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Abstract 

 

Angiogenesis and neovascularization are biological processes which take place in 

tissues and that are associated to an increase of the demands in oxygen and 

nutrients. In healthy adults these processes hardly ever occur. However, in 

disease conditions, such as inflammations or tumor developments, the VEGF 

(vascular endothelial growth factor), the signaling protein causing angiogenesis, 

is highly expressed. Under these circumstances new vessels and capillaries are 

rapidly formed. This new vasculature network is chaotic and has no normal 

structure, especially in the case of tumors. 

The quantification of the angiogenesis is essential in order to assess the degree of 

tumor aggressiveness and the effectiveness of treatments. It is necessary to 

develop reliable and reproducible tools which are sensitive to early changes so 

that more individualized treatments can be used. In this sense, the 

pharmacokinetic modeling of perfusion magnetic resonance (MR) images is a 

valuable tool for the evaluation of the tissue microvascular properties, as it 

allows calculating parameters such as the capillary permeability, the extraction 

rate, the interstitial volume and the vascular volume. These models have been 

extensively used for the analysis of breast, liver and brain tumors; and they have 

also been proposed as accurate imaging biomarkers, both for the evaluation of a 

disease and a treatment. 

In this thesis, new methodological developments and clinical applications are 

proposed. Regarding methodological developments, firstly a new model 

approached is proposed to assess arterial vascularization, based on the 

introduction an arterial index which quantifies the degree of arterial 

vascularization of any tissue in comparison to a reference arterial enhancement 

curve. Secondly, a temporal filter is proposed in order to improve the quality of 
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the enhancement curves. Finally, a set of visualization and statistical tools is also 

introduced in order to improve the analysis of the results. 

Regarding clinical applications, the pharmacokinetic models are implemented 

and applied in novel scenarios, such as the treatment of the ovarian 

hyperstimulation syndrome, the assessment of cartilage degeneration and the 

treatment of osteoarthritis. Then, further applications on the assessment of the 

arterial contribution of the hepatocellular carcinoma and the multivariate 

analysis of grade-IV astrocytomas are presented. Finally, the influence of the 

magnetic field strength on the pharmacokinetic parameters is also assessed. 

The proposed developments and clinical applications have shown good results, 

as they improved the amount of information and the accuracy of the 

pharmacokinetic models, providing further knowledge for a better assessment of 

both disease and treatment effects. The new clinical applications have 

demonstrated the potential and the effectiveness of the pharmacokinetic 

parameters as imaging biomarkers extracted from perfusion MR images. 
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Resum 

 

L’angiogènesi i la neovascularització son processos biològics que tenen lloc als 

teixits i que estan associats a l’augment de les demandes d’oxigen i nutrients. En 

adults normals aquestos processos no solen ocórrer. Tanmateix, en condicions de 

malaltia, com a les inflamacions o el desenvolupament de tumors, el VEGF 

(factor de creixement vascular endotelial, de l’anglés vascular endothelial growth 

factor), la proteïna senyalitzadora causant de l’angiogènesi, està fortament 

expressada. En aquestes circumstàncies es formen ràpidament nous vasos i 

capil.lars. Aquesta nova xarxa vascular és caòtica i no presenta una estructura 

normal, especialment en el cas dels tumors. 

La quantificació de l’angiogènesi és essencial per a avaluar el grau d’agressivitat 

d’un tumor i la eficàcia dels tractaments. És necessari desenvolupar ferramentes 

fiables i reproduïbles que siguen sensibles als primers canvis, la qual cosa pot 

permetre utilitzar tractaments més individualitzats. En aquest sentit, el modelat 

farmacocinètic d’imatges de perfusió per ressonància magnètica (RM) és una 

valuosa ferramenta per a l’avaluació de paràmetres com la permeabilitat 

capil.lar, el coeficient d’extracció, el volum intersticial i el volum vascular. 

Aquestos models s’han utilitzat de forma extensiva per a l’anàlisi dels tumors de 

mama, fetge i cervell; i, a més a més, s’han proposat com a biomarcadors 

d’imatge per a una avaluació exacta de la malaltia i els tractaments. 

En aquesta tesi s’han proposat nous desenvolupaments i aplicacions clíniques. 

Respecte als desenvolupaments metodològics, primer s’ha proposat un nou 

model per a avaluar la vascularització arterial, basat en el càlcul d’un índex 

arterial que quantifica el grau de vascularització arterial en comparació a una 

curva arterial de referència. Segon, s’ha proposat un filtre temporal per a millorar 

la qualitat de les curves de captació. Finalment s’han introduït unes ferramentes 

de visualització i estadística per a millorar l’anàlisi dels resultats. 
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Pel que fa a les aplicacions clíniques, els models farmacocinètics s’han 

implementat i s’han aplicat a nous escenaris clínics, com el tractament del 

síndrome d’hiperestimulació ovàrica, l’avaluació de la degeneració del cartílag i 

el tractament de l’artrosi. Després s’han presentat aplicacions com l’avaluació de 

la contribució arterial al carcinoma hepatocel.lular i l’anàlisi multivariant 

d’astrocitomes de grau-IV. Finalment també s’ha avaluat la influència de la 

intensitat del camp magnètic sobre el paràmetres farmacocinètics. 

Els desenvolupaments proposats i les aplicacions clíniques han mostrat bons 

resultats, ja que han millorat la quantitat d’informació i l’exactitud dels models 

farmacocinètics, oferint més coneixement per a una millor avaluació de la 

malaltia i dels efectes dels tractaments. Les noves aplicacions clíniques han 

demostrat el potencial i l’efectivitat dels paràmetres farmacocinètics com a 

biomarcadors d’imatge obtinguts a partir d’imatges de perfusió de RM. 
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Resumen 

 

La angiogénesis y la neovascularización son procesos biológicos que tienen lugar 

en los tejidos y que están asociados al aumento de las demandas de oxígeno y 

nutrientes. En adultos normales estos procesos no suelen ocurrir. Sin embargo, 

en condiciones de enfermedad, como en inflamaciones o en el desarrollo de 

tumores, el VEGF (factor de crecimiento vascular endotelial, del inglés vascular 

endothelial growth factor), la proteína señalizadora causante de la angiogénesis, 

está fuertemente expresada. En estas circunstancias se forman rápidamente 

nuevos vasos y capilares. Esta nueva red vascular es caótica y no presenta una 

estructura normal, especialmente en el caso de tumores. 

La cuantificación de la angiogénesis es esencial para evaluar el grado de 

agresividad de un tumor y la eficacia de los tratamientos. Es necesario 

desarrollar herramientas fiables y reproducibles que sean sensibles a cambios 

tempranos, lo cual puede permitir utilizar tratamientos más individualizados. En 

este sentido, el modelado farmacocinético de imágenes de perfusión por 

resonancia magnética (RM) és una valiosa herramienta para la evaluación de 

parámetros como la permeabilidad capilar, el coeficiente de extracción, el 

volumen intersticial y el volumen vascular. Estos modelos se han utilizado de 

forma extensiva para analizar los tumores de mama, hígado y cerebro; y, 

además, se han propuesto como biomarcadores de imagen para una evaluación 

exacta de la enfermedad y los tratamientos. 

En esta tesis se han propuesto nuevos desarrollos y aplicaciones clínicas. 

Respecto a los desarrollos metodológicos, primero se ha propuesto un nuevo 

modelo para evaluar la vascularización arterial, basándose en el cálculo de un 

índice arterial que cuantifica el grado de vascularización arterial en comparación 

con una curva arterial de referencia. Segundo, se ha propuesto un filtro temporal 

para mejorar la calidad de las curvas de captación. Finalmente se han 
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introducido unas herramientas de visualización y estadística para mejorar el 

análisis de los resultados. 

En lo referente a las aplicaciones clínicas, los modelos farmacocinéticos se han 

implementado y se han aplicado a nuevos escenarios clínicos, como el 

tratamiento del síndorme de hiperestimulación ovárica, la evaluación de la 

degeneración del cartílago y el tratamiento de la artrosis. Después se han 

presentado aplicaciones como la evaluación de la contribución arterial en el 

carcinoma hepatocelular y el análisis multivariante de astrocitomas de grado-IV. 

Finalmente también se ha evaluado la influencia de la intensidad de campo 

magnético sobre los parámetros farmacocinéticos. 

Los desarrollos propuestos y las aplicaciones clínicas han mostrado buenos 

resultados, ya que han mejorado la calidad de la información y la exactitud de 

los modelos farmacocinéticos, ofreciendo un mayor conocimiento para una mejor 

evaluación de la enfermedad y de los efectos de los tratamientos. Las nuevas 

aplicaciones clínicas han demostrado el potencial y la efectividad de los 

parámetros farmacocinéticos como biomarcadores de imagen obtenidos a partir 

de imágenes de perfusión por RM. 
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Motivation 

 

Classical imaging methods used for the diagnosis and follow-up of disease have 

been based on conventional X-rays, computerized tomography (CT), nuclear 

magnetic resonance (NMR) and ultrasounds. Their clinical application has been 

built upon the qualitative judgment of the acquired image by a radiologist. 

Therefore, through the visual analysis of the characteristics of a lesion (basically 

the information related to anatomical borders and regions), the radiologist has 

been able to release a diagnose about the presence and type of pathology with 

good efficacy. In the particular case of tumors diagnosis, the biological 

typification of a lesion and the assessment of its response in front of a treatment 

is a fundamental part of the radiologist’s role. To do this, diagnostic imaging is 

considered as one of the best methodological tools, and sometimes even the only 

available one, to evaluate the tumor and its characteristics. However, although 

diagnostic imaging is the best means to detect and assess lesions, it is not 

absolutely free of error. 

Thanks to the use of digital images, nowadays we can obtain relevant medical 

information which is not visible when the radiological images are analyzed. The 

evolution towards completely digital environments and the release of image 

post-processing platforms with quantification tools and parametric image 

analysis has started a new revolution in medicine. These tools can extract 

physiological, chemical and biological measurements from the tissues, working 

as virtual biopsies based on the acquisition of images which are sensitive to 

certain properties. These measurements behave like imaging biomarkers, which 

can be defined as all those characteristics that can be extracted and objectively 

measured from the tissues. They are indirect markers of normal or pathological 

processes and can be used to evaluate therapeutic intervention response [1,2]. 
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Angiogenesis processes associated to the tumors take place when the tumor 

reaches a certain size and the tissue can no longer guarantee the oxygen and 

nutrients supplies to keep on growing. Under these circumstances, tumor cells 

produce signaling proteins which stimulate the formation of new blood vessels 

(VEGF, vascular endothelial growth factor). These angiogenic processes have a 

series of characteristics which make them clearly distinct from all the 

vascularization which develops naturally throughout the rest of the body. Tumor 

angiogenesis is highly heterogeneous and it presents chaotic vascular structures. 

Also, the new vessels are fragile and very permeable to macromolecules, due to 

the existence of deep indents among the endothelial cells, the number of shunts 

increases and the blood flow becomes unstable [3]. 

The interest to visualize and measure tumor angiogenesis is not only 

circumscribed to the assessment of tumor growth or metastases development. 

Nowadays there are therapies which act as antiangiogenic factors, so that their 

efficacy and effectiveness can be quantified with perfusion based imaging 

biomarkers. 

Although perfusion and angiogenesis can be studied with several imaging 

modalities, MR imaging is one of the most common options, due to its innocuous 

and non ionizing properties. To analyze tumor perfusion, investigators typically 

use images acquired during the administration of an intravenous contrast agent. 

Though the perfusion characteristics of a tissue are often studied through the 

subjective observation of its enhancement curves, there are a number of 

quantitative parameters which can be derived from these curves.  

The intravenous contrast agent diffuses from the capillaries into the 

extravascular extracellular space, providing information about perfusion, 

capillary permeability and interstitial space volume [4]. These parameters 

depend on the amount of contrast that the tissue receives and can be used to 

describe the tissue physiology and the anomalies in the vascular processes. The 

capacity to analyze tumor angiogenesis allows studying therapeutic response 
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and identifying non-responders before it can be evident from traditional 

methodology and standards (i.e., significant size change). 

Contrast enhancement analysis can be performed from several methodological 

approximations, as it is influenced by the acquisition technique (sequence 

weighting, temporal resolution, injection speed or contrast media type) and the 

post-processing algorithms. Due to the heterogeneity of the tumor perfusion, 

imaging techniques must study the whole lesion with enough spatial and 

temporal resolutions.  

