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Abstract

Methods for the polynomial eigenvalue problem sometimes need to be followed by an it-
erative refinement process to improve the accuracy of the computed solutions. This can be
accomplished by means of a Newton iteration tailored to matrix polynomials. The computa-
tional cost of this step is usually higher than the cost of computing the initial approximations,
due to the need of solving multiple linear systems of equations with a bordered coefficient ma-
trix. An effective parallelization is thus important, and we propose different approaches for the
message-passing scenario. Some schemes use a subcommunicator strategy in order to improve
the scalability whenever direct linear solvers are used. We show performance results for the
various alternatives implemented in the context of SLEPc, the Scalable Library for Eigenvalue
Problem Computations.

1 Introduction

We are interested in the accurate computation of a few eigenpairs (x, λ) of the polynomial eigenvalue
problem, defined as

P (λ)x = 0, x 6= 0, (1)

where λ ∈ C is the eigenvalue, x ∈ Cn is the eigenvector, and P (·) is an n × n matrix polynomial
of degree d. This problem appears in many practical applications, for instance when discretizing a
second (or higher) order partial differential equation, and also as an intermediate tool for solving
general nonlinear eigenproblems, e.g., via interpolation. Many of the examples described in the
NLEVP collection [5] are polynomial eigenproblems. Throughout the paper we will assume that
the matrix polynomial is regular, that is, detP (λ) is not identically zero.

Instead of the usual monomial form, in this paper we express the matrix polynomial in terms
of a more general polynomial basis,

P (λ) = Φ0(λ)A0 + · · ·+ Φd(λ)Ad, (2)

∗This work was partially supported by the Spanish Ministry of Economy and Competitiveness under grant
TIN2013-41049-P. Carmen Campos was supported by the Spanish Ministry of Education, Culture and Sport through
an FPU grant with reference AP2012-0608. The computational experiments of section 5 were carried out on the
supercomputer Tirant at Universitat de València.
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where {Φj(λ)}∞j=0 is a sequence of real polynomials with Φj(λ) of degree j satisfying a 3-term
recurrence

λΦj(λ) = αj Φj+1(λ) + βj Φj(λ) + γj Φj−1(λ), for j = 1, 2, . . . (3)

where Φ−1 ≡ 0, Φ0 ≡ 1, and for j = 0, 1, . . . , αj , βj and γj are real, αj > 0 and αj =
cj

cj+1
, with cj

being the leading coefficient of Φj(λ) [2, 7]. These include Chebyshev polynomials among others.
This approach may be more reliable numerically than the monomial basis in the case of high degree
polynomials, especially when the eigenvalues are located on (or close to) an interval of the real axis.

We focus on the particular case of large-scale problems, where the polynomial coefficients Ai are
sparse matrices, and only a few eigensolutions are required. The most common approach for this
scenario is to apply a projection method on a certain linearization of the matrix polynomial: first,
build matrices L0 and L1 of order dn such that the eigenvalues of the pencil L0−λL1 coincide with
those of (1), then get approximate solutions by projecting this linear problem onto a subspace built,
e.g., with a Krylov iteration. Krylov methods for the linearized eigenproblem have been addressed
in, e.g., [18]. It is possible to formulate variants of well-known Krylov methods that are able to
exploit the structure of L0 and L1 from the linearization, resulting in very efficient algorithms in
terms of memory as well as computational cost [7].

For problems of large dimension, parallel computing is required. We have implemented solvers
based on Krylov iterations on the linearization, as sketched above, where the problem matrices
Ai as well as the associated vectors are distributed across available processes and message-passing
(with MPI) is employed to coordinate the required computations. Our solvers, that are described
in detail in [7], have been implemented in SLEPc, the Scalable Library for Eigenvalue Problem
Computations [10, 15], which is an extension of PETSc (Portable, Extensible Toolkit for Scientific
Computation [3]). In the context of this kind of computations, it is often necessary to perform linear
system solves, and this can be done with iterative methods provided by PETSc or, alternatively,
with direct methods from a third-party solver such as MUMPS [1].

The overall solution process based on linearizing the polynomial is not guaranteed to be back-
ward stable, even if a backward stable method is employed for the linear eigenproblem [12]. Hence,
robust polynomial eigensolvers such as those included in SLEPc must provide an effective way of
improving the accuracy of the computed solution. This is done with iterative refinement, where the
computed solution is fed as the starting guess for one (or more) Newton iteration. We remark that
scaling the coefficient matrices can sometimes improve the conditioning of the linearized eigenprob-
lem, hence improving accuracy, but it is not effective in some problems with degree larger than 2.
In our codes, users can choose to perform scaling as described in [4] (see implementation details in
[7]), but we do not consider it in this paper since operation of the refinement algorithm is the same
regardless of whether the matrices have been scaled or not.

Iterative refinement for the linear eigenvalue problem has been addressed by Tisseur [17]. For
the polynomial eigenproblem, iterative refinement can be formulated in terms of a single eigenpair
(x, λ) or, more generally, in terms of invariant pairs (X,H). Invariant pairs [14] are a generalization
of invariant subspaces for nonlinear eigenvalue problems, and they will be defined in §2 for matrix
polynomials. Kressner [14] formulates a Newton iteration that operates on invariant pairs, aiming
at refining solutions of nonlinear eigenvalue problems. This method was later particularized to the
case of polynomial eigenproblems [6].

