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que has tenido para enseñarme podŕıa empezar a describirse tras bastantes
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Abstract

Since L.A. Zadeh introduced the theory of fuzzy sets in 1965, it has been

used in a range of areas of mathematics and applied to a great variety of real

life scenarios. These scenarios cover complex processes with no simple math-

ematical model such as industrial control devices, planning and scheduling,

pattern recognition, etc. or systems managing inaccurate or highly unpre-

dictable information.

Fuzzy topology is one important example of use of L.A. Zadeh’s theory.

Through the years, authors of this field have pursued the definition of a

fuzzy metric space in order to measure the distance between elements of a

set according to degrees of closeness.

This work deals with the bicompletion of fuzzy quasi-metric spaces in the

sense of Kramosil and Michalek. Sherwood proved that every fuzzy metric

space has a completion which is unique up to isometry based on properties

of Lévy’s metric. Here we prove that each fuzzy quasi-metric space has a

bicompletion. Our construction is performed using directly the suprema of

subsets of [0, 1] and lower limits of sequences in [0, 1] instead of using Lévy’s

metric.

We take advantage of the bicompleteness and bicompletion of fuzzy quasi-

metric spaces as well as of the properties of fuzzy and intuitionistic fuzzy

metric spaces in order to introduce several applications to computer science

problems.

Thus, the existence and uniqueness of solution for the recurrence equa-

tions associated to certain algorithms with two recursive procedures is stud-

ied. To carry out a complexity analysis of algorithms we apply the Banach

contraction principle both in a certain product of (non-Archimedean) fuzzy

quasi-metrics on the domain of words and in the product quasi-metric of two



Schellekens’ complexity quasi-metric spaces.

Finally, we study an application of fuzzy metric spaces to information

systems based on accesses locality. For that means we use equivalence classes

in order to compare elements and we take advantage of the suitability of fuzzy

constructions related to problems that evolve during time. This approach

allows to define a dynamical framework to decide on an object classification

into different classes. As a natural extension of the model we use the notion

of an intuitionistic fuzzy metric space to measure both the degree of closeness

and remoteness between two elements of a fuzzy set.



Resumen

Desde que L.A. Zadeh presentó la teoŕıa de conjuntos difusos en 1965, se

ha usado en una serie de áreas de las matemáticas y se ha aplicado en una

gran variedad de escenarios de la vida real. Estos escenarios cubren procesos

complejos sin modelo matemático sencillo tales como dispositivos de control

industrial, planificación y programación, reconocimiento de patrones, etc. o

sistemas que gestionen información imprecisa o altamente impredecible.

La topoloǵıa difusa es un importante ejemplo de uso de la teoŕıa de L.A.

Zadeh. Durante años, los autores de este campo han buscado obtener la

definición de un espacio métrico difuso para medir la distancia entre elemen-

tos según grados de proximidad.

El presente trabajo trata acerca de la bicompletación de espacios casi-

métricos difusos en el sentido de Kramosil y Michalek. Sherwood probó que

todo espacio métrico difuso tiene una completación que es única excepto por

isometŕıa basándose en propiedades de la métrica de Lévy. Probamos aqúı

que todo espacio casi-métrico difuso tiene bicompletación. Nuestra cons-

trucción se realiza usando directamente el supremo de conjuntos en [0, 1] y

ĺımites inferiores de secuencias en [0, 1] en lugar de usar la métrica de Lévy.

Aprovechamos tanto la bicompletitud y bicompletación de espacios casi-

métricos difusos como las propiedades de los espacios métricos difusos y es-

pacios métricos difusos intuicionistas para presentar varias aplicaciones a

problemas del campo de la informática.

De esta manera, se estudia la existencia y unicidad de una solución para

las ecuaciones de recurrencia asociadas a ciertos algoritmos formados por dos

procedimientos recursivos. Para realizar el análisis de complejidad de algo-

ritmos aplicamos el principio de contracción de Banach tanto en un producto

de casi-métricas (no-Arquimedianas) en el dominio de las palabras como en



la casi-métrica producto de dos espacios de complejidad casi-métricos de

Schellekens.

Finalmente, estudiamos una aplicación de espacios métricos difusos a sis-

temas de información basados en localidad de accesos. Para ello usamos

clases de equivalencia para comparar elementos y aprovechamos la idoneidad

de las construcciones difusas para modelar problemas que evolucionan con el

tiempo. Esta aproximación permite definir un marco dinámico para decidir

acerca de la clasificación de un elemento en clases. Como extensión natural

del modelo usaremos la noción de un espacio métrico intuicionista para mod-

elar tanto el grado de proximidad como el de lejańıa de dos elementos de un

conjunto difuso.



Resum

Des de que L.A. Zadeh va presentar la teoria de conjunts difusos en 1965,

s’ha gastat en una serie d’árees de les matemàtiques i s’ha aplicat en una gran

varietat d’escenaris de la vida real. Estos escenaris cobrixen procesos com-

plexes sense model matemàtic senzill com dispositius de control industrial,

planificació o programació, reconeiximent de patrons, etc. o també sistemes

que gestionen informació imprecisa o altament impredictible.

La topologia difusa es un important exemple d’us de la teoria de L.A.

Zadeh. Durant anys, els autors d’este camp han buscat obtindre la definició

d’un espai metric difus per a medir la distancia entre elements d’un conjunt

segons graus de proximitat.

El present treball tracta de la bicompletació d’espais casi-mètrics difusos

en el sentit de Kramosil i Michalek. Sherwood va provar que tot espai metric

difus té una completació que es única excepte per isometria basant-se en

propietats de la mètrica de Lévy. Aćı provem que tot espai casi-mètric difus

té bicompletació. La nostra construcció s’obté gastant directament el suprem

de conjunts en [0, 1] i ĺımits inferiors de seqüencies en [0, 1] en lloc de gastar

la mètrica de Lévy.

Aprofitem tant la bicompletitud i bicompletació d’espais casi-mètrics di-

fusos com les propietats d’espais mètrics difusos i espais mètrics difusos in-

tuicionistes per a presentar distintes aplicacions a problemes del camp de la

informàtica.

D’esta manera, s’estudia l’existència i unicitat d’una solució per a les

ecuacions de recurrència associades a certs algorismes formats per dos pro-

cediments recursius. Per a fer l’anàlisis de complexitat d’algorismes apliquem

el principi de contracció de Banach tant en un producte de casi-mètriques

(no-Arquimedianes) en el domini de les paraules com en la casi-mètrica pro-



ducte de dos espais de complexitat casi-mètrics de Schellekens.

Finalment, estudiem una aplicació d’espais mètrics difusos a sistemes

d’informació basats en localitat d’accesos. Per a ixe motiu gastem classes

d’equivalència per a comparar elements i aprofitem la idonëıtat de les cons-

truccions difuses per a modelar problemes que evolucionen durant el temps.

Esta aproximació permitix definir un marc dinàmic per a decidir al voltant

de la classificació d’un element en classes distintes. Com a extensió natural

del model gastem la noció d’un espai mètric intuicionista per a modelar tant

el grau de proximitat com el de lluntania de dos elements d’un conjunt difus.
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Chapter 1

Introduction

Since the theory of fuzzy sets, introduced by L.A. Zadeh [68] appeared in

1965 it has been used in a range of areas of mathematics. One of these areas,

fuzzy logic, has allowed to apply fuzzy behaviour to implement industrial

control devices and to use multivalued logic concepts in real scenarios.

These techniques are profitable for complex processes with no simple

mathematical model. To name a few, tunning and maintenance of home

appliances (domotics) or industrial devices (elevators, air conditioners, light-

ning) are systems whose linearity shall be approached using fuzzy construc-

tions; we can take advantage of fuzziness to monitor public transportation

schedules, define routes according to space coverage, etc.; some existing works

show the application of fuzzy constructions to pattern recognition or defects

detection in colour images [41]; Geographic Information Systems (GIS) are

also suited for fuzziness as boundaries of geographic objects and areas are

usually inaccurate.

A fuzzy set is a set whose elements may be divided into the ones that

belong to the set, the ones that do not belong set and the ones for which it is

not possible to decide without a certain degree of uncertainty whether they

belong to the set or not. Following Zadeh’s idea, K. Atanassov [3] introduced
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the concept of intuitionistic fuzzy set to allow grouping elements according

to degrees of truth.

Fuzzy topology is another example of use of Zadeh’s theory. Authors of

this field have pursued the definition of a fuzzy metric space from different

points of view (see for instance [34, 17, 32, 2]) so that the distance between

different elements can be established according to degrees of closeness and

remoteness.

Our work deals with the bicompletion of fuzzy quasi-metric spaces, a

compelling topic from fuzzy topology, and with the application of fuzzy con-

structions to several areas of computer science. In order to emphasize these

objectives the text is structured in chapters according to three main sub-

jects: bicompletion of fuzzy quasi-metric spaces (Chapter 3), application of

fuzzy metric constructions to the complexity of algorithms (Chapter 4) and

to information systems based on access locality (Chapter 5). In each chapter,

conclusions extracted from our work are given.

After this brief introduction, Chapter 2 recalls for several general defini-

tions that will be used in the remaining chapters. Notice that not all the

definitions have been placed in Chapter 2, to ease the readability other defi-

nitions will be found where they are meant to be used. This initial chapter

is meant for basic concepts and for definitions that are relevant for several

chapters.

The core of this study is based on the Kramosil and Michalek notion of

a fuzzy metric space (see [34], Definition 2.2.3 and the ones based on it) and

on the definition of an intuitionistic fuzzy metric space (see [47] and [1]).

Sherwood proved in the framework of probabilistic metric spaces [65] that

every fuzzy metric space has a completion which is unique up to isometry,

with the help of the completeness properties of Lévy’s metric. In Chapter

3 we will prove that the bicompletion of fuzzy quasi-metric spaces can be
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achieved avoiding the use of Lévy’s metric [19, 38] directly using the suprema

of subsets of [0, 1] and lower limits of sequences in [0, 1].

In fact, completeness and completion are very useful properties in the

context of (fuzzy)metric spaces. We will take advantage of this desirable

characteristic in order to introduce several applications of fuzzy constructions

to computer science problems.

Fuzzy sets can be classified to apply in several information-driven types

of tasks: classification and data analysis, decision-making problems and ap-

proximate reasoning. We have chosen two different classification and data

analysis problems as applications. One of them, see Chapter 4, is borrowed

from algorithms theory. The other problem shown in Chapter 5 is a quite

general one of computer science scenarios; systems based on access locality

are widely spread. Even though we can find uses of access locality in basic

foundations of computer science we have focused on an applied scenario to

try to offer a glimpse of the potential applications of the of fuzzy metric

spaces.

In Chapter 4 we show the existence and uniqueness of solution for the re-

currence equations associated to certain algorithms with two recursive proce-

dures by applying the Banach contraction principle both in a certain product

of fuzzy quasi-metrics on the domain of words and in the product quasi-metric

of two complexity spaces. In particular we use Schellekens’ complexity quasi-

metric space (C, dC) [59] as a model for the complexity analysis of algorithms.

Several approaches can be found in algorithms theory in order to analyze

their complexity (see [5] or [10]). Take into account that complexity anal-

ysis is essential as it classifies the cost of execution of computer programs.

These programs are composed of data structures, algorithms, functions from

the main system and related subsystems, thus a classification of algorithms

efficiency in terms of estimated execution time and data and resources usage
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is vital in order to decide on the suitability of computer solutions.

For the general case, asymptotic cost analysis shall be used. This tech-

nique compares the order of magnitude of the cost (time consumption, gen-

erally) of an algorithm with a known cost (polynomic, logarithmic, etc.).

Comparisons for the worst, best or average case can be performed in order to

bound theoretically the cost – O, Ω, Θ functions – as it is shown in Section

4.1.

Recursive algorithms are those defined in terms of calls to the algorithm

itself. In fact, recursiveness is an unifying theory for algorithmic problems

based on recurrence equations. Unfortunately there is no general solution

for recurrence equations. One of the existing methods to solve them is to

use the celebrated Banach fixed point theorem. The contraction principle

and the completeness of the metric space used ensures the uniqueness of the

recurrence equation solution.

Recently, Park introduced and studied in [47] a notion of intuitionistic

fuzzy metric space that generalizes the concept of fuzzy metric space due to

George and Veeramani [17]. These spaces were initially motivated from a

high energy physics point of view (see [42, 43, 44, 45, 46], etc. from M.S. El

Naschie).

Almost simultaneously C. Alaca, D. Turkoglu and C. Yildiz proved in [1]

intuitionistic fuzzy versions of the Banach fixed point theorem by means of

a notion of intuitionistic fuzzy metric space which is based on the concept of

fuzzy metric space due to Kramosil and Michalek [34].

In [56] the authors generalize the notions of intuitionistic fuzzy metric

space by Alaca et al to the quasi-metric setting and obtain, among other

results, an intuitionistic fuzzy quasi-metric version of the Banach contrac-

tion principle which is applied to deduce the existence of solution for the

recurrence equation which is typically associated to the complexity analysis

of Quicksort algorithm [30].
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In order to complement previous works we have chosen a kind of recur-

rence algorithm composed by two recurrences, extracted from [4]:

function P(n)

if n > 0 then Q(n-1); C; P(n-1); C; Q(n-1)

function Q(n)

if n > 0 then P(n-1); C; Q(n-1); C; P(n-1); C; Q(n-1)

In Chapter 5 we study an application of fuzzy metric spaces to informa-

tion systems (with a special focus on distributed systems) based on accesses

locality. In this chapter we make an extensive use of equivalence classes in

order to compare elements. Fuzzy metric space constructions are used to

achieve accesses optimization in general information systems based on the

classification of element classes. Previous approaches are based on the sta-

tistical nature of data accesses [31].

Among the variety of information systems, we choose those based on

access locality in the sense of proximity among the elements of the set. This

characteristic appears quite often in basic information systems (compilation,

physical memory accesses, transaction isolation, etc.) and also suits finely the

way human organizations are structured (headquarters and geographically

scattered delegations for instance).

After a first approach using a quasi-metric lattice in Section 5.2, we tack-

led the problem using a fuzzy metric space construction (see Section 5.3).

The first approach served to obtain a function v such that v(x) allows us to

compare element x access histories.

The fuzzy metric space approach from Section 5.3 allows us to move

from a late classification to a more dynamical classification. Here we take

advantage of the suitability of fuzzy constructions related to problems that

evolve under known patterns during time. Due to this fact we need to change
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v definition to an appropriate function v(x, t) for which we associate t directly

to the concept of “time” and that will lead to the definition of M(x, y, t).

This adaptability is a strong attribute of fuzzy structures as lightweight

calculations allow progressive tunning.

For our objective we show that the Kramosil and Michalek definition of

fuzzy metric [34] is the one that is better suited for our purposes. Comparison

is now performed using the metric space (X, M, ∗) where X is the set of

elements and M is defined by:

M(x, y, t) = v(x, t) ∗ v(y, t)

where ∗ is any t-norm on the elements of the set which allows to use fuzzy

metrics to improve our previous results.

Later in Section 5.4, we use the notion of an intuitionistic fuzzy metric

space as a natural generalization of a fuzzy metric space which provides mech-

anisms to measure the degree of closeness, with a metric based on a t-norm,

and also remoteness, with another metric based on a t-conorm, between two

elements of a fuzzy set according to a parameter t.

As the tackled problem has a great variability we have taken an approach

similar to the one used when analysing the complexity of algorithms: worst,

best and average scenarios have been tested to perform an empirical analysis

of all approaches (see Sections 5.2.2, 5.3.2 and 5.4.2).

Due to this variability of scenarios and due to the fact that we also pursue

fast computation of element comparisons, traditional t-norms and t-conorms

are the ones that are best suited as the intuitionistic fuzzy metric tuple

components.

Nevertheless, for this study, t-norms, t-conorms and families of t-norms

and t-conorms selected from [13] are evaluated in order to provide a large

pool of choices for any real scenario.



Chapter 2

Preliminary concepts and

definitions

Most of our work relies on the set of concepts we are about to introduce

in this chapter. Here we show the ones that are used throughout all the

chapters or the ones whose relevance for our objectives is evident.

2.1 Basic definitions

We introduce firstly the notions of quasi-metric and order which are used in

Section 5.2 for our initial approach to model information systems based on

access locality.

Our basic references for quasi-uniform and quasi-metric spaces are [15, 36]

and for order theory they are [11, 18].

Definition 2.1.1. A quasi-metric on a set X is a nonnegative real valued

function defined on X × X such that for all x, y, z ∈ X:

(i) d(x, y) = d(y, x) = 0 ⇐⇒ x = y;

(ii) d(x, y) ≤ d(x, z) + d(y, z).
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Definition 2.1.2. A quasi-metric space is a pair (X, d) such that X is a set

and d is a quasi-metric on X.

Each quasi-metric d on X induces a T0 topology τd onX which has as a

base the family of open balls {Bd(x, r) : x ∈ X, ε > 0}, where

Bd(x, ε) = {y ∈ X : d(x, y) < ε}

for all x ∈ X and ε > 0.

Given a quasi-metric d on X, then the function d−1 defined by d−1(x, y) =

d(y, x), is also a quasi-metric on X, called the conjugate of d, and the function

ds defined by ds(x, y) = max{d(x, y), d−1(x, y)} is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, ds) is a complete

metric space. In this case we say that d is a bicomplete quasi-metric on X.

A topological space (X, τ ) is called quasi-metrizable if there is a quasi-

metric d on X such that τ = τ d.

Definition 2.1.3. An order on a nonempty set X is a binary relation ≤ on

X such that for all x, y, z ∈ X:

(i) x ≤ x (reflexivity);

(ii) x ≤ y and y ≤ x ⇒ x = y (antisymmetry);

(iii) x ≤ y and y ≤ z ⇒ x ≤ z (transitivity).

Definition 2.1.4. An ordered set is a pair (X,≤) such that ≤ is an order

on the (nonempty) set X.

A totally ordered set is an ordered set (X,≤) such that for each x, y ∈ X,

x ≤ y or y ≤ x.

Definition 2.1.5. If d is a quasi-metric on a (nonempty) set X, the order

≤d induced by d is defined by:

x ≤d y ⇐⇒ d(x, y) = 0.
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and it is called the specialization order.

It is clear that indeed (X,≤d) is an ordered set.

Definition 2.1.6. An ordered set (X,≤) is called a lattice if each x, y ∈ X

have a supremum x ∨ y and an infimum x ∧ y.

It is clear that each totally ordered set (X,≤) is a lattice because if for

x, y ∈ X we have, for instance, x ≤ y, then we can define x ∨ y = y and

x ∧ y = x.

Definition 2.1.7. A quasi-metric lattice is a triple (X, d,≤) such that (X, d)

is a quasi-metric space and (X,≤) is a lattice such that:

d(x ∨ z, y ∨ z) ≤ d(x, y) and d(x ∧ z, y ∧ z) ≤ d(x, y)

The very foundation of our study of closeness or remoteness among ele-

ments of a set is based on the following definitions of t-norm and t-conorm.

Definition 2.1.8. [61]. A continuous t-norm is a binary operation ∗ :

[0, 1] × [0, 1] → [0, 1] such that: (i) ∗ is commutative and associative, (ii)

∗ is continuous, (iii) a ∗ 1 = a for all a ∈ [0, 1], and (iv) a ∗ b ≤ c ∗ d when

a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Three paradigmatic examples of continuous t-norms are ∧, Prod and ∗L

(the Lukasiewicz t-norm), which are defined by a ∧ b = min{a, b}, aProdb =

a · b and a ∗L b = max{a + b − 1, 0}, respectively.

Remark. Note that by conditions (iii), (iv), above, ∗ ≤ ∧ for every contin-

uous t-norm ∗.

