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ABSTRACT 6 

Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to 7 

avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to 8 

model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria 9 

Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a 10 

major presence under the single approach, specially the Analytic Hierarchy Process, and its combination 11 

with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid 12 

approach; while a high variety of complementary techniques was identified. A growing hybridization and 13 

fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision 14 

making process and the inclusion of trade-offs and interactions between components within the evaluation 15 

model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision 16 

Making in dam management, further research is required to differentiate between rational and intuitive 17 

decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to 18 

repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet 19 

explored under this approach, as an interesting path worth investigating. 20 
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1. Introduction 28 

It is estimated that by 2050 the population will have increased by 130 million, much of the increase 29 

being located downstream from reservoirs contained by dams that are aging and presenting therefore 30 

significant potential risk [1]. 31 

Today, owners of dams face a significant challenge in allocating limited financial, human and 32 

material resources to ensure adequate operating conditions in old dams. The absence of proper investment 33 

in conservation of the dam condemns it to the very likely event of failure, with particularly severe 34 

consequences in socio-economic, environmental and heritage terms [2]. It is necessary, therefore, to provide 35 

a transparent decision process so as to facilitate public participation in decision-making on dams that are 36 

deteriorated or aging [3]. Assessing the status of an aging dam requires the bringing together of quantitative 37 

and qualitative information, since the factors that determine the state of the dam (structural, geological, 38 

environmental, etc.) are deterministic, stochastic or fuzzy in nature [4].  39 

Deterioration may appear throughout the whole dam life cycle, from its construction phase to its 40 

completion, demolition or abandonment phase. Ageing can be defined as the deterioration process that 41 

occurs more than five years after the beginning of the operation phase, so that deterioration occurring before 42 

that time is attributed to inadequacy of design, construction or operation. Even beyond that time, dam ageing 43 

can be considered as a class of deterioration associated with time-related changes in the properties of the 44 

materials of which the structure and its foundation are constructed. Besides the type of structure, other 45 

factors significant to the ageing problems are the environmental conditions, dimensions, design and 46 

construction standards, nature of operation and maintenance and congenital and early age deterioration of 47 

structures [5]. 48 

The problem of deterioration through aging is one that also applies to the reservoir contained by 49 

the dam, where environmental degradation may be observed (within the short and medium terms of the life 50 

of the structure, <50 years), in the form of: (i) alterations in the flow system, (ii) loss of longitudinal and 51 

floodplain connectivity, (iii) altered sediment system, (iv) changes in the composition of the substrate and, 52 

(v) degradation of the downstream channel. The environmentally-related problems in the long term (> 50 53 

years) of the dam-reservoir system is, still today, even less well-known; therefore, new decision-making 54 

processes must be developed for the management of these systems in a situation of deterioration through 55 

aging [6].  56 
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There is a close connection between Climate Change and managing the operation of ageing dams. 57 

Hydrological changes brought about by the former lead to the need to reassess the safety conditions of dams 58 

in general, but even more so in older dams; many of them already considered unsafe in periods before the 59 

onset of Climate Change. There are a great number of existing dams, at an advanced stage of deterioration, 60 

that are especially vulnerable to extreme natural phenomena linked to Climate Change. The determination 61 

of the vulnerability index as a means of diagnosing the real state of the dam serves as a clear support to 62 

decision-making on its conservation, maintenance and rehabilitation [7]. 63 

Generally, decision-making processes in dam management use a combination of decision bases 64 

ranging from technical codes and standards-based ways of assessing alternatives to values-based 65 

assessments based on company or wider societal values and stakeholder expectations and perceptions. The 66 

inclusion of social sustainability criteria and factors within the evaluation model to be developed must be 67 

guaranteed by addressing social and cultural impacts on human populations derived from the decisions 68 

undertaken on an ageing dam during its operational phase. The decision-maker must weigh and balance 69 

community, owner and other stakeholder interests and make all necessary value judgments, including those 70 

needed to weigh different types of risks: monetary loss, environmental degradation, etc. In parallel, political 71 

risks and resources allocation among competing societal needs must be considered. These are all subjective 72 

tasks to which knowledge-based disciplines can give little assistance [8]. 73 

The inclusion of social sustainability criteria and factors within the evaluation model must be 74 

guaranteed by addressing the social and cultural impacts derived from the decisions undertaken on an 75 

ageing dam during its operational phase [9]. Essentially, sustainability applied to aging-dam management 76 

must be understood as the reconciliation of the economic, environmental and social aspects intrinsically 77 

related to complex decisions [10]. Ultimately, from a cognitive perspective, the adequate approach to aging-78 

dam management must be to improve knowledge on the decision-making process and to make it possible 79 

for the stakeholders participating in the resolution process and its integrated systems to learn from the 80 

experience [11-13]. 81 

Decision-making in water resources management is driven by multiple objectives. Multi-Criteria 82 