In this paper, we provide all the details regarding the implementation of Newton iterative
refinement for polynomial eigenproblems in SLEPc, as a way to complement the description of
the solvers in [7]. Our implementation is based on [14] and is therefore more general than [6],
since we do not restrict ourselves to polynomials expressed in the monomial basis and formulate
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the methods assuming polynomial bases of the form (3). We focus particularly on the aspects of
parallel computing, since the Newton step can be very costly as it usually involves many linear
system solves. We propose several alternatives to organize this computation, and analyze how all
these solutions scale when the number of processes increase. For this, it will sometimes be useful to
organize the participating processes in several subcommunicators, especially if direct linear solvers
are to be used.

The rest of the paper is organized as follows. Section 2 provides the formal definition of invariant
pair and summarizes the essentials of Krylov methods available in SLEPc to solve (1). Section 3
describes the Newton method for polynomial eigenproblems [6], adapting it to the non-monomial
form of the polynomial, (2). Section 4 gives a description of the different variants proposed to solve
the linear systems, together with details of the parallel implementation. Computational results are
provided in §5. Finally, we wrap up with some concluding remarks.

2 Computing invariant pairs

When solving a linear eigenvalue problem, it is known that computing invariant subspaces instead
of several eigenvectors may have better numerical behaviour, e.g., when the matrix of computed
eigenvectors has a large condition number. This is also the case when computing a few eigenpairs
associated with a polynomial eigenproblem (1), although in this latter case, as explained in [6, 14],
the concept of invariant subspace should be substituted with the concept of invariant pair.

Definition 1. Given (X,H) ∈ Cn×k ×Ck×k, it is said to be an invariant pair for a regular matrix
polynomial defined as in (2) if

P(X,H) := A0X Φ0(H) +A1X Φ1(H) + · · ·+AdX Φd(H) = 0, (4)

where Φi(H) stands for the matrix function defined by the polynomial Φi, see [11].

For linear eigenproblems, eigenvalues of the H matrix from an invariant pair, (X,H), are also
eigenvalues of the linear eigenproblem provided that X has full column rank. For nonlinear eigen-
problems, this assumption has to be replaced by minimality [14, lemma 4]. In the case of matrix
polynomials expressed in the form (2), we will use a similar concept to guarantee that eigenvalues
of H are indeed eigenvalues for the eigenproblem (1).

2.1 Linearization

We focus on methods that approximate the solution of a polynomial eigenproblem of dimension
n and degree d via linearization. In these methods the involved vectors have length dn. We will
consider that vectors v ∈ Cdn and tall-skinny matrices V ∈ Cdn×k are divided in d blocks of n rows,

v =

 v0

...
vd−1

 , V =

 V 0

...
V d−1

 , (5)

where vi ∈ Cn and V i ∈ Cn×k for i = 0, . . . , d − 1. Throughout the text, we will use superindices
to denote each of the blocks of the split form (5).
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We will suppose that polynomial eigensolvers used for (1) are based on the following linearization
(details can be found in [7]):

L(λ) = L0 − λL1, (6)

L0 =



β0I α0I
γ1I β1I α1I

. . .
. . .

. . .

. . .
. . .

. . .

γd−2I βd−2I αd−2I

Ã0 Ã1 Ã2 · · · Ãd−3 Ãd−2 Ãd−1


, L1 =


I

. . .

I
cdAd

 ,

with Ãj = −cd−1Aj (j = 0, . . . , d− 3), Ãd−2 = −cd−1Ad−2 + cdγd−1Ad and Ãd−1 = −cd−1Ad−1 +
cdβd−1Ad. This is a strong linearization and therefore L(λ)z = 0 and (1) share the same eigen-
values with the same algebraic and geometric multiplicities (details in [2] and references therein).
Furthermore, the eigenvector z has the structure

z =


x

Φ1(λ)x
...

Φd−1(λ)x

 , (7)

with x being the corresponding eigenvector of the polynomial eigenproblem (1). Proposition 1
shows that it is possible to extend this expression to invariant pairs.

Proposition 1. Let (Z,H) be an invariant pair of the linearized problem (6) in which Z has full
rank, then the following holds:

1. Z = Vd(Z0, H), where Vm(X,H) is defined for m ∈ N, X ∈ Cn×k and H ∈ Ck×k as

Vm(X,H) :=


X

X Φ1(H)
...

X Φm−1(H)

 . (8)

2. (Z0, H) is an invariant pair of the polynomial eigenproblem (1) satisfying that each eigenvalue
of H is also an eigenvalue of (1).

Proof. Since (Z,H) is an invariant pair for the linearization, we have that L0Z −L1ZH = 0 for L0

and L1 given in (6). By equating the first d− 1 block rows of this equation, we obtain{
Z1 = α−1

0 (Z0H − β0Z
0),

Zi = α−1
i−1(Zi−1H − βi−1Z

i−1 − γi−1Z
i−2), i = 2, . . . , d− 1.

(9)

These equations allow us to prove easily by induction that

Zi = Z0 Φi(H), i = 0, 1, . . . , d− 1. (10)
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To prove the second statement, we equate the last block row of the equation L0Z−L1ZH = 0, and
we obtain that

0 = −cd−1

d−1∑
i=0

AiV
i + cdγd−1AdV

d−2 + cdβd−1AdV
d−1 − cdAdV

d−1H =

= −cd−1

d−1∑
i=0

AiV
0 Φi(H)− cdAdV

0(Φd−1(H)H − βd−1 Φd−1(H)− γd−1 Φd−2(H)) =

= −cd−1

d−1∑
i=0

AiV
0 Φi(H)− cdαd−1AdV

0 Φd(H) = −cd−1

d∑
i=0

AiV
0 Φi(H),

from where we conclude that (V 0, H) is an invariant pair of (1). On the other hand, for an eigenpair
of H, (y, λ), we have that (Zy, λ) is an eigenpair of the linearized problem (Z has full rank), so it
has form (7) and we conclude that there exists some x eigenvector of (1) associated with λ.

