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Abbreviations and Notations

ASO: agent swarm optimization
ASPV: accumulated shortest path value
BFS: breadth first search
DFS: depth first search
DN: distribution network
SP: shortest path
TN: trunk network
SPV: shortest path minimum value
WSN: water supply network
kW : kilowatts (power unit)

N/m3" Newton per cubic meter (water specific weight unit)

3
m /h" cubic meter per hour
m: meter of head

Abstract

A novel methodology to sectorize water supply networks (WSN) depending on a main
transmission line is presented in this paper. The methodology is based on concepts derived
from the social network theory and graph theory (namely, community detection and shortest
path respectively); and also on a multi-objective optimization process by means of agent
swarm optimization (ASO). A series of energy, operative, and economic criteria are optimized
in this process. The core idea is to form sectors over the distribution network based on

communities found using a community detection algorithm (Walktrap). The methodology is



flexible and enables the technical staff in water utilities to make decisions at different stages. It

has been tested by generating four feasible solutions over a portion of a real WSN.

Keywords: community detection, energy, optimization, reliability, sectors

INTRODUCTION

Water supply network (WSN) segmentation and/or sectorization can be described as a
technique for enhancing the operative control of WSNs, including: non-revenue water
management; pressure control; and chemical quality monitoring. The technique implies the
definition of areas that can be partially isolated from the rest of the network. Such isolation is
carried out by closing some installed valves (depending on their current conditions), installing
new valves, or cutting some pipes. Each of the resulting sectors is then fed by a single (or
several) entrances equipped with a flowmeter, which enables the inflow to be permanently
monitored. Since the 80s, when the first sectorization implementation was reported in British
cities (Farley, 2010) the technique has become very popular, especially among Latin American

and European water utilities.

Despite the benefits associated with the deployment of a sectorization layout, there are also
some drawbacks. From the outset, a pressure drop can be indicated as the most relevant
drawback. When some pipes are closed, the general available flow area is reduced and this
increases the head loss due to pipe friction, which translates into an overall pressure drop.
Although a pressure reduction can be positive (given its relation with reductions in:
background leakage flow, frequency of appearance of new bursts and breaks, and domestic
consumption — Lambert & Thorton, 2005; Thorton & Lambert, 2006), an excessive reduction in

pressure can also be translated into supply incapacity. Moreover, a sectorization project



implementation also implies the investment of economic resources which may sometimes be

scarce.

Based upon the above aspects, it can be stated that a good sectorization layout has to find a
good compromise among a series of positive and negative aspects. The number of possible
layouts may be large, depending on the WSN extension and its looping configuration. In some
cities with small and/or highly branched WSNs, it is feasible to define sectors empirically
(based only on network maps) and verify them through hydraulic simulation with EPANET;
however, in more complex contexts (the case of most large cities) with a very large number of

options, the use of mathematical and computational tools becomes necessary.

Since the publication of the “District Metering Areas: Guidance Notes” by members of the
Water Loss Task Force of the International Water Association (Morrison et al., 2007) several
methodologies have been proposed to tackle the problem of WSN sectorization. Most of these
studies have addressed the problem using graph theory and energy criteria (Tzatchkov et al.,
2008;Di Nardo & Di Natale, 2011; Di Nardo et al., 2014; Alvisi & Franchini, 2014;) in
combination with multi-agent systems (lzquierdo et al., 2011; Herrera et al., 2012; Hajebi et
al., 2013), optimization approaches (Gomes, 2012; Di Nardo et al., 2013; Hajebi et al., 2014; De
Paola et al., 2014) and very recently, with concepts derived from social network theory (Diao

et al., 2013;Campbell et al., 2014a; Giustolisi & Ridolfi, 2014).

Sectorization can be addressed in two different manners depending on the topology of the
WSNs. When WSNs rely on several sources within the network, sectors can be set around the
sources. In this case, sector may count on one (or several) exclusive sources. However, in other
contexts, sources are far from users, and supply depends on a main transmission line (trunk

network).



This work describes a flexible methodology tailored to the latter type of network. The
methodology encompasses a disaggregation of the WSN into two components, namely, a trunk
network (TN) and a distribution network (DN). Disaggregation is carried out in order to exclude
the pipes of the TN in the sectors, reduce the negative impact of the sectorization
implementation on the distribution network, and enhance leakage control (as leakage/flow
monitoring is focused on the pipes of the DN). The sectors that meet the established size
constraints are defined over the DN. Finally, the entrance (or entrances) to each sector is
determined by means of an optimization process with agent swarm optimization (ASO)
(Montalvo et al., 2014). The water utility staff must take decisions based on their experience in
three steps of the process: (1) definition of the trunk network; (2) selection of the sector size;
and (3) selection of a feasible solution. These decisions define the final outcome of the whole
process.