Decision Analysis (MCDA) has been used in areas such as watershed management, groundwater 83 

management, selection of hydraulic infrastructure (mainly urban water supply), watershed management, 84 

water policy planning and management, water quality management and the management of protected 85 

coastal areas [14]. Over a long time scale, with a variety of decision-makers, the use of MCDA reveals 86 
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itself to be more suitable compared with other techniques usual in water resources management such as 87 

multi- or mono-objective optimization or cost benefit analysis (CBA) [15]. MCDA provides an excellent 88 

support to prioritize rehabilitation activities in ageing dams. Therefore, this review analyzes the application 89 

of Multi-Criteria Decision Making (MCDM) methods and techniques to the comprehensive management 90 

of dams throughout the whole infrastructure lifecycle and identifies the specific treatment given to these 91 

methods in its application to ageing dams during its operational phase.  92 

2. Search strategy and methodology 93 

The purpose of the literature review was to identify trends and gaps in research and to propitiate 94 

further progress upon the foundation developed by others. A systematic, objective review contains a five-95 

stage structure [16]. The first stage is the formulation of the problem, the second stage deals with the 96 

determination of the data collection strategy, the third stage revolves around evaluating the retrieved data, 97 

the fourth stage points to the analysis and interpretation of the literature and finally, and the fifth stage 98 

presents the resulting conclusions. 99 

2.1. Formulation of the problem 100 

The study formulated two main questions. First: What specific types of decisional problems and 101 

applications in dam management have been addressed throughout Multi-Criteria Decision Analysis 102 

techniques. Second: How these techniques have been applied to solve each problem and application to 103 

explore the reasons of their adequacy. 104 

2.2. Determination of the data collection strategy 105 

An extensive computerized search was the central axis for the data collection strategy. Articles 106 

were identified by the internationally-recognized bibliographic database SCOPUS. Among the main 107 

advantages of this database are the depth of its coverage and its ability to search both forward and backward 108 

from a particular citation [17]. Electronic databases searches were supplemented by searching conference 109 

proceedings and relevant journals. 110 

A preliminary search was conducted to collect any article within the database clearly related to the 111 

study object. The objective was to create the framework for a later filtering that would finally produce the 112 

set of articles on which the qualitative and quantitative analysis would be performed. The preliminary 113 

search was developed using the Boolean operators ‘AND’ and ‘OR’ with specific search terms especially 114 

selected to produce the optimum search algorithm that would track all the relevant articles in respect of 115 
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MCDA applied to dam management. Logically, a previous literature examination, based upon the 116 

knowledge of the research team within the area, facilitated the configuration of the best preliminary search 117 

algorithm. The review covered the 1992-2015 period (24 years), as no relevant article prior to 1992 was 118 

found in the database. This preliminary search resulted in the identification of 6.217 studies. 119 

Finally, a five steps filtering process was conducted as follows: (1) exclusion of keywords not 120 

related to the search (terms from the oil and gas and hydraulic fracture industry, artificial intelligence and 121 

neural networks); (2) limitation of the research disciplines involved in the study to the following areas 122 

classified in SCOPUS: Agricultural and Biological Sciences, Chemical Engineering, Computer Science, 123 

Decision Sciences, Earth & Planetary Sciences, Energy, Engineering, Environmental Science, Materials 124 

Science, Mathematics and Social Sciences; (3) elimination of those articles identified in more than one of 125 

the application areas or disciplines finally selected in filter 2; (4) ‘search within the search’, as SCOPUS 126 

permits a further detailed identification of articles within an initial search throughout keywords, and; (5) a 127 

final filtering to eliminate articles that, despite having close association with the study goal, were finally 128 

considered to be not at the core of the investigation (articles from energy, procurement, commodities and 129 

enterprise management, as well as, articles from underground water resources, land uses and watershed 130 

strategic planning). As a result of this structured filtering process, a final set of 128 articles was settled upon 131 

for further analysis and interpretation’.  132 

3. Evaluation of data 133 

The publication of studies increased dramatically in 2009, with a clear sustained upward trend (Fig. 1). 134 

Over 80% of the publications in the field of MCDA applied to dams were made in the 2009-2015 period. 135 

The year 2012 stand as the year with the highest number of publications (26 studies). Chinese authors 136 

played a key role in the investigation on MCDA applied to dams, having published up to 70 studies in the 137 

1992-2015 period. Authors from Iran (9 studies), USA (6 studies) and Taiwan (5 studies) significantly 138 

contributed to the investigation as well. Netherlands, USA, Germany, United Kingdom and China were the 139 

sources of the journals more active in MCDA research related to dams, totaling respectively, 35, 32, 20, 14 140 

and 12 studies between 1992 and 2015. 32% of the total studies published -41 articles- were concentrated 141 

in six journals: Water Resources Management (11 studies), Advanced Materials Research (10 studies), 142 

Applied Mechanics and Materials (8 studies), Natural Hazards (5 studies), Stochastic Environmental 143 