Pharmacokinetic (PK) analysis of tumors is based on the direct calculation of 

neovascularization biomarkers (capillary permeability, washout coefficient, 

vascular space fraction and interstitial space fraction) through the application of 

compartmental fluid diffusion models [4]. The application of these models is 

complex and has important variability sources, both in image acquisition and in 

post-processing methodologies. Although there is a huge amount of studies and 

applications [5-21], the methodological complexity and the dependency on the 

model variant do not allow the reproducibility of the results among clinical 

centers [5,11,22]. However, it has been accepted that the PK analysis should be 

theoretically independent from both the patient and the equipment, because it 

works directly on contrast concentration values, instead of only signal intensity 

variations. This fact, together with the ability to provide a much more realistic 

modeling of the tissue physiological reality, make these models an important 

research focus for the study of tumors and their treatments. 
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Objectives and structure 

 

This thesis focuses on the development and application of PK models to 

magnetic resonance (MR) perfusion images, in an aim to gain insight into the 

microvascular changes produced by the apparition and the progression of 

disease.  

Particularly, the following objectives are proposed: 

• To adapt the generalized PK model to the study of new clinical scenarios: 

- Effects of ovarian hyperstimulation syndrome treatment. 

- Microvascular changes of the articular cartilage in chondromalacia 

and osteoarthritis. 

- Microvascular changes produced by glucosamine sulfate in 

osteoarthritic cartilages. 

- Differences between one-compartment and two-compartment 

models in central nervous system (CNS) gliomas. 

- Assessment of perfusion changes in hepatocellular carcinomas. 

• To establish the influence of magnetic field intensity on the PK 

parameters. 

• To develop an improved methodology for the accurate assessment of the 

neoangiogenesis in liver tumors. 

• To develop a software tool for the application of PK models in the clinical 

routine. 

 

The thesis is structured as follows: 

Chapter 1 is an introduction which describes all the necessary concepts to 

understand the thesis. Firstly, the clinical bases regarding the angiogenesis 

process and the clinical applications are explained. Secondly, a description of the 

MR imaging technique is given, focusing on the special needs of PK perfusion 
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studies. And thirdly, the PK models are introduced, with a summary of their 

evolution, the state of the art and the current methodological problems. 

Chapter 2 describes the thesis methodology. It is divided into four parts: image 

pre-processing steps, with the filters and the registration process that must be 

applied to the acquired images; PK modeling, with the proposed improvements 

and new developments; curve fitting algorithms; and reproducibility assessment 

and statistical analysis methods. In this chapter, the new developments 

regarding curve filtering and neovascularization modeling are also developed. 

In chapter 3 the results of the clinical applications and the reproducibility tests 

are presented: ovarian hyperstimulation syndrome, cartilage degeneration, brain 

and liver tumors. The discussion on the results is also presented. 

Chapter 4 deals with the possible lines of future work and Chapter 5 summarizes 

the conclusions. 

Finally, an appendix with a brief description of the developed software is also 

given. 
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1. Introduction 

 

This chapter introduces all the concepts which are indispensable to understand  

the methodological and clinical applications presented in this thesis. It is divided 

into three parts: part one deals with all the clinical notions, comprising the 

generic physiological bases of the angiogenesis processes and a brief description 

of the diseases that are used as clinical applications; the second part describes the 

MR imaging technique, focusing particularly on the imaging requirements for 

the PK analysis; and the third part deals with the PK models, explaining their 

evolution, their mathematical formulation and the state of the art. 

 

1.1 Clinical bases 

 

The following subsections describe the angiogenesis process in a generic way, 

then it will be applied to some clinical scenarios: ovarian hyperstimulation 

syndrome, articular cartilage degeneration, CNS glioblastomas and 

hepatocellular carcinoma. 

 

1.1.1 Angiogenesis 

 

Current knowledge about oncology states that there are more than one hundred 

types of cancer and that there is a huge heterogeneity among them [23]. 

However, although they may present drastically different characteristics, the 

mechanisms that start a tumor and keep it growing are quite similar.  

One of the mechanisms that stands in the spotlight of tumor development is 

angiogenesis (figure 1.1), which can be defined as the formation of new vessels 

either from pre-existing vasculature or from embryo cells. 
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Figure 1.1. Factors involved in the origin and development of a tumor. 

 

In healthy adults, angiogenesis seldom occurs, and it is only related to wound 

healing and female reproductive cycles [24]. This inhibition of angiogenesis is 

held by keeping a balance between angiogenic factors and inhibitors.  

When a tumor is developing, at a certain step of growth (approximately 1 mm) it 

needs an autonomous blood supply to keep on growing [25]. To achieve this, it 

breaks the vascular balance (angiogenic switch) and develops an overproduction 

of growth factors that generate new vessels out of the existing vascular network 

(figure 1.2). Among these growth factors, the VEGF (vascular endothelial growth 

factor) is the only one which is produced through the whole tumor life [26]. It has 

been shown to be present in most tumor types (colon, lung, breast, brain, 

kidneys, ovaries, prostate, etc.), keeping a strong relation with tumor 

development [27]. 
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Figure 1.2. Biochemical markers produced in the tumor during its evolution. 

 

The VEGF acts over the tumor vasculature in three ways [28]: 

• Establishment of new vasculature through the recruitment of bone-

marrow-derived cells that are used to set up the new vascular network 

[29]. 

• Growth of new vasculature by providing additional blood supply. 

• Maintenance of the blood supply network, inhibiting apoptosis and 

sustaining the metabolic needs of the tumor. 

Tumor vascular networks are formed by a complex and chaotic mesh of vessels 

and arterio-venous shunts. This produces very heterogeneous and unstable 

environments [30], where blood vessels have serious structural and functional 

abnormalities. This fact makes tumors a difficult target for a uniform delivery of 

drugs to the whole tumor.  

Many anti-angiogenic treatments focus their mechanisms in the inhibition of the 

VEGF signaling pathway, both in intra- and extracellular environments [28]. 

However, these treatments are not always effective, due to the properties of some 

tumors to develop resistance to these inhibitors through mutation processes. 
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When this happens, tumor progression continues through the activation of 

secondary pathways [28]. 

So far there are not yet adequate means to assess and measure tumor 

angiogenesis in a reproducible, direct and reliable way. Despite their limitations, 

these are some of most commonly used markers [31]: 

• Microvessel density (MVD): MVD is determined immunohistochemically 

and it represents the amount of oxygen and nutritional supply of 

proliferating tumor cells, as well as the potential for invasion and 

metastasis. 

• Intratumoral VEGF determination: it can be measured using 

immunohistochemistry, in situ hybridization, immunoassays or reverse-

transcriptase polymerase chain reaction. However, it is a very expensive 

method which is not used in clinical routine. 

• Monitoring circulating VEGF: some studies conclude that the amount of 

VEGF in blood is related to tumor status and prognosis in most types of 

cancer. However, this measurement may not be useful in early disease 

steps, such as for screening purposes. 

 

1.1.2 Ovarian hyperstimulation syndrome  

 

Ovarian hyperstimulation syndrome (OHSS) is a supraphyisiologic secondary 

response to the gonadotropins stimulus in an ovulation induction (figure 1.3). It 

is the result of increased vascular permeability and extravasation of fluid, which 

also causes hemoconcentration with reduced organ perfusion [32]. Severe forms 

of OHSS appear in 0.5-5% of assisted reproduction technology cycles and can 

result in death [33]. Despite being a dangerous iatrogenic complication, its 

pathophysiology remains unknown and it has always been treated empirically. 
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Figure 1.3. OHSS. It can be seen that the ovaries (red arrow) are clearly oversized. 

 

OHSS develops after the administration of human chorionic gonadotropin 

(hCG). As hCG has no vasoactive activity, VEGF is produced as mediator of 

hCG-dependent ovarian angiogenesis. It is known that elevated levels of VEGF 

mRNA are detected in serum, plasma and peritoneal fluids in women at risk or 

with OHSS [34]. 

Dopamine and its agonists, such as cabergoline (Cb2) can inactivate VEGF 

selectively, preventing the development of angiogenesis and permeability. 

Recent studies in women with OHSS have demonstrated this protective effect 

during controled ovarian hyperstimulation [35]. 

 

1.1.3 Articular cartilage degeneration 

 

Chondromalacia and degenerative osteoarthritis are common diseases of the 

articular cartilage which affect the life quality of millions, impeding the 
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development of a normal life [36]. Chondromalacia affects the main substance 

and the collagen fibers, as well as the deepest layers of the cartilage. It tends to 

develop towards femoropatellar osteoarthritis, where water content increases 

and the thickness of the collagen matrix decreases. As a consequence, the 

cartilage suffers mechanical overloads and tissue destruction [37]. 

The gold standard to assess cartilage status is arthroscopy with biopsy, an 

expensive and invasive technique. MR imaging allows the study of the cartilage 

with high detail, offering both spatial and contrast resolution.  

Traditional cartilage MR imaging biomarkers have been related to the 

Outerbridge classification [38], where cartilage condition is stated according to a 

visual analysis of the images through four grades, from normal (grade 1) to frank 

osteoarthritis (grade 4). MR imaging cartilage analysis is usually performed by 

the qualitatively grading of the cartilage signal intensity (brightness in T2 

weighted images is related to water content and tissue edema) and surface 

condition (thinness, irregularities and erosions are related to degeneration) 

(figure 1.4). The use of perfusion MR imaging has increased the knowledge about 

cartilage abnormalities, focusing on its properties of vascularization and blood 

supply [39]. 

 

 

Figure 1.4. Changes in the patelar cartilage produced by the developoment of chondropathy and 
osteoarthritis. As degeneration progresses there is a destruction of the cartilage matrix, until the 

bone itself is exposed (grade 4). 
 

Normal articular cartilage is resistant to vascular invasion. This unique property 

is a necessity to maintain its biomechanical properties. However, several studies 
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have demonstrated that as degeneration progresses towards osteoarthritis, there 

is a change in the antiangiogenic cartilage properties. Recent studies have shown 

a positive correlation between osteoarthritis progression and the matrix 

expression of the VEGF [40-47]. Even in early cartilage damaging conditions, 

there is an overexpression of vascular mediated factors, such as the VEGF, in the 

chondrocytes microenvironment related to hypoxia, inflammation and excessive 

mechanical loading conditions [46] (figure 1.5). It seems therefore appropriate to 

target cartilage vascular parameters, related to VEGF expression, as an 

appropriate way to determine both cartilage disease status (from early changes to 

more advanced degeneration conditions) and the changes associated to therapy. 

 

 
Figure 1.5. Relationship between the production of VEGF and the degeneration progression. 

 

1.1.4 Brain tumors: glioblastomas 

 

Astrocytomas are the most frequent primary brain tumors of the central nervous 

system. The World Health Organization classifies them as circumscribed or 

diffuse [48]. The diffuse astrocytomas are: grade II or low grade astrocytomas, 

grade III or anaplasic, and grade IV or glioblastomas. Glioblastomas constitute 

the biggest group and they also have the worst prognosis, with an average 

survival period of fifteen months [49]. They are heterogeneous tumors with a 

predisposition to infiltrate the brain tissue following the vascular structures and 
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the white matter tracts (figure 1.6). Complete surgical resection of glioblastomas 

is not usually possible. 

 

 

Figure 1.6. T1-weighted late enhancement image of a grade-IV astrocytoma. It can be seen that 
the contrast media has extravasated due to the destruction of the blood brain barrier. 

 

The anatomopathological diagnose of glioblastomas is based on cellular atypia, 

presence of mitosis, vascular proliferation and necrosis. Due to their 

heterogeneity, the diagnose based on histological samples, obtained by biopsy or 

surgical resection, is not error free. Even in wide resections, histology may only 

be obtained out of a sample and not from the whole lesion. These sampling 

mistakes may lead to a wrong classification of the tumor, with the corresponding 

assignment of an inadequate treatment. Moreover, current tumor classifications 

fail when trying to predict individual tumor response in the same histological 

group [50]. This means that there is not a complete correlation between the 

tumor grade and its biological behavior. 

One of the main characteristics of high grade tumors is the increment of blood 

vessels, a physiological parameter which indicates their biological activity and 

which is used as a predictive factor of bad prognosis [51]. The newly formed 

vessels are more tortuous and immature and they have more permeability 

towards macromolecules diffusion than normal brain vessels. 
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MR perfusion studies with dynamic susceptibility-contrast sequences allow 

quantifying angiogenesis indirectly by measuring tumor capillary permeability, a 

biomarker of malignancy. Moreover, this information can be obtained from the 

whole tumor, not only from a sample, therefore offering whole in vivo 

knowledge of the tumor physiology and heterogeneity. 

 

1.1.5 Liver tumors: hepatocellular carcinoma 

 

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors 

worldwide, affecting more men than women and causing more than 600,000 

deaths per year [52]. It is usually related to either a viral infection (hepatitis B or 

C) or cirrhosis (mainly due to alcoholism). The usual outcome is poor, as it is 

very difficult to remove the tumor completely after surgery (figure 1.7). 

Percutaneous tumor ablation techniques are used with good results in non-

surgical cases. When it cannot be completely removed, it is usually deadly within 

3 to 6 months [53]. 