Definition 2.1.9. [40]. A continuous t-conorm is a binary operation ⋄ :

[0, 1]× [0, 1] → [0, 1] such that: (i) ⋄ is commutative and associative, (ii) ⋄ is

continuous, (iii) a ⋄ 0 = a for all a ∈ [0, 1] and (iv) a ⋄ b ≤ c ⋄ d when a ≤ c

and b ≤ d (a, b, c, d ∈ [0, 1]).
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Remark. It is known that x ∨ y ≤ x ⋄ y for any continuous t-conorm ⋄, if

x ∨ y is the continuous t-conorm max(x, y).

The minimum and maximum t-norms where proposed by L.A. Zadeh [68]

to perform several logical operations on fuzzy sets.

Definition 2.1.10. [13]. For a given t-norm ∗ and x, y ∈ [0, 1], the t-conorm

∗′ defined as:

x ∗′ y = 1 − ((1 − x) ∗ (1 − y))

is called the dual t-conorm of ∗.

Similarly, for any given t-conorm ⋄, the t-norm ⋄′ defined as:

x ⋄′ y = 1 − ((1 − x) ⋄ (1 − y))

is called the dual t-norm of ⋄.

Definition 2.1.11. [13]. If ∗ is a t-norm (respectively ⋄ is a t-conorm) such

that:

lim
n→∞

(x ∗ x)(n) = 0

where (x ∗ x)(n) denotes the nth power of the t-norm (respectively t-conorm)

defined as: x∗x∗x...∗x, then we say that ∗ (respectively ⋄) is Archimedean.

2.2 Fuzzy structures definitions

This section shows the definitions we have used for quasi-metric space struc-

tures.

Definition 2.2.1. [22]. A KM-fuzzy quasi-pseudo-metric on a set X is a

pair (M, ∗) such that ∗ is a continuous t-norm and M is a fuzzy set in

X × X × [0,∞) such that for all x, y, z ∈ X:

(KM1) M(x, y, 0) = 0;
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(KM2) M(x, x, t) = 1 for all t > 0;

(KM3) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s ≥ 0;

(KM4) M(x, y, ) : [0,∞) → [0, 1] is left continuous.

Definition 2.2.2. [8, 22]. A KM-fuzzy quasi-metric on a set X is a KM-

fuzzy quasi-pseudo-metric (M, ∗) onX that satisfies the following condition:

(KM2’) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0.

Remark. Note that, in their notion of fuzzy metric space, Kramosil and

Michalek require condition lim
t→∞

M(x, y, t) = 1. However this condition is not

necessary in our context.

Definition 2.2.3. [34]. A KM-fuzzy (pseudo-)metric on a set X is a KM-

fuzzy quasi-(pseudo-)metric (M, ∗) on X such that for each x, y ∈ X:

(KM5) M(x, y, t) = M(y, x, t) for all t > 0.

Definition 2.2.4. [8, 22]. A KM-fuzzy (quasi-)(pseudo-)metric space is a

triple (X, M, ∗) such that X is a nonempty set and (M, ∗) is a KM-fuzzy

(quasi-)(pseudo-)metric on X.

Remark. The following useful fact is well-known [8, 22]: Let (X, M, ∗)

be a KM-fuzzy quasi-metric space. Then, for each x, y ∈ X, the function

M(x, y, ) is nondecreasing.

Definition 2.2.5. [22]. A KM-fuzzy quasi-metric space (X, M, ∗) such that

M(x, y, t) ≥ min{M(x, z, t), M(z, y, t)} for all x, y, z,∈ X, t > 0, is called a

non-Archimedean KM-fuzzy quasi-metric space, and (M, ∗) is called a non-

Archimedean KM-fuzzy quasi-metric on X.
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If (M, ∗) is a KM-fuzzy quasi-metric on a set X, it is obvious that (M−1, ∗)

is also a KM-fuzzy quasi-metric on X, where M−1 is the fuzzy set in X ×

X × [0,∞) defined by

M−1(x, y, t) = M(y, x, t).

Moreover, if we denote by M i the fuzzy set in X × X × [0,∞) given by

M i(x, y, t) = min{M(x, y, t), M−1(x, y, t)},

then (M i, ∗) is, clearly, a KM-fuzzy metric on X.

Similarly to the fuzzy metric case, each KM-fuzzy quasi-metric (M, ∗) on

a set X induces a T0 topology τM on X which has as a base the family of

open balls

{BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0},

where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} (see [22, 24]).

Example 2.2.1. [22]. Let (X, d) be a quasi-metric space and let Md be the

function defined on X × X × [0,∞) by Md(x, y, 0) = 0 and

Md(x, y, t) =
t

t + d(x, y)

for all t > 0. Then, for each continuous t-norm ∗, (Md, ∗) is a KM-fuzzy

quasi-metric on X called the KM-fuzzy quasi-metric induced by d, and

(X, Md, ∗) is called the standard KM-fuzzy quasi-metric space of (X, d). Fur-

thermore, it is easy to check that (Md)
−1 = Md−1 and (Md)

i = Mds . Finally,

the topology τ d coincides with the topology τMd
.

We say that a topological space (X, τ) admits a compatible KM-fuzzy

quasi-metric if there is a KM-fuzzy quasi-metric (M, ∗) on X such that τ =

τM .

Then, it follows from Example 2.2.1 above that every quasi-metrizable

topological space admits a compatible KM-fuzzy quasi-metric.
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Conversely, it was shown in [22] that for each KM-fuzzy quasi-metric

space (X, M, ∗), the countable family {Un : n = 2, 3, ...} is a base for a

quasi-uniformity UM on X compatible with τM ,where

Un = {(x, y) ∈ X × X : M(x, y, 1/n) > 1 − 1/n}.

Consequently, for every KM-fuzzy quasi-metric space (X, M, ∗), the topo-

logical space (X, τM) is quasi-metrizable.

Moreover, the conjugate quasi-uniformity (UM)−1 coincides with UM−1

and it is compatible with τM−1 .

A KM-fuzzy metric space (X, M, ∗) is complete [17, 67] provided that each

Cauchy sequence in X is convergent with respect to τM , where a sequence

(xn)n in X is said to be a Cauchy sequence if for each ε ∈ (0, 1) and each

t > 0 there is n0 ∈ N such that M(xn, xm, t) > 1 − ε for all n, m ≥ n0.

According to [22, 24], a KM-fuzzy quasi-metric space (X, M, ∗) is called

bicomplete if (X, M i, ∗) is a complete fuzzy metric space. In this case, we

say that (M, ∗) is a bicomplete fuzzy quasi-metric on X.

Due to its relevance, a more recent definition of a fuzzy quasi-metric [17]

is given:

Definition 2.2.6. [17]. A GV-fuzzy quasi-metric on a set X is a pair (M, ∗)

such that ∗ is a continuous t-norm and M is a fuzzy set in X × X × (0,∞)

such that for x, y, z ∈ X and t, s > 0:

(GV1) M(x, y, t) > 0.

(GV2) x = y if and only if M(x, y, t) = M(y, x, t) = 1.

(GV3) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s).

(GV4) M(x, y, ) : (0,∞) → [0, 1] is continuous.
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Definition 2.2.7. [17]. A GV-fuzzy (pseudo-)metric on a set X is a GV-

fuzzy quasi-(pseudo-)metric (M, ∗) on X such that for each x, y ∈ X:

(GV5) M(x, y, t) = M(y, x, t).

Definition 2.2.8. [17]. A GV-fuzzy (quasi-)(pseudo-)metric space is a triple

(X, M, ∗) such that X is nonempty set and (M, ∗) is a GV-fuzzy (quasi-)

(pseudo-)metric (M, ∗) on X.

Obviously, each GV-fuzzy (quasi-)metric space (X, M, ∗) can be consid-

ered as a fuzzy (quasi-)metric space, in the sense of Definition 2.2.2, by

defining M(x, y, 0) = 0 for all x, y ∈ X. Therefore, each GV-fuzzy quasi-

metric space induces a topology τM defined as in the KM-case. Moreover,

the properties of KM-fuzzy quasi-metrics given above remain valid for GV-

fuzzy quasi-metrics.

Finally, observe that the standard KM-fuzzy quasi-metric space (X, Md, ∗)

of Example 2.2.1 is actually a GV-fuzzy quasi-metric space.

Definition 2.2.9. [56]. An intuitionistic fuzzy quasi-metric on a set X is

a 4-tuple (M, N, ∗, ⋄) such that ∗ is a continuous t-norm, ⋄ is a continuous

t-conorm and M, N are fuzzy sets in X×X× [0,∞) such that for all x, y, z ∈

X :

(1) M(x, y, t) + N(x, y, t) ≤ 1 for all t ≥ 0;

(2) M(x, y, 0) = 0;

(3) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0;

(4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s ≥ 0;

(5) M(x, y, ) : [0,∞) → [0, 1] is left continuous;

(6) N(x, y, 0) = 1;
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(7) x = y if and only if N(x, y, t) = N(y, x, t) = 0 for all t > 0;

(8) N(x, y, t) ⋄ N(y, z, s) ≥ N(x, z, t + s) for all t, s ≥ 0;

(9) N(x, y, ) : [0,∞) → [0, 1] is left continuous.

Definition 2.2.10. [1]. An intuitionistic fuzzy metric on a set X is an

intuitionistic fuzzy quasi-metric (M, N, ∗, ⋄) on X such that for each x, y ∈

X :

(10) M(x, y, t) = M(y, x, t)

(11) N(x, y, t) = N(y, x, t) for all t > 0.

Remark. Note that the authors of [1] require in their notion of intuitionis-

tic fuzzy metric space lim
t→∞

M(x, y, t) = 1 and lim
t→∞

N(x, y, t) = 0 conditions.

However these conditions are not necessary in our context.

Definition 2.2.11. [56]. An intuitionistic fuzzy (quasi-)metric space is a 5-

tuple (X, M, N, ∗, ⋄) such that (M, N, ∗, ⋄) is an intuitionistic fuzzy (quasi-)

metric on a set X.

Remark. It is clear that if (X, M, N, ∗, ⋄) is an intuitionistic fuzzy (quasi-)

metric space, then (X, M, ∗) is a KM-fuzzy (quasi-)metric space.

If (M, N, ∗, ⋄) is an intuitionistic fuzzy quasi-metric on X, then one has

that (M−1, N−1, ∗, ⋄) is also an intuitionistic fuzzy quasi-metric on X, where

M−1 is the fuzzy set in X × X × [0,∞) defined by M−1(x, y, t) = M(y, x, t)

and N−1 is the fuzzy set in X×X×[0,∞) defined by N−1(x, y, t) = N(y, x, t).

Moreover, if we define M i as above and denote by N s the fuzzy set in

X × X × [0,∞) given by N s(x, y, t) = max{N(x, y, t), N−1(x, y, t)} then

(M i, N s, ∗, ⋄) is an intuitionistic fuzzy metric on X.
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In order to construct a suitable topology on an intuitionistic fuzzy quasi-

metric space (X, M, N, ∗, ⋄), Romaguera and Tirado considered in [56] the

natural “balls” B(x, ε, t) defined, similarly to [47] and [1], by:

B(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε, N(x, y, t) < ε}

for all x ∈ X, 0 < ε < 1, and t > 0.

Then, they proved that B(x, ε, t) = BM(x, ε, t) (compare [25] for the met-

ric case), and thus the topology induced by (M, N, ∗, ⋄) coincides with the

topology τM induced by (M, ∗).

In [47] Park introduced the notion of a complete intuitionistic fuzzy

metric space. It is proved in [25] that an intuitionistic fuzzy metric space

(X, M, N, ∗, ⋄) is complete if and only if (X, M, ∗) is complete.

For the quasi-metric case we have the following.

Definition 2.2.12. [56]. (a) A sequence (xn)n in an intuitionistic fuzzy

quasi-metric space (X, M, N, ∗, ⋄) is called a Cauchy sequence if for each

ε ∈ (0, 1), t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε, and

N(xn, xm, t) < ε, for all n, m ≥ n0.

(b) An intuitionistic fuzzy quasi-metric space (X, M, N, ∗, ⋄) is called bi-

complete if (X, M i, N s, ∗, ⋄) is a complete intuitionistic fuzzy metric space.

It is shown in [56] that a sequence in an intuitionistic fuzzy quasi-metric

space (X, M, N, ∗, ⋄) is a Cauchy sequence if and only if it is a Cauchy

sequence in the fuzzy metric space (X, M i, ∗), and that an intuitionistic

(X, M, N, ∗, ⋄) is bicomplete if and only if the fuzzy quasi-metric space (X,

M, ∗) is bicomplete.



Chapter 3

The bicompletion of fuzzy

quasi-metric spaces

3.1 Introduction

The problem of the completion of fuzzy metric spaces and fuzzy quasi-metric

spaces has received a certain attention in the last years. In this chapter we

will discuss this problem for KM-fuzzy quasi-metric spaces.

Kramosil and Michalek introduced in [34] their celebrated notion of a

fuzzy metric space. This notion has an evident appeal due to its close rela-

tionship with probabilistic metric spaces. In particular, they observed that

the class of fuzzy metric spaces in their sense, is “equivalent” to the class

of Menger spaces having a continuous t-norm. Sherwood proved in [65] that

every Menger space belonging to this class has a completion which is unique

up to isometry, and thus one can easily deduce that every KM-fuzzy metric

space has a completion which is unique up to isometry.

However, the problem of the completion of fuzzy metric spaces in the

sense of George and Veeramani is quite different. In fact, an example of a

GV-fuzzy metric space which does not admit a GV-fuzzy completion was
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presented in [21], whereas in [23] it was obtained a characterization of those

GV-fuzzy metric spaces that are GV-completable.

Recently, J. Gutiérrez Garćıa, M.A. de Prada Vicente and S. Romaguera

[27, 28] have established connections between these kinds of fuzzy metric

spaces and uniform structures in the sense of Hutton. While J. Gutiérrez

Garćıa, S. Romaguera and M. Sanchis have extended the notion of fuzzy

metric in the sense of Kramosil and Michalek to a uniform setting [29].

The concept of metric fuzziness was generalized to the quasi-metric set-

ting in [8, 22], where several properties of these structures were discussed

(see Chapter 2). Recently, there were given in [52, 56, 57], applications of

fixed point theorems, in the realm of fuzzy quasi-metric spaces, to deduce the

existence and uniqueness of solution for the recurrence equations associated

to some types of algorithms, whereas in [48] it was presented a study of a

notion of Hausdorff fuzzy quasi-pseudo-metric on the collection of nonempty

subsets of a given fuzzy quasi-metric space.

In this context, the completion of fuzzy quasi-metric spaces appears as

a natural and attractive question, which was discussed for GV-fuzzy quasi-

metric spaces in [24]. Here we shall show that every KM-fuzzy quasi-metric

space has a (KM-fuzzy quasi-metric) bicompletion which is unique up to

isometry. Then, the completion of a KM-fuzzy metric space is restated as

a particular case. Finally, we shall apply our constructions to study the

bicompletion of non-Archimedean fuzzy quasi-metric spaces and intuitionistic

fuzzy quasi-metric spaces respectively.

We emphasize at this point that while Sherwood’s construction is strongly

based on the properties of Lévy’s metric, our construction avoids the use of

Lévy’s metric and directly uses suprema of subsets of [0,1] and lower limits

of sequences in [0,1].
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3.2 The completion of a fuzzy metric space

In this section we recall some known and crucial results on the completion of

KM-fuzzy metric spaces mentioned in Section 3.1 which should be useful to

a better understanding of our motivation and also of the constructions made

in the rest of the chapter.

A distribution function [62] is a function F : R → [0, 1] such that:

(i) F is nondecreasing (i.e., F (s) ≤ F (t) whenever s ≤ t);

(ii) F is left continuous;

(iii) lim
t→−∞

F (t) = 0 and lim
t→+∞

F (t) = 1.

We denote by ∆ the set of distribution functions, and by ∆+ the subset

of ∆ consisting of those distribution functions F such that F (0) = 0.

Remark. Since in our context condition lim
t→+∞

F (t) = 1 is not necessary,

the family of functions F : R → [0, 1] satisfying conditions (i), (ii), above,

and lim
t→−∞

F (t) = 0, will be denoted by Γ in the following, and the family of

elements F of Γ such that F (0) = 0 will be denoted by Γ+.

A (generalized) probabilistic metric space [62] is a pair (X,F) such that

X is a set and F is a mapping from X × X into ∆+ (resp. into Γ+) such

that for all x, y, z ∈ X:

(i) F(x, y)(t) = 1 for all t > 0 if and only if x = y;

(ii) F(x, y) = F(y, x);

(iii) If F(x, y)(t) = 1 and F(y, z)(s) = 1, then F(x, z)(t + s) = 1.

As usual, we shall write Fxy instead of F(x, y) if no confusion arises.

In the following, generalized probabilistic metric spaces will be simply

called g-probabilistic metric spaces.
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A sequence (xn)n in a g-probabilistic metric space (X,F) is said to be a

Cauchy sequence if for each r ∈ (0, 1) and each t > 0 there exists n0 ∈ N

such that Fxnxm
(t) > 1 − r for all n, m ≥ n0.

(X,F) is called complete if for each Cauchy sequence (xn)n there exists

x ∈ X satisfying the following condition: for each r ∈ (0, 1) and each t > 0

there exists n0 ∈ N such that Fxxm
(t) > 1 − r for all n ≥ n0; i.e., if for each

t > 0, limn Fxxn
(t) = 1.

A (g-)Menger space is a triple (X,F , ∗) such that (X,F) is a (g-)probabi-

listic metric space and ∗ is a t-norm such that for all x, y, z ∈ X and t, s ≥ 0:

(iv) F(x, y)(t + s) ≥ F(x, z)(t) ∗ F(z, y)(s).

Since every (g-)Menger space can be considered as a (g-)probabilistic

metric space, the notions of a Cauchy sequence in (g-)Menger spaces and of

a complete (g-)Menger space are defined in the obvious manner.

In fact, each (g-)Menger space (X,F , ∗) induces a topology τF on X

defined as follows:

τF = {A ⊆ X : for each x ∈ A there exist r ∈ (0, 1), t > 0, such that

BF(x, r, t) ⊆ A},

where BF (x, r, t) = {y ∈ X : Fxy(t) > 1 − r} for all x ∈ X, r ∈ (0, 1), t > 0.

Furthermore, if the t-norm ∗ is continuous, then (X, τF) is a metrizable

topological space because the countable collection

{{(x, y) ∈ X × X : Fxy(1/n) > 1 − 1/n} : n ∈ N},

is a base for a uniformity on X such that its induced topology coincides with

τF (see [62]).

Note that, in particular, a sequence (xn)n in (X,F , ∗) converges to x ∈ X

with respect to τF if and only if for each t > 0, limn Fxxn
(t) = 1.
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A mapping f from a (g-)Menger space (X,F , ∗) to a (g-)Menger space

(Y,G, ⋆) is called an isometry if for each x, y ∈ X :

G(f(x), f(y)) = F(x, y).

It is clear that any isometry is one-to-one.

Two (g-)Menger spaces (X,F , ∗) and (Y,G, ⋆) are called isometric if there

is an isometry from (X,F , ∗) onto (Y,G, ⋆).

A complete (g-)Menger space is said to be a completion of a given (g-)

Menger space (X,F , ∗) if it has a dense subspace isometric to (X,F , ∗).

Sherwood proved in [65] that every (g-)Menger space (X,F , ∗) such that

∗ is continuous has a completion which is unique up to isometry (a differ-

ent construction of the completion, based on the theory of fixed point, was

obtained by Sempi in [64]).

Sherwood’s construction is strongly based on the properties of Lévy’s

metric L on ∆ (in fact on Γ), which is defined as follows [19, 38]:

L(F, G) = inf{h > 0 : F (t − h) − h ≤ G(t) ≤ F (t + h) + h, for all t > 0},

whenever F, G ∈ Γ.