Research and Risk Assessment (4 studies) and Journal of Water Resources Planning and Management (3 144 

studies).  145 
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The evaluation of the obtained data permitted the identification of nine main applications or topics that 146 

are described as follows: 147 

1. Flooding (5 studies, 4%). These studies used MCDA specifically to model and simulate multi-objective 148 

decision-making for flood control and mitigation. This application is closely related to the 7th and 9th 149 

applications, ‘Reservoir Operation’ [18-20] and ‘Risk Analysis’ -dam break analysis- [21, 22] -both 150 

under extreme flood conditions-, respectively.  151 

2. Water quality (5 studies, 4%). This involved applications of MCDA to problems of reservoir water 152 

quality evaluation. Most of the cases were focused on the eutrophication assessment [23-25], while two 153 

studies focused on the determination of the water quality contamination factors [26] and the weighting 154 

of different reservoir water quality indexes [27].  155 

3. Dam location (6 studies, 5%). These papers covered applications of MCDA to decide the ideal location 156 

for a dam in a specific site [28-33].  157 

4. Seismicity and Geology (11 studies, 9%). These applications involved one of the two following 158 

purposes: (i) reservoir-induced seismicity analysis [34-37] and, (ii) large-scale debris flows 159 

susceptibility analysis, landslide hazard assessment, stability rock study, rock burst prediction or rock 160 

mass quality evaluation -reservoir/dam surroundings- [38-44].  161 

5. Hydropower (18 studies, 14%). These studies used MCDA for three main objectives: (i) planning, 162 

evaluation and prioritization –projects, portfolio, technologies, energy sector, benefits, project 163 

financing- [45-55], (ii) construction procedures safety evaluation, project risk analysis and project 164 

management [56-60], (iii) impact assessment of Climate Change on hydropower projects [61] and, (iv) 165 

hydropower generation efficiency [62]. 166 

6. Environmental Impact Assessment (17 studies, 14%). The cases included in this group can be divided 167 

into two sub-groups of applications: (i) development of a new EIA method or improvement of existing 168 

EIA methods [63-68], and, (ii) environmental planning and ecological risk analysis of specific dam-169 

reservoir systems [69-79]. 170 

7. Reservoir operation (20 studies, 15%). These studies used MCDA for three main purposes: (i) reservoir 171 

operation evaluation -mainly oriented to its optimization- [80-92], (ii) analysis of risks on the reservoir 172 

operation -principally due to the human factor and flood vents- [93-96], and, (iii) assessment of the 173 

environmental dimension related to the reservoir operation [97-99]. 174 
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8. Water resources management (21 studies, 16%). These papers applied MCDA for four goals: (i) 175 

comparative study or literature review of methods, techniques and tools for water resources 176 

management [100-102], (ii) development of methods for conflict resolution, equal distribution, 177 

constraints evaluation and water uses prioritization [103-107], (iii) development of models for 178 

sustainable management mainly oriented to dam optimum location, drought mitigation, flood control 179 

and hydropower projects evaluation [7, 108-115], and, (iv) reservoir operation optimization to address 180 

adequate water resources management [116-119]. 181 

9. Risk analysis (25 studies, 19%). This involved applications of MCDA to: (i) dam break risk assessment 182 

–regardless the dam typology- [120-129], (ii) risk assessment for earth fill dams [130-133], (iii) risk 183 

assessment for hydropower projects [134-136], (iv) risk assessment for tailing dams [137,138], (v) risk 184 

assessment for cascade reservoirs [139], (vi) risk assessment for river-way levees [140], and, (vii) other 185 

purposes as rock stability analysis [141], risk assessment for dam demolition [142,143] and, 186 

construction equipment allocation [144]. 187 

Fig. 2 shows the interannual progression of MCDA studies in each of the nine applications fields, Fig. 188 

3 specifies the contribution of each MCDA approach –(1) single MADM (Multi-Attribute Decision 189 

Making) method, (2) single  MODM (Multi-Objective Decision Making) method and (3) hybrid 190 

MADM/MODM- and ‘fuzzification’ in each of these same nine application fields, Fig. 4 presents the total 191 

number of studies under each MCDA approach and Table 1 categorizes current literature according to type 192 

of decisional problem, application and MCDM approaches and techniques. 193 

4. Presentation of the results 194 

Firstly, problems, applications and techniques were explored in a two steps process: (1) a detailed analysis 195 

of types of decisional problems faced and MCDA approaches and techniques employed in each of the nine 196 

applications, based on a sound categorization of problems and techniques; and (2) an overall diagnosis that 197 

permits the identification of the main patterns and tendencies to gain perspective particularly on the 198 

adequacy of methods in each case. Secondly, a statistical analysis was developed to identify relevant 199 

correlations between specific MCDA techniques and applications. 200 

4.1. Problems, applications and techniques 201 

Table 1 served as a key basis for the in-depth analysis of the different decisional problems faced 202 

by scholars, as well as the distinct approaches, methods or techniques employed and how they were applied 203 
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to each decisional problem in each on the nine identified applications. The fitness or adequacy of methods 204 

around decisional problems and applications was our major concern. We firstly categorized all the studies 205 

according to three basic dimensions: (1) types of decisional problems; (2) applications; and (3) approaches 206 