Proposition 1 states that it is always possible to extract an invariant pair of the polynomial
eigenvalue problem (1) from one for the linearized problem, by taking the first block Z0. Other
extraction alternatives that make use of other blocks Zi have been proposed in [6] for polynomial
eigenproblems defined in terms of the monomial basis, and their counterparts for non-monomial
bases are implemented in SLEPc.

The converse of Proposition 1 is also true:

Proposition 2. Let (X,H) be an invariant pair of the polynomial eigenproblem (1), then Z :=
Vd(X,H) is an invariant pair for the linearized problem (6).

Proof. The proof is a simple verification of the equality L0Z = L1ZH. As in Proposition 1, the
first d−1 row blocks of this equality are checked using the recurrence (3), and the last one using
the condition of (X,H) satisfying (4).

Remark. As a consequence of Propositions 1 and 2 we have that, for an invariant pair of (1), (X,H),
such that Vd(X,H) has full column rank, every eigenvalue of H is also an eigenvalue of (1). In this
case, taking as reference the definition given in [6], we say that (X,H) is a minimal invariant pair
of (1).

A property needed to ensure convergence in the Newton process described in §3 is the concept of
simple invariant pair. A minimal invariant pair of (1) is said to be simple if the algebraic multiplicity
of each eigenvalue of H matches the algebraic multiplicity of these same eigenvalues in (1) (that is,
the multiplicity as a root of the characteristic polynomial detP (λ)). Since the linearization (6) is a
strong linearization for (1), if the computed invariant pair for the linearized eigenproblem is simple,
then the corresponding invariant pair for the polynomial eigenproblem (1) will also be simple.

2.2 Krylov methods for the linearized polynomial eigenproblem

The Newton process described in §3 starts from an approximate simple invariant pair for the
polynomial eigenproblem, and it improves its accuracy iteratively. In this section, we briefly review
the methods we use to compute the initial approximate invariant pair. These methods are described
in [7], and all of them are based on solving the linearized problem (6) using the Krylov-Schur method
and extracting a minimal invariant pair for (1) from the one computed for (6).
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Krylov-Schur [16] is an implicitly restarted variant of the Arnoldi method. Starting from an
initial vector v ∈ Cn, Arnoldi generates an orthogonal basis {v1, . . . , vk+1} of the Krylov subspace
Kk+1(M,v) := span{v,Mv, . . . ,Mkv}, and the projected matrix Hk = V ∗k MVk verifying,

MVk = VkHk + βkvk+1e
∗
k, (11)

where βk ∈ R, M = L−1
1 L0 (or M = (L0 − σL1)−1L1 if a shift-and-invert transformation is used),

Vk := [v1, . . . , vk], and e∗k = [0, 0, . . . , 0, 1].
When, for a particular value of k, the norm of the residual MVk − VkHk = βkvk+1e

∗
k is small

enough, the Krylov-Schur process is considered to be converged and then (Vk, Hk) is an approximate
minimal invariant pair for (6) in which the columns of Vk are orthonormal.

The main two variants of the SLEPc polynomial solvers described in [7] differ in the way that the
vj vectors are stored. These variants are, on one hand, Plain Arnoldi that stores full-sized Arnoldi
vectors of dimension dn, and, on the other hand, the TOAR variant that generates an orthonormal
set, Uk+d ∈ Cn×(k+d) and matrices {Gi

k+1}
d−1
i=0 ⊂ C(k+d)×(k+1), from which it reconstructs each

block of the Krylov basis Vk+1 as

V i
k+1 = Uk+dG

i
k+1, i = 0, . . . , d− 1. (12)

In a more compact form, the Krylov vectors are expressed as

Vk+1 = (Id ⊗ Uk+d)Gk+1. (13)

We are interested in showing this notation here because it will be referenced later. Other details of
the methods can be found in [7].

3 Newton refinement for invariant pairs

In this section, we explain in detail how the iterative refinement of invariant pairs is carried out in
SLEPc’s Krylov-based polynomial eigensolvers. We use the Newton iteration for nonlinear eigen-
problems described in [14] assuming that the functions fi defining the nonlinear eigenproblem
(f0(λ)A0 + · · · + fd(λ)Ad)x = 0 are the polynomials Φi that define the polynomial eigenproblem
(1). When it is possible, we simplify some of the associated computations giving expressions similar
to those in [6].

Computing a minimal invariant pair of (1) is equivalent to obtaining (X,H) ∈ Cn×k × Ck×k

such that

P(X,H) = 0, and (14a)

V(X,H) := W ∗Vd(X,H)− Ik = 0, (14b)

for some matrix W ∈ Cdn×k with full column rank, and P defined in (4).
Applying results in Kressner [14] we obtain that once an approximation (X̃, H̃) of a simple

invariant pair (X,H) of (1) has been computed, it can be used as the starting guess for the Newton
method applied to the system of nonlinear equations (14), obtaining in this way a refined solution of
(1) closer to (X,H). Provided that the initial approximation (X̃, H̃) is sufficiently close to (X,H),
this method generates a sequence of iterates, {(Xi, Hi)}i∈N that converges quadratically to (X,H).
These iterates are given by

(Xi+1, Hi+1) = (Xi, Hi)− (L(Xi, Hi))
−1(P(Xi, Hi),V(Xi, Hi)), (15)
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where L(X,H) := (DP(X,H),DV(X,H)) being DP(X,H) and DV(X,H) the Fréchet derivatives,
in (X,H), of P and V, respectively. The (local) quadratic convergence of the Newton method is
a consequence of [14, Theorem 10] which proves that the linear operator L(X,H) is invertible for
simple invariant pairs.