This paper is an extension of the contribution presented in the WDSA 2014 (Campbell et al.,

2014b).

METHOD
Figure 1 depicts the proposed methodology. Its components are detailed in the following

sections.
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Figure 1: The proposed methodology

Graph theory and water supply networks

Graphs can be described as structures topologically formed by nades interconnected by links
(also known as edges —in this paper, the two terms are used interchangeably). Graph theory is
a branch of mathematics dedicated to the study of such structures. The topology of the WSNs
coincides with the topology of their associated graphs. Therefore, WSNs can be abstracted as
graphs, and the algorithms and concepts belonging to the domain of the graph theory can be
implemented over them. In this work, the shortest path (SP) concept is implemented to define
the TN, and a community detection algorithm is implemented to define structural

communities which are used to define sectors.



Definition of the trunk network in a water supply network by shortest path analysis

The SP between nodes in a given network, or the path with minimum number of vertices,
together with community detection, are two of the concepts most broadly explored within the
domain of the graph and social network theory. By applying the SP concept over a digraph (a
graph with the direction of links initially set) it is possible to determine the frequency of all the
possible paths in a graph. The information contained about the pipes of a given WSN, can be
incorporated in the edges of its graph, including the direction of flow in the pipes, in order to
define the directions of the edges on the graph. Evidently, to know the flow direction, a
hydraulic simulation is required. When such a hydraulic simulation® is carried out in the
scenario of maximal demand (the point where the demand pattern curve is higher), the flow

direction on each pipe corresponds to the one of the worst scenarios.

Once the directions of the edges on the graph are defined, it is possible to calculate a so-called
shortest path minimum value (SPV) between each pair of nodes. This is carried out through the
widely known breadth first search (BFS) algorithm (Moore, 1959) which performs a recursive
search of every reachable node from a given starting node. Given a source node (any node and
not only the water sources), BFS systematically explores all the vertices of the graph to find the
subset of reachable nodes from that source. The distance (in terms of number of vertices)
from the source to the entire set of reachable nodes is then computed. Finally, a tree is formed
with the source node as the root and followed by all reachable nodes.

The SPV for each pair of nodes can be stored in a square matrix, where the nodes in the first
column are the starting nodes and those on the top row are the ending nodes. The matrix is

fulfilled according to the next set of rules.

if SN=EN -0

1Hydraulic simulation in EPANET
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if SN cannot reach EN — o
For any other case — number of nodes in the SP

Where SN stands for starting node and EN stands for ending node

It is important to highlight the fact that in the case of unweighted graphs, all the edges are
assumed to have the same weight (1), and thus, the SP between any pair of nodes is assessed

solely on the number of nodes.

The SP matrix enables ranking the nodes on their importance in the graph. A given node is
considered more important the greater the number of nodes it can reach; this corresponds to
the sum of every row in the former matrix. In this work, such a sum is called accumulated
shortest path value (ASPV). This value can also be transferred to the links by assigning to each
link a value that is equal to the ASPV on its corresponding downstream node + 1. Note that 1 is
added in order to include the final node of every path, which always has 0 SPV. The greater the
ASPV on a given link, the greater its importance within the graph, and it should not be included
between sectors to maximize the reliability of the WSN. As the ASPV of some of the pipes
might be considerably greater than the ASPV in other pipes, it is rescaled by dividing the
corresponding value of each pipe by the greatest value among all the pipes. In this way, the
ASPV of the pipe connected to the main source would have a value equal to 1, and the pipes

connected to the extreme nodes should have values near 0.

It is important to note that if the ASPV is used alone, some pipes with a small diameter and
flow can be included among the TN if they are able to deliver water to the largest pipes.
Nevertheless, if the ASPV is used as a factor that multiplies the flow that is conducted through
each pipe, instead of an individual criterion, only pipes with large diameter and flow values are

included in the TN. We note such a multiplication by ASPV".



As a final outcome, a hierarchy of pipes is formed with the sources as roots. If there is more
than one source, the pipes connected to each source are expected to be more important in the

hierarchy depending upon the number of nodes that each is able to reach.