and techniques. Regarding the first dimension, we initially distinguished four kinds of decision making 207 

problems [145]: (1) ALPHA (Choice problem) -choicing the best alternative or selecting a limited set of 208 

the best or most preferred alternatives-; (2) BETA (Classification problem) -classifying/sorting the 209 

alternatives into predefined alternatives homogeneous groups-; (3) GAMMA (Prioritization problem) -210 

ranking-ordering of the alternatives from the best to the worst-; and (4) DELTA (Description problem) -211 

describing the major features of the alternatives and their consequences-. Additionally, with the purpose of 212 

broadening the decisional spectrum, we considered other decisional typologies proposed by the MCDM 213 

community: (5) ‘Design’ -creating new alternatives that will meet the goals and aspirations of the decision 214 

maker- [146]; (6) ‘Elimination’ -a particular branch of sorting problem- [147]; and (7) KAPPA (Cognitive 215 

problem) -educating the actors involved in the resolution process by providing the arguments (knowledge) 216 

that support the scientific resolution of the problem, the different positions of the actors and the final 217 

decision- [148]. 218 

Regarding the third dimension (approaches and techniques), we established three main Multi-219 

Criteria Decision Making (MCDM) approaches: (1) MADM-based single approach; (2) MODM-based 220 

single approach; and (3) MADM-MODM hybrid approach. This approach categorization was based on 221 

previous academic research that dealt with systematic literature review in related areas [149, 150]. 222 

Furthermore, as the fuzzification of different nuclear MCDM methods is a clear trend initially detected, we 223 

included an additional parameter in the third dimension demonstrative of the fuzzified studies for each 224 

decisional problem and application. We classified multi-criteria techniques under the ‘single’ approach as 225 

follows (the ‘hybrid’ approach has been considered as a combination of MADM and MODM methods): A) 226 

Multi-Objective Decision Making (MODM) methods: A.1. ‘Efficient Solutions’ (Weighting, Epsilon-227 

Constraint, Simplex Multi-Criteria, etc.); A.2. ‘Goal, Aspiration or Reference-level’ techniques: A.2.1 228 

Compromise Programming (CP); A.2.2 TOPSIS; A.2.3 VIKOR; A.2.4 Goal Programming (GP); and A.2.5 229 

Data Envelope Analysis (DEA). B) Multi-Attribute Decision Making (MADM) methods: B.1. 230 

‘Aggregation methods’: B.1.1 Direct (MAUT, MAVT, UTA, GRIP, etc.); B.1.2 ‘Hierarchy or Network’ 231 

(AHP, ANP, SMART, MACBET, etc.); and B.2. ‘Outranking methods’: B.2.1 ELECTRE and B.2.2 232 

PROMETHEE. C) Complementary techniques: CT.1 ‘Statistical’ Techniques: CT.1.1 Discriminant 233 

analysis; CT.1.2 Logit and Probit analysis; CT.1.3 Cluster analysis; and CT.1.4 Other Multivariate 234 
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Techniques. CT.2 ‘Non-parametric’ Techniques: CT.5.1 Neural Networks (NN); CT.5.2 Machine 235 

Learning; CT.5.3 Fuzzy Set Theory (FSs); CT.5.4 Rough Sets (RS); and CT.5.5 ENTROPY. 236 

4.1.1. Flooding 237 

The main decisional problem treated was the GAMMA type and almost all the studies were developed 238 

under the hybrid approach. In this case, AHP was the MCA method primarily chosen although ANP and 239 

MAUT had also a significant presence. The few studies under the hybrid approach combined AHP and 240 

TOPSIS, so that the first was used to establish the objective weights of criteria and factors and the second 241 

was employed for the final ranking. Singularly, DEMATEL was valued by its capacity to deal with the 242 

indirect relationships between model components and to solve the ANP’s drawback derived from assuming 243 

equal weights for each cluster [21]. Scholars were especially concerned by the idiosyncrasy of information 244 

within this application, essentially the difficulty of data standardization due to the diverse data sources, 245 

different formats, time periods and data processing [20]. 246 

4.1.2. Water Quality 247 

Despite the variety of decisional problems treated was relevant, the GAMMA type showed great relevance. 248 

The single approach was dominant and AHP was the preferred MCA method, while FSs and ENTROPY 249 

were principally selected by authors as complementary techniques. Scholars took advantage of AHP’s 250 

capacity to adequately structure the assessment model (hierarchy) and to determine the subjective weights 251 

of criteria and factors, whereas ENTROPY contributed to calculate the objective weights and FSs handled 252 

the vagueness and ambiguity that characterizes the water quality evaluation problems in reservoirs [24]. 253 