 

 
Figure 1.7. (a) Dynamic contrast-enhanced image of an hepatocellular carcinoma. It can be seen that 

the lesion has much more enhancement (it receives much more blood) than the normal liver 
parenchyma. (b) HCC angiography. There is a huge increase in the arterial contribution. 
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The pathogenesis of most HCCs starts with chronic hepatic damage caused by 

the infection. During this process there is an extensive death of hepatocytes 

which stimulates a chronic cellular regeneration that may lead to fibrosis 

(cirrhosis). As the disease progresses, the healthy tissue is replaced by fibrotic 

tissue, which may block blood flow through the liver and thus damage the 

hepatic function. This damage is irreversible, although it may be considerably 

delayed with appropriate treatments. The high rate of cellular activity which 

takes place during the cirrhotic process increases the probability of mutation 

occurrence and the transformation of pre-tumoral hepatic lesions into HCC. HCC 

tends to spread forming metastasis in (intrahepatic) and out of the liver (lungs, 

bones and lymphatic nodes). 

There are three major types of HCC: 

• Expansive: it is an encapsulated tumor which grows expanding, compressing 

and destroying the tissue that surrounds the liver. 

• Infiltrative: it is not a much defined tumor whose growing pattern is  

invasive. 

• Multifocal: it is formed of many small tumors of similar size which are 

scattered through the whole liver. 

 

1.2 MR imaging 

 

MR imaging is a noninvasive tool to explore the internal anatomy and 

physiology of living subjects in vivo. In the nuclear MR phenomenon, atomic 

nuclei situated under an intense magnetic field are exposed to electromagnetic 

waves, which they absorb and reemit at a certain resonant frequency in the 

radiofrequency (RF) range, from which the image is formed [54,55]. It is 

considered a safe technique, because at the intensities used in MR scanners, the 

RF waves have no demonstrated dangerous effects [56]. 
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1.2.1 Physical bases 

 

Nuclei and magnetic fields 

Nuclear MR phenomenon is caused by the fact that some nuclei with nonzero 

spin possess tiny magnetic moments, similar to a bar magnet. When an external 

magnetic field (B0) is applied, these magnetic moments start to rotate around its 

direction in a motion called precession (figure 1.8). The frequency at which the 

nuclei precess is called the Larmor frequency and it is proportional to the 

strength of B0 and the gyromagnetic ratio of the nucleus (γ). 

 

 
Figure 1.8. Magnetic moment of a hydrogen proton under the effect of an external magnetic field 

B0. It precesses at the Larmor frequency, which is proportional to the magnetic field intensity. 
 

In MR imaging, the most important nucleus is hydrogen, because it is the most 

abundant element in the body. It has a γ of 42.58 MHz/T and, for clinical MR 

scanners, the Larmor frequency falls in the MHz range. However, hydrogen is 

found in many different molecular environments (water, fat, proteins, etc.). This 

originates small changes in the Larmor frequency, known as chemical shift. 

The magnetic moment of a nucleus under a B0, precessing at the Larmor 

frequency, produces oscillations in the magnetic field that can be detected with 

an RF coil in the transverse plane (perpendicular to B0), forming an MR signal. 

Under equilibrium conditions (B0 alone), the oscillations from all the precessing 

nuclei are asynchronous and cancel each other, resulting in a null detectable 
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signal in the transverse plane (Mxy). However, in the longitudinal plane (parallel 

to B0) a small non oscillatory net magnetization (M0) remains (figure 1.9). 

 

 
Figure 1.9. Net magnetization of a group of hydrogen protons under B0. It can be seen that 

magnetization in the transversal plane is null due to global cancellation. However, there remains 
a net magnetization M0 in the longitudinal plane. 

 

Excitation and detection 

The net magnetization M0 can be tilted upon the transverse plane with the 

application of an external RF pulse at the Larmor frequency (B1). Therefore, the 

magnetization in the transverse plane Mxy increases (M0 decreases), as the nuclei 

are now precessing in synchrony. When B1 is turned off, Mxy starts to decay due 

to the gradual loss of synchrony. However, during this decay it produces an 

oscillating magnetic field which can be detected with a receiver coil (figure 1.10). 

 

 
Figure 1.10. (a) Effect of the application of an RF pulse: the net magnetization M0 is tilted and a 

transversal component Mxy appears. (b) After the application of the RF pulse, the Mxy component 
decreases rapidly, going back to the orginal net magnetization M0. 
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Relaxation 

After B1 is switched off, inter-nuclear and inter-molecular forces produce a loss of 

phase coherence among the spins. This causes a gradual loss of Mxy (transverse 

relaxation) and a gradual increase of Mz (longitudinal relaxation). These 

relaxation processes condition the instants at which the signal can be acquired by 

the receiver coil in order to obtain different contrasts among the tissues. 

Longitudinal relaxation is caused by interactions between the nuclei and their 

environment. It is defined by a time T1, which varies according to the molecule 

in which the nucleus is bound and the type of tissue in which it is located. The 

recovery of Mz follows and exponential rule (figure 1.11): 

 

1/

00 )·)0(()( Tt

zz eMMMtM −−+=  

 

where Mz(0) is the longitudinal magnetization before the application of the RF 

pulse. The value of T1 depends on the mobility of the molecule in which the 

nuclei stand. For example, in medium-sized molecules, such as lipids, the 

relaxation rate is faster (shorter T1) than in other molecules, such as the free 

water of fluids. 

 

 
Figure 1.11. Evolution of the longitudinal magnetization after the application of an RF pulse. 

From this curve, the longitudinal relaxation time T1 can be calculated. 
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Transverse relaxation is caused by the dephasing among the spins, originated by 

variations in the local magnetic field each nucleus perceives. It has two 

components: the microscopic environment of the nucleus (molecule size and 

tissue type) and the inhomogeneities of the main magnetic field. The first 

component takes place on a time called T2, while the second component further 

affects the relaxation process, shortening it to a value denoted T2*. In MR 

imaging, T2 and T2* can be assessed or weighted separately. Again, depending 

on the environment, T2 may be long (such as in free water), very short 

(macromolecules) or even undetectable (proteins, DNA). T2* also depends on the 

presence of components with non zero magnetic susceptibility in the proximities 

of the scanner or the region of study (such as ferromagnetic materials, 

deoxyhemoglobin or hemosiderin). The T2* attenuation of the transverse 

magnetization following an RF pulse is known as the free induction decay (FID) 

and is ruled by the following equation (figure 1.12): 
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Figure 1.12. Evolution of the transversal magnetization after the application of an RF pulse. From 

this curve, the transversal relaxation time T2* can be calculated.  
 

Using an inversion pulse at TE/2 it is possible to cancel the B0 inhomogeneities 

and obtain a signal following T2 attenuation: 
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This is called a spin-echo (SE) acquisition and it will be later described in the 

sequences section. 

 

1.2.2 Equipment 

 

Main magnet 

The main magnet is the responsible for the creation of the static magnetic field B0. 

In MR imaging it is necessary to work with extremely strong and stable magnetic 

field intensities (in the order of a few teslas), much higher than earth’s (about 

100,000 times higher). Most current clinical MR equipments use 1.5 T or 3.0 T. 

Although there are several types of magnet, the most used are the 

superconductive electromagnets, made from dense niobium-titanium coils 

cooled at -263 ºC. These coils carry very high electrical currents with minimal 

resistance. Depending on the necessities, it is possible to obtain different magnet 

architectures (figure 1.13). 

 

 
a                                                                                  b 

Figure 1.13. Clinical MR equipments (Source: a) www.medical.siemens.com and b) 
www.philipsmriequipment.com. Last access: January 2010). 
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Gradient and shim coils 

Main magnets may have small spatial variations in B0. These effects can be 

corrected with gradient and shim coils, which produce compensatory magnetic 

fields to keep B0 homogeneous. 

Gradient fields are also used to select the parts of the subject which need to be 

imaged and to encode the spatial information of the signal. MR systems have 

three gradient coils, used to produce linear variations of the magnetic field in the 

three axes X, Y and Z. These variations (in the order of the mT/m) allow the 

selection of multiple study planes. The higher the strength of a gradient the faster 

the acquisition and the spatial resolution of the images. 

 

RF coils 

RF coils are used both to produce the excitation (B1) and to receive the relaxation 

signal. Separate coils can be used for transmission and reception, or a single coil 

may be used for both. Depending on the application, it is possible to use surface 

or volume coils. The dimensions of the coils must also be adapted to the size of 

the tissue under study. 

 

Computer system 

A computer system is also necessary to process all the signals and keep the 

system synchronized. With this system it is possible to configure the necessary 

pulse sequences to transmit and receive all the signals. It also reconstructs the 

images from the received signals and allows the configuration of planes and 

other acquisition parameters. 
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1.2.3 Image formation 

 

Slice selection 

A gradient introduces a linear spatial variation in B0 so that only a slice of the 

specimen under study is centered at the Larmor frequency corresponding to the 

RF excitation pulse (figure 1.14). The thickness of the slice is a function of the RF 

pulse bandwidth and the amplitude of the gradient. Varying the RF pulse central 

frequency it is possible to select adjacent slices. Finally, the orientation of the slice 

is selected by any linear combination of the three gradient coils. 

 

 
Figure 1.14. Slice selection using the combination of a magnetic field gradient and an RF pulse. It 

can be seen that only one section (slice) of the subject is excited, depending on the central 
resonant frequency and the RF pulse bandwidth. 

 

Spatial encoding 

Once a slice is selected and the RF pulse is applied, the emitted signal will be a 

contribution from all the nuclei of that slice. To identify the signal contribution 

from each voxel it is necessary to encode into the signal some spatial information 

to locate the voxel (x and y coordinates). This can be done by applying two 

additional magnetic field gradients: the frequency encoding and the phase 

encoding gradients (figure 1.15). 
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Figure 1.15. Application of (a) a phase encoding gradient and (b) a frequency encoding gradient 

to encode each voxel of the final image. 
 

The phase encoding gradient is applied as a brief pulse before data acquisition. 

This gradient is applied during a very short time; altering the Larmor frequency 

of the spins and making them precess at slightly different speeds. When it is 

switched off all the spins go back to the same precessing frequency, but the net 

result is a phase variation among the spins, which is introduced in their signals. 

The gradient is applied several times with different amplitude to encode all the 

rows of the k-space (figure 1.16), a matrix of values that stores all the image 

spatial information.  

 

 
Figure 1.16. k-Space is related to the image with the two-dimensional Fourier transform. It can be 
seen that all the information of the image is previously acquired by filling the k-space, both with 

contrast (low spatial frequencies) and borders (high spatial frequencies) information.  
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The frequency encoding is applied during signal acquisition. The position of the 

spins along the direction of the gradient can then be identified by the frequency 

of their emitted signals. This gradient is bipolar (positive and negative gradient) 

to prevent an additional dephasing of the spins. 

 

Image reconstruction 

After acquiring all the signals from the selected slice, the k-space is filled with 

values, each value corresponding to a different frequency/phase pair. By 

applying an inverse 2D Fourier transform to the k-space matrix the image is 

finally obtained. Information is arranged in the k-space so that data near the 

center correspond to low spatial frequencies (image contrast information) while 

data far from the center correspond to high spatial frequencies (image borders 

information). 

The resolution of the resulting image is determined by the highest acquired 

spatial frequency, and the x-y spatial resolution is usually isotropic, as the 

highest acquired spatial frequency is usually the same for both dimensions. 

 

 

1.2.4 Sequences 

 

To acquire an MR image through a Cartesian grid of k-space, it is usually 

necessary to send and acquire several RF pulses and signals in synchronization 

with the activation of the spatial encoding gradients. This process is called a 

pulse sequence. Basically, there are two big families of pulse sequences, based on 

the way the echo of the MR signal is formed: spin-echo (the echo is formed using 

rephasing 180º RF pulses) and gradient-echo (the echo is formed using rephasing 

gradients) sequences. 
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Spin-echo sequences 

The time diagram of a spin-echo sequence can be seen in figure 1.17: 

 

 

Figure 1.17. Spin echo sequence. 

 

It can be seen that two RF pulses are used inside the same repetition time (TR). 

The first pulse tilts the equilibrium magnetization 90º on the transverse plane, 

while the second pulse is an inversion pulse (180º) that refocuses spin dephasing. 

This second pulse is transmitted at half the time of the echo acquisition (TE/2). 

The slice selection gradient (Gz) is activated each time an RF pulse is sent. It can 

also be seen that the echo is acquired during the activation of the frequency-

encoding gradient (Gx) and that the phase-encoding gradient (Gy) modifies its 

amplitude in each TR period. 