Algorithm 1 Newton method for refining invariant pairs

Input: Initial pair (X0, H0) ∈ Cn×k × Ck×k such that Vd(X0, H0)∗Vd(X0, H0) = Ik
Output: Approximate solution (Xi+1, Hi+1) to (14)

1: W ← Vd(X0, H0)
2: for i = 0, 1, . . . ,maxit do
3: Compute residual R← P(Xi, Hi)
4: Compute (∆X,∆H) such that L(Xi, Hi)(∆X,∆H) = (R, 0)
5: X̃i+1 ← Xi −∆X, H̃i+1 ← Hi −∆H
6: Compute compact QR decomposition Vd(X̃i+1, H̃i+1) = WT
7: Xi+1 ← X̃i+1T

−1, Hi+1 ← TH̃i+1T
−1

8: Check convergence, exit if satisfied
9: end for

Algorithm 1 shows the procedure described in [14] to iteratively compute an invariant pair of
(1), starting from an approximate simple invariant pair. This algorithm works with orthonormal
Vd(Xi, Hi) and takes W := Vd(Xi, Hi) so that V(Xi, Hi) = 0 at each iteration. For this, it computes
a compact QR decomposition of Vd(X̃i+1, H̃i+1) and updates the approximate solution (X̃i+1, H̃i+1)
accordingly. Note that for doing this it is not necessary to explicitly compute the QR factorization
of Vd(Xi, Hi) of size (dn × k). The matrix T can be computed in a cheaper way if we decompose
Xi = UGi being U ∈ Cn×k with orthonormal columns and Gi ∈ Ck×k. In this case we have that

Vd(Xi, Hi) = (Id ⊗ U)Vd(Gi, Hi) for Vd(Gi, Hi) :=

[
Gi Φ0(Hi)

...
Gi Φd−1(Hi)

]
and T can be obtained from the

QR factorization of Vd(Gi, Hi) = ŨT .
The most expensive step in Algorithm 1 (step 4) involves the solution of a system of linear

matrix equations {
DP(Xi, Hi)(∆X,∆H) = P(Xi, Hi)

DV(Xi, Hi)(∆X,∆H) = 0.
(16)

More explicitly, for P defined in (4), the system to solve at each refinement iteration is
P(∆X,Hi) +

d∑
j=0

AjXi D Φj(Hi)(∆H) = P(Xi, Hi)

(W 0)∗∆X +

d−1∑
j=1

(W j)∗ (∆X Φj(Hi) +Xi D Φj(Hi)(∆H)) = 0,

(17)

where, for j > 0, D Φj(Hi) represents the Fréchet derivative of Φj in Hi, which can be obtained
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recursively from (3) as:

D Φj(Hi)(∆H) =


0, j = 0

α−1
0 ∆H, j = 1

α−1
j−1

(
D Φj−1(Hi)(∆H)(Hi − βj−1I) + Φj−1(Hi)∆H−
− γj−1 D Φj−2(Hi)(∆H)

)
, j > 1.

(18)

To solve (17), we use the forward substitution technique described in [14, 6]. It requires matrix
Hi being triangular, which is always possible by computing the complex Schur form of Hi and
updating Xi properly. In this case, the columns of ∆X and ∆H are successively computed as
solutions of k linear systems of dimension n+k, updating the equation right-hand side at each step.
For example, post-multiplying (17) by e1 produces the linear system

P (h11)∆x1 +

d∑
j=0

AjXi D Φj(Hi)(∆H)e1 = r1

(W 0)∗∆x1 +

d−1∑
j=1

(W j)∗
(
∆x1 [Φj(Hi)]11 +Xi D Φj(Hi)(∆H)e1

)
= f1,

(19)

where ∆x1 and ∆h1 are the first columns of ∆X and ∆H, respectively, h11 and [Φj(Hi)]11 denote
the (1, 1) element of Hi and Φj(Hi) (both of them upper triangular matrices), r1 is the first column
of the residual P(Xi, Hi), and f1 = 0. Defining {D Φj(Hi)}11, for j = 1, . . . , as the triangular
matrix verifying

D Φj(Hi)(C)e1 = {D Φj(Hi)}11 Ce1, ∀C ∈ Ck×k, (20)

results in a linear system from where it is possible to obtain the first columns of ∆X and ∆H,[
P (h11)

∑d
j=0AjXi {D Φj(Hi)}11∑d−1

j=0 Φj(h11)(W j)∗
∑d−1

j=1(W j)∗Xi {D Φj(Hi)}11

] [
∆x1

∆h1

]
=

[
r1

f1

]
. (21)

Matrices (20) can be obtained recursively from (18):

{D Φ0(Hi)}11 = 0, {D Φ1(Hi)}11 = α−1
0 Ik, (22)

{D Φj+1(Hi)}11 = α−1
j

(
(h11 − βj) {D Φj(Hi)}11 + Φj(Hi)− γj {D Φj−1(Hi)}11

)
, j > 0.