4.1.3. Dam Location 254 

ALFA and GAMMA types were the solely decisional problems attended by scholars. The single approach 255 

was the path chosen while AHP was used in almost all the studies, where remarkably no complementary 256 

technique was used. Certain authors decided to fuzzify the nuclear AHP (FAHP) to make the convenient 257 

sensitivity analysis based on different levels of uncertainty [29]. Interestingly, GIS was scarcely used in 258 

comparison with neighboring areas where Spatial Multi-Criteria Decision Analysis (SMCDA) is being 259 

repetitively explored (Solid Waste; Sustainable Urban Development; etc.) [151, 152]] or even other 260 

applications within this review (primarily Seismicity and Geology).  261 

4.1.4. Seismicity and Geology 262 
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The main decisional problems faced by scholars were the GAMMA, BETA and DELTA types. The single 263 

approach was the path chosen by all the authors, in which AHP was the nuclear method and ENTROPY 264 

and FSs were the complementary techniques selected, especially the second. Authors valued AHP’s 265 

capacity to comprehensively structure the problem and to compute the model components weights, based 266 

on the subjective human experience [38]. Considering this application, the dam-reservoir system is 267 

characterized by its high turbulence degree (e.g., debris flows), whose quantification is an authentic 268 

challenge. Accordingly, ENTROPY was chosen in some studies to enable this quantification based on 269 

objective data without the influence of subjective factors, thus avoiding personal interference to a large 270 

extent. In this case, weights from AHP (subjective) and ENTROPY (objective) were rationally combined 271 

while the principle of minimum deviation of subjective and objective results was used to construct a 272 

combination weighting optimality model [38]. 273 

Additionally, a significant number of studies proceeded to fuzzify the nuclear AHP (FAHP) to deal with 274 

the complexity, impreciseness and uncertainties present in this application, Lastly, GIS-based multicriteria 275 

-even accompanied by Remote Sensing (RS)- had its major prominence in this application. 276 

4.1.5. Hydropower 277 

The majority of studies focused on GAMMA type decisional problems. The hybrid approach slightly 278 

appeared (AHP and GP), so again the leading path was the single approach in which AHP was mostly 279 

employed as the nuclear method. VIKOR, DEA and TOPSIS were the MODM alternative to AHP. The 280 

interactions and dependencies between model components were poorly explored -a behavior extensible to 281 

all the review-, as ANP was scarcely used. However, it raised our attention the presence of a couple of 282 

studies facing KAPPA type decisional problems, especially one that explored three methods for knowledge 283 

acquisition in a multi-criteria environment (Value Focused Thinking; Knowledge Elicitation Techniques; 284 

and, Repertory Grid) for planning hydropower plant reconditioning assessment [56]. The fuzzification of 285 

models was moderate and a higher variety of complementary techniques were used to deal with the 286 

imprecise, uncertain and incomplete information (RS), to finally synthesize the problem (RBF) or to impute 287 

relationships between unobserved constructs (latent variables) from observable variables (SEM) [51]. 288 

Essentially, scholars concluded with the same main AHP’s advantages (simplicity, flexibility, intuitive 289 

appeal and ability to handle both qualitative and quantitative criteria) and disadvantages (time consuming; 290 

risk and uncertainty not handled; and the conversion from verbal to numerical judgements given by 291 

fundamental Scale of 1-9, which tends to overestimate preferences estimates) [54]. 292 
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4.1.6. Environmental Impact Assessment 293 

Practically all the studies solved GAMMA type decisional problems -mainly ecological safety or 294 

environmental vulnerability at a watershed scale-, although a significate number of ALFA type problems 295 

were faced. The single approach led the research, so that half of the models were developed around MADM 296 

methods (principally AHP, except punctual cases with PROMETHEE, ANP and RATINGS) and the other 297 

half of studied throughout MODM methods (TOPSIS, DEA and VIKOR). The fuzzification in this 298 

application was relevant (half of the studies), pursuing to adequately deal with the complexity and non-299 

quantitative nature of the environmental data. Scholars felt the necessity of overcoming the disadvantages 300 

of traditional models (subjectivity and complexity) through FSs, SPA and others. 301 

4.1.7. Reservoir Operation 302 

ALFA and GAMMA type decisional problems were mostly evaluated, given the concern of researchers 303 

around the optimization of the reservoir operation, which requires identifying the optimal functional 304 

alternative or prioritizing different scenarios of functional operability. In this application, it is given a slight 305 

prominence of MOMD on MADM methods. In the latter case, even AHP was no longer the most widely 306 

chosen method, participating ELECTRE, PROMETHEE, MAUT and ANP. The presence of hybrid models 307 

was nonexistent, but it must be stressed the abundant use of complementary techniques (especially SFs, but 308 

also ENTROPY, Neural Networks and NSGA-II -Non-Denominated Sorting Genetic Algorithm-). TOPSIS 309 

and Multi-Objective Programming (both Linear -MOLP- and Dynamic -MODP-) highlighted as the most 310 

commonly used MODM methods. The use of MOLP or MODP was motivated by the achievement of the 311 

operational effectiveness in an environment of uncertainty, randomness and interaction between factors, 312 

characteristics all of this application. For this reason, the fuzzification played a central role in several 313 

studies. 314 

4.1.8. Water Resources Management 315 

The decisional problem of prioritizing or ordering of alternatives (GAMMA type) was the most commonly 316 

chosen by the researchers. The assessment models were developed around both MADM methods (primarily 317 