It is well known that (Γ, L) is a complete metric space. Since Γ+ is a

closed subset of Γ it follows that (Γ+, L) is also a complete metric space.

Then, and following Sherwood [65], denote by ∼ the binary relation de-

fined on the set S of all Cauchy sequences in (X,F , ∗) by

(xn)n ∼ (yn)n ⇐⇒ limn Fxnyn
(t) = 1 for all t > 0,

whenever (xn)n, (yn)n ∈ S.

Thus ∼ is an equivalence relation on S. Let X̃F be the quotient S/ ∼ .

The elements of X̃F will be denoted by [(xn)n], where (xn)n ∈ S.
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For each pair (xn)n, (yn)n ∈ S, it follows that (Fxnyn
)n is a Cauchy se-

quence in the complete metric space (Γ+, L), so this sequence converges to

an element of Γ+ which we denote by limL
n Fxnyn

.

Furthermore, for each (x′
n)n ∈ [(xn)n], and each (y′

n)n ∈ [(yn)n], one has

that

limL
n Fxnyn

= limL
n Fx′

ny′
n
.

Consequently, we can define a function F̃ : X̃F × X̃F → [0, 1], by

F̃([(xn)n], [(yn)n])(0) = 0,

and

F̃([(xn)n], [(yn)n])(t) = limL
n Fxnyn

(t)

whenever t > 0.

Then (X̃F , F̃ , ∗) is a complete g-Menger space (a complete Menger space

if (X,F) is a Menger space), and the mapping

iF : X → X̃F

given by

iF (x) = [(x, x, ...)]

whenever x ∈ X, is an isometry between (X,F , ∗) and a dense subspace of

(X̃F , F̃ , ∗).

Moreover, if (Y,G, ⋆) is a complete g-Menger space having a dense sub-

space isometric to (X,F , ∗), then (Y,G, ⋆) is isometric to (X̃F , F̃ , ∗).

The (complete) g-Menger space (X̃F , F̃ , ∗) is called the completion of

(X,F , ∗).

Next we shall apply Sherwood’s construction to directly obtain the com-

pletion of any KM-fuzzy metric space.
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In the remainder of this thesis, KM-fuzzy (quasi-)metric spaces will be

simply called fuzzy (quasi-)metric spaces.

As we indicated above, Kramosil and Michalek observed in [34] that there

exists a natural “equivalence” between the class of g-Menger spaces with

continuous t-norm and the class of fuzzy metric spaces.

Indeed, if (X,F , ∗) is a g-Menger space such that ∗ is a continuous t-norm,

then we define MF : X × X × [0, +∞) → [0, 1] by

MF (x, y, t) = Fxy(t),

for all t ≥ 0, and thus (X, MF , ∗) is a fuzzy metric space.

Conversely, if (X, M, ∗) is a fuzzy metric space, then we define FM :

X × X → Γ+ by

FM(x, y)(t) = M(x, y, t),

for all t > 0, and FM(x, y)(t) = 0 for all t ≤ 0.

Thus (X,FM , ∗) is a g-Menger space, and we shall write Mxy instead of

FM(x, y) if no confusion arises.

A complete fuzzy metric space is said to be a completion of a given fuzzy

metric space (X, M, ∗) if it has a dense subspace isometric to (X, M, ∗).

A mapping f from a fuzzy metric space (X, M, ∗) to a fuzzy metric

space (Y, N, ⋆) is called an isometry if for each x, y ∈ X and each t > 0,

N(f(x), f(y), t)) = M(x, y, t). It is clear that every isometry is a one-to-one

mapping.

Two fuzzy metric spaces (X, M, ∗) and (Y, N, ⋆) are called isometric if

there is an isometry from X onto Y.

Then, we can immediately adapt Sherwood’s construction to the fuzzy

metric context as follows (this approach is taken from [50]).

Let (X, M, ∗) be a fuzzy metric space. Denote by ∼ the binary relation

defined on the set S of all Cauchy sequences in (X, M, ∗) by
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(xn)n ∼ (yn)n ⇐⇒ limn M(xn, yn, t) = 1 for all t > 0,

whenever (xn)n, (yn)n ∈ S.

Then ∼ is an equivalence relation on S. Let X̃M be the quotient S/ ∼ .

The elements of X̃M will be denoted by [(xn)n], where (xn)n ∈ S.

For each pair (xn)n, (yn)n ∈ S, we have that (Mxnyn
)n is a Cauchy se-

quence in the complete metric space (Γ+, L), so this sequence converges to

an element of Γ+ which is denoted by limL
n Mxnyn

.

Furthermore, for each (x′
n)n ∈ [(xn)n], and each (y′

n)n ∈ [(yn)n], one has

that

limL
n Mxnyn

= limL
n Mx′

ny′
n
.

Consequently, we can define a function M̃ : X̃M × X̃M × [0,∞) → [0, 1],

by

M̃([(xn)n], [(yn)n], 0) = 0,

and

M̃([(xn)n], [(yn)n], t) = limL
n Mxnyn

(t)

whenever t > 0.

Thus (X̃M , M̃, ∗) is a complete fuzzy metric space, and the mapping

iM : X → X̃M

given by

iM (x) = [(x, x, ...)]

whenever x ∈ X, is an isometry between (X, M, ∗) and a dense subspace of

(X̃M , M̃ , ∗).

Moreover, if (Y, MY , ∗Y ) is a complete fuzzy metric space having a dense

subspace isometric to (X, M, ∗), then (Y, MY , ∗Y ) is isometric to (X̃M , M̃ , ∗).

Therefore we have the following.
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Theorem 3.2.1. Every fuzzy metric space has a completion which is unique

up to isometry.

The (complete) fuzzy metric space (X̃M , M̃ , ∗) is called the completion of

(X, M, ∗).

In the rest of this section we will consider the completion of GV-fuzzy

metric spaces.

The notions of a Cauchy sequence, completeness and completion for GV-

fuzzy metric spaces are defined as for fuzzy metric spaces.

In [21] it was obtained an example of a GV-fuzzy metric space which does

not admit a GV-fuzzy metric completion.

Such an example suggests, in a natural way, the problem of characterizing

completable GV-fuzzy metric spaces, i.e., those GV-fuzzy metric spaces that

admit a fuzzy metric completion which is a GV-fuzzy metric space; such a

completion if exists is called a GV-fuzzy metric completion. This problem

was solved in [23] as follows.

Theorem 3.2.2. A GV-fuzzy metric space (X, M, ∗) is completable if and

only if for each pair (an)n, (bn)n, of Cauchy sequences in X, the assignment

t 7→ limn M(an, bn, t)

is a continuous function on (0,∞) with values in (0, 1].

Furthermore, if a GV-fuzzy metric space is completable, then its GV-fuzzy

metric completion is unique up to isometry.

3.3 The bicompletion of a fuzzy quasi-metric

space

Definition 3.3.1. [22, 24]. A mapping f from a fuzzy quasi-metric space

(X, M, ∗) to a fuzzy quasi-metric space (Y, N, ⋆) is said to be an isometry if
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M(x, y, t) = N(f(x), f(y), t) for each x, y ∈ X and each t > 0.

The fuzzy quasi-metric spaces (X, M, ∗) and (Y, N, ⋆) are called isometric

if there is an isometry from X onto Y.

Definition 3.3.2. [22, 24]. Let (X, M, ∗) be a fuzzy quasi-metric space.

A (fuzzy quasi-metric) bicompletion of (X, M, ∗) is a bicomplete fuzzy quasi-

metric space (Y, N, ⋆) such that (X, M, ∗) is isometric to a τN i-dense subspace

of Y .

In the sequel we shall construct the bicompletion of a fuzzy quasi-metric

space.

Indeed, let (X, M, ∗) be a fuzzy quasi-metric space.

Denote by S the collection of all Cauchy sequences in (X, M i, ∗).

Define a relation ∼ on S by

(xn)n ∼ (yn)n ⇐⇒ sup
0<s<t

lim M i(xn, yn, s) = 1 for all t > 0,

where by lim M i(xn, yn, s) we denote, as usual, the lower limit of the sequence

(M i(xn, yn, s))n, i.e.,

lim M i(xn, yn, s) = sup
k

inf
n≥k

M i(xn, yn, s).

Then:

Lemma 3.3.1. ∼ is an equivalence relation on S.

Proof:

Let (xn)n, (yn)n, (zn)n ∈ S. Clearly (xn)n ∼ (xn)n because M i(xn, xn, s) = 1

for all n ∈ N and s > 0, so that for each t > 0,

sup
0<s<t

lim M i(xn, xn, s) = 1.

Moreover, if (xn)n ∼ (yn)n, it immediately follows that (yn)n ∼ (xn)n

because M i(xn, yn, s) = M i(yn, xn, s) for all n ∈ N and s > 0, so that for
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each t > 0,

sup
0<s<t

lim M i(yn, xn, s) = sup
0<s<t

lim M i(xn, yn, s) = 1.

Finally, suppose that (xn)n ∼ (yn)n and (yn)n ∼ (zn)n. Let t > 0. We

shall prove that sup0<s<t lim M i(xn, zn, s) = 1.

To this end, choose an arbitrary ε ∈ (0, 1). Then, there exists δ ∈ (0, 1)

such that (1 − δ) ∗ (1 − δ) > 1 − ε. Hence, there exists s′ ∈ (0, t) such that

lim M i(xn, yn, s
′) > 1 − δ, and consequently there exists k1 ∈ N such that

M i(xn, yn, s
′) > 1 − δ,

for all n ≥ k1.

Now choose r > 0 such that s′ + r < t. Since (yn)n ∼ (zn)n, we have that

sup0<s<r lim M i(yn, zn, s) = 1. Hence, there exist s′′ ∈ (0, r) and k2 ≥ k1

such that

M i(yn, zn, s′′) > 1 − δ,

for all n ≥ k2.

Therefore

M i(xn, zn, s
′ + s′′) ≥ M i(xn, yn, s

′) ∗M i(yn, zn, s
′′) ≥ (1− δ) ∗ (1− δ) > 1− ε,

for all n ≥ k2, which implies that

lim M i(xn, zn, s
′ + s′′) ≥ 1 − ε.

Since 0 < s′ + s′′ < t, we deduce that

sup
0<s<t

lim M i(xn, zn, t) = 1,

and hence (xn)n ∼ (zn)n.

�
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Now define a function MS : S × S × [0,∞) → [0, 1] as follows:

MS((xn)n, (yn)n, 0) = 0,

and

MS((xn)n, (yn)n, t) = sup
0<s<t

lim M(xn, yn, s),

for all t > 0.

Then:

Lemma 3.3.2. MS is a KM-fuzzy quasi-pseudo-metric on S.

Proof:

Condition (KM1) is obviously satisfied by the definition of MS.

Let (xn)n, (yn)n, (zn)n ∈ S., t, s > 0, and put α = MS((xn)n, (yn)n, t),

β = MS((yn)n, (zn)n, s) and γ = MS((xn)n, (zn)n, t + s). We shall show that

α ∗ β ≤ γ.

If α = 0 or β = 0, the conclusion is obvious. So we assume that α > 0 and

β > 0. Choose an arbitrary ε ∈ (0, min{α, β}/2). Then, there exist t′ ∈ (0, t)

and s′ ∈ (0, s) such that

α − ε < MS((xn)n, (yn)n, t
′) and β − ε < MS((yn)n, (zn)n, s

′).

Furthermore, there exists nε such that for each k ≥ nε,

MS((xn)n, (yn)n, t
′) − ε < M(xk, yk, t

′), and

MS((yn)n, (zn)n, s′) − ε < M(yk, zk, s
′).

Then

(α − 2ε) ∗ (β − 2ε) ≤ (MS((xn)n, (yn)n, t
′) − ε) ∗ (MS((yn)n, (zn)n, s

′) − ε)

≤ M(xk, yk, t
′) ∗ M(yk, zk, s

′)

≤ M(xk, zk, t
′ + s′).

for all k ≥ nε.
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Therefore

(α − 2ε) ∗ (β − 2ε) ≤ inf
k≥nε

M(xk, zk, t
′ + s′) ≤ lim M(xn, zn, t′ + s′)

≤ sup
0<r<t+s

lim M(xn, zn, t
′ + s′) = γ.

By continuity of ∗, it follows that α ∗ β ≤ γ. So condition (KM3) is

satisfied.

Finally, fix (xn)n, (yn)n ∈ S and t > 0, and let (tj)j be a strictly increasing

sequence of positive real numbers such that limj tj = t. Since tj < t for all j,

we clearly have that:

MS((xn)n, (yn)n, tj) ≤ MS((xn)n, (yn), t),

for all j.

Moreover, given ε > 0, there is sε ∈ (0, t) such that

MS((xn), (yn), t) < ε + sup
n

inf
k≥n

M(xk, yk, sε).

Let jε such that tj > sε for all j ≥ jε. From the preceding relation, we

deduce that

MS((xn), (yn), t) ≤ ε + sup
0<s<tj

lim M(xn, yn, s),

for all j ≥ jε. So

MS((xn)n, (yn)n, tj) ≤ MS((xn), (yn), t) ≤ ε + MS((xn)n, (yn)n, tj),

for all j ≥ jε. We conclude that MS((xn)n, (yn)n, ) is left continuous.

Therefore, condition (KM4) is satisfied.

�

Now denote by X̃ the quotient S/ ∼, and by [(xn)n] the class of the

element (xn)n of S.
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Lemma 3.3.3. For each (xn)n, (yn)n ∈ S and each (an)n ∈ [(xn)n], (bn)n ∈

[(yn)n], one has

MS((xn)n, (yn)n, t) = MS((an)n, (bn)n, t),

for all t > 0.

Proof:

Let t > 0. Given ε ∈ (0, t/2) we obtain

MS((xn)n, (yn)n, t)

≥ MS((xn)n, (an)n, ε) ∗ MS((an)n, (bn)n, t − 2ε) ∗ MS((bn)n, (yn)n, ε)

= MS((an)n, (bn)n, t − 2ε).

Since MS((an)n, (bn)n, ) is left continuous, we deduce that

lim
ε→0

MS((an)n, (bn)n, t − 2ε) = MS((an)n, (bn)n, t).

Thus MS((xn)n, (yn)n, t) ≥ MS((an)n, (bn)n, t).

The same argument shows that MS((an)n, (bn)n, t) ≥ MS((xn)n, (yn)n, t).

�

Lemma 3.3.4. [22]. Let (X, M, ∗) be a fuzzy quasi-metric space and (Y, N, ⋆)

a bicomplete fuzzy quasi-metric space. If there is a τM i-dense subset A of X

and an isometry f : (A, M, ∗) → (Y, N, ⋆), then there exists a unique isometry

F : (X, M, ∗) → (Y, N, ⋆) such that F |A= f.

Now, for each [(xn)n], [(yn)n] ∈ X̃, define

M̃([(xn)n], [(yn)n], 0) = 0,

and

M̃([(xn)n], [(yn)n], t) = MS(xn, yn, t),
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for t > 0.

Then M̃ is a function from X̃ × X̃ × [0,∞) to [0, 1] (indeed, it is well-

defined by Lemma 3.3.3).

We also define i : X → X̃ such that, for each x ∈ X, i(x) is the class of

the constant sequence x, x, ...

From the above constructions we obtain:

Theorem 3.3.1. Let (X, M, ∗) be a fuzzy quasi-metric space. Then:

(a) (M̃, ∗) is a fuzzy quasi-metric on X̃.

(b) i(X) is dense in (X̃, M̃ i, ∗).

(c) (X, M, ∗) is isometric to (i(X), M̃, ∗).

(d) (M̃, ∗) is bicomplete.

(e) If (Y, N, ∗) is a bicomplete fuzzy quasi-metric space such that (X, M, ∗)

is isometric to a τN i-dense subspace of Y , then (Y, N, ∗) and (X̃, M̃ , ∗)

are isometric.

Proof:

(a) (M̃, ∗) satisfies conditions (KM1), (KM3) and (KM4) of Definition 2.2.2

as an immediate consequence of Lemma 3.3.2.

Now let (xn)n, (yn)n ∈ S such that M̃([(xn)n], [(yn)n], t) = 1 for all t > 0.

If (zn)n ∈ [(yn)n], it follows from Lemma 3.3.3 that MS((zn)n, (yn)n, t) = 1 for

all t > 0, i.e., (zn)n ∈ [(yn)n]. The same argument shows that (zn)n ∈ [(xn)n]

whenever (zn)n ∈ [(yn)n]. We conclude that M̃([(xn)n], [(yn)n], t) = 1 for

all t > 0, if and only if [(xn)n] = [(yn)n]. Consequently (M̃, ∗) is a fuzzy

quasi-metric on X̃.

(b) Let (xn)n ∈ S, ε ∈ (0, 1) and t > 0. Choose an sε ∈ (0, t). Since (xn)n

is a Cauchy sequence in (X, M i, ∗) there is nε ∈ N such that M i(xk, xnε
, sε) >
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1 − ε/2 for all k ≥ nε. Thus

M̃([(xn)n], i(xnε
), t) = sup

0<s<t
sup

n
inf
k≥n

M(xk, xnε
, s)

≥ sup
n

inf
k≥n

M(xk, xnε
, sε)

≥ inf
k≥nε

M(xk, xnε
, sε)

≥ inf
k≥nε

M i(xk, xnε
, sε)

≥ 1 − ε/2 > 1 − ε.

Similarly, we deduce that

M̃−1([(xn)n], i(xnε
), t) > 1 − ε.

We have shown that i(X) is dense in (X̃, M̃ i, ∗).

(c) This is almost obvious because for each x, y ∈ X and t > 0 we have

M̃(i(x), i(y), t) = sup
0<s<t

M(x, y, s) = M(x, y, t).

(d) Let (x̃n)n be a Cauchy sequence in (X̃, M̃ i, ∗). Then, there is an

increasing sequence (nk)k in N such that

M̃ i(x̃n, x̃m, 2−k) > 1 − 2−k,

for all n, m ≥ nk.

Since i(X) is dense in (X̃, M̃ i, ∗), for each k ∈ N there is yk ∈ X such

that

M̃ i(x̃nk
, i(yk), 2

−k) > 1 − 2−k,

for all k ∈ N.

We show that (yk)k is a Cauchy sequence in (X, M i, ∗). To this end,

choose ε ∈ (0, 1) and t > 0. Take j ∈ N such that 2−j < t/3 and

(1 − 2−j) ∗ (1 − 2−j) ∗ (1 − 2−j) > 1 − ε.
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Then, for each k, m ≥ j, we have

M(yk, ym, t) = M̃(i(yk), i(ym), t) ≥ M̃(i(yk), i(ym), 3 · 2−j)

≥ M̃(i(yk), x̃nk
, 2−j) ∗ M̃(x̃nk

, x̃nm
, 2−j) ∗ M̃(x̃nm

, i(ym), 2−j)

≥ M̃(i(yk), x̃nk
, 2−k) ∗ M̃(x̃nk

, x̃nm
, 2−(k∧m))

∗M̃(x̃nm
, i(ym), 2−m)

≥ (1 − 2−k) ∗ (1 − 2−(min{k,m})) ∗ (1 − 2−m)

≥ (1 − 2−j) ∗ (1 − 2−j) ∗ (1 − 2−j) > 1 − ε,

and consequently (yk)k is a Cauchy sequence in (X, M i, ∗). Therefore ỹ ∈ X̃,

where ỹ := [(yk)k].

Finally, we prove that the sequence (x̃n)n converges to ỹ in (X̃, M̃ i, ∗).