After computing ∆x1 and ∆h1 the right-hand side of (17) is updated before proceeding with the
second column of ∆Xi and ∆Hi. To compute the successive columns ∆xp and ∆hp, p = 2, . . . , k,
we form the corresponding systems analog to (21) by substituting h11 by hpp (also in (22)), and
replacing the right-hand side

[ r1
f1

]
by the one computed applying consecutive updates according to

rp = P(Xi, Hi)ep −
p−1∑
q=1

 d∑
j=0

Aj

(
∆xq [Φj(Hi)]qp +Xi [D Φj(Hi)(Zq)]p

) , (23)

fp = −
p−1∑
q=1

d−1∑
j=1

(W j)∗
(

∆xq [Φj(Hi)]qp +Xi [D Φj(Hi)(Zq)]p

) ,

8



A

P0

P1

P2

B CT D

Figure 1: Parallel distribution of matrices and vectors.

where [Φj(Hi)]qp denotes the (q, p) element of Φj(Hi), and [D Φj(Hi)(Zq)]p the pth column of

D Φj(Hi)(Zq), being Zq := ∆xqe
T
q .

In the case of having a simple eigenpair, (xi, λi), of (1), it can also be seen as a simple invariant
pair of size k = 1 (clearly Vd(xi, λi) has full column rank). That motivates two refining variants
when computing a set of q eigenpairs which are included in our solver. The first one is the multiple
variant, which refines the invariant pair of dimension k = q, yielding an invariant pair of the same
dimension. On the other hand, the simple variant, which refines each computed simple eigenpair
individually by solving q systems in the form (21) with dimension k = 1. Both options require the
solution of bordered linear systems in which the leading block of order n is a nearly singular matrix.
Aiming to minimize the time required by the solution of these systems, in this work we evaluate
several forms to carry out these solves.

4 Solving the correction equation

In this section, we describe several methods that we have considered for the linear systems arising
in the forward substitution method used to solve the correction equation (17), explained in §3. We
will also discuss several alternatives relative to their parallel implementation.

The linear systems to be solved, (21), have the form[
A B
C D

] [
x1

x2

]
=

[
y1

y2

]
, (24)

where the coefficient matrix is a bordered matrix with blocks A ∈ Cn×n, B ∈ Cn×k, C ∈ Ck×n

and D ∈ Ck×k, with k � n. The leading block A is nearly singular. The parallel distribution
of these four submatrices is depicted in Fig. 1. We store D as a sequential matrix (every process
owns a copy), and B,C are stored as an array of k parallel vectors. In PETSc, parallel vectors
are distributed by blocks, with each process owning a contiguous range of indices. Regarding the
sparse block A, it is stored as a standard PETSc matrix, with every process owning a contiguous
range of rows.

The first alternative, that will be referred to as the explicit matrix approach, corresponds to
explicitly building the whole matrix involved in (21) as a PETSc matrix. This allows using any
of the PETSc linear solvers and preconditioners, including direct solvers, which may be seen as an
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P0

P1

P2

Figure 2: Illustration of the parallel distribution of the matrix created in the explicit matrix ap-
proach before (left) and after (right) applying the symmetric permutation.

advantage. However, this approach presents several drawbacks. On one hand, the coefficient matrix
of the linear system to be solved is not very sparse, compared to the sparsity of P (·), since it has
been bordered with dense stripes. This affects the fill-in that is produced in the factorization when
a direct method is used, and it also has an impact on the performance of parallel matrix-vector
multiplication since processors owning any of the fully populated rows require the whole distributed
vector to carry out its computational part in this operation. On the other hand, when the created
matrix is distributed by blocks of consecutive rows across the involved processes (as mentioned
above) then it will produce load imbalance that can seriously penalize the overall performance.

Aiming to reduce the load imbalance in this first approach, an appropriate symmetric permu-
tation of the matrix is distributed among the processes. The permutation is chosen in such a way
that the fully populated rows are evenly distributed across the available processes, by placing them
right after the local rows of the leading block A assigned to them. Fig. 2 shows the matrix before
and after applying the permutation. With this approach, all involved vectors are subject to the
same permutation.

The second option we have evaluated uses the Schur complement of the trailing diagonal
block D in (24),

S := A−BD−1C, (25)

to compute x1 and x2 from

Sx1 = y1 −BD−1y2, (26)

x2 = D−1(y2 − Cx1). (27)

Note that a similar scheme using the Schur complement of the leading diagonal block A in (24) is
not appropriate since it implies linear solves with the nearly singular matrix A.

The matrix S (25) is dense so it should not be explicitly computed. This fact limits the methods
available to solve the linear system involved in (26) with the matrix S, which cannot be solved via
a direct solver. Instead, iterative methods such as GMRES or any of the Krylov methods provided
by PETSc are adequate for the solves. To build the preconditioner needed for the iterative methods
we have used the approximation to S given by P := A−diag(BD−1C), where the operator diag(M)
represents a matrix whose diagonal elements are the same as the matrix M , and have zeros outside
the diagonal.

A third alternative that enables the use of direct methods when solving (21), is the mixed block
elimination (MBE) method described in [8, 9]. This method solves bordered linear systems in the
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form (24) making solves with the nearly singular leading block matrix and its transpose. Algorithm
2 shows the process followed for this method to solve a linear system with a one-dimensional border,[

A b
c d

] [
x1

x2

]
=

[
y1

y2

]
. (28)

Algorithm 2 Mixed block elimination (MBE) method

Input: A ∈ Cn×n, b, y1 ∈ Cn×1, c ∈ C1×n and d, y2 ∈ C defining the linear system (28)
Output: x ∈ Cn+1 solution of (28) (x = [ x1

x2
])

1: Solve AT v = cT

2: δ ← d− vT b
3: Solve Aw = b
4: ρ← d− cw
5: p2 ← (y2 − vT y1)/δ
6: g1 ← y1 − bx2