WSNs in most large cities are formed by blocks of looped networks connected to other blocks
and to a TN (using just a few pipes). The pipes of the TN are also expected to be less frequent
and to have the highest ASPV values, whereas the pipes of the DN are expected to be more
frequent, and to have lower ASPV’ (near 0 in the case of pipes that are connected to a node
that only receives water). Based on this idea, in this paper, we propose the use of analysis of
frequency to determine which lines are part of the TN and which are part of the DN. To do so,
a frequency table is constructed with a very large number of ASPV* breaks, in order to obtain
the smallest possible intervals. The relative frequency and percentage of cumulative frequency
are then calculated. When the relative frequency and the cumulative frequency are plotted in
a Pareto diagram it shows how there is a large percentage of pipes with low ASPV"
(approximately 80% of the pipes). It is also evident that among the pipes with less frequent
ASPV’ (the remaining 20%), there are noticeable changes in the tendency of their intervals.
These change points can be used as a segregation criterion and will produce several alternative
scopes of the TN, from which the technical staff of the water utility can select the most
convenient option. For example, the scope can be limited to the set of pipes that, if removed,
cause supply problems. In a more general way, the scope may include all the pipes with values

that are significantly less frequent.

The idea of marking, distinguishing, and/or decoupling the TN from the DN has been previously
proposed in works related to the sectorization of WSNs (e.g. Campbell et al., 2014b; Hajebi et
al., 2014; Diao et al., 2013; Di Nardo & Di Natale, 2011). Some of these studies have suggested

the use of parameters associated with the hydraulics of the network (flow, head loss,



diameters), or the use of a measure known as edge betweeness, which characterizes the
centrality of the pipes throughout the network. Using only the edge betweeness parameter
has as drawback: the pipes connected to the tanks would have lower values for this
parameter, making the process more complex. Using only flow as the criterion to distinguish
the TN from the DN may include among the TN several pipes that are delimited for a reduced
area (not so relevant for the hydraulics of the system), while the use of diameters may work
well on a logical design of WSNs. However, in several real situations, it is possible to find over-
dimensioned or sub-dimensioned pipes. Based on all this, the ASPV proposed here can be

considered a more robust and accurate parameter to distinguish the TN from the DN.

To exemplify the concept described above, it has been applied to a small section of the WSN of
Managua city, the capital of Nicaragua. As can be seen in part A of Figure 2, the interval values
change drastically in the area where the percentage of cumulative frequency does not vary too

much.

Figure 2: ASPV* frequency chart (Pareto diagram) and TN alternatives for the example network



Figure 2 (B-D) shows three alternative scopes of the TN. The first (B) includes all the pipes with
values of cumulative frequency below 85%. This corresponds to the less strict scenario. Case C
corresponds to the first change in the interval values. The removal of any pipe in this subset of
pipes would cut the water supply for at least a portion of the network. Finally, Case D
represents the second change of interval values, this being the stricter scenario. The removal

of any of the pipes in this subset would cut the water supply in the whole network.

Application of a community detection algorithm to find sectors in the distribution network

As mentioned above, the sectorization of WSNs depending on a TN must be approached in a
different manner than the sectorization of WSNs where the sectors are established around
individual water sources. In the first case, it is convenient to sectorize based on the topology of
the network, which, as described below, is related to the concept of community detection in

social networks.

Within graph theory, clustering techniques (or subdivision of sets of data into highly similar
groups separated by few connections) are of major interest. These techniques can be
subdivided into two subgroups: flat techniques (where the number of subdivisions is a priori
defined (k-means, clara, spectral clustering) and an unrelated set of clusters is produced) and
those techniques where there is no initial number of divisions, (producing a hierarchy of
related clusters— see Maning, 2008). The main difference between community detection and
clustering is that, while communities in graphs are related, explicitly or implicitly, to the
concept of edge density (number of edges inside a cluster or community versus the number of
edges that connect different communities), in data clustering, clusters are sets of
multidimensional vectors that are “close” to each other in distance or similarity (Fortunato,

2010; Newman, 2006a; Newman & Girvan, 2004).
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One of the most widely known algorithms to detect communities in graphs is known as
hierarchical clustering. This algorithm works based on the construction of clusters following a
hierarchical structure. It can be classified among the unsupervised machine learning methods,
and is widely used for classification and pattern recognition purposes. The idea behind this
method is to build pairwise groups that successively merge with other groups until all the
nodes of the graph are part of the same group (when a bottom-up strategy is followed); or
groups successively subdivide until all the clusters are formed by one cluster or singleton
(when a top-down strategy is followed). All merges or separations may be depicted through a
dendrogram, which is a diagram in an X-Y plan, where the X axis contains all the observations
or vectors, and the Y axis contains a scale that establishes a numerical value for each partition.
One of the advantages of this technique, with respect to other clustering techniques, is the
fact that it is not mandatory to initially set a number of groups on which the data must be
subdivided. In this sense, there are several indicators that can be used to determine the “best
partition”. The most widely known is the silhouette width index proposed by Rousseeuw

(1987).