Indeed, as in part (c) above, choose ε ∈ (0, 1) and t > 0. Take j ∈ N such

that 2−j < t/3, and

(1 − 2−j) ∗ (1 − 2−j) ∗ (1 − 2−j) > 1 − ε.

Since (yk)k is a Cauchy sequence in (X̃, M̃ i, ∗), the proof of part (b) shows

that there is k ≥ j such that

M̃ i(ỹ, i(yk), 2
−j) > 1 − 2−j.

Then, for n ≥ nk we obtain

M̃ i(ỹ, x̃n, t) ≥ M̃ i(ỹ, i(yk), 2
−j) ∗ M̃ i(i(yk), x̃nk

, 2−j) ∗ M̃ i(x̃nk
, x̃n, 2−j)

≥ (1 − 2−j) ∗ M̃ i(i(yk), x̃nk
, 2−k) ∗ M̃ i(x̃nk

, x̃n, 2
−k)

≥ (1 − 2−j) ∗ (1 − 2−k) ∗ (1 − 2−k)

≥ (1 − 2−j) ∗ (1 − 2−j) ∗ (1 − 2−j) > 1 − ε.

We conclude that (X̃, M̃, ∗) is bicomplete.

(e) This follows directly from Lemma 3.3.4 and standard arguments.
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�

Remark. The preceding theorem implies that every fuzzy quasi-metric space

(X, M, ∗) has a bicompletion which is unique up to isometry. We refer to

(X̃, M̃ , ∗) as the bicompletion of (X, M, ∗).

Remark. Note that if (X, M, ∗) is a fuzzy quasi-metric space, then M̃−1 =

M̃−1 on X̃. On the other hand, if (X, M, ∗) is a fuzzy metric space, then

(M̃, ∗) is a fuzzy metric on X̃, and thus the complete fuzzy metric space

(X̃, M̃ , ∗) is the completion of (X, M, ∗).

Next we apply our constructions to study the bicompletion of some paradig-

matic examples of fuzzy quasi-metric spaces. In order to help to the reader

we recall the construction of the bicompletion of a quasi-metric space (see

[12, 58] or p. 163 of [37]).

Let (X, d) be a quasi-metric space. Denote by Y the set of all Cauchy

sequences in the metric space (X, ds). For each (xn)n, (yn)n ∈ Y put (xn)n ∼

(yn)n if and only if limn ds(xn, yn) = 0. Then ∼ is an equivalence relation

on Y. Denote by XB the quotient Y/ ∼ . For each [(xn)n], [(yn)n] ∈ XB,

let dB([(xn)n], [(yn)n]) = limn d(xn, yn). Then (XB, dB) is a bicomplete quasi-

metric space such that (X, d) is isometric to a dense subspace of the metric

space (XB, (dB)s). The space (XB, dB) is said to be the bicompletion of

(X, d). Furthermore, the bicompletion coincides with the standard comple-

tion when (X, d) is a metric space.

Example 3.3.1. Let (X, d) be a quasi-metric space and let ∗ be a continuous

t-norm. Then, the pair (Md,01, ∗) is a fuzzy quasi-metric on X, where M is

the fuzzy set in X × X × [0,∞) given by Md,01(x, y, t) = 0 if d(x, y) ≥ t

and Md,01(x, y, t) = 1 if d(x, y) < t. Moreover, the topology τ d, induced by d,

coincides with the topology τMd,01
induced by (Md,01, ∗).

It is almost obvious that a sequence in X is a Cauchy sequence in (X, ds)

if and only if it is a Cauchy sequence in (X, (Md,01)
i, ∗), and thus it easily
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follows that X̃ = XB. For each [(xn)n], [(yn)n] ∈ X̃ and t > 0 we have

dB([(xn)n], [(yn)n]) < t ⇔ M̃d,01([(xn)n], [(yn)n]) = 1,

and hence M̃d,01 = MdB ,01 on X̃.

Example 3.3.2. Let (X, M, ∗) be a fuzzy quasi-metric space such that ∗L ≤

∗. Similarly to the metric case, the function dM : X × X → [0,∞) given by

dM(x, y) = sup{t ≥ 0 : 1 − M(x, y, t) ≥ t}, is a quasi-metric on X whose

induced topology coincides with τM (compare [8, Remark 7.6.1]).

It is clear that a sequence in X is Cauchy in (X, (dM)s) if and only if it

is Cauchy in (X, M i, ∗).

We show that (dM)B = dM̃ on XB.

Let [(xn)n], [(yn)n] ∈ XB. Put α = (dM)B([(xn)n], [(yn)n]) and β =

dM̃([(xn)n], [(yn)n]).

Then α = limn(sup{t ≥ 0 : t ≤ 1 − M(xn, yn, t}), and

β = sup{t ≥ 0 : t ≤ 1 − M̃([(xn)n], [(yn)n], t)}.

We first show that β ≤ α :

Let t > 0 such that t ≤ 1 − M̃([(xn)n], [(yn)n], t). Then

sup
0<s<t

sup
k

inf
n≥k

M(xn, yn, s) ≤ 1 − t.

Thus, for each s ∈ (0, t) and each k, we have

inf
n≥k

M(xn, yn, s) ≤ 1 − t.

Given ε ∈ (0, t/2), by definition of α there is n0 such that for each n ≥ n0,

γn < α + ε, where

γn = sup{r ≥ 0 : r ≤ 1 − M(xn, yn, r)}.

Choose s ∈ (0, t) such that t < s + ε. Then, for k = n0, there is n1 ≥ n0

such that

M(xn1 , yn1, s) < 1 − t + ε.
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So 0 < s − ε < t − ε < 1 − M(xn1 , yn1, s) ≤ 1 − M(xn1 , yn1, s − ε), and

consequently s − ε ≤ γn1
. Therefore t < γn1

+ 2ε, and thus t < α + 3ε, so

that t ≤ α. We conclude that β ≤ α.

Next we show that α ≤ β :

Claim: If t ≤ 1−M(xn, yn, t) eventually, then t ≤ 1−M̃([(xn)n], [(yn)n], t) :

Indeed, by hypothesis, there is n0 such that supn≥n0
M(xn, yn, t) ≤ 1 − t.

Let s ∈ (0, t). For each k choose nk ≥ max{n0, k}. Then

sup
k

inf
n≥k

M(xn, yn, s) ≤ sup
k

M(xnk
, ynk

, s) ≤

sup
k

M(xnk
, ynk

, t) ≤ sup
n≥n0

M(xn, yn, t) ≤ 1 − t.

Hence

M̃([(xn)n], [(yn)n], t) = sup
0<s<t

sup
k

inf
n≥k

M(xn, yn, s) ≤ 1 − t.

Finally, given ε > 0, there is n0 such that

α < ε + sup{t ≥ 0 : t ≤ 1 − M(xn, yn, t)},

for all n ≥ n0. By our claim

α < ε + sup{t ≥ 0 : t ≤ 1 − M̃([(xn)n], [(yn)n], t)} = ε + β.

We conclude that α ≤ β.

We conclude this section with some observations on the bicompletion of

GV-fuzzy quasi-metric spaces, for which, the situation is quite different to

the corresponding one for KM-fuzzy quasi-metric spaces, of course. In fact,

it was proved in [24] the following quasi-metric extension of Theorem 3.2.2.

Theorem 3.3.2. A GV-fuzzy quasi-metric space (X, M, ∗) is bicompletable

if and only if for each pair (an)n, (bn)n, of Cauchy sequences in (X, M i, ∗),

the assignment
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t 7→ limn M(an, bn, t)

is a continuous function on (0,∞) with values in (0, 1].

Furthermore, if a GV-fuzzy quasi-metric space is bicompletable, then its

GV-fuzzy quasi-metric bicompletion is unique up to isometry.

Moreover, in Example 2 of [24] it was shown that if (X, d) is a quasi-

metric space, then the bicompletion (X̃, M̃d, ∗) of the standard GV-fuzzy

quasi-metric space (X, Md, ∗) is (isometric to) the GV-fuzzy quasi-metric

space (XB, MdB , ∗), i.e., the bicompletion of the standard GV-fuzzy quasi-

metric space (X, Md, ∗) is the standard GV-fuzzy quasi-metric space of the

bicompletion of (X, d).

A version of the results introduced in this section, has been submitted for

possible publication.

3.4 The bicompletion of a non-Archimedean

fuzzy quasi-metric space

In this section we prove, with the help of the construction made in the pre-

ceding section, the following result.

Theorem 3.4.1. The bicompletion of a non-Archimedean fuzzy quasi-metric

space is a non-Archimedean fuzzy quasi-metric space.

Proof:

Let (X, M, ∗) be a non-Archimedean fuzzy quasi-metric space and let (xn)n,

(yn)n and (zn)n be Cauchy sequences in the (non-Archimedean) fuzzy metric

space (X, M i, ∗).

For each t > 0 put M̃([(xn)n], [(yn)n], t) = F (t), M̃([(yn)n], [(zn)n], t) =

G(t) and M̃([(xn)n], [(zn)n], t) = H(t).
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We shall prove that H(t) ≥ F (t) ∧ G(t).

Indeed, fix t > 0 and assume, without loss of generality that F (t) > 0

and G(t) > 0.

Choose an arbitrary ε > 0. Then there is s ∈ (0, t) such that

F (t) < ε + lim M(xn, yn, s) and G(t) < ε + lim M(yn, zn, s).

Now there is kε ∈ N such that

lim M(xn, yn, s) < ε + infn≥kε
M(xn, yn, s) and

lim M(yn, zn, s) < ε + infn≥kε
M(yn, zn, s).

On the other hand, since M(xn, yn, s)∧M(yn, zn, s) ≤ M(xn, zn, s) for all

n, we deduce that

( inf
n≥kε

M(xn, yn, s)) ∧ ( inf
n≥kε

M(yn, zn, s)) ≤ inf
n≥kε

M(xn, zn, s).

Therefore, from the above relations it follows that

F (t) ∧ G(t) < (ε + lim M(xn, yn, s)) ∧ (ε + lim M(yn, zn, s))

< (2ε + inf
n≥kε

M(xn, yn, s)) ∧ (2ε + inf
n≥kε

M(yn, zn, s))

≤ 2ε + inf
n≥kε

M(xn, zn, s)

≤ 2ε + lim M(xn, yn, s)

≤ 2ε + H(t).

We conclude that F (t) ∧ G(t) ≤ H(t), and hence the bicompletion of

(X, M, ∗) is a non-Archimedean fuzzy quasi-metric space.

�

Corollary. The completion of a non-Archimedean fuzzy metric space is a

non-Archimedean fuzzy metric space.
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3.5 The bicompletion of an intuitionistic fuzzy

quasi-metric space

In this section we shall show, with the help of the construction of the bicom-

pletion of a fuzzy quasi-metric space made above, that every intuitionistic

fuzzy quasi-metric space in the sense of [56] (see Chapter 2), has a bicomple-

tion which is unique up to isometry. To this end we shall use some properties

of these spaces which were explained in Chapter 2.

Definition 3.5.1. A mapping f from an inutitionistic fuzzy quasi-metric

space (X, M, N, ∗, 3) to an intuitionistic fuzzy quasi-metric space (Y, MY , NY ,

∗Y , 3Y ) is called an isometry if for each x, y ∈ X and each t > 0,

MY (f(x), f(y), t)) = M(x, y, t) and NY (f(x), f(y), t)) = N(x, y, t).

It is clear that every isometry is a one-to-one mapping.

Two intuitionistic fuzzy quasi-metric spaces (X, M, N, ∗, 3) and (Y, MY ,

NY , ∗Y , 3Y ) are called isometric if there is an isometry from X onto Y.

Definition 3.5.2. Let (X, M, N, ∗, 3) be an intuitionistic fuzzy quasi-metric

space. A bicompletion of (X, M, N, ∗, 3) is a bicomplete fuzzy quasi-metric

space (Y, MY , NY , ∗Y , 3Y ) such that (X, M, N, ∗, 3) is isometric to a τ (MY )i-

dense subspace of Y .

Let (X, M, N, ∗, 3) be an intuitionistic fuzzy quasi-metric space. Con-

sider the fuzzy quasi-metric space (X, M, ∗), and let (X̃M , M̃, ∗) be its bi-

completion as constructed above.

Recall that, in particular, the mapping i : X → X̃M as defined in the

preceding section, is an isometry between (X, M, ∗) and a dense subspace of

(X̃M , M̃ , ∗).

In the following we will refer to i as iM

Note also that (X, 1 − N, 3′) is a fuzzy quasi-metric space.
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Now we construct a fuzzy set 1̃ − N in X̃M × X̃M × [0,∞) → [0, 1] by

1̃ − N([(xn)n], [(yn)n], 0) = 0,

and

1̃ − N([(xn)n], [(yn)n], t) = sup
0<s<t

lim (1 − N)(xn, yn, s),

whenever t > 0.

From the fact that M + N ≤ 1, it follows that every Cauchy sequence in

the fuzzy metric space (X, M i, ∗) is a Cauchy sequence in the fuzzy metric

space (X, (1−N)i, 3′), so that, similarly to the technique used in the section

above, we can prove that (X̃M , 1̃ − N, 3′) is a fuzzy quasi-metric space.

Since M ≤ 1 − N, we deduce that

sup
0<s<t

lim M(xn, yn, s) ≤ sup
0<s<t

lim(1 − N)(xn, yn, s)

for each t > 0 and each pair (xn)n, (yn)n, of Cauchy sequences in (X, M i, ∗).

Thus

M̃ ≤ 1̃ − N.

Since (X̃M , M̃ , ∗) is a bicomplete fuzzy quasi-metric space, we conclude

that (X̃M , M̃, 1 − (1̃ − N), ∗, 3) is a bicomplete intuitionistic fuzzy quasi-

metric space.

Furthermore, the mapping iM satisfies for each x, y ∈ X and t > 0,

M̃(iM(x), iM (y), t) = M(x, y, t),

and, also,

(1 − (1̃ − N))(iM(x), iM(y), t) = N(x, y, t).

Thus iM is an isometry between (X, M, N, ∗, 3) and the subspace iM (X)

of (X̃M , M̃, 1 − (1̃ − N), ∗, 3), which is dense with respect to τM i.

We have proved that (X̃M , M̃ , 1 − (1̃ − N), ∗, 3) is a bicompletion of

(X, M, N, ∗, 3).
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Finally, suppose that (Y, MY , NY , ∗Y , 3Y ) is any bicompletion of (X, M,

N, ∗, 3). Then, there is an isometry j from (X, M, N, ∗, 3) to (Y, MY , NY , ∗Y ,

3Y ). On the other hand, since the fuzzy quasi-metric space (Y, MY , ∗Y ) is

a bicompletion of (X, M, ∗), there is a unique isometry F from (X̃M , M̃ , ∗)

onto (Y, MY , ∗Y ) such that F (iM) = j. Taking into account that every Cauchy

sequence in (X, M i, N i, ∗, 3) is a Cauchy sequence in (X, (1−N)i, 3′) we de-

duce from standard arguments (see for instance the proof of [22, Proposition

4.5]) that

NY (F (x̃), F (ỹ), t) = (1 − (1̃ − N))(x̃, ỹ, t),

whenever x̃, ỹ ∈ X̃M and t > 0. Therefore F is an isometry from (X̃M , M̃, 1−

(1̃ − N), ∗, 3) onto (Y, MY , NY , ∗Y , 3Y ).

Thus, we have proved the following.

Theorem 3.5.1. Let (X, M, N, ∗, 3) be an intuitionistic fuzzy quasi-metric

space. Then:

(a) (M̃, 1 − (1̃ − N), ∗, 3) is an intuitionistic fuzzy quasi-metric on X̃M .

(b) iM(X) is dense in (X̃M , M̃ i, ∗).

(c) (X, M, N, ∗, 3) is isometric to (iM(X), M̃ , 1 − (1̃ − N), ∗, 3).

(d) (M̃, 1 − (1̃ − N), ∗, 3) is bicomplete.

(e) If (Y, MY , NY , ∗Y , 3Y ) is a bicomplete intuitionistic fuzzy quasi-metric

space such that (X, M, N, ∗, 3) is isometric to a τ (MY )i-dense subspace

of Y , then (Y, MY , NY , ∗Y , 3Y ) and (X̃M , M̃, 1−(1̃ − N), ∗, 3) are iso-

metric.

Remark. The above theorem shows that each intuitionistic fuzzy quasi-metric

space has a bicompletion which is unique up to isometry.
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3.6 Conclusions

The main result that can be extracted from this chapter is the fact that

each fuzzy quasi-metric space in the sense of Kramosil and Michalek admits

bicompletion. We have shown how bicompletion of fuzzy quasi-metric spaces

can be achieved using the suprema of subsets of [0, 1] and lower limits of

sequences of [0, 1] (Section 3.3).

Thus, in Section 3.4 it has been shown that the bicompletion of a non-

Archimedean fuzzy quasi-metric space is a non-Archimedean fuzzy quasi-

metric space. As we will see in next chapter, this property is relevant

when studying (non-Archimedean) quasi-metrics constructed on the domain

of words.

Finally, in Section 3.5, the bicompletion of intuitionistic fuzzy quasi-

metric spaces is obtained.

In all cases bicompletion is constructed directly using the suprema of

subsets of [0, 1] and lower limits of sequences of [0, 1]. We find that this

approach is more natural than what one would find taking advantage of

Lévy’s metric completeness properties.



Chapter 4

Contraction maps on fuzzy

quasi-metric spaces and

algorithms with two recurrence

procedures

4.1 Introduction

In the last years some authors applied fixed point theorems on the domain of

words, equipped with suitable bicomplete fuzzy quasi-metrics, to prove the

existence (and uniqueness) of solution for the recurrence equations typically

associated to “Divide and Conquer” algorithms and Quicksort algorithms,

respectively ([52, 56, 57]). In this chapter we show that this approach is

also useful to obtain the existence and uniqueness of solution for the sys-

tem of two recurrence equations asocciated to certain algorithms with two

recurrence procedures as analyzed by Atkinson ([4]). We also emphasize

on the importance of the fact, proved in Chapter 3, that the bicompletion

of a non-Archimedean fuzzy quasi-metric space is a non-Archimedean fuzzy
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quasi-metric space in our approach (see the remark at the end of Section

4.2). We will also deduce the existence and uniqueness of the solution by

using contraction maps on the product of complexity spaces, as defined by

Schellekens in [59].

Denotational semantics theory has proved to be suitable for the complex-

ity analysis of “Divide and Conquer” algorithms. We study the suitability

of the same principles for the complexity analysis of algorithms based on

recurrence equations in general. For that means and in order to comple-

ment previous studies we have chosen a recurrence equation that models the

execution times of two recursive procedures dependent the one with the other.

Schellekens introduced [59] the complexity (quasi-metric) space based on

the Smyth completion [66] in order to construct a suitable mathematical

model for the complexity analysis of algorithms. In fact, he proved in Section

6 of [59] the existence and uniqueness of solution for the recurrence equations

associated to “Divide and Conquer” algorithms by applying a quasi-metric

version of the Banach fixed point theorem to the complexity space. Recently

it was shown in [16] that Schellekens’ technique can be successfully system-

atized to deduce the existence and uniqueness of solution for the recurrence

equations associated to “Probabilistic Divide and Conquer” algorithms, and

for the recurrence inequations associated to expoDC Algorithms, respectively

(see [14] and Section 7.7 of [5] for a study of such algorithms).

While mergesort (see [10] for a design study) was used there as an exam-

ple of “Divide and Conquer” algorithm, in [54] authors proved the suitability

of denotational semantics for expoDC algorithms, see [5] also. This last study

proved that the theory was able to deal with an algorithm whose recurrence

was an inequation and also had several parameters.