7: g2 ← y2 − dp2

8: Solve Az = g1

9: q2 ← (g2 − cz)/ρ
10: x1 ← z − wq2

11: x2 ← p2 + q2

To solve a linear system with a wider border, this method works recursively decreasing the
dimension of the border in the linear systems that it generates at each step. For example, to solve
a linear system (24) for a border of dimension 2,

n

1

1

n 1 1 A b1
c1 d11

b2
d12

c2 d21 d22

 x1:n

xn+1

xn+2

 =

 y1:n

yn+1

yn+2

 , (29)

using Algorithm 2, the method performs 3 solves with the submatrix[
A b1
c1 d11

]
(30)

of dimension n+1, the vectors b :=
[

b2
d12

]
, c := [ c2 d21 ] and the right-hand side vector g ∈ Cn+1

computed from y with several updates (steps 1, 3 and 8 of Algorithm 2). These linear systems
are one-dimensional bordered systems as in (28) and they can directly be solved using Algorithm
2. Each solve with matrix (30) makes two solves (with A and AT ) that are independent of the
right-hand side, thus, the three required solves with matrix (30) and right-hand sides b, c and g
have common computations that can be shared.

In the case of avoiding repeated solves by storing intermediate calculations, the MBE method
requires 2k+1 solves of dimension n, to solve a bordered linear system of dimension n+k with a
border of dimension k. When using this method in the forward substitution process, the number of
overall linear solves required by this method could be seen as a strong limitation to the dimension
of the invariant pair to refine. However, in the results of §5 we will see that for moderate values of
k the mixed block elimination shows a good behaviour, compared to the other methods. Moreover,
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most computations in the MBE method can be done independently of the right-hand side, since
2k out of 2k + 1 solves required for this method only involve data from the system matrix. This
fact represents better opportunities of parallelism, as it alleviates inherent sequentiality of other
approaches. In particular, the use of subcommunicators will be especially beneficial in this case, as
discussed below.

The forward substitution process used to solve the correction equation implies solving k linear
systems of size n+ k that, in some cases, need to be solved using a direct method. In this case, the
overall parallel performance can be seriously penalized due to the limited scalability of factorizations
such as LU, as well as the associated triangular solves. To reduce such limitation we have studied the
possibility of adding a second level of parallelism by splitting the set of MPI processes into several
subgroups, so that each new subgroup will be responsible for solving some of the linear systems
required by the forward substitution procedure. For this, the matrices defining the polynomial
eigenproblem are redundantly replicated in each subgroup, and so are the set of distributed vectors
X (the small matrix H is fully stored by each process).

This subcommunicator approach is applicable in both the simple and multiple refinement
schemes. In the case of the simple refinement, when refining k individual eigenpairs instead of
an invariant pair of dimension k, the linear systems come from separate refinement processes and
there is complete independence between the resolution of the linear systems, which can be freely
distributed and solved among the subgroups of processes. However, this is not the case for multiple
refinement, due to the forward substitution procedure, where each computed solution updates the
right-hand sides of the subsequent linear systems. When forming the right-hand side,

[ rp
fp

]
, of the

pth system to be solved, update (23) is required, involving the previously computed (∆xq,∆hq).
This forces the solves to be carried out in a sequential way. Despite that, the building and solving
of these systems also entails several time consuming operations that can be carried out in parallel
by the different subgroups, as described in Algorithm 3.

The copy of the parallel matrices and vectors in step 2 of Algorithm 3 represents a data re-
distribution requiring communication involving all processes. For example, Fig. 3 shows how a
matrix distributed in 5 processes is duplicated redundantly into two subcommunicators with 3 and
2 processes, respectively.

In steps 4–11 of Algorithm 3, each subgroup is assigned a different column of ∆X and ∆H to be
computed, calculates the associated bordered matrix and performs a matrix factorization required
for using a direct method. The MBE method factorizes the leading submatrix A of (24), whereas the
explicit matrix approach factorizes the full bordered matrix. After that, the dependence between
the right-hand sides in the involved linear systems forces a sequential stage for the solves (steps
12–17 in Algorithm 3). Despite that, in the case of using MBE, the solution of the bordered systems
(24) entails the solution of 2k linear systems with the leading block A which are independent of
the right-hand side [ y1

y2 ]. Therefore, these solves can be moved to the concurrent phase (step 9 of
Algorithm 3), and only one right-hand side dependent solve is left in the sequential stage (step 15
of Algorithm 3). After a column of ∆X and ∆H has been computed, it is redistributed from the
corresponding subcommunicator to the original global communicator.

The gain when activating this second level of parallelism is limited by the size of the invariant
pair to refine (or the number of eigenpairs in the case of simple refinement) but, as will be shown
in §5, it relieves the limited scalability of solves based on direct methods.
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Algorithm 3 Subcommunicators splitting in the forward substitution procedure

Input: Number of MPI subcommunicators ng
1: Create ng subgroups identified with idg = 0, . . . , ng − 1
2: Duplicate matrices {Aj}dj=0 and vectors Xi for each subgroup
3: for l = 0, . . . , (k − 1)/ng do
4: for all subgroups in parallel do
5: p← l ∗ ng + idg
6: if p < k then
7: Compute matrix blocks corresponding to (21) for the pth column of Xi and Hi

8: Factorize the leading block P (hpp)
9: [Only in MBE] Solve 2k right-hand side independent linear systems