In spin-echo sequences it is possible to obtain T2-weighted images, because the 

refocusing RF pulse cancels B0 inhomogeneities. However, in order to acquire 

this type of images it is necessary to use long TRs, a fact that makes these 

sequences very time consuming. In order to improve speed, several echoes can 

be acquired in the same TR by sending additional refocusing pulses (fast spin-

echo sequences). 
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Gradient-echo sequences 

The time diagram of a gradient-echo sequence can be seen in figure 1.18: 

 

 

Figure 1.18. Gradient echo sequence. 

 

In gradient echo sequences only one RF pulse is transmitted at the beginning of 

the TR period. In this sequence, the refocusing of the spins is produced by the 

frequency-encoding gradient, which minimizes it (achieves a signal maximum) 

at the center of the acquisition period. In fact, the frequency-encoding gradient 

produces a negative refocusing effect (preparatory gradient pulse) before 

applying the positive gradient value. This is done to achieve control of the 

dephasing process of the spins. 

In opposition to spin-echo sequences, transverse magnetization is subject to T2* 

dephasing in gradient-echo sequences. Therefore it is not possible to correct B0 

inhomogeneities. It is also common to use other flip angles (typically from 10º to 

40º) for the RF pulses to shorten the acquisition time. 

 

PD, T1 and T2 /T2* weighting 

Depending on the combination of TE, TR and flip angles, it is possible to 

maximize the contrast among practically all the tissues. When two tissues have 

very different T1, a sequence with a short TR (in the order of some milliseconds) 
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and a short TE will enhance the difference in signal intensity between both 

tissues. The same happens in tissues with different T2, but using now a long TR 

(hundreds of milliseconds) and a long TE to maximize contrast. If a short TE is 

used in this later case, it is possible to obtain proton density (PD) weighted 

images (figure 1.19).  

 

 
a                                                       b                                                        c 

Figure 1.19. Examples of (a) T1, (b) T2 and (c) PD-weighted of the head. 
 

 

Acceleration 

Modern equipments incorporate new gradient coils which allow using much 

faster sequences. These sequences are still based on the spin-echo and gradient-

echo sequences, however they take advantage of all the hardware and software 

potential (parallel imaging, residual magnetization suppression, k-space 

manipulation, etc.) [54,55]. Due to time and quality requirements, these are the 

sequences which are most commonly used in daily practice. 

 

1.2.5 Exogenous contrast agents 

 

Exogenous contrast agents alter the signal surrounding water protons via their 

effects on the relaxation rates. They do not contribute directly to the signal (as in 

CT) but rather have an indirect action. 
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They can be divided into two types: paramagnetic (based on paramagnetic ions, 

such as gadolinium or manganese) and superparamagnetic (based on 

superparamagnetic iron oxide compounds). As these ions are toxic by 

themselves, they need to be introduced into the body in the form of chelates, 

which are organic macromolecules that minimize the toxicity and characterize 

the effectiveness of their magnetic influence (relaxivity). 

In practice, the effect of a contrast agent is the reduction of the relaxation times of 

the protons it finds in its surroundings. The observable effect is an increase of 

intensity in T1-weighted images (figure 1.20) or a decrease in T2-weighted 

images. 

 

 
Figure 1.20. T1-weighted dynamic contrast-enhanced study of the pelvis. It can be seen that as 

time progresses the injected contrast diffuses from the vessels into the interstial space, producing 
a maximum intensity peak and then a slow washout.  
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Contrast agents are usually injected intravenously and, depending on their 

molecular constitution, can remain in the vascular space, diffuse into the 

interstitial space or penetrate cell membranes. Gadolinium-based chelates, the 

most commonly used contrast agents in clinical MR imaging, are extracellular. 

They remain in the vascular space enough time as to analyze first-pass arterial 

and distribution behavior and they are usually eliminated mainly through the 

urinary via in less than 24 hours. 

 

1.2.6 Acquisition requirements for a PK study 

 

To perform a PK study from MR perfusion images it is necessary to follow 

certain basic requirements. Although it is not a standardized protocol, most 

centers roughly coincide in the main points [5-21]. 

 

Spatial requirements 

Whole region of interest coverage is desirable for a complete analysis (whole 

organ of interest, adjacent tissues and a major artery). 

Acquired voxel size: depends on the size of the region. If possible, ≤ 1 mm in 

plane and ≤ 5 mm slice thickness. 

 

Temporal requirements 

Sampling time: ≤ 3 seconds, to sample the first pass of the arterial input function 

properly. 

Total acquisition time: ≥ 5 minutes, to sample as much as possible of the washout 

phase. 
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Signal to noise requirements 

The signal to noise ratio is clearly related to the balance between the previous 

requirements. Although optimized values could be obtained analytically, it is 

usually through trial and error that the best combination of parameters is 

obtained. Post-processing filters can also help to improve the results by 

decreasing noise. 

 

Contrast agent 

A gadolinium contrast agent (0.5 molar) is currently used, at a dose of 0.1 

mM/kg (0.2 ml/kg) and injected at 4 ml/s, followed by 40 ml of saline flush at 4 

ml/s. However this contrast dose needs to be adequate to the tissue under study, 

as such high concentrations may lead to saturation effects in some areas. For 

example, in liver studies this dose may saturate the aorta enhancement curve, so 

a lower dose is recommended (in our liver studies, a dose of 0.05 ml/kg is 

normally used). 

 

T1 mapping 

PK models work with concentration values; therefore it is necessary to calculate 

concentration from signal intensity. This is done by calculating the variation of 

T1 with the signal first, and then the variation of concentration with the T1 value.  

A T1 mapping sequence allows obtaining the T1 values of the tissue before the 

injection of contrast agent. This base value is necessary to calculate the decrease 

in T1, which is directly related to the concentration of contrast agent. 

 

Sequence 

This is an example of a 3.0 T GRE sequence used for a PK perfusion study of the 

knee cartilages (table 1.1): 
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 T1 mapping Pharmacokinetics 

Magnetic field 3T 3T 
Acquisition mode 3D sGRE T1w 3D sGRE 

Fat suppression No Yes 
Coil SENSE-Knee-8 SENSE-Knee-8 

Plane Sagittal Sagittal 
Acquired voxel 1x1x6 mm 1x1x6 mm 

Slices 21 21 
Temporal resolution - 3,2 s 

Number of 
dynamics 

- 64 

Acquisition time 5 min 5 min 
TE 5.4 ms 3.6 ms 
TR 9.2 ms 7.2 ms 

Flip angle 2,5,7,10,15,20,25,30,40,60º 15º 
Contrast dose - 0.2 ml/kg @ 4 ml/s 
Table 1.1. Typical sequences for a PK study using a 3.0 T MR scanner. 

 

• Acquisition mode 3D sEG: gradient-echo sequence with suppression of the 

residual magnetization to increase speed acquisition and 3D RF excitation 

(the slice selection gradient selects the whole volume of study at a time). 

• Fat suppression: with a combination of RF pulses and the necessary 

synchronization it is possible to selectively suppress the signal from fat (or 

any other tissue). This allows having a better contrast in the final image. 

• Coil: SENSE-Knee-8. This RF coil is based on multichannel technology to 

speed up the acquisition process. Each channel acquires signal from a spatial 

sector so that the combination of all 8 channels forms the final image. 

Depending on the application, there are other coils with a different number of 

channels and architecture. 

• Flip angle: the T1 mapping sequence is based on a series of images of the 

same volume of interest acquired maintaining the TR and the TE constant and 

varying the flip angle. An intensity vs. angle curve is obtain, from which the 

T1 value can be calculated using the following equation: 
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where S is the signal intensity, M is a factor containing gain and proton 

density information and α is the flip angle. T1 can be calculated by a least 

mean squares fit. 

 

1.3 Pharmacokinetic models 

 

1.3.1 Definition of pharmacokinetics 

 

Pharmacokinetics is a branch of pharmacology dedicated to the study of the 

effects that the body causes on an externally administered drug. It includes the 

mechanisms of absorption, distribution, excretion, the time at which the drug 

starts to operate and the duration of its effects. 

A PK analysis can be performed by two approaches: 

 

• Non-compartmental analysis 

It estimates the exposure to a drug by calculating the area under the curve of 

a concentration vs. time graph. It does not assume any specific 

compartmental model and can produce acceptable results in many studies. 

 

• Compartmental analysis 

It estimates concentration-time graphs using kinetic models. The advantage 

of this type of analysis is that with a model it is possible to predict the 

concentration of the drug at any time. However, it is often difficult to develop 

and validate proper kinetic models. The simplest compartmental model is the 

one-compartment model with intravenous bolus administration and first-

order elimination (mono-exponential tissue response). 
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1.3.2 Quantitative MR perfusion studies: from empirical measurements to PK 

modeling 

 

The empirical (non-compartmental) approach 

Dynamic contrast-enhanced MR (DCE-MR) studies gained popularity in the late 

1980s when a series of studies gave proof that high increases and fast rates of 

enhancement in DCE-MR images correlated with well-vascularized tumors, in 

comparison to more moderate rates of normal appearing tissues or benign 

lesions [57-59]. These analyses focused on the morphological characteristics of 

the tissue enhancement curves, such as upslope, maximum, time to peak or 

descent (figure 1.21).  

 

Figure 1.21. Morphologic parameters of a typical enhancement curve: upslope (speed at which 
the curve rises), maximum intensity, time at which the curve reaches 90% of the maximum 

intensity and IAUC (initial area under the curve, usually measured at 60 s or 90 s). 
 

These measurements are often normalized to baseline or healthy tissue signal 

intensity, being good lesion biomarkers [57], but they do not directly take into 

account physiological information. Anyway, these studies showed the necessity 
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to accomplish certain temporal resolution criteria in order to sample the curves 

correctly. It was demonstrated that this requirement was essential for a correct 

extraction and characterization of the tissue enhancement curve. Temporal 

resolutions between 12 and 132 s were found to give very accurate results [60]. 

 

The PK approach 

Coinciding with empirical DCE-MR studies, compartmental PK models were 

applied to quantify the transfer coefficients from plasma to tumor extravascular 

extracellular space (EES). Low molecular Gd contrasts started to be widely used 

during the early 1990s and they offered good properties for this type of studies. 

One of the main characteristics of PK models is the use of concentration-time 

instead of intensity-time curves. This characteristic allows dismissing some of the 

disadvantages of working with intensity-time curves, such as coil and equipment 

gain factors. Biophysical knowledge of MR and contrast agent interactions 

allowed to formulate the relationship between signal intensity, relaxation rates 

and concentration values [61-66]. As an example, in a T1-weighted spoiled 

gradient echo sequence, signal intensity can be expressed as: 
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where M is a factor containing gain and proton density, α is the flip angle, TR is 

the repetition time and T1 is the longitudinal relaxation time. With the variation 

of the signal intensity with the flip angle, it is possible to estimate T1 values with 

curve fitting algorithms. Then concentration can be related to T1 temporal 

variations caused by the magnetic influence of the contrast agent: 
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where r1 is the relaxivity (effectiveness of the magnetic influence) of the contrast 

agent. 

After converting intensity to concentration, the next step is to model the 

relationship between the concentration in the tissue and the input function, in 

order to study the physiological exchange of contrast agent between the 

vasculature and the EES. Many approaches can be taken to model this exchange, 

but a simple mono- or two-compartment PK model is usually adequate. 

In the late 1990s a series of studies agreed on a common set of names for the PK 

parameters derived form the Tofts-Larsson-Brix approach [4,67]. The equations 

for this model are based on the conservation of mass, where Ktrans is the 

permeability coefficient equal to the volume transfer constant between blood 

plasma and EES and kep is the rate of elimination or extraction from the plasma. 

From the so called Tofts model, the EES volume fraction can also be calculated as 

ve=Ktrans/kep, where ve ∈ [0,1] (figure 1.22).  

 

 
Figure 1.22. One-comparment PK model. The vascular compartment is neglected (red area) and 

the voxel is assumed to have enhancement only by diffusion of the contrast in the interstitial 
space (EES) compartment. Ktrans is the capillary permeability, kep is the washout rate and EES is the 

extravascular extracellular space fraction. 
 

In the review by Tofts et al. [4], three different models, assuming different 

conditions (high permeability, low permeability and medium permeability), 

were summarized: 
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High permeability or flow-limited model (Kety model [68]) 

This model was developed for the case of breathing an inert gas, which 

distributes into the whole tissue, including intracellular spaces. Two 

assumptions were taken: a) arteries and veins that supply and drain the 

tissue have well defined concentrations; and b) venous blood drains the 

tissue with a tracer concentration which is in equilibrium with the tissue. 

If the venous concentration is set equal to the EES concentration and the 

effect of intravascular tracer on the curve is dismissed, then the tissue 

concentration can be related to the plasma concentration with: 

 

)/)·(1·(· eta
t vCCHctF

dt

dC
−−= ρ  

 

where Ct is the tissue concentration, F is flow per unit gram of tissue, ρ is 

the tissue density, Hct is the hematocrit (volume fraction of the whole 

blood occupied by cells) and Ca is the arterial concentration. 