Here we show that the complexity space also provides an efficient frame-
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work to prove the existence and uniqueness of solution for the pair of re-

currence equations associated to a class of algorithms with two recurrence

procedures, as considered by Atkinson [4]. With the help of the notion of an

improver we also deduce that if (f0, g0) denotes the solution of such recur-

rences, then f0(e
2n) ∈ O(e2n) and g0(e

2n) ∈ O(e2n). In order to prove these

results we will need to apply the Banach fixed point theorem to the “product

complexity space” instead to the original one because this kind of algorithms

involves two equations.

In Section 4.2, the aforementioned algorithm is shown as a pair of re-

currence equations expressed in terms of P and Q procedures. Concrete

examples of this class of algorithms could be extracted from language theory

scenarios; such a system of equations may represent a couple of rules of a

grammar dependent the one on the other. Another scenario where many

cases can be found is object-oriented design. This algorithm expresses a

situation of highly coupled design; a pair of objects from the system with

methods that rely non-interactively the one on the other to fulfill a given

task.

Recall that asymptotic notation introduces three functions to denote the

“order of” an algorithm f in the set of all possible functions. For a lower

order threshold, O-notation is used:

O(g(n)) = {f : ω → [0,∞) : ∃c > 0, n0 ∈ ω, such that

f(n) ≤ cg(n) for all n ≥ n0}

for a superior order threshold, Ω-notation is used:

Ω(g(n)) = {f : ω → [0,∞) : ∃c > 0, n0 ∈ ω, such that

f(n) ≥ cg(n) for all n ≥ n0}

and for the exact order of magnitude of an algorithm, Θ is:

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))
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We will perform complexity analysis based on (C, dC) complexity space

to find the algorithm cost with more precision than we would find by using

asymptotic analysis.

4.2 Application of the Banach fixed point the-

orem on fuzzy quasi-metric spaces to al-

gorithms with two recurrence equations

In [20], M. Grabiec introduced the following notions in order to obtain a

fuzzy version of the classical Banach fixed point theorem:

A sequence (xn)n in a fuzzy metric space (X, M, ∗) is Cauchy provided

that lim
n→∞

M(xn, xn+p, t) = 1 for each t > 0 and p ∈ N.

A fuzzy metric space (X, M, ∗) is complete provided that every Cauchy

sequence in X is convergent. In this case, (M, ∗) is called a complete fuzzy

metric on X.

In the sequel, and according to [26] and [67], a Cauchy sequence in Gra-

biec’s sense will be called G-Cauchy and a complete fuzzy metric space in

Grabiec’s sense will be called G-complete.

On the other hand, following [63], a B-contraction on a fuzzy metric

space (X, M, ∗) is a self-map f on X such that there is a constant k ∈ (0, 1)

satisfying

M(f(x), f(y), kt) ≥ M(x, y, t)

for all x, y ∈ X, t > 0.

Thus, Grabiec’s fixed point theorem can be formulated as follows.

Theorem 4.2.1. [20]. Let (X, M, ∗) be a G-complete fuzzy metric space such

that lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X. Then every B-contraction on X has

a unique fixed point.
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4.2. APPLICATION OF THE BANACH FIXED POINT THEOREM ON

FUZZY QUASI-METRIC SPACES TO ALGORITHMS WITH TWO

RECURRENCE EQUATIONS

The following quasi-metric generalizations of the notions of B-contraction

and G-completeness were introduced in [52].

Definition 4.2.1. A B-contraction on a fuzzy quasi-metric space (X, M, ∗)

is a self-map f on X such that there is a constant k ∈]0, 1[ satisfying

M(f(x), f(y), kt) ≥ M(x, y, t)

for all x, y ∈ X, t > 0. The number k is then called a contraction constant

of f.

Definition 4.2.2. A sequence (xn)n in a fuzzy quasi-metric space (X, M, ∗)

is called G-Cauchy if it is a G-Cauchy sequence in the fuzzy metric space

(X, M i, ∗).

Definition 4.2.3. A fuzzy quasi-metric space (X, M, ∗) is called G-bicomplete

if the fuzzy metric space (X, M i, ∗) is G-complete. In this case, we say that

(M, ∗) is a G-bicomplete fuzzy quasi-metric on X.

Then, Grabiec’s theorem was generalized to fuzzy quasi-metric spaces in

[52] as follows.

Theorem 4.2.2. [52]. Let (X, M, ∗) be a G-bicomplete fuzzy quasi-metric

space such that lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X. Then every B-contraction

on X has a unique fixed point.

Although G-(bi)completeness is a very strong kind of completeness, we

have the following nice and useful fact for our approach.

Theorem 4.2.3. [52]. Each bicomplete non-Archimedean fuzzy quasi-metric

space is G-bicomplete.

The following result implies that Theorem 4.2.2 applies to the standard

fuzzy quasi-metric space of any bicomplete non-Archimedean quasi-metric

space.
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Theorem 4.2.4. Let (X, d) be a bicomplete non-Archimedean quasi-metric

space. Then (X, Md,∧) is a G-bicomplete (non-Archimedean) fuzzy quasi-

metric space such that lim
t→∞

Md(x, y, t) = 1 for all x, y ∈ X.

Proof:

It is clear and well-known that lim
t→∞

Md(x, y, t) = 1 for all x, y ∈ X, and that

(X, Md,∧) is bicomplete (resp. non-Archimedean) if and only if (X, d) is

bicomplete (resp. non-Archimedean). The conclusion follows from Theorem

4.2.3.

�

Next we recall several pertinents facts and results on the domain of words

and some non-Archimedean (fuzzy) quasi-metrics that one can construct on

it.

The domain of words Σ∞ ([35, 39, 51, 60, 66, etc]) consists of all finite and

infinite sequences (“words”) over a nonempty set (“alphabet”) Σ, ordered by

the so-called information order ⊑ on Σ∞ , i.e., x ⊑ y ⇔ x is a prefix of y,

where we assume that the empty sequence φ is an element of Σ∞.

For each x, y ∈ Σ∞ denote by x ⊓ y the longest common prefix of x and

y, and for each x ∈ Σ∞ denote by ℓ(x) the length of x. Thus ℓ(x) ∈ [1,∞]

whenever x 6= φ, and ℓ(φ) = 0.

Given a nonempty alphabet Σ, Smyth introduced in [66] a non-Archimedean

quasi-metric d⊑ on Σ∞ given by d⊑(x, y) = 0 if x ⊑ y, and d⊑(x, y) = 2−ℓ(x⊓y)

otherwise (see also [35, 49, 52, etc]).

This quasi-metric has the advantage that its specialization order coin-

cides with the order ⊑, and thus the quasi-metric space (Σ∞, d⊑) preserves

the information provided by ⊑. Moreover, the metric (d⊑)s is given by

(d⊑)s(x, y) = 0 if x = y, and (d⊑)s(x, y) = 2−ℓ(x⊓y) otherwise; so that (d⊑)s

is exactly the celebrated Baire metric on Σ∞.

Consequently d⊑ is a bicomplete non-Archimedean quasi-metric on Σ∞.
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In order to apply techniques of fixed point for obtaining the existence and

uniqueness of solution for the two recurrence equations associated to algo-

rithms with two recurrence procedures, we shall combine the above results

with some facts on the product of (non-Archimedean) fuzzy quasi-metrics

that we present in the sequel.

Similarly to [9] the product (fuzzy quasi-metric) space of two fuzzy quasi-

metric spaces (X1, M1, ∗) and (X2, M2, ∗) is the fuzzy quasi-metric space

(X1×X2, M1×M2, ∗) such that for each (x1, x2), (y1, y2) ∈ X1×X2 and each

t ≥ 0,

(M1 × M2)((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗ M2(x2, y2, t).

In particular, if (X1, M1,∧) and (X2, M2,∧) are non-Archimedean, then

(X1 × X2, M1 × M2,∧) is non-Archimedean.

Furthermore, it is clear that if (X1, M1, ∗) and (X2, M2, ∗) are bicomplete,

then (X1 × X2, M1 × M2, ∗) is bicomplete.

By applying the above results and remarks to the standard fuzzy quasi-

metric space of (Σ∞, d⊑) when ∗ = ∧, we immediately deduce the following.

Theorem 4.2.5. (Σ∞×Σ∞, Md⊑×Md⊑ ,∧) is a bicomplete non-Archimedean

fuzzy quasi-metric space such that lim
t→∞

(Md⊑ × Md⊑)((x1, x2), (y1, y2) , t) = 1

for all (x1, x2), (y1, y2) ∈ Σ∞ × Σ∞. Therefore, every B-contraction on this

space has a unique fixed point.

Following Atkinson [4, p. 16-17], consider the two recursive procedure

algorithm defined, for two procedures P and Q, and n ∈ ω, by:

function P(n)

if n > 0 then Q(n-1); C; P(n-1); C; Q(n-1)

function Q(n)

if n > 0 then P(n-1); C; Q(n-1); C; P(n-1); C; Q(n-1)
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where C denotes any statements taking time independent of n.

Then, the execution times S(n) and T (n) of P (n) and Q(n), satisfy, at

least approximately, the recurrences

S(n) = S(n − 1) + 2T (n − 1) + K1,

and

T (n) = 2S(n − 1) + 2T (n − 1) + K2,

for n ∈ N, and with K1, K2, nonnegative constants. (We assume that S(0) >

0 and T (0) > 0).

We shall deduce the existence and uniqueness of solution for the recur-

rences S and T by means of a version of the Banach fixed point theorem on a

suitable (product) fuzzy quasi-metric space constructed on a certain product

of domain of words.

To this end, consider the recurrences A and B given by A(0) > 0, B(0) >

0, and

A(n) = pA(n − 1) + qB(n − 1) + K1,

and

B(n) = rA(n − 1) + sB(n − 1) + K2,

for all n ∈ N, where p, q, r, s, K1, K2, are nonnegative constants with p, q, r, s >

0.

Note that recurrences S and T are a particular case of A and B for p = 1,

q = r = s = 2.

In the rest of this section by Σ∞ we shall denote the domain of words

where the alphabet Σ is the set of nonnegative real numbers.

Recurrences A and B suggest the construction of the functional

Φ : Σ∞ × Σ∞ → Σ∞ × Σ∞,
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given for each pair x1, x2 ∈ Σ∞, by

Φ(x1, x2) = (u1, u2),

where

(u1)0 = A(0), (u2)0 = B(0),

and

(u1)n = p(x1)n−1 + q(x2)n−1 + K1, (u2)n = r(x1)n−1 + s(x2)n−1 + K2,

for all n ∈ N such that n ≤ (ℓ(x1) ∧ ℓ(x2)) + 1.

Note that then ℓ(u1) = ℓ(u2) = (ℓ(x1) ∧ ℓ(x2)) + 1.

Next we prove that for each (x1, x2), (y1, y2) ∈ Σ∞ × Σ∞ and each t > 0,

one has

(Md⊑ × Md⊑)(Φ((x1, x2)), Φ((y1, y2)), t/2) ≥ Md⊑(x1, y1, t) ∧ Md⊑(x2, y2, t)

Indeed, put Φ(x1, x2) = (u1, u2) and Φ(y1, y2) = (v1, v2) and let t > 0.

First observe that if u1 ⊑ u2 and v1 ⊑ v2, we obtain

(Md⊑ × Md⊑)(Φ((x1, x2)), Φ((y1, y2)), t/2) =

Md⊑(u1, v1, t/2) ∧ Md⊑(u2, v2, t/2) = 1.

Otherwise, we will take into account that, by the construction of u1, u2, v1

and v2, we have

ℓ(uk ⊓ vk) ≥ (ℓ(x1 ⊓ y1) ∧ ℓ(x2 ⊓ y2)) + 1, for k = 1, 2.

Consequently
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(Md⊑ × Md⊑)(Φ((x1, x2)), Φ((y1, y2)), t/2)

= Md⊑(u1, v1, t/2) ∧ Md⊑(u2, v2, t/2)

=
t/2

t/2 + d⊑(u1, v1)
∧

t/2

t/2 + d⊑(u2, v2)

=
t

t + 2−ℓ(u1⊓v1)+1
∧

t

t + 2−ℓ(u2⊓v2)+1

≥
t

t + 2−(ℓ(x1⊓y1)∧ℓ(x2⊓y2))

=
t

t + 2−ℓ(x1⊓y1)
∧

t

t + 2−ℓ(x2⊓y2)

= Md⊑(x1, y1, t) ∧ Md⊑(x2, y2, t)

= (Md⊑ × Md⊑)((x1, x2), (y1, y2), t).

We have shown that Φ is a B-contraction of the G-bicomplete (non-

Archimedean) fuzzy quasi-metric space (Σ∞ ×Σ∞, Md⊑ ×Md⊑ ,∧). By The-

orem 4.2.5, Φ has a unique fixed point which is obviously the solution of the

recurrences A and B.

Remark. In practice one actually works on the set ΣF of all finite words

(over the alphabet [0,∞)), that endowed with the restriction of the fuzzy

quasi-metric (Md⊑ ,∧) provides a non-Archimedean fuzzy quasi-metric space

which is not bicomplete. In fact the product space (ΣF ×ΣF , Md⊑×Md⊑ ,∧) is

also a non-bicomplete non-Archimedean fuzzy quasi-metric space. By Theo-

rems 3.3.1, 3.4.1 it is bicompletable and its bicompletion is a non-Archimedean

fuzzy quasi-metric space for which we can apply Theorem 4.2.5 (in fact, the

bicompletion is isometric to (Σ∞ × Σ∞, Md⊑ × Md⊑,∧)). In particular, for

each pair x1, x2 ∈ ΣF , the sequence of iterations (Φk(x1, x2))k converges, in

(Σ∞ ×Σ∞, (Md⊑ ×Md⊑)i,∧), to the element that constitutes the solution for

the pair of recurrence equations A and B.
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4.2.1 Application of the Banach fixed point theorem

on complexity spaces to algorithms with two re-

currence equations

Schellekens introduced in [59] the complexity (quasi-metric) space to con-

struct a suitable mathematical model for the complexity analysis of algo-

rithms. In fact, he proved in Section 6 of [59] the existence and uniqueness

of solution for the recurrence equations associated to “Divide and Conquer”

algorithms by applying a quasi-metric version of the Banach fixed point the-

orem to the complexity space. Recently it was shown in [16] and [54] that

Schellekens’ technique can be successfully systematized to deduce the exis-

tence and uniqueness of solution for the recurrence equations associated to

“Probabilistic Divide and Conquer” algorithms, and for the recurrence in-

equations associated to expoDC Algorithms, respectively (see [14] and [5,

Section 7.7] for a study of such algorithms).

Here we show that the complexity space also provides an efficient frame-

work to prove the existence and uniqueness of solution for the pair of recur-

rence equations considered in the section above. With the help of the notion

of an improver (see its definition below) we also deduce that if (f0, g0) denotes

the solution of recurrences S and T , then f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).

In order to prove these results we will need to apply the Banach fixed point

theorem to the “product complexity space” instead to the original one be-

cause this kind of algorithms involves two equations.

A quasi-metric space (X, d) is said to be bicomplete if (X, ds) is a complete

metric space.

By a contraction map on a quasi-metric space (X, d) we mean a self-map

f of X such that d(fx , fy) ≤ kd(x , y) for all x, y ∈ X, where k is a constant

with 0 < k < 1. The number k is called a contraction constant for f.

It is clear that if f is a contraction map on a quasi-metric space (X, d)
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with contraction constant k, then f is a contraction map on the metric space

(X, ds) with contraction constant k.

Therefore, the classical Banach contraction principle can be generalized

to the quasi-metric setting as follows (see for instance [39, Lemma 2.4]).

Theorem 4.2.6. Let f be a contraction map on a bicomplete quasi-metric

space (X,d). Then, for each x ∈ X, the sequence of iterations (fnx)n∈ω is

convergent in (X, ds) to a point x0 ∈ X which is the unique fixed point of f.

Let us recall that the product quasi-metric space of two quasi-metric

spaces (X, d) and (Y, e) is the quasi-metric space (X × Y, d× e), where d× e

is defined by

(d × e)((x1, y1), (x2, y2)) = d(x1, x2) ∨ e(y1, y2),

for all (x1, y1), (x2, y2) ∈ X × Y.

In this case, d × e is called the product (or box) quasi-metric of d and e.

The so-called complexity space ([59]) is the quasi-metric space (C, dC),

where

C =

{
f : ω → (0,∞] :

∞∑

n=0

2−n 1

f(n)
< ∞

}
,

and dC is the quasi-metric on C given by

dC(f, g) =
∞∑

n=0

2−n

((
1

f(n)
−

1

g(n)

)
∨ 0

)

for all f, g ∈ C. (We adopt the convention that 1/∞ = 0.)

The elements of C are called complexity functions.

The following useful result is a consequence of [53, Theorem 1, and Re-

mark on p. 317 ].

Theorem 4.2.7. The complexity space (C, dC) is bicomplete.
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In our next result we construct a monotone increasing functional Φ, as-

sociated with the two recurrences equations A and B constructed in the pre-

ceding section, which is a contraction on (C × C, dC × dC). Then, its unique

fixed point (f0, g0) will be the solution of the recurrence equations A and B.

Theorem 4.2.8. Let Φ be the functional on C × C defined by

Φ(f, g)(0) = (A(0), B(0)),

and

Φ(f, g)(n) = (pf(n − 1) + qg(n − 1) + K1, rf(n − 1) + sg(n − 1) + K2) ,

for n ∈ N and f, g ∈ C.

If α < 1, where

α =
1

2

(
1

p ∧ r
+

1

q ∧ s

)
,

then:

(1) Φ is a monotone increasing contraction on (C × C, dC × dC) with con-

traction constant α.

(2) Φ has a unique fixed point (f0, g0).

Proof:

(1) We first note that if (f, g) ∈ C × C, then Φ(f, g) ∈ C × C, because

∞∑

n=1

2−n 1

pf(n − 1) + qg(n − 1) + K1
≤

1

q

∞∑

n=1

2−n 1

g(n − 1)
< ∞

and

∞∑

n=1

2−n 1

rf(n − 1) + sg(n − 1) + K2
≤

1

s

∞∑

n=1

2−n 1

g(n − 1)
< ∞
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Now let (f1, g1), (f2, g2) ∈ C × C be such that f1 ≤ f2 and g1 ≤ g2. It is

straightforward to chech that then Φ(f1, g1) ≤ Φ(f2, g2).

Next we show that

(dC × dC)(Φ(f1, g1), Φ(f2, g2)) ≤
α

2
(dC × dC)((f1, g1), (f2, g2)),

for all (f1, g1), (f2, g2) ∈ C × C.

Indeed, given (f1, g1), (f2, g2) ∈ C × C, put

Φ(f1, g1) = (f ′
1, g

′
1) and Φ(f2, g2) = (f ′

2, g
′
2).

Thus

(dC × dC)(Φ(f1, g1), Φ(f2, g2)) = dC(f
′
1, f

′
2) ∨ dC(g

′
1, g

′
2).

We have

dC(f
′
1, f

′
2) =

∞∑

n=0

2−n

((
1

f ′
2(n)

−
1

f ′
1(n)

)
∨ 0

)

=

∞∑

n=1

2−n

((
1

pf2(n − 1) + qg2(n − 1) + K1

−
1

pf1(n − 1) + qg1(n − 1) + K1

)
∨ 0

)

≤
∞∑

n=1

2−n

(
p(f1(n − 1) − f2(n − 1)) + q(g1(n − 1) − g2(n − 1))

p2f1(n − 1)f2(n − 1) + q2g1(n − 1)g2(n − 1)
∨ 0

)

≤
∞∑

n=1

2−n

((
f1(n − 1) − f2(n − 1)

pf1(n − 1)f2(n − 1)
∨ 0

)

+

(
(g1(n − 1) − g2(n − 1))

qg1(n − 1)g2(n − 1)
∨ 0

))

=
1

p

∞∑

n=1

2−n

((
1

f2(n − 1)
−

1

f1(n − 1)

)
∨ 0

)

+
1

q

∞∑

n=1

2−n

((
1

g2(n − 1)
−

1

g1(n − 1)

)
∨ 0

)
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=
1

2p

∞∑

n=0

2−n

((
1

f2(n)
−

1

f1(n)
) ∨ 0

)

+
1

2q

∞∑

n=0

2−n

(
(

1

g2(n)
−

1

g1(n)

)
∨ 0

)

=
1

2p
dC(f1, f2) +

1

2q
dC(g1, g2)

≤
1

2

(
1

p
+

1

q

)
(dC(f1, f2) ∨ dC(g1, g2)).