10: end if
11: end for
12: for g = 0, 1, . . . , ng − 1 do
13: q ← l ∗ ng + g

14: All processes in original communicator compute right-hand side
[ rq
fq

]
and send it to sub-

group g
15: Subgroup g performs triangular solve with the updated right-hand side received
16: Subgroup g redistributes computed column (∆xq,∆hq) among the original communicator
17: end for
18: end for

global A

P0

P1

P2

P3

P4

redundant A in g0

P0

P1

P2

redundant A in g1

P3

P4

Figure 3: Parallel redistribution of matrices in the case of two subcomunicators g0 and g1, where
the parent communicator has 5 processes.
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Table 1: Description of the test problems used for the performance analysis, indicating the degree
(deg) of the matrix polynomial, the dimension (dim) of the coefficient matrices, the requested
number of eigenvalues (nev) eigenvalues selected from different parts of the spectrum (closest to
target σ).

name deg dim nev σ

qd cylinder 3 751,900 6 0.1

qd pyramid-186k 5 186,543 8 0.4

qd pyramid-1.5m 5 1.5 mill 8 0.4

sleeper 2 1 mill 8 -0.9

pdde stability 2 640,000 32 -1

acoustic wave 2d 2 999,000 16 0

loaded string 10 1 mill 8 0

5 Computational results

In this section we present the results of several computational experiments, comparing the various
methods for iterative refinement. We focus especially on the scalability of the different approaches.
The computer used for the executions was Tirant, an IBM cluster consisting of 512 JS21 blade
computing nodes, each of them with two 64-bit PowerPC 970MP dual core processors running at
2.2 GHz with 4 GB of memory, interconnected with a low latency Myrinet network. All runs used
a single MPI process per node. Our implementations have been developed on top of SLEPc 3.6.
Apart from SLEPc 3.6 and PETSc 3.6, we also used MUMPS 5.0 whenever an LU or Cholesky
factorization was required. All software has been compiled with gcc-4.6.1 and MPICH2.

We have used several test problems to assess the robustness and performance of our solvers.
Table 1 summarizes the test cases, providing information about the degree of the polynomial, the
matrix size, the number of requested eigenpairs and the target value around which eigenvalues are
sought. The first problems arise in the computation of the electronic structure of quantum dots
via discretization of the Schrödinger equation [13]. The rest belong to the NLEVP collection [5].
All problems use the monomial basis for the matrix polynomial except the last one (loaded string)
which is expressed in the Chebyshev basis since it is obtained from a nonlinear eigenproblem via
polynomial interpolation. All computations have been carried out in complex arithmetic (although
our code supports real arithmetic provided that the eigenvalues to be refined are real).

For measuring the quality of the computed eigenpairs we use the relative backward error, which
is defined for an approximate right eigenpair (x, λ) of P as in (2) by

η(x, λ) =
‖P (λ)x‖2(∑d

i=0 |Φi(λ)|‖Ai‖2
)
‖x‖2

. (31)

In practical computations, we replace the matrix 2-norm by the ∞-norm. In Table 2 we show the
maximum backward error before and after a single step of iterative refinement is performed on
the problems of Table 1. In all cases, iterative refinement provides a significant improvement in
accuracy with respect to the initial approximations.

Table 2 also shows some sample timing results with various refinement methods, when computing
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Table 2: Computational results for iterative refinement. Initial approximations are computed with
tolerance tol. The maximum backward error is shown for eigenpair approximations before (ηKS)
and after (ηNR) refinement, together with the running time (in seconds) for both the computation
of initial approximations (tKS) and refinement (tNR). The number of subcommunicators is sub.

name tol tKS ηKS ref. method sub tNR ηNR

qd cylinder 10−8 1837 9 × 10−12 none 1 - -

qd cylinder 10−4 1033 2 × 10−6 multiple-schur 1 169 2 × 10−13

qd pyramid-186k 10−4 50 3 × 10−8 simple-schur 1 25 8 × 10−14

qd pyramid-1.5m 10−4 591 4 × 10−6 multiple-schur 1 152 7 × 10−12

sleeper 10−6 42 8 × 10−10 multiple-mbe 8 29 5 × 10−17

pdde stability 10−4 185 1 × 10−6 simple-mbe 1 277 3 × 10−13

acoustic wave 2d 10−6 111 1 × 10−8 multiple-exp-lu 1 837 3 × 10−14

loaded string 10−4 40 2 × 10−6 simple-mbe 8 36 6 × 10−17

a single step of refinement starting from initial approximations computed with the Krylov solver
(TOAR) with a tolerance tol using 8 MPI processes (arranged in sub subcommunicators). We can
see that there are cases where the computation of the initial approximations takes much more time
than the refinement, while in other problems the situation is the opposite. In general, refining
is computationally demanding, so it is recommended only if initial approximations have a bad
accuracy. In our experiments, we usually set a large tolerance (10−4) for the Krylov solver so that
it provides unusually inaccurate approximations and hence improvement of the refinement is more
apparent.

Next we provide results of parallel scalability for several test cases. In all cases, we analyze
strong scaling, i.e., the problem size is the same for any number of processes.

The two representative test cases from the quantum dot simulation are: qd cylinder (cubic
polynomial from a cylinder quantum dot discretized with finite differences on a uniform mesh)
and qd pyramid (quintic polynomial from a pyramid quantum dot discretized with finite volumes).
In these problems, preconditioned iterative solvers for linear systems perform quite well. In all
results shown below, we use Bi-CGStab with block Jacobi preconditioner (using an incomplete LU
factorization with zero fill-in in each subdomain).

Figure 4 shows the parallel execution time with increasing number of processes for the qd cylinder
test case. The figure compares the situation where no iterative refinement is carried out (eigenvalue
approximations are computed with a tolerance of 10−8) and the case where one step of multiple
iterative refinement is done (using the Schur complement approach) on initial approximations com-
puted with tol = 10−4. As already seen in Table 2, in this case it pays off to refine, since the extra
iterations required by TOAR to reach 10−8 are expensive. What we are interested now is to see
that both alternatives scale similarly in this case.