 

Low permeability model 

If permeability is limited and flow is high, the transport of tracer from the 

vasculature into the EES is slow. Therefore the rate of contrast 

enhancement is determined by the permeability surface area product of 

the capillary wall and the difference between the blood plasma 

concentration and the EES concentration. Again, if the intravascular 

contribution is dismissed, the following equation can be written: 

 

)/·(· eta
t vCCPS

dt

dC
−= ρ  

 

where PS is the surface area product of the capillary wall. 
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Medium permeability (mixed flow and permeability) model 

When tracer uptake is limited by both flow and permeability, a new 

parameter can be defined: the extraction ratio (E), which can be obtained 

as the fractional reduction in capillary blood concentration as it passes 

through the tissue: 

 

a

va

C

CC
E

−
=  

 

where Cv is the venous tracer concentration. This parameter can be used to 

characterize a tissue. Then the model equation can be written as: 

 

)/)·(1·(·· eta
t vCCHctFE

dt

dC
−−= ρ  

 

For the previous cases, if flow is limited (PS>>F) then E=1, and if 

permeability is limited (PS<<F) then E=PS/(F(1-Hct)). 

 

Finally, a generalized kinetic model, containing the three previous assumptions 

can be written as: 
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Or in its integration form: 
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where the tissue response to an ideal arterial input delta is 
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Additionally, a temporal delay τ can also be included in order to correct for onset 

time. However, this value can be easily corrected before the application of the PK 

model, without the need of including it as another fitting parameter. As it can be 

seen, Ktrans groups the previous concepts of permeability and flow. This decision 

is taken to simplify the model calculations. Additional information regarding the 

tissue physiology needs to be obtained qualitatively in order to interpret the 

quantitative values of Ktrans properly. 

 

Other approaches also follow: 

 

Vascular contribution 

Although the above mentioned models are referenced as two-

compartment models because they take into account both plasma and 

EES, the equations do not take into account a possible vascular 

contribution of the input function to the tissue enhancement curve. 

Therefore, an extension of the generalized kinetic model can be done, 

adding an extra term to the formulation containing the direct vascular 

contribution of the arterial input function to the tissue concentration curve 

(figure 1.23). This extension was developed by St. Lawrence and Lee [69] 

and was called adiabatic approximation: 
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where vp is the vascular space volume fraction.  
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Figure 1.23. Two-comparment PK model. The vascular contribution is not neglected and the 

voxel is assumed to have enhancement both from the presence of vessels and by diffusion of the 
contrast in the interstitial space. vp is the vascular space fraction, EES is the extravascular 

extracellular space fraction, Ktrans is the permeability and  kep is the washout rate. 
 

First-pass or leakage profile 

Another approach was obtained to allow simultaneous mapping of 

endothelial permeability and blood volume in intracranial lesions [70]. It 

was applied to improve the quantification of blood volume in brain 

tumors, due to the fact that when the blood brain barrier is broken there is 

extravasation of contrast from the vessels into the interstitial space 

(leakage), so that the vascular volume may be overestimated. This effect is 

mostly produced in the angiogenic rim of malignant tumors. So, this 

approach tries to separate contributions to the signal enhancement both by 

the local blood volume and the capillary permeability, producing cerebral 

blood volume (CBV) maps free from leakage effects and permeability 

maps which are not so affected by large blood volumes. 

If in the generalized kinetic model formulation: 

 

tepa

trans

eta

transt CkCKvCCK
dt
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··)/·( −=−=  

 

we assume that Ca >> Ct, as we focus only on the first pass of the contrast 

bolus, then, this can be written as: 
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a
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where Ktrans has been renamed to Kfp to account for first pass meaning. 

And its integral form: 
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which is called the leakage profile of the tumor obtained during the first 

pass of the contrast bolus.  

Then the CBV values can be obtained free of leakage effects by applying 

the following relationship: 

 

dtdCKtCCBV

T t

a

fp

tcorrected ∫ ∫ 









−=

0 0

)()( ττ  

 

where T is the curve acquisition time. It can be noticed that CBV is usually 

obtained as the integral of Ct(t). 

 

The Patlak plot technique 

The Patlak plot technique describes a two-compartment model with 

unilateral tracer flow from compartment 1 into compartment 2 [71]. The 

following assumptions are made: 

• Signal change is proportional to the concentration of contrast agent in a 

particular voxel. 

• Contrast agent is promptly and completely mixed inside the 

compartments. 

• The Hct is constant in all vessels. 
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• The contrast agent concentration in the input vessel and the tissue 

vessels is equal at any time. 

The total amount of tracer in a tissue can be expressed as the sum of 

contrast agent in the vascular space and the interstitial space: 

 

)()()( tQtBtK +=  

 

It is assumed that the amount of contrast agent in the vascular space B(t) is 

proportional to the concentration of the vascular input function: 

 

)(·)( 1 tCctB a=  

 

where the variable c1 represents a constant equivalent to the vascular 

space. It is further assumed that the amount of contrast agent in the tissue 

is proportional to the integral of the concentration curve of the input 

function, which is: 
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where t1 is the curve acquisition time. Therefore, c2 is equivalent to the 

transfer ratio from the vascular space into the tissue. And finally, 
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If we divide the previous expression by Ca(t1), the resulting term is the 

Patlak plot equation: 
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Now it is possible to draw a plot using the terms X and Y. If all 

assumptions are true, the plot will behave like a straight line, so that c2 is 

equivalent to capillary permeability and c1 is equivalent to the vascular 

space fraction. 

 

Assumption of a biexponential decay AIF 

If the AIF is assumed to have a biexponential decay [72], then it can be 

written as: 
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where D is the dose (mmole/kg), and amplitudes aT are normalized for 

unit dose (so that Cp is then known for any size dose). The fitted values  

obtained by Weinmann et al. [72] were set at a1T=3.99 kg/liter, a2T=4.78 

kg/liter, m1=0.144 min-1, m2=0.0111 min-1. 

With this assumption, the generalized kinetic model can be written as: 
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Direct use of signal intensity curves (Brix model) 

According to this approach, the measured signal-intensity curves are 

analyzed within the framework of PK modeling [63,73]. It can be 

mathematized by the following equation: 
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where A is an amplitude correcting factor and t’ is the time for bolus 

infusion of contrast agent. 

 

Dual input model 

Most cases can be analyzed with the previous equations, using one-input 

two-compartment models. However, in the special case of the liver, a dual 

blood supply has to be taken into account: hepatic artery and portal vein. 

To include this dual input, the generalized kinetic model can be written as 

[74]: 
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or, if we include the vascular component: 
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where terms 1 and 2 refer to separate blood contributions (hepatic artery 

and portal vein, respectively). 
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The generalized kinetic model has been widely used in a number of studies, 

covering several regions and tumor types, such as breast [18], liver [74], kidneys 

[75], musculoskeletal system [76], prostate [77], brain [78] and ovaries [79]. In this 

context, it has proved to be a useful tool for the assessment of disease and 

treatment efficacy [2]. However, different model assumptions, MR acquisition 

protocols and post-processing algorithms introduce an important amount of 

variability sources which need to be addressed carefully: 

 

Input function selection 

In many studies an assumed input function is used, based on the work by 

Weinmann [72], where a biexponential decay curve reflecting the change 

in plasma concentration with time due to exchange and renal excretion 

was published (figure 1.24). However, this curve does not provide first-

pass information (bolus pass). 

The use of tissue-specific vascular input functions, individually measured 

near the tissue of interest (either manually or through automatic 

algorithms), provides further information about the first-pass phase, 

taking into account both the cardiac output and the hemodynamics of the 

patient (figure 1.24). This provides more realistic information about the 

tissue physiology. Further steps may require curve fitting to a gamma 

function [80] or ICA-extracted (independent component analysis) curves 

[81]. 

 

 
Figure 1.24. Examples of different arterial input functions: (a) standardized experimentally 
derived biexponential decay function and (b) individually derived arterial input function. 
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Ideally, the vascular input function to the PK model should be that of the 

capillary branch which irrigates a certain voxel (on a voxel-based 

approach). However, at the moment this is technically impossible, due to 

spatial resolution limitations. Therefore a consensus needs to be found in 

order to obtain reproducible results. A good approach is to take as input 

function the enhancement curve of the nearest large vessel from which the 

tissue is irrigated. As examples, the hepatic artery for the liver, the 

popliteal artery for the patellar cartilage or the iliac artery for the prostate. 

 

Vascular contribution 

As explained above, the traditional PK models (Tofts, Larsson, Brix) do 

not take into account a vascular contribution in the formulation. This may 

be appropriate in most tissues, where the arterial component of the 

enhancement curve can be easily neglected. However, in tumors, 

especially those with high vascularization, the arterial contribution is very 

significant. To model this contribution, a different model should be used 

(i.e., the St. Lawrence and Lee adiabatic approximation). The choice of one 

model or another requires previous knowledge about the physiological 

response of the tissue. 

 

Intensity to concentration conversion 

Although the intensity to concentration conversion is independent of the 

PK model, it is also necessary to find a consensus approach. Most recent 

studies use multiple flip angle sequences to estimate pre-contrast T1 and 

its variation during contrast injection [82]. From this variation the 

concentration can be easily calculated with the linear relationship shown 

above. 

Other approaches use a phantom-derived polynomial conversion [7] or a 

linear conversion [17]. 
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Image acquisition protocol 

Spatial and temporal requirements, as stated in previous points, are also 

an important source of variability, as modern equipments may allow 

deeper insights which some centers may not be able to reach yet. Low 

sampling rates may lead to undersampling the first pass of the vascular 

input function, therefore overestimating the value of the PK parameters. 

Also, low spatial resolution may lead to partial volume effects, making it 

impossible to detect small lesions and underestimating heterogeneity. 

Other factors, such as the acquisition duration, the contrast agent dose and 

injection rates, the magnetic field strength and patient’s collaboration 

(especially in abdomen studies to decrease movement contribution) are 

further sources of variability which need consensus. 

 

Image analysis 

The use of average enhancement curves from the whole tissue or curves 

extracted from each voxel offers different results when it comes to 

characterize a tissue or a lesion. Average curves are more noise-proof but 

they also introduce average artifacts, losing the capacity to analyze tissue 

heterogeneity as they minimize outliers (which may be of special interest 

for the study of tumors). On the other hand, a voxel-based analysis allows 

studying tissue heterogeneities with parametric colored maps, but with 

noisier curves (an optimal balance between spatial and temporal 

resolutions is critical here). In this later approach, the use of image 

registration and spatial and temporal filters may help to improve the 

quality of the curves. It is important to notice that better curves (i.e., 

smoother curves with less noise or oscillations) will provide better results 

when fitting the curves and extracting the PK parameters. 
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Curve fitting 

As PK parameters do not have an analytical expression, it is necessary to 

use curve fitting strategies to estimate them from the vascular and tissue 

concentration curves. Most studies use non-linear least squares fitting 

algorithms, mainly the one developed by Levenberg-Marquardt [83]. 

However, curve fitting algorithms are usually dependent on initialization 

values, which may lead to local minima and wrong results. Other fitting 

techniques allow specifying lower and upper bounds for the parameters, 

which may bring huge amounts of saturated values. The study of the 

residuals and the incorporation of complementary clinical knowledge are 

essential to state the quality of the results and dismiss possible fitting 

mistakes. 

 

Statistical analysis 

The results of an analysis are usually given as the mean (or the median) 

and the standard deviation of the region under study. This is appropriate 

in those cases where the region is relatively homogenous or when the only 

interest is to obtain a gross estimation. However, histogram analysis may 

provide richer information when studying highly heterogeneous regions, 

such as tumors. Handling a histogram allows to group the distribution of 

values into percentiles as well as estimating higher order statistics like the 

skewness and the kurtosis, which are directly related to the histogram 

shape and, as a consequence, to the region heterogeneity. 

Another characteristic of the studies is the use of bivariate analysis (such 

as Student’s t-test or ANOVA), where each PK parameter is analyzed 

separately for statistical significance. The use of multivariate analysis may 

provide higher statistical power in order to characterize tissues. 
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2. Methodology 

 

2.1 Image preparation 

 

2.1.1 Image filters 

 

MR perfusion studies are four-dimensional acquisitions where a volume of 

interest is acquired several times during the study. This characteristic allows 

using two types of filters: spatial and temporal. A spatial filter tries to reduce the 

noise of an image at a certain instant, either in 2D or 3D, depending on the 

implementation. A temporal filter tries to reduce the noise of the enhancement 

curves of each voxel, as it is expected that ideal curves will follow smooth 

enhancement patterns without oscillations. In both types of filters the main aim 

is to increase the signal to noise ratio without losing essential information (such 

as an arterial peak or a small lesion). 