Similarly, we obtain

dC(g
′
1, g

′
2) =

∞∑

n=0

2−n

((
1

g′
2(n)

−
1

g′
1(n)

)
∨ 0

)

=

∞∑

n=1

2−n

((
1

rf2(n − 1) + sg2(n − 1) + K2

−
1

rf1(n − 1) + sg1(n − 1) + K2

)
∨ 0

)

≤
1

2r
dC(f1, f2) +

1

2s
dC(g1, g2)

≤
1

2

(
1

r
+

1

s

)
(dC(f1, f2) ∨ dC(g1, g2)).

Consequently

(dC × dC)(Φ(f1, g1), Φ(f2, g2)) = dC(f
′
1, f

′
2) ∨ dC(g

′
1, g

′
2)

≤

(
1

2p
dC(f1, f2) +

1

2q
dC(g1, g2)

)

≤

(
1

2p
dC(f1, f2) +

1

2q
dC(g1, g2)

)

∨

((
1

2r
dC(f1, f2) +

1

2s
dC(g1, g2)

))

≤
1

2

(
1

p ∧ r
+

1

q ∧ s

)
(dC(f1, f2) ∨ dC(g1, g2))
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= α(dC × dC)((f1, g1), (f2, g2)).

(2) Since, by Theorem 4.2.7, (C, dC) is bicomplete, then (C × C, dC × dC)

is bicomplete. Hence, we can apply Theorem 4.2.6 and thus there exists a

unique (f0, g0) ∈ C × C such that Φ((f0, g0)) = (f0, g0).

�

Remark. Note that by the construction of the functional Φ, (f0, g0) is the

solution for the recurrences A and B.

We conclude this section by showing that in the case that the pair (f0, g0)

is the solution of the recurrence equations S and T associated with the algo-

rithm discussed by Atkinson [4], then f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).

This will be done by constructing an appropriate element of C × C for

which Φ is an improver.

The following extension to our context of Definition 6.2 of [59] will be

needed.

Definition 4.2.4. A functional Φ from (C × C, dC × dC) into itself is an

improver with respect to an element (f, g) ∈ C × C if for each n ∈ ω,

Φn+1(f, g) ≤ Φn(f, g).

Note that if Φ is monotone increasing (i.e., Φ(f1, g1) ≤ Φ(f2, g2) whenever

f1 ≤ f2 and g1 ≤ g2), to show that Φ is an improver with respect to (f, g) it

suffices to verify that Φ(f, g) ≤ (f, g).

Intuitively (compare, for instance, [16, p. 348]), an improver is a func-

tional that corresponds to a transformation on algorithms and satisfies the

following condition: the iterative applications of the transformation to a

given algorithm yield an improved algorithm at each step of the iteration.

Put c = (S(0) + T (0) + K1 + K2)(e
2 − 4)−1, and let u, v : ω → (0,∞)

given by
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u(0) = S(0), v(0) = T (0), and u(n) = v(n) = ce2n for all n ∈ N.

Clearly u, v ∈ C. Next we show that Φ((u, v)) ≤ (u, v), and thus Φ is an

improver with respect to (u, v).

Indeed, we have

Φ((u, v))(0) = (S(0), T (0)) = (u(0), v(0)),

Φ((u, v))(1) = (u(0) + 2v(0) + K1, 2u(0) + 2v(0) + K2)

= (S(0) + 2T (0) + K1, 2S(0) + 2T (0) + K2)

≤ ((S(0) + T (0) + K1 + K2)
e2

e2 − 4
,

(S(0) + T (0) + K1 + K2)
e2

e2 − 4
)

= (ce2, ce2)

= (u(1), v(1))

= (u, v)(1).

and for n > 1,

Φ((u, v))(n) = (u(n − 1) + 2v(n − 1) + K1, 2u(n − 1) + 2v(n − 1) + K2)

= (ce2(n−1) + 2ce2(n−1) + K1, 2ce
2(n−1) + 2ce2(n−1) + K2)

≤ (4ce2(n−1) + K1 + K2, 4ce
2(n−1) + K1 + K2)

≤ (4ce2(n−1) + c(e2 − 4), 4ce2(n−1) + c(e2 − 4))

≤ (ce2(n−1)(4 + (e2 − 4)), ce2n(4 + (e2 − 4)))

= (ce2n, ce2n)

= (u, v)(n).
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Since Φ is increasing it follows that Φn+1((u, v)) ≤ Φn((u, v)) for all n ∈ ω.

Therefore, from the fact (see Theorem 1) that (Φn((u, v)))n∈ω converges to

(f0, g0) in (C × C, (dC × dC)
s), it follows that (f0, g0) ≤ (u, v). Consequently

f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).

A version of the results introduced in this section, has been submitted for

possible publication.

4.3 Conclusions

Our starting point is the fact that the analysis of complexity or execution

times for algorithms can be carried out using the theory of recurrence rela-

tions. There is no general method of solution for any arbitrary recurrence

equation, however there are broad classes of recurrence relations for which

solution techniques are known. Schellekens’ model is built upon a complex-

ity quasi-metric space, and uses fixed point techniques to find the solution

of recurrence equations.

In previous works, the Banach fixed point theorem has been used to solve

recurrences of “Divide and Conquer” algorithms in the form of equations,

[59] or [16], or inequations [55]. Here we have extended the model to show

the existence and uniqueness of the solution of the equations of an algorithm

defined with several recurrence equations. Moreover, the use of an improver

guarantees an efficient and precise solution.

Moreover, we have approached the complexity analysis using the product

of non-Archimedean fuzzy quasi-metrics on the domain of words. The result

obtained in Theorem 3.4.1 allows us to tackle this approach on the domain

of finite words, whose bicompletion is the domain of infinite words and it is

also a non-Archimedean fuzzy quasi-metric space.
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Working on finite words domain is a more natural approach for an appli-

cation to algorithms complexity analysis. Even though complexity analysis is

performed in an asymptotic context, a correct algorithm design must ensure

that at least one of the algorithm termination conditions is always met, so

that the number of iterations to perform is always finite in any case.
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Chapter 5

Application of quasi-metric

lattice and intuitionistic fuzzy

metric structures to optimize

information systems based on

access locality

5.1 Introduction

Most information systems one can find in production environments are based

on access locality. For production environments we mean a systems whose

objective is to be used by a given public. Say, for instance, banking systems

for customer access, ticket sales systems for potential event audiences, health

care systems for doctors or patients, enrollment web pages for students, etc.

Generally, from basic theory such as modern techniques for language com-

pilers to advanced web software development, data and access patterns lo-

cality is an intrinsic quality of all of these systems.
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The following paragraph reviews some of these examples in order to give

samples of the meaning of locality we will be using here.

Algorithms and data structures theory enforces the use of encapsulation

and abstraction as the smallest pieces characteristics in order to build more

complex systems. As a natural consequence, programmers are encouraged

to develop code with no long instruction jumps between sentences. This is

a clear form of locality: code jumps cannot be avoided (as programs are

composed of statements, conditions and loops) but the programming ap-

proach should aim to minimize the length of these jumps. The benefits

of this approach are not to be underestimated as code is simpler, clearer,

more maintenable and reusable. In the next step, compilers use this code to

generate machine language that can be later executed. Small jumps in be-

tween machine instructions produces faster and more optimizable programs.

This approach is the very basis of today’s software development industry:

compiler’s optimization and then also encapsulation of code in methods for

modularity and reusability.

In the first paragraph of this section, examples are more end-user ori-

ented. This kind of software programs are called distributed systems. Say

for instance applications for event ticket sales or for students enrollment re-

quests. For these applications, usually accesses precede given events such as

scheduled event programmes and every year’s opening of enrollment requests

at the start of each course. This means that the system is used according

to low access load patterns during the rest of the year and that access peaks

are localised when the load is high and the importance of the system is at

its most.

In a similar way, health care systems patient appointments are usually

requested during the morning. Furthermore, due to the way we are organised

as a society other forms of locality appear. For the cases of banking and

health care applications, organisations are usually structured in a hierarchical



71 5.1. INTRODUCTION

way: We do have central bank offices as well as local offices (we shall continue

exploiting this structure as ATM machines that depend on close-by bank

offices). We also have hospitals as well as clinics or outpatient departments.

Users (patients or customers) tend to use the nearest office or hospital.

We can infer from this examples that locality appears very frequently in

many scenarios. The differences lay on the degree of locality. For example a

bank customer is expected to use different ATM machines to withdraw money

more frequently than a patient is to visit different clinics. This degree de-

pends on environmental factors such as the information system adaptability

for low locality degrees or on the scenario’s nature itself.

This hierarchical structure is typically connected via a communications

network. In general terms, each office, hospital or enrolling point is a network

node. Each bank account, clinical history record or student appointment is

called an object or an element. In enterprise software systems these objects

are stored in databases.

How the same user is able to, for instance, withdraw money from several

geographically scattered ATM machines or to request appointments in dif-

ferent hospitals depends on how the distributed system nodes access these

objects. The objects may be centralised in a single node (one server) or

replicated (not necessarily all of them) in each node (many servers). This

replication may be “eager” (replicate always) or “lazy” (replicate only when

needed). These factors influence the degree of system availability.

Nevertheless the system must guarantee that the user receives an updated

version of each object anywhere. If at the request moment the object is

outdated then the system needs to reach for an updated version prior to the

object delivery. This fact implies the need to carry out certain coordination

of actions over a set of elements.

An analysis of the objects’ access histories would allow the system to

predict the object state prior to its effective access. This prediction would
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allow the system to perform background look-ahead updates or to save on

the total amount of needed network messages.

We have defined a mathematical framework based on fuzzy constructions

in order to tackle this problem. The framework empirical tests are applied

to best, average and worst case usage scenarios because we intend the study

to be applied in a general way.

The starting point of our application is based on a quasi-metric lattice

structure, see Section 5.2.

Extending our work on a model for object access prediction using a quasi-

metric lattice we take a step further in order to exploit the possibilities of the

stored history values. In Sections 5.3 and 5.4 we show how we can tune the

fuzzy metric results in order to predict access histories working on variations

of the fuzzy constructions.

For these metric constructions we will use a set of continuous t-norms

and t-norm families (as well as with t-conorms) to build fuzzy constructions

in order to advance the time of prediction and object class classification. T-

norms suitability will be evaluated according to their computation time and

the sensitiveness of the t-norm for different representative cases.

5.2 Starting point: Quasi-metric lattice

In [7] we tackled the problem of detecting data access patterns with several

degrees of locality using a quasi-metric lattice.

For each x ∈ X, denote by k(x) the number of uses of x in [0, T ], where

T is the instant of time when we want to predict x’s value reliability and x is

an object in an information system such as a replicated database object, for

instance (see [33] for “eager” replicated consistency protocols and [31] for a
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“lazy” approach).

Now, for each x ∈ X with k(x) > 0, we construct a function also denoted

by x, from [0, T ] into N ∪ {0} as follows:

x(t) = 0, if t = 0;

x(t) = 1, if 0 < t ≤ t1(x);

x(t) = 2, if t1(x) < t ≤ t2(x);

.......................................

x(t) = k(x) − 1, if t(k(x)−2)(x) < t ≤ t(k(x)−1)(x);

x(t) = k(x), if t(k(x)−1)(x) < t ≤ T.

If k(x) = 0, we define x : [0, T ] → [0, 1] by

x(t) = 0, if 0 ≤ t ≤ T .

x(t) represents object x history of accesses during time.

Example 5.2.1. If T = 4 and x ∈ X such as k(x) = 3, with t1(x) = 0.5,

t2(x) = 3, and t3(x) = t3 = 3.5, then:

x(0) = 0;

x(t) = 1, if 0 < t ≤ 0.5;

x(t) = 2, if 0.5 < t ≤ 3, and

x(t) = 3, if 3 < t ≤ 4.

Remark. Each history starts on instant 0 as it is relative to the first access

to the object. This fact allows us to compare whichever two different objects

regardless whether they are being concurrently accessed or not.

Notice how x(t) definition relates to the concept of object version (which

allows us to decide whether an object is updated or outdated).

We are interested in constructing a function v on X such that v(x) pro-

vides a sufficiently satisfactory value of possibility of element usage according
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to locality access patterns. The condition formulated in Definition 5.2.1 be-

low yields a suitable tool to model this behaviour, as we will see.

Definition 5.2.1. Let X be a (nonempty) set and let v be a function from

X into [0,1]. We say that v satisfies the Proximity and Frequency Condition

if for each pair x, y ∈ X satisfying 0 < k(y) ≤ k(x) the following holds (we

assume k(x)(x) = k(x) for all x ∈ X):

(PFC) v(x) ≤ v(y) whenever tj(y) ≤ t(j+k(x)−k(y))(x) for all j ∈ {1, ..., k(y)},

and v(x) < v(y) if, in addition, there is h ∈ {1, ..., k(y)} such that th(y) <

t(h+k(x)−k(y))(x).

i.e., v allows us to compare two elements histories in a way that if the

second element history adds closer to T accesses in between the first ele-

ment history then v value for the second element is greater than for the first

element.

A relatively easy function which is a suitable candidate to provide an

efficient model in this context is the function v : X → [0, 1] defined as

follows: v(x) = 0 if k(x) = 0, and

v(x) =

k(x)∑

j=1

2−j t(k(x)−(j−1))(x)

T

whenever k(x) > 0.

Example 5.2.2. Let T = 4, and x as defined in Example 5.2.1. Moreover,

let y ∈ X such that k(y) = 3, with t1(y) = 1, t2(y) = 3, and t3(y) = 3.5. Then:

v(x) =
1

4

[
0.5

23
+

3

22
+

3.5

2

]
=

41

64
, and v(y) =

1

4

[
1

23
+

3

22
+

3.5

2

]
=

21

32
.

v(y) > v(x), as specified in the Proximity and Frequency Condition (Def-

inition 5.2.1).

Proposition 5.2.1. The function v as defined above satisfies the Proximity

and Frequency Condition (Definition 5.2.1).
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Proof:

Let x, y ∈ X satisfying 0 < k(y) ≤ k(x). Suppose that tj(y) ≤ t(j+k(x)−k(y))(x)

for all j ∈ {1, ..., k(y)}. Then t(k(y)−(j−1))(y) ≤ t(k(x)−(j−1))(x) for all j ∈

{1, ..., k(y)}. Since

v(x) − v(y) =
1

T

k(y)∑

j=1

2−j
[
t(k(x)−(j−1))(x) − t(k(y)−(j−1))(y)

]

+
1

T

k(x)∑

j=k(y)+1

2−jt(k(x)−(j−1))(x),

it follows that v(x) − v(y) ≥ 0.

Finally, it is clear that if, in addition, th(y) ≤ t(h+k(x)−k(y))(x) for some

h ∈ {1, ..., k(y)}, then v(x) − v(y) > 0. This concludes the proof.

�

Some of the aspects we took into account when choosing function v are:

(i) v is bounded. In fact 0 ≤ v(x) ≤ 1, for all x ∈ X.

(ii) v is expressed in negative powers of 2, which makes its calculation fast

in computers as these operations in binary are performed using bit

shifting.

(iii) Each term calculation is useful for a new access to the element (an

increment of k(x)).

(iv) If working with distributed systems, calculations are most likely to be

local to a single node. No coordination is needed for v calculation, but

only for its results possible consequences.

From the point of view of the application of our techniques, it is important

for the calculus of the predictions to be fast and also adaptive to to multiple

kinds of system usages.
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The following sections explain how the quasi-metric lattice offers an ad-

equate framework to explain the pattern accesses properties by grouping

objects in classes [x] = {y ∈ X : v(x) = v(y)} in a way that if we compare

two classes [x] ⊑ [y] ⇐⇒ v(x) ≤ v(y), then X̃ := {[x] : x ∈ X} admits a

lattice structure and (X̃, d,⊑) is a quasi-metric lattice.

5.2.1 Quasi-metric lattice framework

In this section we shall prove that the notion of a quasi-metric lattice provides

an appropriate framework to explain the properties of a pattern access.

To this end, we first construct a binary relation R on X as follows:

xRy ⇐⇒ v(x) = v(y).

Clearly R is an equivalence relation. Denote by [x] the class of x ∈ X,

i.e.

[x] = {y ∈ X : v(x) = v(y)},

Let X̃ := {[x] : x ∈ X} be the set of all classes. We shall show that X̃

can be endowed with the structure of a lattice.

Indeed, given x, y ∈ X, define

[x] ⊑ [y] ⇐⇒ v(x) ≤ v(y).

As usual, we write [x] < [y] if [x] ⊑ [y] but [x] 6= [y], i.e.

[x] < [y] ⇐⇒ v(x) < v(y).

Next we observe that (X̃,⊑) is totally ordered:

Reflexivity: for each x ∈ X we have [x] ⊑ [x] because v(x) ≤ v(x).

Antisymmetry: if {[x] ⊑ [y] and [y] ⊑ [x], then v(x) = v(y), so [x] = [y].
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Transitivity: if [x] ⊑ [y] and [y] ⊑ [z], then v(x) ≤ v(y) ≤ v(z), so

[x] ⊑ [z].

Thus ⊑ is an order on X̃. Moreover, given x, y ∈ X, it is clear that

[x] ⊑ [y] or [y] ⊑ [x] because v(x) ≤ v(y) or v(y) ≤ v(x).

We conclude that (X̃,⊑) is totally ordered, and hence (X̃,⊔,⊓) is a

lattice, where, as usual, if [x] < [y], we define [x]⊔ [y] = [y] and [x]⊓ [y] = [x].

Now, in a natural way, we define a function V : X̃ → [0, 1], representing

the prediction value for a class of objects, by

V ([x]) = v(x),

and thus we may define a function d : X̃ × X̃ → [0, 1], in order to measure

the difference between two classes of objects, by

d([x], [y]) = max {V ([x]) − V ([y]), 0} .

We check that d is a quasi-metric on X̃. Indeed:

d([x], [y]) = d([y], [x]) = 0 ⇐⇒ V ([x]) = V ([y])

⇐⇒ v(x) = v(y) ⇐⇒ [x] = [y].

and

d([x], [y]) = max {V ([x]) − V ([y]), 0}

= max {V ([x]) − V ([z]) + V ([z]) − V ([y]), 0}

≤ max {V ([x]) − V ([z]), 0} + max {V ([z]) − V ([y]), 0}

= d([x], [z]) + d([z], [y]).

Furthermore, for each x, y, z ∈ X, we have:
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d([x] ⊔ [z], [y] ⊔ [z]) = max {(V ([x]) ⊔ V ([z]) − (V ([y]) ⊔ V ([z]), 0}

≤ max {V ([x]) − V ([y]), 0} = d(x, y),

and

d([x] ⊓ [z], [y] ⊓ [z]) = max {(V ([x]) ⊓ V ([z]) − (V ([y]) ⊓ V ([z]), 0}

≤ max {V ([x]) − V ([y]), 0} = d(x, y).

We have shown that (X̃, d,⊑) is a quasi-metric lattice.