Despite the advantage that represents the fact that it is not necessary to initially predefine a
number of clusters, the methods to find the most appropriate partitioning might not be suited
to all situations. Most recent community detection algorithms tackle this problem by setting
some quality partitioning indexes, the modularity index being the most broadly known

(Newman, 2006b).
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Sector definition by means of random walks

In the fields of mathematics and probability theory, random walks are defined as stochastic
processes where the position of a given particle at a certain instant relies solely on its position
at a previous instant and on a random variable, which determines its subsequent direction and
step length.

The Walktrap algorithm proposed by Pons & Lapaty (2005) is based on the idea that random
walks in a graph tend to get “trapped” into densely connected parts corresponding to
communities. If random walks of a given length are preformed over a graph, the information in
the P matrix® about the Pijk probabilities to go from node i to node j in k steps is sufficiently

long to gather enough information about the topology of the network.

In this algorithm, a distance measure among nodes and communities based on P is computed

(equationsl and 2, respectively).

r;(t) = Jzzzl(l’ikt — Py")?

d(k) (1)

r _ i (Pclkt—Pczkt)z
ez L dk) (2)

where d(k) denotes the degree of the k nodes

This distance is used to obtain the dissimilarity matrix of the entire graph. Based on the
pairwise comparison over this dissimilarity matrix, the first sector is built. To determine which
sectors to merge, the widely known Ward’s method (Ward, 1963) is then used. In this method,
the sum of square distances of each node in a given sector of the sector mean is established as

an objective function, which has to be minimized at each merging step.

2Probability matrix, transition matrix, substitution matrix or Markov matrix
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where P, is a k partitioning and r; corresponds to the distance describe above.

It is important to point out two aspects: firstly, this function depends only on each cluster and
its minimization does not require information about other sectors; secondly, the method
follows a greedy strategy; thus, each pair of adjacent sectors is merged and the variation Ao is

computed. The merging that induces the lowest Ag is selected as the new partition.

At each step, the algorithm forms a new partition that minimizes Ao, and so the final result is
not one single partition, but a sequence of partitions at different levels (the levels of the
dendrogram). According to Pons & Lapaty (2005), from this set of partitions, the one that is
best adjusted to requirements can be selected (for example length of the sectors). For this
purpose, the same authors propose a so-called increase ratio (1.), which calculates the
fraction that represents the Aoy, of a given partition regarding the previous partition Agy,_;
(equation 4). This is evaluated for all levels in the dendrogram. The level of the highest 1, is

defined as the partition that “best” gathers the community structure.

Aak

4

Aoy_4 @

The Walktrap algorithm has several advantages over other community detection algorithms,
the first being related to the distance measure described above, which is efficiently
computable and which can be used in a hierarchical partitioning algorithm. The community
structure can be computed in time O (imnH) where m is the number of edges, n is the number

of nodes, and H is the height of the dendrogram. In terms of comparison with other

13



community detection algorithms, the tests performed by Kesiban Orman et al. (2011) rank it as
the second best community detection algorithm, just after the Infomap algorithm (Rosvall &
Bergstrom, 2008). The results obtained by Savié et al. (2012) when comparing it with three
community detection algorithms — namely, Newman-Girvan (Newman & Girvan, 2004); label
propagation (Raghavan, 2007) and greedy modularity optimization (Clausetet al., 2004) — show

the advantages of the algorithm in terms of community quality and evolutionary stability.

To show the application of this algorithm, it is implemented over the example network shown
above. Firstly, the TN is segregated, leaving only the DN. For this example, the alternative C
from Figure 2 was selected as the scope of the TN. Part A of Figure 3 depicts the best partition

(19 communities).

It is important to note that the number of partitions in the resulting dendrogram can be
significantly large (equal to the number of nodes), and so a manual selection is not feasible. To

deal with this, a maximum threshold of pipe length per sector is defined.

Once the threshold is defined, a loop is applied to compare all the partitions, starting from the
best partition of the dendrogram and going either up or down, as necessary. The first partition
where the length of all the sectors is under the maximum threshold value is selected.
Partitions close to the best partition are stronger in terms of communitarian structure, this
being the reason why the first partition that satisfies the established subdivision criterion must

be selected.