AHP, but also other MADM methods: ELECTRE, PROMETHEE, MAUT and ANP) and MODM methods 318 

(Weighting method, CP, VIKOR, TOPSIS, DEA and MOLP). It must be stressed the almost absence of 319 

hybrid models as well as a minimum fuzzification of the nuclear methods. 320 

4.1.9. Risk Analysis 321 
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Half of the research in this application dealt with GAMMA type decisional problems. It must be pointed 322 

out the profuse use of AHP, regardless of the type of decisional problem faced. There were many studies 323 

that propose, under a single approach, a comprehensive methodology for risk assessment of the dam-324 

reservoir system supported on the usual practice of risk analysis along with the classic multi-criteria 325 

analysis (primarily AHP, except a few cases through ANP and TOPSIS). In the few studies that opted for 326 

the hybridization process, the AHP-TOPSIS combination was mostly chosen so that AHP was used for 327 

structuring the model and obtaining the weights of the criteria and factors, and TOPSIS facilitated the final 328 

prioritization. The fuzzification process had a very relevant presence, a path particularly chosen by Chinese 329 

authors in the risk assessment of dams. In parallel, other complementary methods like CLOUD MODEL, 330 

GREY THEORY, Average Ranking, Borda, Copeland and CBR (Case-Based Reasoning) were explored. 331 

Finally, we have detected a slight attempt to explore the modeling of interactions between components of 332 

the evaluation model by ANP. 333 

4.1.10. Overview 334 

Our examination moved us to infer that 66% of studies used the MADM single approach, 24% of 335 

studies employed the MODM single approach and 10% of studies were based on the MADM/MODM 336 

hybrid approach. Clearly, under the single approach, studies were principally constituted on MADM 337 

methods. In this case, when MODM methods were chosen, they were basically used to solve optimization 338 

problems in the applications ‘Reservoir Operation’, ‘Water Resources Management’, and ‘Environmental 339 

Impact Assessment’, particularly through Multi-Objective Linear or Dynamic Programming (MOLP, 340 

MODP, respectively) and TOPSIS. As to the MADM methods, scholars plainly preferred AHP due to its 341 

known advantages while some authors dealt with AHP’s disadvantages by means of two alternatives: (1) 342 

other MADM methods (primarily ELECTRE, PROMETHEE, MAUT and ANP) or (2) a hybrid approach, 343 

where the AHP-TOPSIS combination was mostly visited by scholars, regardless the application. In this 344 

case, AHP was used for structuring the model (hierarchy) and obtaining the subjective weights of the criteria 345 

and factors, while TOPSIS facilitated both the objective weights determination and final evaluation (mostly, 346 

alternatives ranking or best alternative selection). 33% of the studies used FSs (Fuzzy Sets Theory) as the 347 

complementary technique to handle the complexity, imprecision, ambiguity and uncertainty that 348 

particularly characterize applications ‘Environmental Impact Assessment’, ‘Risk Analysis’, ‘Reservoir 349 

Operation’, ‘Hydropower’ and ‘Water Resources Management’. The significant presence of AHP 350 

determined this was the majorly fuzzified method, a combination (AHP+FSs: FAHP) well established in 351 
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Multi-Criteria Decision Analysis applied to different fields. Essentially, the fuzzification trend is clearly 352 

more relevant than the hybridization trend; in terms of the number of studies we detected any of them, a 353 

fact demonstrative of a major concern on the treatment of uncertainty and imprecision than on the handling 354 

of classical AHP’s disadvantages. The two major decisional problems were GAMMA (62%) and ALFA 355 

(21%), i.e., ranking of alternatives and selection of the best alternative, respectively. According to the 356 

classification previously established, no ‘Design’ nor ‘Elimination’ problem was detected. Regarding the 357 

use of complementary techniques their use was determined by different reasons: (1) the need of dealing 358 

with vagueness; (2) the presence of uncertain and incomplete information; (3) the analysis of correlations 359 

between model components; (4) the very nature of the decisional problem (temporal or spatial); (5) the final 360 

step of synthesizing the problem; and (6) the purpose of overcoming the disadvantages of subjectivity and 361 

complexity of traditional methods. Very few studies focused on the analysis of interactions, dependencies, 362 

loops and feedbacks between criteria, factors and alternatives. In this case, ANP was the path chosen by 363 

scholars. Additionally, Spatial Multi-Criteria Decision Analysis (SMCDA) had certain relevance in the 364 

application D (Seismicity and Geology) but few significance at the level of the dam management field when 365 

compared with other fields or areas. 366 

The study detected a less systematic inclusion of stakeholders in the model than in other similar 367 

areas, such as Transport, where the participation of stakeholders has been the subject of increased attention 368 

with different techniques or approaches -MAUT, MACBETH, ANP, GIS, TOPSIS, SAW (Simple Additive 369 