Note that

d([x], [y]) = 0 ⇐⇒ [x] ⊑ [y] ⇐⇒ v(x) ≤ v(y),

Hence the order ⊑ coincides with the order ≤d induced by d on X̃.

Moreover, for [x] 6= [y], condition d([x], [y]) = 0 is equivalent to v(x) <

v(y), so this condition indicates the existence of an increase in the possibility

of use when x is replaced by y.

Notice that this important assertion would not be obtained if one consid-

ered the metric D given by the Euclidean distance: D([x], [y]) = |V ([x]) −

V ([y])|, because in this case D([x], [y]) = 0 ⇔ xRy and this is true only

when [x] = [y]. Thus the metric would provide less information than the

quasi-metric.

We also observe that if v(y) → v(x), then V ([y]) → V ([x]), and conse-

quently

d([x], [y]) → 0 and d([y], [x]) → 0.

In this direction, it is illustrative to compute d([x], [y]) in some interesting

particular cases.

For instance, put X1 = {x ∈ X : k(x) = 1}, and suppose that there is

x0 ∈ X1 with t1(x0) = T . Then v(x0) = 1/2. Since for each y ∈ X1 we have
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v(y) = t1(y)/2T , it follows that v(y) ≤ v(x0), so

d([y], [x0]) = 0,

for all y ∈ X1. On the other hand, for each y ∈ X1 such that t1(y) < T , we

obtain:

d([x0], [y]) = V ([x0]) − V ([y]) = v(x0) − v(y) =
1

2

(
1 −

t1(y)

T

)
.

In particular, if t1(y) → T , it follows that

d([x0], [y]) → 0.

Now suppose that there is x1 ∈ X1 with t1(x1) = T/2. Then v(x1) = 1/4.

So for each y ∈ X1 such that t1(y) > T/2, we obtain v(y) > v(x1), and thus

d([x1], [y]) = 0, and d([y], [x1]) =
1

2

(
t1(y)

T
−

1

2

)
.

Consequently, if t1(y) → T/2, it follows that

d([y], [x1]) → 0.

5.2.2 Empirical Results

In this section, graphical representation of empirical tests show that our

selection of v provides a suitable setting to our study.

Results are organized in consecutive and uniform accesses to a given ob-

ject during a period of time ranging from 0 to T . The first cases show the

behaviour of v when accesses are performed consecutively one after another

during certain periods of time. The case of uniform accesses shows the be-

haviour of v when an object is accessed with a given periodicity.

In all figures the y-axis shows v(x) values. For the consecutive accesses

experiments, the x-axis shows the total amount of accesses (steps) performed

over the object. Notice that for the uniform accesses experiments, the x-axis

shows the separation between uses of the object.
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Consecutive accesses far from T

Figure 5.1 shows the behaviour of v(x) when there are consecutive accesses

far from the measuring time T . This situation is achieved performing accesses

to x as soon as the experiment starts and models a situation where an object

was oftenly used but it is not used anymore.
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Figure 5.1: Consecutive far-from-T accesses for fixed T values.

Each line in the figure connects several experiments for different number

of accesses (20, 40, etc.) to an object for fixed T values (20, 40, 60, etc.). For

example, for a T of 500 its line contains the union of points representing v(x)

values for 19 accesses (from 1 to 19), 39 accesses (from 1 to 39), 59 accesses

(from 1 to 59) and so on.

It can be seen that v(x) grows linearly when more accesses are performed.

This happens when the distance between T and the group of accesses gets

smaller. The more accesses, the closer the distance between the last one and

T is.

These results show that our function discards in a natural way too old

history values. The meaning of “too old” is not tuned selecting a window
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of x(t) values but a choosing a convenient threshold that discriminates from

updated to outdated appropriately.

Consecutive accesses centered at T/2

Figure 5.2 shows the behaviour of v(x) when there are consecutive accesses

centered at the middle of the interval [0, T ]. This is, for a T of 200, 40

accesses would happen between the moment 80 and 120.
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Figure 5.2: Consecutive centered between 0 and T accesses for fixed T values.

Again, each line of the figure holds values for different T tests. If we

compare this figure with the previous one (figure 5.1), now v(x) produces

bigger values. See, for example, for T = 1000 we obtain a value close to 0.75

for 500 accesses while in Figure 5.1 we obtain a value close to 0.5. While the

number of accesses is the same in this case, accesses centered at the middle

of the studied history are closer to T .

This test shows that the weight of closer to T accesses is important and

it shows that this importance decreases the further we measure from T .
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Consecutive accesses near from T

Figure 5.3 shows, compared to Figure 5.2 and even more to Figure 5.1, how

much close-to-T accesses influence v(x) value. Again, lines group values for

a given T . For example, for a T of 100, the line points represent 19 accesses

(from 80 to 99), 39 accesses (from 60 to 99), 59 accesses (from 40 to 99) and

80 accesses (from 20 to 99).
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Figure 5.3: Consecutive near-from-T accesses for fixed T values.

Notice that v(x) values are all over 0.9, a value big enough to be over a

reliability decision threshold. The figure shows horizontal lines for each T

experiment only because of the graphical representation precision but values

are slightly bigger (differences appear at the third decimal value) when more

accesses are performed.

Uniformly scattered accesses

Figure 5.4 represents v values for an object that has been accessed regu-

larly with a given periodicity. The x-axis represents the separation between

accesses: notice that a separation of 50 requires 19 accesses for a T of 1000.
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Figure 5.4: Periodical accesses for fixed T values.

We have chosen this figure from our set of experiments because it shows

an interesting situation. Initially we would expect a strictly decreasing line

but Figure 5.4 displays a different result:

v(x) values are high but decrease almost linearly. For 75-wide

steps, v(x) = 0.9000091552734375 with the last step 25 units of

time away from T , while v(x) = 0.9000000953674316 for 50-wide

steps with a distance of 50 units.

Due to this fact, for that case, the function grows instead of decreasing:

We cannot say that the smaller the step is, the closer the last step will be

from T . Due to the way that v(x) weights t values, for close-to-T cases, the

distance from the last accesses to T is more determinant than the number of

accesses.

Another thing that can be noticed is that v(x) values are all high (in this

experiment the lowest result is 0.8001953125). Uniform accesses are good

cases in general as they usually represent batch processes such as nightly
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maintenance operations, monthly reports, etc. that can be easily identified.

Furthermore, if an object is regularly accessed it is surely updated.

The effect of T

In the following figures, 5.5 and 5.6, each function represents different values

for different T cases. While the previous figures show values for a fixed T ,

these two figures use a fixed number of accesses and a variable set of T : In

Figure 5.5 the number of consecutive accesses is set to 20 and in Figure 5.6

it is set to 80.

For these number of accesses, we test different T values for the three

scenarios that have been studied for consecutive accesses: accesses near from

T (line labeled as final), far from T (line labeled as initial) and centered in

the middle of the interval [0, T ] (line labeled as middle).
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Figure 5.5: 20 Consecutive accesses for several T values.

It can be seen that the further the accesses are from T , the smaller v(x)

gets. This results in decreasing functions when accesses are far. When ac-

cesses are close, the t/T terms are bigger each time and easily counteract the
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Figure 5.6: 80 Consecutive accesses for several T values.

exponential term. This explains why scenario changes (from further accesses

to closer ones) result in bigger values for v(x) gradually.

5.2.3 Conclusions

The main conclusion from this approach is the fact that optimizing access

prediction in information systems based on accesses locality can be conceived

by our quasi-metric lattice mathematical framework. We consider v values

as metadata because this information is not related to the system application

itself, but to the mathematical framework. Thus, we can obtain metadata v

associated with each object by considering access patterns [x].

This collected metadata v will be able to foretell with a high confidence

whether the object is up-to-date and the initial data access is right. If that is

the case few operations should be carried previous to the delivery of correct

data to the users. On the contrary, if an object is out-dated, some additional

operations should be performed to obtain the up-to-date version and the

effective access will be slower. This procedure is called a consistency protocol.
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A particular case of access locality is the case of consistency protocols for

replicated databases. In [31] statistics are used to minimize the transactions

rate. Authors achieve metadata collection using timestamps when reading

objects ahead and a formula calculation is performed in order to update pos-

sibly out-dated objects. We endow the set of access patterns, X̃, with a

lattice framework, and a quasi-metric on this set is defined.

We have noticed too that over a certain value v(x) is big but differences

between different tests are insignificant. Moreover, if v(x) is over a certain

threshold then can improve the performance of our protocol and reduce both

the required computation and storage needs.

Our next approach is to try to construct on the sets of the form [0, T ]

an appropriate fuzzy valuation in order to provide information systems with

more accurate think ahead capabilities.

5.3 Model extension in time: Fuzzy metric

space

As a natural continuation of the initial study we pretend to take advantage

of the intermediate elements’ accesses values. For this means we will base

our study on the Kramosil and Michalek definition of a fuzzy metric space,

see 2.2.3.

In our model, for two consecutive accesses tprev and tnext of an element x,

we will have that if t ∈ (tprev, tnext] then v(x, t) = v(x, tnext). In particular,

v(x, t) = v(x, t1(x)) if t ∈ (0, t1(x)]. This means that we can ensure left conti-

nuity (by taking v(x, t) = 1 whenever t > T ) according to condition (KM5)

from 2.2.3.

While in our initial approach we chose k(x) as the number of uses between
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0 and T of an element x, and the instant of time when the prediction is

estimated, now we choose t ∈ (t(i−1)(x), ti(x)], and the number of computed

accesses k(x, t) are those happened until the instant ti(x) (we assume t0(x) =

0), in such a way that if tk(x) < T, we define k(x, t) = k(x) for t ∈ (tk(x), T ].

Consequently we put k(x, t) = i if t ∈ (t(i−1)(x), ti(x)] with i < k(x),

and k(x, t) = k(x) if t ∈ (t(k−1)(x), T ], and then we define a function v :

X × [0,∞) → [0, 1] by v(x, 0) = 0,

v(x, t) =

k(x,t)∑

j=1

2−j t(k(x,t)−(j−1))(x)

T
,

if 0 < t ≤ T, and v(x, t) = 1 if t > T.

Note that, in particular,v(x, t) = v(x) for t ∈ (t(k−1)(x), T ].

Moreover, it is clear that for each x ∈ X, v(x ) is left continuous and

nondecreasing (i.e., v(x, t) ≤ v(x, s) whenever t ≤ s).

The fact that now v depends on x and on t is the basis to represent fuzzy

behaviour.

These early prediction capabilities can be used by the affected information

system in order to modify its behaviour based on its experience handling

previously accessed elements in a preventive fashion.

We shall suppose that v(x, T ) offers a “reasonable” value of certainty of

element x state. Then we can compare v(x, t) and v(y, t) and if they show

similar values then we can try to advance the prediction of y’s class, which

will most possibly be the same as x’s, i.e. [y] = [x].

This comparison will be represented by a fuzzy metric space (X, M, ∗)

where M∗ is defined by M∗(x, y, t) = v(x, t) ∗ v(y, t).

Actually, we can deduce this fact for a more general result.

Proposition 5.3.1. Let X be a nonempty set, v : X × [0,∞) → [0, 1) be a

function such that for each x ∈ X v(x, ) is left continuous and nondecreasing

and ∗ be a t-norm. Then (X, M∗, ∗) is a fuzzy metric space where M∗ is

defined by:
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(a) M∗(x, y, 0) = 0,

(b) M∗(x, x, t) = 1 for each t > 0 and each x ∈ X.

(c) M∗(x, y, t) = v(x, t) ∗ v(y, t) for each t > 0 and each x, y ∈ X with

x 6= y.

Proof:

Condition (KM1) in Definition 2.2.1 follows from (a).

On the other hand, since for each x, y ∈ X with x 6= y, and each t > 0,

M∗(x, y, t) = v(x, t) ∗ v(y, t) = v(y, t) ∗ v(x, t) = M∗(y, x, t),

we deduce that condition (KM5) in Definition 2.2.3 also holds.

Now suppose that M∗(x, y, t) = 1 for each t > 0. If x 6= y we obtain

M∗(x, y, t) = v(x, t) ∗ v(y, t) ≤ v(x, t) ∧ v(y, t) < 1,

a contradiction. Therefore condition (KM2’) in Definition 2.2.2 holds.

Now let x, y, z three different elements in X and t, s > 0. Then

M∗(x, z, t + s) = v(x, t + s) ∗ v(z, t + s) ≥ v(x, t) ∗ v(z, t)

≥ v(x, t) ∗ v(y, t) ∗ v(z, s) ∗ v(y, s) = M∗(x, y, t) ∗ M∗(z, y, s),

so condition (KM3) in Definition 2.2.1 is satisfied.

Finally, for each x, y ∈ X, M∗(x, y, ) : [0,∞) → [0, 1] is left continuous

because v(x, ) and v(y, ) are left continuous and ∗ is continuous.

We have shown that (X, M∗, ∗) is a fuzzy metric space.

�

The preceding result will be used in following sections to deduce empirical

results based on experiments using a variety of continuous t-norms and t-

norm families.
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5.3.1 Evaluated t-norms

We have considered different continuous t-norms (check Dubois-Prade [13])

and compared them according to their results with the fuzzy metric in v(x, t):

• Minimum: x ∧ y := min(x, y) :=





x if x ≤ y

y if y < x
.

• Product: x Prod y :=
∏

(x, y) := xy.

• Lukasiewicz: x ∗L y := W(x, y) := max{x + y − 1, 0}.

• t-norm families: different parameter values will be compared.

– Frank family: logs

(
1 +

(sx − 1)(sy − 1)

s − 1

)
where s > 0, s 6= 1.

– Hamacher family:
xy

α + (1 − α)(x + y − xy)
where α ≥ 0.

– Sugeno-Weber family: max

{
x + y − 1 + λxy

1 + λ
, 0

}
where λ > −1.

– Schweizer-Sklar family: (max{x−p + y−p − 1, 0})−1/p.

– Yager family: max{1−((1−x)p +(1−y)p)1/p, 0} where p ∈ (0,∞).

– Dombi family:
1

1 + ((
1 − x

x
)λ + (

1 − y

y
)λ)1/λ

where λ ∈ (0,∞).

– Dubois-Prade family:
xy

max(x, y, γ)
where γ ∈ [0, 1].

All of them except the Dubois-Prade family are archimedean t-norms (see

Definition 2.1.11).

Comparisons using continuous t-norm families allow us to tune the pre-

dictions precision (check related figures to see how the parameter affects the

evaluation).
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T-norms ordering and properties

In [6] we showed empirical results based on experiments using a variety of

continuous t-norms and t-norm families.

After a straightforward evaluation of boundary conditions, we can order

the t-norms:

• min(x, y) ≥ Dubois-Prade(x, y) ≥
∏

(x, y) ≥ W(x, y).

• min(x, y) ≥
∏

(x, y) ≥ Sugeno-Weber>0(x, y) ≥ W(x, y) ≥

Sugeno-Weber<0(x, y).

• Hamacher<1(x, y) ≥
∏

(x, y).

• The order of Hamacher<1(x, y) and Dubois-Prade(x, y) depends on the

parameters values. For α, γ ∈ [0, 1):

– If α + (1 − α)(x + y − xy) < max(x, y, γ) then

Dubois-Prade(x, y) ≥ Hamacher<1(x, y).

– Otherwise:

Hamacher<1(x, y) ≥ Dubois-Prade(x, y).

• As it happens with λ < 0 for Sugeno-Weber(x, y), for “big” values of α

of Hamacher(x, y) and depending on v(x) and v(y) values, the t-norm

can be smaller than W(x, y).

Comparisons using continuous t-norm families allow us to tune the pre-

dictions precision (check related figures to see how the parameter affects the

evaluation).

If observed carefully, figures in Section 5.3.2 show that for a moment t

close to T, the values of M·(x, y, t) are “close” to the values of M∗L
(x, y, t),
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where · and ∗L denote the t-norm product and the Lukasiewicz t-norm re-

spectively. The analytical explanation of this fact is the following:

lim
v(x,t),v(y,t)→1

(M·(x, y, t) − M∗L
(x, y, t))

= lim
v(x,t),v(y,t)→1

(v(x, t) · v(y, t)− (v(x, t) + v(y, t) − 1))

= lim
v(x,t),v(y,t)→1

((v(x, t) − 1)(v(y, t) − 1)) = 0.

5.3.2 Empirical results: Comparison

We evaluate v in [0, T ] and we arbitrarily set T = 1000 to allow the predic-

tion to range from no uses to plenty of them. t instants have been chosen

uniformly scattered through the interval.

Our tests are based on comparisons of v values during [0, T ] for two

different objects x, y (fuzzy set elements) using continuous t-norms. These

differences are achieved applying localized variations in the first object x to

obtain y. That is how we model element accesses with degrees of closeness

as it happens in systems with strong locality components.

Computing the variation of y is a simple implementation of the Proximity

and Frequency Condition (Definition 5.2.1). We have tried three kinds of

variations as we display in the following subsections.

Random variations – Random

Figures 5.7, 5.8 and 5.9 show n additional accesses to element y which are

performed randomly through the interval [0, T ].

Figure 5.8 shows v(x, t) and v(y, t) values: The final value for both ex-

periments is high because accesses are performed throughout the end of the

study for both elements. Figure 5.9 shows the fuzzy metric results for the

minimum, product and Lukasiewicz t-norms. Figures 5.10, 5.11, 5.12 are

examples of the results obtained for the t-norm families.
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For the case of the Hamacher family, there is no abrupt change in the

family behaviour when we introduce changes in the parameter α value. For

close to 1 values, Hamacher family gets close to the product results because

as the parameter is placed in at the denominator, α increments mean that

M values will decrease. As there is no upper bound for α this family allows

us to get lower values than the ones obtained using the Lukasiewicz t-norm

for the metric construction.

For the Sugeno-Weber t-norm with λ values in between −1 and 0 the t-

norm results converge to the Lukasiewicz ones and for λ values greater than

0 results converge to the product ones.

For the Dubois-Prade results, γ increments imply a progressive decrement

of M .

Left-random variations – Left-Random (L-Random)

In this set of experiments, the n additional accesses appear randomly close to

the beginning of the history. It can be seen how the behaviour of the metric

is similar to the one found in the previous case with completely random

variations. This is due to the fact that early accesses have less impact on the

final result and, in the end, the accesses distribution is quite similar to the

random case.

See Figures 5.13, 5.14 and 5.15 for the data accesses distribution and

v and M evaluations. Figures 5.16, 5.17, 5.18 are examples of the results

obtained for M built using three different t-norm families.

Right-random variations – Right-Random (R-Random)

Now the n additional accesses appear randomly close to the end of the history.

As soon as the histories start diverging the metrics behaviour is similar to the

previous experiments. In these experiments we can see how equal histories
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are perfectly identified as it happens simply with v evaluations but, as in all

the experiments, M evaluation allows a richer identification of differences.

See Figures 5.19, 5.20 and 5.21 for the distribution of accesses and Figures

5.22, 5.23, 5.24 as representative examples of the results obtained for different

fuzzy metrics built using different t-norm families.

Two independent histories – Opposite histories (Opposite)

One of them has accesses performed mainly at the beginning of the exper-

iment and the other has them at the end. Experiments can be observed in

Figures 5.25, 5.26 and 5.27. Figures 5.28, 5.29, 5.30 are examples of the

results obtained for the t-norm families.

In all previous experiment groups, final values for M were big enough to

consider that the element was likely to be accessed again soon. The reason

for this constant behaviour is the fact that there were always close to T

accesses. The experiment with two independent histories shows a different

case and M evaluation does not seem to imply a prompt access happening.

Even though the prediction is different, it can be noticed that the t-norms

comparison is still valid.

Additional t-norms

Next, we show in a separate group of figures families Schweizer-Sklar (Figures

5.43, 5.44, 5.45, 5.46), Dombi (Figures 5.31, 5.32, 5.33, 5.34), Frank (Figures

5.35, 5.36, 5.37, 5.38) or Yager (Figures 5.39, 5.40, 5.41, 5.42).