In the previously described searching process, some small communities (communities that are
not worth setting as sectors) can be further merged with larger sectors. Taking this into

consideration, the maximum threshold can be slightly varied (lowered) so that, if a further

14



merger affects a large sector, the final pipe length does not violate the maximum length

constraint. For the above example, the maximal size constraint was set at 6 km.

The process of merging small communities is carried out through the following set of rules.

Given mif SN, € C; and EN,, € C; > m € CP
where m stands for pipe i; SN,,, stands for starting node of pipe m; EN,, stands for ending node of pipe

m; C stands for cluster; and CP stands for candidate pipe set.

A candidate pipe, as explained later, is a pipe that can be assigned as a boundary pipe between

two given sectors, or assigned as a sector entrance.

If a given sector is connected to another sector, and the length of one of those sectors is
smaller than the minimum size constraint, then the candidate pipes between those two
sectors are eliminated from the list of candidate pipes. Conversely, if a given community is
connected to another community with lengths greater than the minimum size restriction, the

corresponding intra sector pipes remain in the list of candidate pipes.

Given CP; if Size C; or Size C; = MSL — CP; ¢ CP

where MSL stands for minimum size length and CP;stand for candidate pipe i.

Once the sectors are defined in the DN, the next step implies the reincorporation of the TN.
When the TN is reincorporated, the pipes connecting the TN and the DN, have to be added to

the candidate pipe set:

Givenmif SN, or EN,, € C, and SN, or EN,, € C; - m; € CP

where C, represents the group of nodes of the TN.

15



There may be some sectors connected only to the TN (and not to other sectors) with size
length lower than the minimum size constraint and, thus, they are not worth being established
as sectors. Therefore, the pipes connecting those sectors to the TN are remowved from the set

of candidate pipes:

Givenmif SN,, or EN,, € C, and SN, or EN,,, € C; and size C; < MSL = m; & CP

Part B in Figure 3 shows the sectors detected in the DN. For this example, the minimum size
constraint was set to 1 km. In this case, four sectors (seven candidate pipes) were finally

defined.

A e Candidate pipes
Sector 3
219 km
LT Sector 1
| 1 1.04 km
e
e il
J Y4
Sector 4 i
234km | [+ A,
W7 .44 AT Sector 2
= o gy ;:’," i1 5.40 km
o (111,
L -

Figure 3: Sectors defined in the example WSN. A: community of the best partition. B: Sectors defined

Boundaries and entrances definition through multi-objective optimization

Once the list of candidate pipes is obtained, the next step corresponds to the selection of the
entrance of each sector. As explained above, the pressure drop caused by closing some pipes is

proportional to the number of those pipes. Nevertheless, when a candidate pipe remains
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open, a flowmeter must be positioned on it to control the flow. Setting more candidate pipes
as closed pipes than sector entrances is preferred for two reasons: firstly, the smaller the
number of entrances to each sector, the greater the accuracy in controlling inlet flow and
therefore, the greater the probability of detecting a new leak; on the other hand, the cost of
installing a flowmeter in economic and operative terms is expected to be higher than the cost

of installing a boundary valve (when it is necessary to install a new valve).

The problem is addressed as a multi-objective optimization problem with six objectives: the
minimization of the deviation (A I,.); of the resilience index ( I,- ) proposed by Todini
(2000);the minimization of the increase of operational power (a P,); reduction of leakage
flow (A L); the minimization of the variation (A op), of standard deviation of pressure ( op )
through the network; a penalty ( Pdef), for the nodes that are unable to meet a minimum
pressure target; and, finally, the minimization of the cost associated with the purchase of new
valves (C¢y,) and flow meters (Cr,y,). The first two objectives can be considered as energy
criteria, the next three as operative criteria, and the sixth objective as an economic criterion.
The optimization problem is solved using the ASO algorithm proposed by Montalvo et al.
(2014). Agent Swarm Optimization is a novel paradigm that exploits swarm intelligence and
borrows some ideas from multi-agent based systems. It is aimed at supporting decision-making
processes by solving multi-objective optimization problems. ASO offers robustness through a
framework where various population-based algorithms co-exist. In addition, agents are
endowed with sets of problem-dependent specific rules with two clear objectives, namely fine-
tuning the agent behavior to specialize in the optimization problem being tackled, while, at the
same time, reducing the search space, thus enabling decisions to be produced with increased

reliability and within a reasonable time frame.
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Each of the former functions was included as it was considered that they fairly represent the
most important aspects that need to be considered for the sectorization of a middling or large
WSN. However, as explained below, there are still some other important aspects that should
be taken into consideration.