Weighting), AHP, PROMETHEE, ELECTRE, etc. [153]- or the area of Environmental, where the inclusion 370 

of stakeholders in complex decisions in the context of natural resource management has been addressed in 371 

depth [14]. In the majority of the 128 analyzed studies the stakeholder engagement was not consistently set 372 

out, so input from stakeholders was mainly used at the MCDM first stages to collect enough information 373 

in order to build an initial framework. The DELPHI technique was widely used by experts for that case 374 

[69]. Therefore, participation of stakeholders was primarily identified in the following stages: (i) decisional 375 

problem definition and contextualization; (ii) alternatives identification; (iii) criteria elucidation; (iv) 376 

criteria weighting and; (v) scoring alternatives. Very uniquely, some studies ensured stakeholder 377 

involvement at the final phase to provide feedback on the evaluation results. The multiple-actors 378 

involvement, the building of an extension of the decision process to a group decision level and the 379 

methodological challenges of capturing stakeholders preferences must receive a more consistent treatment 380 

when applied to dam management.   381 
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In the operational management of dams, decision-making is a complex problem since there are 382 

many interrelationships between the various factors involved. Of the 128 studies examined, only four [95, 383 

96, 135, 136] formally addressed the modeling of the dependencies between the different components of 384 

the evaluation model. To do this, in all the cases authors opted for ANP, and applied it mainly to the risk 385 

assessment of hydroelectric projects in China. In parallel, we noted that no author developed the BOCR 386 

(Benefit-Cost-Opportunity-Risk) variant of the ANP, a variant that has been developed successfully in other 387 

areas of application. The current strategy to integrated management of dams during the operational phase 388 

requires a holistic approach to identify, analyze and quantify the benefits, opportunities, costs and risks of 389 

maintenance, operation and rehabilitation measures. This is especially critical in old dams, with observable 390 

problems related to aging-based deterioration. The BOCR-variant of the ANP method opens up a line of 391 

research for aging-dam management, which must be considered of great interest in the near future. 392 

Essentially, the findings of this study confirm what was pointed out by previous authors: (i) 393 

different methods establish different prioritization [154]; (ii) the choice of one method over another is 394 

subjective, depending on how the decider feels about one or the other [155]; (iii) the choice of MCDM is 395 

in itself a multi-objective problem [156] and; (iv) this choice depends on the particular conditions of the 396 

problem.  397 

4.2. Statistical analysis 398 

In parallel to the literature review, a statistical analysis was developed to detect correlations between 399 

specific MCDM and applications for aging-dam management. Firstly, the data were structured in the form 400 

of a contingency table composed of rows (Applications) and columns (Methods). Secondly, a 401 

correspondence analysis was carried out throughout IBM SPSS Statistics 22.0 software, with the goal of 402 

reducing the original interactions between both variables, according to their frequencies. According to the 403 

values obtained from standard deviation and correlation, those elements achieving an extreme score in 404 

dimensions were discarded, limiting the spectrum of analysis to the range ([− 0.5, 1.0]; [− 1.5, 2.5]). The 405 

results are graphically depicted in Fig. 5. 406 

The information shown in Fig. 5 must be treated carefully, since the frequency of application of a 407 

certain MCDA method to an application is not a sure value, i.e. even though data were sought through an 408 

extensive bibliometric search in a digital database so reliable as SCOPUS is, this literature review might 409 

not cover all the studies of application of MCDA methods in dams. Moreover, one cannot issue categorical 410 

judgments based on enough punctual or non-representative observations. Under these premises, and 411 
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whereas the variables under study are dichotomous, the Phi's correlation coefficients were calculated for 412 

each pair of elements Application/Method. The results show that two interactions were statistically 413 

significant –see Table 2-: (i) a tendency to use ENTROPY in studies evaluating the quality of reservoir 414 

water and, (ii) a tendency to use ELECTRE in studies evaluating the operation of the dam-reservoir system.  415 

The ENTROPY theory measures uncertainties and the extent of useful information provided by 416 

data. It overcomes the subjectivity of expert evaluation and it is useful when dealing with missing data or 417 

unreliable information, such as is the case with Water Quality assessment, where imprecision and vagueness 418 

characterize the problem. ELECTRE method is a non-compensatory aggregation procedure with the ability 419 

to set pre-defined categories and to introduce thresholds. These characteristics explain the suitability of this 420 

method for ranking solutions of multi-objective Reservoir Operation optimization problems.  421 

5. Conclusions 422 

MCDA has gained importance to evaluate complex decisions in dam management, especially since 2009, 423 

when the literature on this subject surges with a clear uptrend. Between the nine applications identified in 424 

the review, Risk Analysis (dam/reservoir safety level assessment) was the topic more frequently explored 425 

by scholars, indicative of the serious concerns the problem of aging-dam management is arousing in 426 

Society. The majority of problems were focused on ranking of alternatives (GAMMA) or selection of the 427 

optimal alternative (ALFA). MADM techniques were mostly applied under the single approach (principally 428 