We now compare several methods when solving the qd pyramid problem. Figure 5 shows execu-
tion times for two problem sizes. In the left panel, we can appreciate that in this problem using a
direct method for the linear solves is counterproductive, because factorization time dominates and
that is why the corresponding lines overlap. Regarding the alternatives based on iterative linear
solves, the ones based on the Schur complement scale much better than the ones that build the
explicit matrix (which require an increasing number of iterations in the linear solver with increas-
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Figure 4: Parallel scaling (up to 128 processes) of the computation of 6 eigenpairs of the qd cylinder
problem with and without refinement.
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Figure 5: Parallel scaling (up to 128 processes) of different iterative refinement methods working
on the qd pyramid problem of dimension 186,543 (left) and 1.5 million (right).
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simple-exp-lu simple-mbe-cholesky simple-exp-lu-subc simple-mbe-cholesky-subc

Figure 6: Parallel scaling (up to 128 processes) of different iterative refinement methods when
refining 8 (left) or 32 (right) eigenvalues of the pdde stability problem. Legend: simple/multiple
refers to refinement of single eigenpairs/invariant pair; linear systems via explicit matrix (exp) or
mixed block elimination (mbe), with LU or Cholesky decomposition; subc indicates that more than
one subcommunicator is being used.

ing number of processes). Scalability of the Schur complement versions is best displayed in the 1.5
million problem in Figure 5 (right). We see that multiple refinement scales linearly, and is faster
than simple refinement (as we will see below, it is more often the other way round). In this problem
size, direct linear solvers were not viable.

We now focus on the performance of the mixed block elimination method. Figure 6 shows
a comparison of this strategy with respect to the explicit matrix approach in the pdde stability
problem (we do not show results of the Schur complement variant because we could not make any
iterative method converge in this problem). When refining 8 eigenvalues, MBE is always faster than
the explicit matrix approach, for any number of processes. As pointed out in §4, the MBE scheme
(with multiple refinement) is penalized when the number of eigenvalues to refine increases, so we
also show on Figure 6 (right) the results corresponding to refinement of 32 eigenvalues. In this
latter case, multiple refinement with MBE is slower than the explicit matrix method, as expected.
Note that simple refinement with MBE (dashed lines) does not have this drawback and continues
to be below the explicit matrix lines.

Even though MBE may be slower, it turns out that its scalability can be better provided that
subcommunicators are employed. This was the goal of Algorithm 3. Figure 6 illustrates this with
the lines whose name ends with “subc”. For drawing these lines, we execute with p processes and
a number of subcommunicators equal to min(nev, p) (that is, subcommunicators composed of just
1 process until the number of processes is larger that the number of eigenvalues to refine). In
both panels of Figure 6 we see that subcommunicators significantly improve the scalability of MBE
variants, with a reduction of time almost proportional to the number of processes. In the case of
refining 32 eigenvalues, even multiple MBE refinement beats the explicit matrix counterparts when
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Figure 7: Parallel scaling (up to 128 processes) of different iterative refinement methods operat-
ing on the loaded string problem. Legend: simple/multiple refers to refinement of single eigen-
pairs/invariant pair; linear systems are solved via mixed block elimination (mbe) with LU decom-
position; subc indicates that more than one subcommunicator is being used.

a sufficient number of processes are employed.
We finish this section with the analysis of the loaded string problem, whose associated polynomial

has degree 10 and is represented with a non-monomial basis. As in the previous case, this problem
also requires using a direct linear solver (since the iterative methods and preconditioners that we
tried had convergence difficulties), so scalability will be limited and it will be beneficial to split
the processes into subcommunicators. Figure 7 shows execution times for the MBE strategy, for
both simple and multiple refinement, with and without subcommunicators. It is evident that using
subcommunicators confers a higher degree of scalability, both for simple and multiple refinement.
One could expect an improved scalability for even more processes if the number of eigenvalues to
refine was larger (it is 8 in this case).

6 Conclusions

We have implemented Newton-based iterative refinement in the context of polynomial eigenvalue
problems, with a number of alternative schemes for the most computationally expensive part,
namely the solution of a sequence of linear systems. This method represents a valuable addition
to the Krylov solvers for polynomial eigenvalue problems that we have implemented in SLEPc,
presented in [7], making it possible to attain very good accuracy in cases where the Krylov method
itself can have difficulties. The refinement step can sometimes be very costly, but we have pro-
posed several ways of arranging the computation to exploit parallelism. The scheme based on the
Schur complement scales very well. In the case of requiring direct linear solvers, the mixed block
elimination (MBE) strategy with the MPI processes arranged in subcommunicators can scale with
good performance up to 128 processes or even more, for both the simple and multiple refinement
strategies. In this way, we are able to perform iterative refinement of very large scale problems,
possibly with large degree polynomials, even in the case that the computed solution consists of tens

18



of eigenpairs.
The developed codes allow solving a general nonlinear eigenvalue problem by first building a

polynomial eigenproblem (e.g., via Chebyshev interpolation in a prescribed interval), possibly of
high degree, that is then solved and its solution refined iteratively with the methods presented in this
paper. We remark that in this particular case it would be better to perform iterative refinement from
the perspective of the original nonlinear problem, rather than the polynomial problem. Although
not discussed here, we have already implemented the simple refinement strategy for nonlinear
problems, leaving multiple refinement as a topic for future research.
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