The objectives may be formulated as follows:

Objetive 1: f(x) = Min (a I,)
Objetive 2: f(x) = Min (A P,)
Objetive 3: f(x) = Max (A L)
Objetive 4: f(x) = Min (A op)
Objetive 5: f(x) = Min ( Paey)

Objetive 6: f(x) = Min (C., + Cpy)

No constraint is defined, as the ASO algorithm works with penalties. A penalty cost is added to
objective 5 (nodes with pressure lower than 15 m), so the greater the number of nodes with
pressure below that value, the greater the cost of objective five. It was also assumed that
there were no preexisting valves so, any candidate pipe resulting closed in the optimization
process is associated with a symbolic cost (100 monetary units/closing valve), lower that the

cost associated with pipes that should remain open (1000 monetary units/flowmeter)*.

In the following sections the objectives are described.

Variation of the resilience index

The I.measures the capacity of a network to overcome pipe failures and still be able to satisfy

a minimum pressure restriction.

3 . . .
A symbolic cost was assumed as there was no information about real costs
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The total available power (P;,tq;) in the network can be calculated by adding the power

supplied by all tanks and pumps (equation 5):

Ptotal
Y X {[ZZ:1(Qt X Hy)] + [Z§=1(Qp X Hp)]} (5)
a 1000

where:
P.orqr- total available power(kW)

¥ specific weight of water(9800 N/mg)

Q,: exit flow from tank (mS/h)
H,: head of a tank (m)

Q,: flow of a pump (m3/h)

H,: head of a pump (m)

The power in the form of pressure that is provided to all nodes or nodal power (B,) can be
estimated adding the output of multiplying the total demand at each node and the total head

in the same node (equation 6),

7 X (T, Qi x H)

1000 (©)

P

where:
P,: nodal power (kW)

3
Q;: demand (consumption and leaks) at node i (m / h)
H;: head at node i(m)
The value of B, may be expressed in real terms, when a real head value is used in its
calculation. It may also be expressed in theoretical terms, when a required head value is used.

As shown in equation 7, the required head is calculated by adding the node elevation and the

required pressure value:
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?:1 Qi X (Ei + pirequired)]
1000

(7)

, Y X
Pnrequlred — [

where:
p,reawred . nodal power required to satisfy a pressure target (kW)

E;: elevation of node i (m)
Prequired .

) lower limit of pressure requirement at node i(m).

Considering that Py,t4; may be expressed as the sum of P, and the dissipated power
(operational power) due to friction, this may be calculated by subtracting P, from Pyytq;

(equation 8):

where:
P,: operational power (kW).

Depending on the value of P, used (real o required), in the evaluation of equation 8, its output

can be either real or required. Both are then used to evaluate the I,. (equation 9):

real
Fo

h=1- e ©
o

Finally, the values of L. in the original network and in the sectorized network are used to

calculate the A I, (%) proposed by Di Nardo et al. (2014) (equation 10):

I’
Al =\ 1= origmmal
r (10)
x 100

where:

1.': L. after sectorization
L.or9mal. 1 pefore sectorization
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Minimization of the variation of the operational power
A I. can be used to assess the suitability of a sectorization layout relative to a level of
reliability based on a pressure target. Nevertheless, a more general assessment can be carried

out by evaluating the A P, produced after the deployment of a given sectorization layout:

A Po _ Yy X [Ptotal — ?:1 le X Ifg(])o_ [Pt,otal — ?:1 sz X Hlx] (11)

where:
A P, variation of the operational power (kW)

Q?: demand (consumption and leaks) at node i before sectorization (m3/ h)
H?: head at node i before sectorization (m)
Q;*: demand (consumption and leaks) at a node i after sectorization (mg/h)

H{: head at a node i after sectorization (m)
P/,+; total available power after sectorization (kW)

Reduction of leakage flow
Leaks in WSNs are pressure driven and their behavior in EPANET can be modeled by three
parameters (leakage exponent, emitter coefficient, and pressure) as can be seen in equation

12 (Rossman, 2000):

n
L =ZCL*P{V1 (12)
i=1

where:
L: leakage flow (m3/ h)

m
C,: leakage coefficient h

3
mo-5

P;: pressure in node i (m)
N1: pressure exponent (between 0.5 and 1.5)°

The variation of L as a consequence of the sectorization can be estimated with equation 13.