 

Noise in MR images 

When working with MR images, it is necessary to know the probability density 

functions (PDF) of the data, which describes the relative likelihood of a random 

variable to occur at a given point in the observation space. Wrong assumptions 

about how the data is distributed may lead to erroneous results when the post-

processing algorithms are applied. 

In general, a Gaussian PDF is defined by (figure 2.1): 
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where µ is the mean and σ is the standard deviation of the PDF. However, the 

MR data acquired in the k-space are complex and they are formed of noiseless 

signal plus white noise contributions (additive, independent and characterized 

by a zero-mean Gaussian PDF). Then, after applying the inverse Fourier 

transform, the complex data resulting from the transformation is still Gaussian, 

due to the linearity and orthogonality of the FT. Its PDF can be expressed as: 
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where ωr and ωi are the real and imaginary variables, respectively, A is the 

amplitude and ϕ is the phase. 

 

 
Figure 2.1. Probability density functions of a Gaussian distribution 

 

When MR images are processed it is common to work with magnitude data 

instead of real and imaginary data, because magnitude data have the advantage 

of being immune to incidental phase variations caused by B1 shimming 

variations. The magnitude of a complex number can be calculated as: 
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As it can be seen, this is not a linear operation, so the result is not expected to be 

Gaussian distributed anymore. The PDF of the magnitude data can be obtained 

from the Gaussian PDF by transforming real and imaginary data into polar 

coordinates, giving the Rician PDF (figure 2.2): 
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where I0 is the zeroth-order modified Bessel function of the first kind, ε is the unit 

step Heaviside function and x has to be positive. The shape of the Rician PDF 

depends on the ratio A/σ2, which corresponds to the signal-to-noise ratio (SNR). 

When the SNR is high, the Rician PDF is similar to a Gaussian PDF. 

 

 
Figure 2.2. Probability density functions of a Rician distribution 
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To estimate signal amplitude and noise variance in MR images several 

approaches can be taken [85]: mean squared error, Cramér-Rao lower bound or 

maximum-likelihood. However, it is not always assumed that the magnitude 

images have Rician PDFs, so that in some cases the estimations may be mistaken. 

As to where the signal and noise should be estimated, these are some 

recommendations [85]: 

• The signal amplitude should be estimated from complex data, if the true 

phase values are constant; or from signal amplitude data, if the true phase 

values are unknown. 

• The image noise should be estimated from the background (where magnitude 

is zero), so it can be estimated either from complex or magnitude data. 

As it can be seen, accurate estimations of SNRs are essential to assess the quality 

of MR images, in order to maintain a proper balance between SNR, CNR 

(contrast-to-noise ratio) and resolution.  

 

Spatial filters 

Two features are desirable from a spatial filter for MR images: to significantly 

decrease image noise and to preserve fine details. 

In MR images, it is essential to use filters which are capable of distinguishing 

anatomical regions throughout the image. In the literature several types of filters 

are available: adaptive filters [85], wavelet filters [86], non-local means [87] or 

anisotropic diffusion filters [88]. Spatial filtering is usually applied with two 

assumptions: the image is formed of several regions where the signal is 

stationary and ergodic in mean and variance; and the image noise is Gaussian 

distributed and with zero mean. However, as stated in the previous section, MR 

images have Rician distributions and this can lead to erroneous results when 

images have low SNR. Some of the above filters can be also used in this context 

(wavelet filters) or can be adapted (anisotropic diffusion [89]). 
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Figure 2.3. Examples of image filters (central column) with their residuals (right column). It can 
be seen that most residuals still contain information of the original image, especially contours.  
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Before applying spatial filters it is also necessary to know how the noise is 

distributed. MR images are often acquired with parallel techniques and they are 

also conditioned by RF variations. This causes signal intensity inhomogeneities 

which need to be corrected with special filters [90,91]. 

It is important to notice that applying optimal image filtering methods may be 

essential for accurate image segmentation. The scope of this thesis is not based on 

image segmentation techniques but on the functional evaluation of tissue 

behavior through time. However, for coherence, some of the above filters were 

tested with DCE-MR images to evaluate their performance (figure 2.3). The best 

results were obtained for the non-local means approach, although its current 

implementation was very time consuming. For speed and simplicity, a fast 

Gaussian smoothing filter (with n=5, σ=1) was applied in all the clinical 

applications. 

 

Temporal filters 

The PK analysis of DCE-MR images is based upon the study of time 

enhancement curves. As it depends on the application of curve fitting methods, 

these curves should be as noise-free as possible. 

The enhancement curve of a voxel is obtained as the signal intensity value of that 

voxel at each dynamic image with spatial coherence. Depending on the tissue 

under study, a curve will have one level of noise or another, understanding noise 

as arbitrary oscillations of the curve. Several smoothing methods can be applied 

to reduce this noise: 

 

Moving averages 

Moving averages can be defined as a finite impulse response filter that 

creates a series of averages from different subsets of the original series of 

values. Therefore, each value of a moving averages filtered curve is the 

result of averaging a subset of values (usually a few ones) from the 
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extracted curve. As input parameter, it is necessary to specify the window 

size (number of values to be averaged). The higher the window (span) the 

smoother the resulting curves. 

This filter reduces oscillations effectively but it has undesired effects when 

applied to arterialized enhancement curves, where there is a signal peak 

in the curve which lasts for one or two dynamics. The height of this peak 

will be drastically reduced as it is averaged with the rest of values, 

therefore losing essential information for an accurate PK analysis. 

 

Local regression (LOESS and LOWESS or weighted LOESS) 

Local regression, also known as locally weighted polynomial regression, 

uses low-degree polynomials (usually grades 1 for a linear approximation 

or grade 2 for a quadratic approximation) to fit subsets of the data [92]. 

The polynomial is fitted using weighted least squares, giving more weight 

to values near the point which is to be fitted and less weight to more 

distant values. The value of the filtered curve for a certain point is then 

obtained by evaluating the local polynomial. As input parameters, it is 

necessary to specify the degree of the polynomial and the weights. Higher 

degree polynomials can theoretically be used, but in practice they would 

tend to overfit the data in the local environment. 

In comparison to the moving averages, LOESS, specifically 2nd degree 

polynomial LOESS, offers better results when dealing with arterialized 

enhancement curves, as the arterial peak is much more respected. 

 

Savitzky-Golay filter 

The Savitzky-Golay filter is a generalized moving average filter where the 

filter coefficients are obtained by performing an unweighted linear least 

squares fit using a polynomial of a specified degree [93]. 
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Again, using the Savitzky-Golay filter the arterial peaks of the curves can 

also be preserved, in comparison to the moving averages. 

 

Finally, after comparing the performance of these smoothing filters, the best 

results were drawn from the LOESS filter with 2nd degree polynomials (figure 

2.4). 

 

 
Figure 2.4. Examples of temporal filters. It can be observed that moving averages provides good 

oscillation reduction but also loses the information of the peak. On the other hand, LOESS, 
LOWESS and Savitzky-Golay preseve more information of the peak. LOWESS and Savitzky-

Golay preserve it much better, but fail in reducing the oscillations as effectively as LOESS.  
 

As a methodological improvement, a modification of the LOESS filter was 

developed by studying the filtered curve gradient. When this gradient showed 

high results (a value of the gradient higher than the mean gradient plus 3 

standard deviations), the original curve values were used instead of the filtered 

ones, therefore maintaining the arterial peak exactly at the original magnitude 

and dynamic, preserving the smoothing of the rest of the curve (figure 2.5). 
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Figure 2.5. Correction of the LOESS filtered curve with the original peak points. 

 

2.1.2 Image registration 

 

Image registration can be defined as the process of transforming different images 

(from one or several imaging modalities) into a common set of coordinates, so 

that a pixel can be univocally identified through the whole set of images (i.e. 

through different modalities or in one modality throughout time). The 

registration problem can be formally expressed as: 

 

BABA ppTppT =⇔→ )(:  

 

where T denotes a spatial transform that maps coordinates (spatial locations) 

from one image or coordinate space to another image or coordinate space, pA and 

pB denote coordinate points (pixel locations) in images A and B, respectively. The 

domain where T is defined is called the search space of the registration problem. 

The function that defines the quality factor for the registration result is called the 
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registration metric. The algorithm that maximizes the chosen metric is called 

search strategy. Therefore, the registration problem can be put as the 

maximization (or minimization) of a function that compares two (sets of) images. 

One of the most common applications of image registration is the correction of 

patient’s movement in MR perfusion studies, where acquisition takes place 

during several minutes. This movement is usually related to breathing or other 

involuntary actions. 

Breathing movement is especially important in abdominal studies (such as liver). 

Although patients are normally instructed to hold breathing during the 

acquisition or to breathe smoothly, there is always a certain amount of 

movement that cannot be eliminated during acquisition. New software and 

hardware developments are being introduced which help to acquire better 

images [94], but it is still necessary to use post-processing tools to obtain more 

accurate results. In the abdomen, breathing artifacts take place mostly in up-

down direction, because of the diaphragm movement (figure 2.6). 

 

 
Figure 2.6. Coronal view of thorax and abdomen with the direction in which most of the 

movement occurs. Note the diaphragm movement related ghost artifacts. 
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Registration algorithms 

Depending on the application, several classifications can be used [95]: 

• Dimensionality: 2D/2D, 2D/3D, 3D/3D. 

• Nature of registration basis: 

o Extrinsic: invasive (stereotatic frames) or non-invasive (moulds, 

frames). 

o Intrinsic: landmark based (anatomical) or segmentation based (points, 

curves, surfaces, active contours). 

o Non-image based: calibrated coordinate systems. 

• Nature of transformation: 

o Linear: rigid (translation, rotation and scaling) or affine (mapping 

parallel lines) transforms. 

o Elastic or non-rigid: image warping. 

• Domain of the transformation: local or global. 

• Interaction: automatic, semi-automatic (initialization and check points) or 

interactive. 

• Modalities involved: monomial or multimodal. 

• Subject: intrasubject, intersubject or atlas-based. 

• Image properties: intensity-based or feature-based. 

• Image resolution: multi-resolution (coarse to fine) or mono-resolution. 

 

Similarity metrics 

To specify whether two images are correctly aligned it is necessary to use 

appropriate similarity metrics. These metrics are usually based on corresponding 

points and their image intensities [96]. 

As it is not the aim of this thesis to review registration algorithms thoroughly, 

two of the most common metrics are introduced: 
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Absolute difference between images (mean square difference): 
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where (i,j) denotes a couple of corresponding voxels from each image and 

S is the domain where the images are defined. This approach is very 

effective when the images to be registered are quite similar. 

 

Mutual information 

Mutual information (MI) is a concept from information theory [97] which 

measures the dependence between two variables, so that if two variables 

are independent, MI equals zero. It is related to the image entropy by: 
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where X and Y are the two images and H is the entropy of a random 

variable: 
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and the joint entropy: 
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The MI criterion is met when the intensity values of corresponding voxels 

is maximal, which is directly related to the geometrical alignment of the 
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images. As many optimization algorithms are formulated as minimization 

functions, the MI is often used in its negative form. 

 

Practical case: liver registration 

From the applications presented in this thesis (OHSS characterization, cartilage 

degeneration assessment, grade-IV CNS astroyctomas and HCC), the liver was 

the only organ which needed registration. As shown above, liver is mainly 

affected by head-feet movement, although a minor deformation of the organ also 

occurs. 

Two approaches were considered: 

 

Rigid registration 

A series of rectangular regions were placed on the interface between the 

liver and the right lung. These rectangles were propagated through all the 

dynamics and changes of intensity were assessed to account for liver 

movement (figure 2.7). When the amount of black intensity decreased it 

meant that liver moved upwards (less lung voxels in the rectangle), while 

when the amount of black intensity increased it meant that liver moved 

downwards (more lung voxels in the rectangle). It is important to notice 

that lung intensity must be taken as reference because in a perfusion study 

the liver enhances, while the lung remains hypointense. 

With this approach it is possible to obtain a good estimation of the head-

feet movement of the liver, which can be corrected by applying the 

opposite displacement with a column-based correction (figure 2.7). 

Although fairly simple, this approach is fast and offers good results. 
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Figure 2.7. Bottom-up registration with the use of navigating interfaces (a). These interfaces 

calculate the amount of bottom-up movement by observing the oscillations throughout the whole 
dynamic study. Then a different bottom-up correction can be applied column by column for each 

dynamic (b). 
 

Non-rigid registration 

For ease of use, the Matlab package SPM (www.fil.ion.ucl.ac.uk/spm) was 

used to test non-rigid registration on liver images. SPM uses discrete 

cosine transform (DCT) as the transformation model and the sum of 

squared differences between an image and a template as the similarity 

measure [98]. Before this non-linear transform (or warping), a linear 

transform (affine) is also applied. Then, the non-linear warps are modeled 

by a linear combination of discrete cosine-basis functions with low-spatial 

frequency to reduce the number of parameters to be fitted [99].  

