus the   natural logarithm  of time  / st t  and  

the dimensionless coordinate /z H  along the borehole; (b) Mid-point (z=H/2) (gray line) and mean g-

functions from the isotropic model   and  mean  g-function from the  anisotropic model  versus the  natural 

logarithm  of time.  Exact solutions calculated for constant heat injection are shown in the range:  

2 2 2

|| ||5 / /br t H a   . The time is scaled by  2 / (9 )st H   (Eskilson, 1987). 

Figure 4.  Effective scaled thermal conductivity versus the angle   between the ground surface and 

sedimentary planes, see Figure 2, for 1.4a  .     

Figure 5.    Comparison between thermal response g-functions around the borehole penetrating vertical 

strata from two models of medium.  Mid-point (z=H/2) (gray line) and mean g-functions from the isotropic 

model ( ||  ) and mean ĝ -functions in the X and Y directions from the anisotropic model ( 2

|| a  ) 

versus the natural logarithm of time.  Exact solutions calculated for constant heat injection are shown in the 

range:  2 2 25 / /br t a H   .   

Figure  6.  Comparison between isotherms curves of generalized steady-state ĝ -functions from two 3 

borehole configurations (with an inter-borehole distance of 3 m and H=50 m) at the / 2  : (a) along the 

direction X; (b) along the direction Y, shown in Figure 2.   

 

 