*In this paper a 0.5 value is assumed
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AL = Loriginal — (13)

. . 3
Loriginal. I pefore sectorization(m / h)

L': L after sectorization (ms/ h)'

Variation of the standard deviation of pressure

Pressure uniformity in WSNs plays an important role in the reduction of h;. More pressure-
uniform WSNs are expected to be more efficient in energy terms. Moreover, as can be logically
devised, it also has social implications, as it guarantees customer satisfaction. For this reason,
it is considered as an individual objective in this work. The way to consider it in the

optimization process is by means of the gp(equation 14).

(14)
where:
P : average pressure of all the nodes of the WSN (m)
Then, A op is calculated with equation 15.
Aop = O.Poriginal _ O.P’ (15)

where:

0p°Ti9nal: 5, before sectorization

op': ap after sectorization

Deficit of pressure

A penalty is defined to lead the solution search process. The penalty is calculated as the sum of
the differences between the real pressure and the target pressure in the subset of nodes that

are unable to satisfy the minimum pressure requirement, multiplied by a penalty cost value.
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n
Pay = Bx Y I(P™" =P (19)
i=1

where:

P. : penalty cost (monetary units/m)°
Poin - minimun pressure target (m)
P; : pressure in node i (m)

In the equation above, n represents the number of nodes where the pressure constraint is not

satisfied.
Economic criteria

As described in the introduction, when performing sectorizations, water utilities require some
investment for the purchase and installation of boundary valves (if the existing valves are in
poor condition or there are no valves) and flowmeters. Normally, valves are cheaper than
flowmeters. In some countries (especially developing countries), they are completely buried,
with a small empty cylinder giving access. Conversely, flowmeters are more expensive and
must be located in special chambers. Such chambers need enough room to install the
flowmeter as well as a bypass, pressure gauge, and at least three control valves (two for
flowmeter maintenance and one for the bypass). The chambers also require enough room for
a person to be able to perform maintenance. In a real situation, the construction of a
flowmeter chamber disturbs normal city life as it interrupts traffic, especially when chambers
have to be located over the TN pipes. This type of impact can be considered as an externality
and is not normally taken into consideration. As this methodology isolates the TN from the DN,

the impact described above is significantly reduced.

A symbolic value of 0.8 monetary units/m was assumed
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Limitation of the optimization model

It is very important to stress that although this optimization scheme may work to conveniently
address the problem of sectorization, the results cannot be considered as completely
optimized. A reduction of the network pressure not only reduces the background leakage flow,
but also the frequency of new pipe breaks and bursts (Pearson et al., 2005; Fantozzi &
Lambert, 2007). This is very important, as a 28-80% reduction in break-bursts can be translated
into a reduction of annual repair costs that is usually far greater than the value of the water
saved (Thorton & Lambert, 2006). A pressure reduction is also expected to have an effect on
domestic consumption (Lambert &Thorton, 2005).Therefore, such effects need to be

considered among the optimization functions.

It is also very important to note that the optimal point of leakage reduction varies according
the cost of water production and transportation; therefore, this point must be considered as a

restriction of the optimization model.

Based on these two aspects, a more complete optimization model must initially define the
economic level of leakage reduction, and based on that level, estimate the required pressure
reduction and the set of feasible alternative sectorization layouts. We are currently working on

this new model.

Results of the optimization process in the example network

Figure 4 shows the resulting assignation of flowmeters and boundary valves in the example
network. Part A-B depicts the found feasible solutions 1 and 2, respectively. Part C displays a

comparison between the values obtained for the two feasible solutions with the values in the
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original network (network with all the pipes open). Solution 1 is better in terms of flow control,

as it only requires one flowmeter for the larger sector, and also implies a larger reduction in

leakage flow. However, it also implies a greater negative impact on network reliability (30.68 %

of resilience index variation whereas feasible solution 2 has only 0.65 % for the same

parameter), a greater increase in the operational power, and a few nodes with pressure below

14 m (but above 6 m). Therefore, at this point the technical staff of the network must decide

which configuration is most appropriate. It is important to highlight that pressure values below

14 m are only reported for one period of time (the worst scenario).