AHP or its fuzzified version, FAHP), while the MODM techniques were majorly used to solve optimization 429 

problems related to the reservoir-dam system operation. AHP-TOPSIS was the MADM/MODM hybrid 430 

model fundamentally visited by scholars due to the reinforcing aspect of their combination, oriented to deal 431 

with the classical AHP disadvantages. Models were complemented by a relevant variety of techniques to 432 

handle aspects shared by all the applications: imprecise, uncertain and incomplete information, and the 433 

subjectivity and complexity of traditional methods. Apart from those commonalities, the different problems 434 

in each application were treated in a very diverse way due to the author’s preference or the particular 435 

conditions of the problem.  Additionally, we discovered that Spatial Multi-Criteria Decision Analysis 436 

(SMCDA) has been less explored than other related fields. Essentially, two main trends were identified in 437 

this systematic review: (1) a growing hybridization process of multi-criteria evaluation models, based on 438 

the combination of two or more MCDM methods, and, (2) an increasing fuzzification of these same models. 439 

The first trend seeks to add one or more supplementary methods to manage the inconsistencies of the 440 
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nuclear method while, the second trend aims to adequately handle with subjective judgements and to 441 

effectively integrate uncertainty and imprecise or vague information into the evaluation models. 442 

The multiple-actors involvement, the adjustment of the decision process to a group decision level 443 

and the methodological challenges implicated in the collection of stakeholders preferences within MCDA 444 

studies applied to dam management were not as consistently treated as in other areas (e.g. Transport and 445 

Environmental). From a holistic perspective of dam management, a multi-stakeholder and multi-criteria 446 

approach is strongly needed to assess not only the risks but also the benefits, costs and opportunities derived 447 

from repair, upgrade and removal measures applicable to aging-dam management. 448 

However, our diagnosis is that further research is required to better understand what causes the 449 

difference between rational and intuitive decision processes by stakeholders involved in the management 450 

of dams, specially ageing dams during the operational phase; and to develop improved MCDA models that 451 

help decision-makers solidly learn about interactions and trade-offs between components of the evaluation 452 

problems, so that an effective decision-making process can be guaranteed. In the management of a strategic 453 

infrastructure asset, such as an ageing dam in operation is, several criteria are involved in complex decisions 454 

that are intimately interconnected (primarily socio-economic, environmental and technical), so making a 455 

decision implies making trade-offs between criteria.  456 

ANP should play a key role in this aspect, as its approach to characterizing and quantifying loops 457 

and trade-offs between decisional components is its strongest capacity, which in turn has scarcely been 458 

explored in the area of dam management. Despite that, the few studies developed so far have showed 459 

promising results that point to ANP as an effective path to evaluate these interactions and dependencies 460 

within the MCDA model. Accordingly, we recommend further research on the combination of BOCR 461 

(Benefits-Opportunities-Cost-Risks) analysis and ANP as a potential framework, not explored yet in dam 462 

management, to effectively respond to complex problems related to the operation of ageing dams.  463 
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Note: A: Flooding; B: Water Quality; C: Dam Location; D: Seismicity and Geology; E: Hydropower; F: Environmental 1056 
Impact Assessment; G: Reservoir Operation; H: Water Resources Management; I: Risk Analysis. 1057 

Table 1. Categorization of studies according to three main dimensions 1058 
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 Dimension # 3: Approaches and techniques 

Dimension # 2: 
Application 

Single 
-MADM- 

Single 
-MODM- 

Hybrid 
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ALFA 

A 1 0 0 0 

B 0 0 0 0 

C 3 0 0 1 

D 0 0 0 0 

E 2 1 1 1 

F 3 2 0 1 

G 3 4 1 3 

H 2 0 0 0 

I 2 2 0 2 

BETA 

A 0 0 0 0 

B 1 0 0 1 

C 0 0 0 0 

D 4 0 0 0 

E 0 0 0 0 

F 0 0 0 0 

G 0 0 0 0 

H 0 0 0 0 

I 2 0 0 2 

GAMMA 

A 3 0 1 0 

B 3 0 0 1 

C 3 0 0 0 

D 5 0 0 2 

E 6 4 2 3 

F 8 3 0 7 

G 4 4 1 2 

H 9 9 1 4 

I 7 0 6 5 

DELTA 

A 0 0 0 0 

B 1 0 0 1 

C 0 0 0 0 

D 2 0 0 1 

E 0 0 0 0 

F 0 0 0 0 

G 1 0 0 1 

H 0 0 0 0 

I 4 0 0 2 

KAPPA 

A 0 0 0 0 

B 0 0 0 0 

C 0 0 0 0 

D 0 0 0 0 

E 2 0 0 0 

F 0 1 0 0 

G 1 1 0 0 

H 0 0 0 0 

I 2 0 0 2 
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Table 2. Phi values between MCDA methods and applications. 1062 

 1063 

 1064 

 Method - Application Phi's correlation coefficient 

ID. Method Application Value 
Approx. 

Sig. 
N of valid cases 

1 ENTROPY Water Quality 0,267 0,001 128 

2 ELECTRE Reservoir Operation 0,249 0,002 128 