They require costly calculations which do not easily apply to our fast

prediction intentions and neither they introduce any characteristic which

could not be found in the faster families or the traditional t-norms. While

they may prove to be very useful for other application scenarios (for instance

non real-time systems) we have discarded them due to their complexity.
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Figure 5.40: Left-Random: Yager.
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Figure 5.41: Right-Random: Yager.
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Figure 5.42: Opposite histories:

Yager.
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Figure 5.43: Random: Schweizer-

Sklar.
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Figure 5.44: Left-Random: Schweizer-

Sklar.
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Figure 5.45: Right-Random:

Schweizer-Sklar.
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Figure 5.46: Opposite histories:

Schweizer-Sklar.
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5.3.3 Conclusions

Obviously, to take advantage of the history of accesses evaluation, we need

at least an history that is representative of the regular uses of the element.

With the use of M we can model situations where the value of v is not

high enough but the comparison of histories computed until a given moment

t tells that access histories are close to each other. If we are certain that one

of these histories presented optimal performance, this information can lead

to update strategy tunning.

Here, as in [41] the fuzzy metric construction selected (in [41] (M, ∗) is

stationary while in our case it is not) is able to model a computer science

problem.

Comparing this technique with the one presented in [31], notice how, even

when both techniques are prepared for fast calculation and adaptability, while

authors there assumed a statistical distribution of data accesses, here we base

our model on the comparison of objects with others for which we know how

the system should behave for optimal usage.

Further conclusions will be drawn in Section 5.4.3 after we show the

intuitionistic fuzzy metric space based extension.

5.4 Intuitionistic fuzzy metric space exten-

sion

For our next step, we will use the fact that the notion of an intuitionistic

fuzzy metric space is a natural generalization of a fuzzy metric space. This

fact allows us to adapt the idea of an intuitionistic fuzzy set presented by

Atanassov in [3] so that we can measure the degree of closeness and the degree

of non-closeness between two access histories using an intuitionistic fuzzy

metric space (see [47]). In our case, it is necessary to use the generalization
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found in Definition 2.2.11 defined by Alaca et al in [1], a study that was later

enriched by Romaguera and Tirado work in [55].

Recall that Definition 2.2.11 defines a 5-tuple (X, M, N, ∗, ⋄). In order

to define the metric N we need to find a new function v′ that allows us to

compare two elements in a given moment t between 0 and T and a set of

t-conorms so that:

N(x, y, t) = v′(x, t) ⋄ v′(y, t)

While fuzzy sets introduce the concept of membership degree mµ, intuition-

istic fuzzy sets introduce the concept of non-membership nµ and uncertainty

pi degrees in such a way that pi = 1 − mµ − nµ.

The most immediate way to obtain N and build the intuitionistic fuzzy

metric would be to use the fuzzy set N = 1 − M∗. This set is known as

“crisp” set and gives no more information than what we already have.

Instead of using the “crisp” approach, we will use the following function

v′ that is a suitable candidate to take advantage of the intuitionistic fuzzy

spaces properties and to complement the representation of localized accesses

histories:

v′(x, 0) = 1,

v′(x, t) =

k(x,t)∏

j=1

T − tj(x)

T

if 0 < t ≤ T, and v′(x, t) = 0 if t > T.

It is clear that for each x ∈ X, v′(x ) is left continuous and nonincreasing

(i.e., v′(x, t) ≥ v′(x, s) whenever t ≤ s).

Similarly to Proposition 5.3.1 we obtain the following general result.

Proposition 5.4.1. Let X be a nonempty set, v′ : X × [0,∞) → (0, 1] be a

function such that for each x ∈ X v′(x, ) is left continuous and nonincreasing
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and ⋄ be a t-conorm. Then (X, N⋄, ⋄) verifies conditions (6)-(9) and (11) of

Definitions 2.2.9-2.2.10 where N⋄ is defined by:

(a) N⋄(x, y, 0) = 1,

(b) N⋄(x, x, t) = 0 for each t > 0 and each x ∈ X.

(c) N⋄(x, y, t) = v′(x, t) ⋄ v′(y, t) for each t > 0 and each x, y ∈ X with

x 6= y.

Proof:

Condition (6) in Definition 2.2.9 follows from (a).

On the other hand, since for each x, y ∈ X with x 6= y, and each t > 0,

N⋄(x, y, t) = v′(x, t) ⋄ v′(y, t) = v′(y, t) ⋄ v′(x, t) = N⋄(y, x, t),

we deduce that condition (11) in Definition 2.2.10 also holds.

Now suppose that N⋄(x, y, t) = 0 for each t > 0. If x 6= y we obtain

N⋄(x, y, t) = v′(x, t) ⋄ v′(y, t) ≥ v′(x, t) ∨ v′(y, t) > 0,

a contradiction. Therefore condition (7) in Definition 2.2.9 holds.

Now let x, y, z three different elements in X and t, s > 0. Then

N⋄(x, z, t + s) = v′(x, t + s) ⋄ v′(z, t + s) ≤ v′(x, t) ⋄ v′(z, t)

≤ v′(x, t) ⋄ v′(y, t) ⋄ v′(z, s) ⋄ v′(y, s)

= N⋄(x, y, t) ⋄ N⋄(z, y, s)

so condition (8) in Definition 2.2.9 is satisfied.

Finally, for each x, y ∈ X, N⋄(x, y, ) : [0,∞) → [0, 1] is left continuous

because v′(x, ) and v′(y, ) are left continuous and ⋄ is continuous.

�
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Remark. For our v′ choice, the triangular inequality (8) means that:

v′(x, t) =

k(x,t)∏

j=1

T − t(j)(x,t)

T
≥

k(x,t+s)∏

j=1

T − t(j)(x,t+s)

T
= v′(x, t + s)

and

v′(x, s) =

k(x,s)∏

j=1

T − t(j)(x,s)

T
≥

k(x,t+s)∏

j=1

T − t(j)(x,t+s)

T
= v′(x, t + s)

so that:

v′(x, t+s)⋄v′(y, t+s) ≤ v′(x, t)⋄v′(y, s) ≤ v′(x, t)⋄v′(y, s)⋄(v′(z, t)⋄v′(z, s))

In [6] we showed empirical results based on experiments using a variety

of continuous t-conorms and t-conorm families.

Note that if we consider the 5-tuple (X, M∗, N⋄, ∗, ⋄), where M∗, N⋄, are

constructed as in Propositions 5.3.1 and 5.4.1 above, then condition (1) in

Definition 2.2.11 does not hold in general so that (X, M∗, N⋄, ∗, ⋄) is not an

intuitionistic quasi-metric space, as the following example shows:

Example 5.4.1. Let X = {x, y}, x 6= y, let T = 1000, k(x) = 1, t1(x) = 1,

k(y) = 1, t1(y) = 2. Take ∗ = ∧ and ⋄ the Lukasiewicz dual, i.e., a ⋄ b =

(a + b) ∧ 1 for all a, b ∈ [0, 1].

If t = T, then:

v(x, t) = 0.0005;

v(y, t) = 0.001;

v′(x, t) = 0.999;

v′(y, t) = 0.998.

Hence

M(x, y, t) + N(x, y, t) = v(x, t) ∗ v(y, t) + v′(x, t) ⋄ v′(x, t)

= (0.0005 ∧ 0.001) + ((0.999 + 0.998) ∧ 1) > 1.
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However, this disarrangement is easily corrected taking functions v/2 and

v′/2, respectively, instead of v and v′. Thus (X, M∗, N⋄, ∗, ⋄) is an intuition-

istic fuzzy metric space for any t-norm ∗ and any t-conorm ⋄.

5.4.1 Evaluated t-conorms

Our source of continuous t-conorms is again Dubois and Prade [13]. After

discarding too complex t-conorms, we have taken into account:

• Minimum dual – Maximum: max(x, y) :=





y if x ≤ y

x if y < x

• Product dual – Probabilistic sum:
∏′(x, y) := x + y − xy.

• Lukasiewicz dual: W’(x, y) := min{x + y, 1}.

We have also included figures showing the results for:

• Hamacher’(x, y) :=
x + y + (β − 1)xy

1 + βxy
where β ≥ −1. It is the Hamacher

family dual.

• Sugeno-Weber’(x, y) := min{x + y + λxy, 1} where λ > −1. It is the

Sugeno-Weber family dual.

In order to see how their behaviour is very similar to the traditional t-

norm duals.

T-conorms order

• max(x, y) ≤
∏′(x, y) ≤ W’(x, y).

• max(x, y) ≤
∏′(x, y) ≤ Sugeno-Weber’<=0(x, y) ≤ W’(x, y) ≤

Sugeno-Weber’>0(x, y).
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• Hamacher’(x, y) order depends on the parameter value β and on x and

y:

– Comparison with W’(x, y):

∗ If x + y < 1 then in order that Hamacher’(x, y) ≤ W’(x, y):

x + y + (β − 1)xy

1 + βxy
≤ x + y

The following condition should happen βxy(1−(x+y)) ≤ xy.

This is possible if, for instance xy 6= 0 then β <
1

2
. This means

that there is not a definitive order between both t-conorms.

∗ If x + y ≥ 1 then for Hamacher’(x, y) ≤ W’(x, y) to happen:

x + y + (β − 1)xy

1 + βxy
≤ 1

This is always true. Then if x + y ≥ 1 we have that

Hamacher’(x, y) ≤ W’(x, y).

– Comparison with
∏′(x, y). In order that hamacherco ≤

∏′(x, y):

x + y + (β − 1)xy

1 + βxy
≤ x + y − xy

βxy(x + y − xy − 1) ≥ 1. As
∏′(x, y) ≤ 1, xy ≤ 1 and it

would be necessary that 1 ≤ β < 0. This is impossible and then

Hamacher’(x, y) ≥
∏′(x, y).

– Comparison with Sugeno-Weber’(x, y):

∗ If x+y+λxy ≥ 1 then for hamacherco ≤ Sugeno-Weber’(x, y)

to happen:
x + y + (β − 1)xy

1 + βxy
≤ 1

This is the same case than Hamacher’(x, y) and W’(x, y) com-

parison for x + y ≥ 1. For this case Hamacher’(x, y) ≤

Sugeno-Weber’(x, y).
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∗ If x+y+λxy ≤ 1 then for Hamacher’(x, y) ≤ Sugeno-Weber’(x, y)

to happen:

x + y + (β − 1)xy

1 + βxy
≤ x + y + λxy

xy(β − λ) ≤ βxy(x + y + λxy − xy). This is possible but not

always true. For example, for xy 6= 0 and β 6= 0:

Sugeno-Weber’(x, y) − xy ≥ 1 −
λ

β

Then, there is not an order between the t-conorms in this

case.

5.4.2 Empirical results: Comparison

The following figures illustrate the results obtained using the intuitionistic

fuzzy metric for the same experiments than Section 5.3.2. It will be worth

revisiting Figures 5.7, 5.13, 5.19 and 5.25 while studying the next ones.

Random variations – Random
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Figure 5.47: Random: v′(x) and v′(y).
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Figure 5.48: Random: N(x, y, t).

For the random access cases (Figures 5.47, 5.48, 5.49, 5.50), it can be seen

how the t-conorms ordering prevails and how fast M values decrease due to

v′(x, t) construction.
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Figure 5.49: Random: N using

Hamacher’.
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Figure 5.50: Random: N using

Sugeno-Weber’.

Left-random variations – Left random
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Figure 5.51: L-Random: v′(x), v′(y).
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Figure 5.52: Left-Random: N(x, y, t).

The experiments for left-random accesses (Figures 5.51, 5.52, 5.53, 5.54),

display how N identifies the differences between element histories concen-

trated near to the starting point. From a given moment on, both histories

show an identical access pattern and N returns very close to 0 values. This

characteristic is reinforced by the fact that k(x) and k(y) are big enough for

the product to tend to 0. As soon as we come across a situation like this,

we must consider that histories distance is measured by v′ more than by the

t-conorm.
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Figure 5.53: Left-Random: N using

Hamacher’.
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Figure 5.54: Left-Random: N using

Sugeno-Weber’.

Right-random variations – Right random
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Figure 5.55: R-random: v′(x), v′(y).
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Figure 5.56: Right-random: N(x, y, t).

For the right-random experiments histories (Figures 5.55, 5.56, 5.57,

5.58), divergence starts at the moment T/4. In that same moment N starts

displaying differences until it turns 0 again due to the amount of accesses

already performed (similar to the left-random accesses case).

Two independent histories – Opposite histories

When we compare the opposite histories experiments (Figures 5.59, 5.60,

5.61, 5.62), with the ones from the right-random accesses, N decrement for
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Figure 5.57: Right-random: N using

Hamacher’.
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Figure 5.58: Right-random: N using

Sugeno-Weber’.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

v

Time t

v’(x,t)
v’(y,t)

Figure 5.59: Opposite histories: v′(x),

v′(y).
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Figure 5.61: Opposite histories: N us-

ing Hamacher’.
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Figure 5.62: Opposite histories: N us-

ing Sugeno-Weber’.

the opposite histories case is softer than for the right-random case, as one

might have expected because differences already appear far from the end of

the histories.

As in the rest of the cases, history differences towards the end of the

history are not compared as explicitly as the comparisons performed towards

the beginning of the history due to the amount of already performed accesses.

5.4.3 Conclusions

We have shown that the optimization of accesses in systems based on local-

ity can be achieved using a mathematical framework based on intuitionistic

fuzzy metric spaces. For that means, we have also presented experimental

results representing best, average and worst cases for a variety of elections in

the fuzzy constructions we can build. Combination of the different t-norm

and t-conorms allows us to model the general case of accesses locality.

The results for the experiments obtained with v′ and the t-conorms are

shown in the following figures on top of the ones obtained with v and the

t-norms to show the intuitionistic fuzzy metric behaviour (applying the cor-
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rection factor v/2 and v′/2 in order to fulfill all the intuitionistic fuzzy metric

properties).

Figures 5.63, 5.64, 5.65 and 5.66 show the results of M and N obtained for

the previous four scenarios. We have only shown the results for traditional t-

norms because they act as boundaries (being the minimum the upper bound

of all of them) for the considered families. Families are useful if we need a

finer tuning or if our system behaves adaptively and the family parameter is

able to introduce subtle improvements in the predictions. This also confirms

that for a general scenario there is no such thing as an optimal parameter.
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Figure 5.63: Random: M and N .
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Figure 5.64: Left-Random: M and N .
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Indeed, M represents the closeness degree and N represents the remote-

ness degree. The intuitionistic fuzzy metric allows us to use two thresholds:

one for “goodness” and another one for “badness” respectively.

For each scenario the intersection between a function M defined by a t-

norm and a function N defined by a t-conorm (not necessarily the dual one)

expresses the moment when a history is not “distant” anymore and becomes

“close”.

Notice that allowing a degree of uncertainty makes N useful. Otherwise

it would not offer more information than the one we already had with M .

Initially, if the uncertainty degree is “reasonable”:

(i) If M(x, y, t) > N(x, y, t) then we can say that both elements belong to

the same class.

(ii) If N(x, y, t) > M(x, y, t) then we can say that they belong to different

classes.

(iii) If N(x, y, t) = M(x, y, t) then we cannot confirm anything about class

membership solely with the result of the intuitionistic fuzzy metric.

For the latter case, we can always choose to decide optimistically (consider

them from the same class) or pessimistically (consider them from different

classes).

In general, our results show that traditional continuous t-norms are the

constructs we need as basic elements in order to build the metric. We find

specially outstanding the results obtained for the minimum and Lukasiewicz

t-norms which are fast to compute and discriminate history results better

than the rest. T-norm families rather than introducing complexity, introduce

a very interesting possibility for finer tuning.
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This makes our model extremely configurable and suitable for a range

of possible future applications much greater than our initial study [7] for

replicated database systems.

From here on we could try to find optimal thresholds for classification

into classes and decisions regarding the “goodness” and “badness” of those.

One possibility is to make use of the multiple variations we can get by

combining different t-norms and t-conorms. Another one would be to change

the definition of v and v′ while maintaining their definition in the scope of the

intuitionistic fuzzy metric. Special care has to be taken for the election of v′.

For instance, our current election is built using a product and its results de-

crease very abruptly. Other elections for v and v′ shall be designed according

to the desired behaviour one expects from the classification threshold.
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[49] J. Rodŕıguez-López, S. Romaguera and O. Valero, Denotational seman-

tics for programming languages, balanced quasi-metrics and fixed points,

Internat. J. Comput. Math. 85:623-630, 2008.

[50] S. Romaguera, The completion of fuzzy metric spaces and of other re-

lated structures, In: Computational Mathematics: Theory, Methods

and Applications, Nova Sci. Publ., New York, 2010, to appear.

[51] S. Romaguera and M. Schellekens, Partial metric monoids and semival-

uation spaces, Topology Appl. 153:948-962, 2005.

[52] S. Romaguera, A. Sapena and P. Tirado. The Banach fixed point the-

orem in fuzzy quasi-metric spaces with application to the domain of

words, Topology Appl. 154:2196-2203, 2007.

[53] S. Romaguera and M. Schellekens, Quasi-metric properties of complexity

spaces, Topology Appl. 98:311-322, 1999.

[54] S. Romaguera, M. Schellekens, P. Tirado and O. Valero, Contraction

maps on complexity spaces and expoDC algorithms, In: Proceedings of

the International Conference of Computational Methods in Sciences and

Engineering ICCMSE 2007, AIP Conference Proceedings 963:1343-1346,

2007.

[55] S. Romaguera and P. Tirado, On fixed point theorems in intuitionistic

fuzzy metric spaces, International Journal of Nonlinear Sciences and

Numerical Simulation 8:233-238, 2007.

[56] S. Romaguera and P. Tirado, Contraction maps on ifqm-spaces with

application to recurrence equations of Quicksort, Electronic Notes in

Theoret. Comput. Sci. 225:269-279, 2009.



121 BIBLIOGRAPHY

[57] R. Saadati, S.M. Vaezpour and Y.J. Cho, Quicksort algorithm: Applica-

tion of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces

at a domain of words, J. Comput. Appl. Math. 228:219-225, 2009.

[58] S. Salbany, Bitopological spaces, completions and compactifications,

Math. Monographs, no 1, Dept. Math. Univ. Cape Town, 1974.

[59] M. Schellekens, The Smyth completion: a common foundation for deno-

tational semantics and complexity analysis, Electronic Notes Theoret.

Comput. Sci. 1:535-556, 1995.

[60] M. Schellekens, The correspondence between partial metrics and semi-

valuations, Theoret. Comput. Sci. 315:135-149, 2004.

[61] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math.

10:314-334, 1960.

[62] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland,

Amsterdam, 1983.

[63] V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction map-

pings on PM-spaces, Math. Systems Theory 6:97-100, 1972.

[64] C. Sempi, Hausdorff distance and the completion of probabilistic metric

spaces, Boll. U.M.I. 6-B:317-327, 1992.

[65] H. Sherwood, On the completion of probabilistic metric spaces, Z.

Wahrsch. verw. Geb. 6:62-64, 1966.

[66] M.B. Smyth, Quasi-uniformities: Reconciling domains with metric

spaces, In: Mathematical Foundations of Programming Language Se-

mantics, 3rd Workshop, Tulane 1987, Lecture Notes Computer Science,

M. Main et al (eds.), Springer, Berlin, 298:236-253, 1988.



BIBLIOGRAPHY 122

[67] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy se-

quences in fuzzy metric spaces, Fuzzy Sets and Systems 135:415-417,

2003.

[68] L.A. Zadeh. Fuzzy sets, Information and Control 8:338-353, 1965.