Original network

Feasible Solution 1

Feasible solution 2

Parameters Values Functions Values Values
O 0.48 a1.(%) 30.68 (current value : 0.30) 0.65 (current value : 0.47)
PR U{W] 20524.9{1__‘ AP (k_W) 2210.97 lcurrerjl_t__\_q_a_lyg; g_g_?as.oz} 86.73 (current value: 29__&1_0.??} |
L (*"jfh) 57.1 al ("’jfh} 7.20 (current value: 49.90) 0.3 (current value: 56.80)
o, (m) 6.98 aag,(m) 3.30 (current value: 10.28) 0.029 (current value: 6.95) |
Py (monetary units) | 0.00 | Py.r(monetary units) | 259.59 0.00 i
Ney 0 Ngy 2 2
Ney 0 Ney 5 5 '

Implementation in a larger water supply network

To test the whole methodology in a larger network, it was applied over a large section of the

WSN of Managua City. This new network has 1374 nodes and 1325 pipes. It is supplied by one

main pipe that receives water from a series of pumps and a lake. Since these sources are far

from the studied network, they are represented by one reservoir. Figure 5 shows the TN

definition and the division of the network into eight sectors, all between 3 and 30 km of pipe

length. In total, 21 pipes were included in the candidate pipe set. The table in the same figure
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shows the value of the objectives in the original network and in the solutions found by the
optimization process. In this case, four feasible solutions were found. Three solutions imply the
installation of six boundary valves (not the same in each case) and one solution implies the
installation of ten boundary valves. The last example is the only case with pressure values
below 14m, lowering the minimal pressure value from 15.6m in the original network, to 7.19m
in a two nodes (out of 1374 nodes in the whole network). However, this solution also implies

the greatest reduction in leakage flow, 15.58m3 /h.

1= Sector 5

— Trunk network
Sector limits

Sector 6

Sector 1

Sector 8 |1

= 'I'H{_"{.‘ 4!
Original network Solution 1 solution 2 Solution 3 Solution 4

Parameters Values Functions Values Values values values
I 0.55 a 1.(%) 12.53 14.93 12.52 40.34
Py (kW) 24788.61 & Py(kW) 171.58 161.77 170.76 329.88

m? .4 m* . 4. . ;
,-,( ’,f_h) 166 AL ( ;h) 3.83 92 3.83 15.58

_G0n | 54 | CAnE) | 0 i 051 419

_Pdd-(mnnetary units) 0 Pypp(monetary units) 0 0 0 13.45

Nev 0 Ney 6 6 6 10

New 0 New 15 15 15 11

Figure 5: Subdivision of the larger WSN example
CONCLUSIONS

This paper tackles the problem of WSN sectorization depending on a TN by using a novel
methodology based on the concepts of SP derived from graph theory and the Walktrap
community detection algorithm derived from social network theory, and a multi-objective
optimization process using ASO. The methodology provides at different steps, feasible

solutions, from where the technical staff of the water utilities may select the most convenient
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solution. To address the definition of the TN in a WSN (where is not yet defined) a hierarchy of
pipes, according to their importance for the supply, is established based on the ASPV*
coefficient proposed here. This criterion is more robust than the use of a single characteristic
of the pipes because it considers the flow magnitude and the direction of each pipe in the
most critical scenario. Such a hierarchy of pipes also enables the water utilities to define the
scope of the TN based on the characteristics of each context. Once the TN is defined, it is
detached from the DN, in order not to include it among the sectorization, thus, ensuring the

reliability of the WSN.

The Walktrap algorithm creates a structural hierarchy of communities in the DN, from where a
partition can be selected out of a set of obtained partitions, depending on the given context.
The advantage behind the use of a community detection algorithm is related to the fact that it
reveals the community structure that is expected to be found in real WSNs, which is normally
formed by blocks of looped subnetworks separated from other blocks by a few links. It also
guarantees homogeneity throughout the sectors, since it is expected that each block is also
formed by similar nodes. Finally, when sectors are defined, the TN is reincorporated and a set
of candidate pipes is established. This set is formed by the pipes that separate sectors, and
those that separate sectors from the TN. From this set, the pipes that are established as
entrances to each sector are defined. This definition is carried out by means of a multi-
objective optimization process performed with ASO. In this process, reliability, operative, and
economic criteria are optimized. Once again, the process does not provide a single solution,
but a set of feasible solutions, from where the staff of the water utility can select the most

convenient solution.

Despite the good results obtained by the application of the proposed process, the results

cannot be considered completely optimized, as some aspects are still unconsidered. The first
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two are the effect of the pressure reduction over the frequency of new pipe break-bursts and
over a reduction of domestic consumption. The third aspect is the economic level of leak

reductions, which must be evaluated before any exploration of sectorization layouts.

This analysis is carried out in the most critical scenario in order to give a high level of
importance to the reliability of the network. Therefore, once a specific sectorization layout (or

a few options) is selected it is necessary to perform extended period simulations.
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