The registered images showed qualitatively less movement and the 

extracted curves had fewer oscillations (figure 2.8). However, this 

registration strategy has important time limitations, as the computational 

burden is very high for the degree of improvement. 
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Figure 2.8. Comparison of the oscillation of a voxel in the interface liver-lung before and after 

applying non-rigid image registration. It can be seen that the oscillations are much more reduced 
after registration. The fact that the intensity is much lower afterwards is explained because the 

observed voxel was mainly placed at the lung. 
 

 

Adopted solution 

After multiple tests, a conclusion is drawn from the application of 

registration to liver perfusion studies. Although spatial registration is 

essential in some applications in order to obtain accurate pixel-based 

analysis, in PK modeling it is more important to extract good 

enhancement curves (with low oscillations) for the fitting algorithms. 

These two characteristics are closely related, but as it has been shown in 

the temporal filters section, it is possible to obtain reasonably good 

enhancement curves without the need to apply other improvement tools.  

Therefore, only in those cases where movement is substantially relevant a 

registration is applied, combining both rigid and non-rigid approaches. 

Otherwise smoothing temporal filters are used to improve enhancement 

curves. 
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2.2 Application of PK modeling 

 

2.2.1 Study cases 

 

Regarding the clinical applications presented in the introduction chapter, the 

particular methodology for each case will be described herein. Subsections 

2.2.1.1, 2.2.1.2, 2.2.1.4 and 2.2.1.6 have been directly adapted from publications 

[100-103], respectively.  

 

2.2.1.1 Evaluation of ovarian hyperstimulation syndrome (OHSS) treatment 

 

Description 

Evaluation of the microvascular effects of cabergoline treatment in women with 

OHSS. 

 

Hypothesis 

The differences in the PK parameters between the patients treated with 

cabergoline and the patients treated with placebo will demonstrate the effect of 

the drug as repressor of the OHSS. It is expected that treated patients will show 

lower values of Ktrans and ve. This study will objectively quantify the process of 

angiogenesis which takes places during ovarian stimulation. 

 

Study group 

20 young women were randomly separated into two groups: 10 treated with 

cabergoline (29±3 years old) and 10 with placebo (31±7 years old). All of them 

were ovary donors with a high risk of developing OHSS, as they showed OHSS 

antecedents or a high response in a previous cycle of controled ovarian 

hyperstimulation. 
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Image acquisition 

All patients underwent two DCE-MR studies, the first before ovarian stimulation 

with hCG and the second five days after hCG administration. The acquisition 

parameters are shown in table 2.1. 

 

 PK study 

Magnetic field 1.5 T 

Sequence T1w sGRE 

Orientation Transversal 

Fat suppression Yes 

Repetition time 71.3 ms 

Echo time 1.13 ms 

Flip angle 60º 

Slices 20 

Voxel size 1.83 x 2.80 x 6 mm 

Dynamics 50 

Temporal resolution 4.4 s 

Acquisition time 5 min 35 s 

Contrast dose 
0.2 ml/kg @ 4 ml/s  

(Omniscan, GE Healthcare, UK) 

Table 2.1. Sequence parameters for the OHSS assessment. 

 

Image analysis 

The arterial input function (AIF) was manually selected with a region of interest 

(ROI) over the iliac artery. It was made sure that all AIFs had the usual shape: 

base zone, fast enhancing peak, fast washout and slight recirculation. The ROIs 

for the ovaries were also manually selected, taking special care to select stroma 

alone. Enhancement curves were then extracted pixel by pixel (figure 2.9). 
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Figure 2.9. (a) Selection of the iliac artery and the ovary stroma as arterial input function and 

tissue for extraction of signal intensity curves (b).  
 

Intensity to concentration conversion 

Due to study design decisions, the acquisition sequence for T1 mapping was not 

included in the PK MR protocol at that time. It has been already introduced that 

when using spoiled gradient echo sequences, pre-contrast T1 values are 

necessary in order to convert intensity into contrast concentration values 

accurately, but for this study a polynomial conversion was used: 

 

254.1)(·793.1)(·10·670.5)(·10·839.5)( 2538 −+−= −− tstststC  
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where s(t) is the normalized signal intensity. This equation was obtained from a 

phantom study with thirty-one tubes of contrast dilution at different 

concentrations (figure 2.10). 

 

 
Figure 2.10. Graph showing the variation of the signal intensity as a function of the concentration 
for different flip angles, obtained from thirty-one tubes prepared at different concentrations (top 

right image). 
 

PK modeling 

Ovarian stroma was initially considered as a highly vascular tissue, so a one-

input two-compartment model was considered to be the best option: 
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where CO is the concentration in the stroma, Ca is the concentration in the artery 

and Ktrans, kep and vp are the PK parameters. Interstitial space is obtained as 

ve=Ktrans/kep.  
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However, for comparison purposes, a one-input one-compartment model was 

also used: 
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The Levenberg-Marquardt least mean squares algorithm [83] was used for curve 

fitting. 

 

Statistical analysis 

The differences between both groups (treatment and placebo) for the two MR 

studies and for each PK model were assessed with a t test for independent 

variables. A p-value < 0.05 was considered as statistically significant. 

The intraclass correlation coefficient (ICC) was used to assess methodological 

reproducibility by repeating the acquisition and the analysis for both PK models 

in 10 randomly selected studies, with a lapse of one week between analyses. A 

value of ICC>0.75 was considered as good reproducibility [104]. 

 

2.2.1.2 Assessment of cartilage degeneration in 1.5 T 

 

Description 

To study the neovascularization processes associated to the degeneration of the 

patellar cartilage by means of PK modeling. 

 

Hypothesis 

The PK modeling of the patellar cartilage will allow differentiating normal from 

pathological conditions. 
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Study group 

22 subjects underwent 1.5T DCE-MRI of the knee (5 healthy, 8 with 

chondromalacia and 9 with osteoarthritis). Healthy subjects and patients with 

chondromalacia were similar in age (43.6 ± 15 and 33.3 ± 11.8 years old, 

respectively), but younger than patients with osteoarthritis (58.9 ± 11.5 years old) 

(p=0.002). Regarding gender, there were 14 women (3 normal, 7 with 

chondromalacia and 4 with osteoarthritis) and 8 men (2 normal, 1 with 

chondromalacia and 5 with osteoarthritis). 

 

Image acquisition 

The acquisition parameters that were used are shown in table 2.2. 

 

 PK study 

Magnetic field 1.5 T 

Sequence T1w sGRE 

Coil Surface coil 

Orientation Transversal 

Fat suppression Yes 

Repetition time 3.47 ms 

Echo time 1.93 ms 

Flip angle 10º 

Slices 10 

Acquired voxel size 0.78 x 0.78 x 10 mm 

Dynamics 50 

Temporal resolution 2.9 s 

Acquisition time 2 min 25 s 

Contrast dose 
0.2 ml/kg @ 4 ml/s  

(Omniscan, GE Healthcare, UK) 

Table 2.2. Sequence parameters for the cartilage assessment in 1.5 T. 
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Image analysis 

A ROI containing the cartilage was defined by manually drawing the cartilage in 

the pre-contrast image of the transverse slice through the largest left-right 

patellar diameter. The AIF was taken from a ROI drawn within the popliteal 

artery (figure 2.11). All the pixels within the arterial ROI were averaged at every 

time point. No further function, apart from pixel averaging and moving 

averages, was used to smooth the contrast enhanced curves. As the knee was 

tightly immobilized, image registration was not considered necessary. All 

intensity curves were normalized before intensity to concentration conversion. 

 

 
Figure 2.11. (a) DCE-MRI slice showing the regions of interest for the cartilage (gray arrow) and 
the popliteal artery (black arrow). (b) Signal enhancement for the artery (black) and the whole 

cartilage (gray). (c) Signal enhancement for all the voxels pertaining to the cartilage ROI. 
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Intensity to concentration conversion 

To convert the intensity vs. time curves into concentration vs. time curves, it was 

assumed that the normalized intensity vs. time curve can be linearly related to 

the contrast agent concentration [17]: 
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where St(t) is the intensity vs. time curve, S0 is the signal intensity before contrast 

administration, T10 is the T1 before contrast administration, and r1 is the 

longitudinal relaxivity of the contrast agent . This approach is derived from the 

assumption that TR x r1 x Ct << 1, TE x r2 x Ct << 1 and TR << T10 (where r2 is the 

transversal relaxivity of the contrast agent). This approach is valid in this study, 

assuming a maximum weight of 100 kg for a patient: 

• TR x r1 x Ct ≤ 3.47 ms x 4.5 mM-1s-1 x 0.2 ml/kg x 100 kg x 0.5 mM/ml = 0.2 

<< 1 (assuming maximum concentration). 

• TE x r2 x Ct ≤ 1.93 ms x 5.5 mM-1s-1 x 0.2 ml/kg x 100 kg x 0.5 mM/ml = 0.1 

<< 1 (assuming maximum concentration). 

• TR << T10 ≈ 1 s [17,105]. 

 

PK modeling 

In this study one-input and both one- and two-compartment models were used 

(the expressions for these models can be found in the previous application).  

Although the one-input one-compartment may produce an overestimation of the 

parameters Ktrans and ve [12,106], it may be appropriate in those situations where 

the vascular contribution may be neglected, as in normal or weakly irrigated 

tissues like the cartilage [4]. To assess these differences, both models were used 

and compared. 
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Only pixels which enhanced, defining enhancement as 3 standard deviations 

higher than the base image before contrast administration, were computed in the 

PK analysis. Enhanced pixels were sieved, and those with ve values higher than 

100% were discharged. 

The Levenberg-Marquardt least mean squares algorithm [85] was used for curve 

fitting. 

 

Statistical analysis 

A one-way analysis of variance (ANOVA) was performed with a p-value<0.05 

considered to be statistically significant. For the test-retest analysis of variability 

the root mean square (RMS) coefficient of variation was calculated: 
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where σi is the standard deviation, µi the mean of each pair of measurements and 

N=10 cases. The 10 patients selected for the variability analysis were randomly 

chosen (2 normal, 3 with chondromalacia and 5 with osteoarthritis). Lower 

values of RMS CoV correspond to a higher reproducibility of the results. 

 

2.2.1.3 Assessment of femoropatellar cartilage degeneration in 3.0 T 

 

Description 

Cartilage degeneration is associated with hypoxia, inflammation and 

neoangiogenesis, expressed as an increase of VEGF production in the cartilage 

matrix. The purpose of this work is to study the PK parameters derived from the 

analysis of 3T DCE-MR images of the femoral and patellar cartilages and their 

relationship with the radiological diagnosis. 
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Hypothesis 

The PK modeling of the patellar cartilage will also allow differentiating normal 

from pathological conditions in 3.0 T. 

 

Study group 

54 patients with different cartilage conditions (normal, initial degeneration and 

advanced degeneration) were included in the study. Cartilages were analyzed 

separately (patellar and femoral) and they were classified by an experienced 

radiologist as normal (23), with initial degeneration (23) and with advanced 

degeneration (8). 

 

Image acquisition 

Along with the conventional knee protocol, the acquired sequences are shown in 

table 2.3.  

 

 T1 mapping PK study 

Magnetic field 3.0 T 3.0 T 

Sequence T1w sGRE T1w sGRE 

Orientation Sagittal Sagittal 

Fat suppression No Yes 

Repetition time 9.2 ms 3.48 ms 

Echo time 5.4 ms 1.86 ms 

Flip angle 2º,5º,7º,10º,15º,20º,25º,30º,40º,60º 10º 

Slices 10 10 

Voxel size 0.78 x 0.78 x 6 mm 0.76 x 0.76 x 6 mm 

Dynamics - 50 

Temporal resolution - 2.9 s 

Acquisition time 1 min 2 min 25 s 

Contrast dose - 
0.2 ml/kg @ 4 ml/s  

(Dotarem) 

Table 2.3. Sequence parameters for the cartilage assessment in 3.0 T. 



Methodology 

 80 

Image analysis 

Cartilages were semi-automatically segmented from a high resolution water 

selective excitation sequence by using Otsu’s multiple thresholding method 

[107]. Once cartilage was correctly outlined, masking contours were rescaled and 

applied onto the perfusion and T1 mapping images (figure 2.12). The popliteal 

artery was manually segmented as arterial input function. 

 

 
Figure 2.12. Workflow for the segmentation of the patelar cartilage: (a) High contrast image for 

segmentation, (b) Otsu’s thresholding, (c) selection of the patelar cartilage, and (d) propagation of 
the ROI in the same slice for all the flip angles (T1 mapping sequence). 

 

Native T1 values were also calculated for every voxel with the multiple flip angle 

sequence and the method described previously. 
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Intensity to concentration conversion 

Intensity vs. time curves were converted into concentration vs. time curves by 

calculating the variation of T1 through time from the 3D-sGRE sequence and 

subtracting the pre-contrast T1 of the voxel, as described above. 

 

PK modeling 

As the cartilage presents a very low vascular profile, the vascular contribution 

was dismissed and the one-input one-compartment PK model was used, 

obtaining the three known parameters: Ktrans, kep and ve. 

 

Statistical analysis 

Differences among the three groups were assessed with an ANOVA and 

Student-Newman-Keuls post-hoc tests. 

 

2.2.1.4 Evaluation of glucosamine sulfate for the osteoarthritis treatment 

 

Description 

Assessment of the microvascular effects of the glucosamine sulfate on 

osteoarthritic cartilages. 

 

Hypothesis 

Glucosamine sulfate treatment has an influence over the neovascularity 

abnormalities of the osteoarthritic cartilage. The PK analysis of the cartilage can 

be used to evaluate these effects. 

 

Study group 

20 patients with non-advanced degenerative patellar conditions, where surgery 

was not indicated, were included. All the patients were autonomous for daily life 

activities and did not need help to stroll. None were under treatment (neither 



Methodology 

 82 

corticosteroids nor nutraceuticals) before enrolling in the study. None had 

rheumatic diseases, severe articular inflammation, neither previous history of 

significant traumatic knee injury. Four patients were withdrawn after the first 

MR examination because they failed in therapeutic adherence, so that finally 

there were 16 patients fulfilling all the study enrolling conditions. They were 

classified as having chondromalacia (7 cases, 29 ± 12 years old, 1 man and 6 

women) or osteoarthritis (9 cases, 59 ± 9 years old, 5 men and 6 women) by 

means of MR imaging (signal intensity variations and cartilage surface 

ulcerations in patients with osteoarthritis), arthroscopy and surgery. Patella 

surface analysis was performed with the transversal T2-weighted high-resolution 

images.  

Patients were distributed in the glucosamine sulfate (3 with chondromalacia and 

7 with osteoarthritis) or control (2 with chondromalacia and 4 with osteoarthritis) 

groups using a randomized list. The groups were not statistically different 

regarding disease condition, age or sex. 

Both groups started treatment immediately after the first MR study. All patients 

took the medication interruptedly until the second MR examination. The 

glucosamine group had 1,500 mg (Xicil, Rottapharm-Madaus) orally once a day, 

while the control group had oral 650 mg of acetaminophen (Dolostop, Bayer) 

once a day. 

 

Clinical evaluation 

All patients were clinically evaluated twice; the first examination was performed 

before starting the treatment and the second 6 months later. Two scores were 

used in both clinical evaluations: the pain visual analog scale (VAS) (range 1-10, 

best to worse) and the widely used functional outcome American Knee Society 

(AKS) score (range 1-100, worst to best). The AKS is divided into two parts: the 

Knee Score, which considers pain, stability and range of motion, with deductions 

for flexion contractures, extension lag and misalignment; and the Function Score, 
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which utilizes walking distance and stair climbing, with deduction for the use of 

a walking aid [108]. 

 

Image acquisition 

The acquisition parameters used for both MR examinations are indicated in table 

2.4.  

 

 PK study 

Magnetic field 1.5 T 

Sequence T1w sGRE 

Orientation Transversal 

Fat suppression Yes 

Repetition time 3.47 ms 

Echo time 1.93 ms 

Flip angle 10º 

Slices 10 

Voxel size 0.78 x 0.78 x 10 mm 

Dynamics 50 

Temporal resolution 2.9 s 

Acquisition time 2 min 25 s 

Contrast dose 
0.2 ml/kg @ 4 ml/s  

(Omniscan, GE Healthcare, UK) 

Table 2.4. Sequence parameters for the treatment assessment. 

 

Image analysis 

The same image analysis strategy as in the previous study case was used. 

 

Intensity to concentration conversion 

To convert the intensity vs. time curves into concentration vs. time curves, it was 

assumed that the normalized intensity vs. time curve was linearly related to the 

contrast agent concentration [17], as explained in the previous study case. 
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PK modeling 

In this study a one-input and one-compartment model was used (the expression 

for this model can be found in the previous cartilage application, 2.2.1.3).  

 

Statistical analysis 

A t-test for independent data was used to evaluate differences (glucosamine vs. 

controls, expressed in percentage of change) after evaluating the equality of the 

variance with Levene’s test. A p-value<0.05 was considered statistically 

significant. Calculations of power statistics were also performed for variables 

showing statistical differences and the curves for power vs. difference in means 

were obtained. 

 

2.2.1.5 Characterization of grade-IV astrocytomas 

 

Description 

To characterize tumor, peritumoral and normal brain areas with all the model-

derived quantitative parameters from MR T2*-enhanced perfusion images. 

 

Hypothesis 

The combination of quantitative parameters obtained from different perfusion 

models and the use of histograms will provide a better classification of brain 

regions (tumor, peritumoral and normal). 

 

Study group 

15 patients (11 men and 4 women, 58 ± 13 years old) with grade-IV astrocytoma 

(glioblastoma) were included in the study. None had received oncological 

treatment or surgery before MR imaging. The anatomopathological diagnose was 

obtained by biopsy in 3 patients and by surgical resection in 12 patients. Tumors 

were located at the parietal (2), temporal (8) and frontal (5) regions. 
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Image acquisition 

The acquisition parameters are displayed in table 2.5.  

 

 PK study 

Magnetic field 1.5 T 

Sequence T2*-w EPI GRE 

Orientation Transversal 

Fat supresión Yes 

Repetition time 836 ms 

Echo time 30 ms 

Flip angle 40º 

Slices 20 

Voxel size 1.8 x 1.8 x 7 mm 

Dynamics 40 

Temporal resolution 2.4 s 

Acquisition time 1 min 36 s 

Contrast dose 
0.2 ml/kg @ 5 ml/s  

(Omniscan, GE Healthcare, UK) 

Table 2.5. Brain perfusion sequence parameters. 

 

Image analysis 

MR perfusion studies were globally quantified in all the slices where the lesion 

was visible. The middle cerebral artery was chosen as arterial input function in 

all the studies. The ROIs corresponding to the tumoral area, the peritumoral area 

and the contralateral normal brain area were manually selected for each slice. 

The tumoral ROI was defined as the area with signal decrease after contrast 

injection. The peritumoral ROI was defined as the area corresponding to 1 cm 

surrounding the nodule from the enhancing border and with T2* signal intensity 

alterations [109]. 

All ROIs were selected after consensus by two experienced radiologists. When 

drawing the areas, special care was taken to exclude vessels which could 
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interfere with the perfusion results. Also, when selecting the normal area, it was 

taken into account that it was not connected to the tumor by white matter tracts. 

Enhancement curves were extracted pixel by pixel in order to analyze the 

histograms afterwards. 

 

Intensity to concentration conversion 

To convert signal intensity to concentration vs. time curves, the following 

equation was used [110]: 
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where C is the contrast concentration, S is the signal intensity and S0 is the signal 

intensity before contrast injection. It can be seen that this expression is different 

from that used in spoiled T1w gradient-echo sequences, as one of the 

characteristics of T2*-weighted dynamic studies is the decay of the signal as the 

contrast concentration increases. 

 

PK modeling 

In this study case, three models were used to quantify brain perfusion: single-

compartment, multiple-compartment and first-pass multiple-compartment. 

 

Single-compartment 

The single-compartment (not to be confused with the PK one-

compartment model used in previous study cases) is based on the 

intravascular dilution of the contrast agent. It neglects both tracer 

recirculation and extravasation. Therefore, to obtain absolute values, it 

was necessary to correct the extracted curves with a function that 

estimated a theoretical curve without recirculation (figure 2.13). 
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Figure 2.13. Correction of the recirculation and the washout phases of a voxel enhancement 

curve. The corrected curve decay is fitted to an exponential function. 
 

Then the following parameters were obtained: 

• Cerebral blood volume (CBV): obtained as the area under the contrast 

uptake curve normalized to the area under the AIF. 
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• Mean transit time (MTT): obtained as the area under the contrast 

uptake curve normalized to its maximum. 
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• Cerebral blood flow (CBF): obtained as the relationship between the 

CBV and the MTT. 

 

MTT

CBV
CBF =  

 

Multiple-compartment model (two-compartment model) 

As previously explained in the Introduction, this model is based on the 

exchange of contrast agent between plasma and interstitial space. 
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In comparison to the single-compartment approach, no recirculation 

correction of the curves was taken into account to apply this model. 

 

First-pass multiple-compartment model 

As a variation of the previous two-compartment model, the following 

expression can be used to assess only the first-pass phase of the tissue 

uptake [19]: 

 

∫+=
t

AIF

fp

AIFpfp dtCKCvC
0

'·  

 

where vpfp and Kfp are the first-pass vascular space fraction and capillary 

permeability, respectively. It can be seen that with this approach the tissue 

response is not taken into account. 
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Histogram analysis 

Mean, median, mode and standard deviation were calculated for the whole 

histogram and for the 10% maximum values (figure 2.14). Kurtosis and skewness 

of the whole histogram were also calculated as shape descriptors. With this 

analysis it was intended to characterize the regions according to the maximum 

values, related to tumor aggressiveness [111], and according to the histogram 

shape, related to the heterogeneity. 

 

 
Figure 2.14. Example of a histogram where two groups of voxels are analyzed separately: the 

whole distribution and the subgroup containing the 10% maximum values. 
 

Statistical analysis 

An ANOVA with post-hoc tests was used to study differences between the three 

regions for each parameter. Also, in an aim to obtain more statistical power to 

separate regions, a discriminant analysis was performed. From this analysis a 
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statistical function can be generated as a linear combination of several perfusion 

parameters, which maximizes the capacity to separate the regions. 

 

2.2.1.6 Magnetic field strength influence 

 

Description 

To study the value ranges and the reproducibility of the PK parameters derived 

from DCE-MR images of the patellar cartilage in 1.5 T and 3.0 T. 

 

Hypothesis 

As PK modeling is a theoretically reproducible technique, there are no 

differences in the quantitative results regarding magnetic field strength. 

 

Study group 

16 subjects who underwent a DCE-MR examination of the knee were 

retrospectively included in the study. All of them were healthy subjects without 

degenerative patellar conditions. Subjects were studied in 1.5 T and 3.0 T 

magnets. Both groups were all male and similar in age (26.7 ± 2.7 and 24.5 ± 4.8 

years old). Also, a prospective evaluation was designed examining 4 healthy 

subjects on both MR fields within 1 week. 

 

Image acquisition 

The acquisition parameters used for each MR examination are indicated in table 

2.6. 

 

Image analysis 

The same image analysis process as in the previous study cases of the cartilage 

was carried on (2.2.1.4). 
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 PK study 1 PK study 2 

Magnetic field 1.5 T 3.0 T 

Sequence T1w sGRE T1w sGRE 

Orientation Sagittal Sagittal 

Fat suppression Yes Yes 

Repetition time 4.0 ms 3.48 ms 

Echo time 1.72 ms 1.86 ms 

Flip angle 10º 10º 

Slices 10 10 

Voxel size 0.78 x 0.78 x 6 mm 0.76 x 0.76 x 6 mm 

Dynamics 50 50 

Temporal resolution 2.9 s 2.9 s 

Acquisition time 2 min 25 s 2 min 25 s 

Contrast dose 
0.2 ml/kg @ 4 ml/s  
(Dotarem, Guerbet) 

0.2 ml/kg @ 4 ml/s  
(Dotarem, Guerbet) 

Table 2.6. Sequence parameters. 

 

Intensity to concentration conversion 

To convert the intensity vs. time curves into concentration vs. time curves, it was 

assumed that the normalized intensity vs. time curve was linearly related to the 

contrast agent concentration [17], as explained in previous study cases of the 

cartilage. 

 

PK modeling 

In this study a one-input and two-compartment model was used (the expression 

for this model can be found in the previous applications, 2.2.1.3 and 2.2.1.4).  

 

Statistical analysis 

A Student’s t-test for independent samples was used for comparisons. A p-

value<0.05 was considered as statistically significant. For the test-retest analysis 

of variability the RMS_CoV was calculated. 
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2.2.2 Curve fitting 

 

For all the study cases presented in this thesis, a non-linear least squares curve 

fitting algorithm (Levenberg-Marquardt) was used [83]. It is not the aim of this 

work to provide a deep analysis of curve fitting algorithms, so in this section 

only this algorithm will be briefly described. 

In least square fitting algorithms, the best fit between the model and the 

observed data is that instance of the model for which the sum of squared 

residuals (difference between the value of the model and the value of the 

observed data) has its least value. 

The Levenberg-Marquardt algorithm can be summarized as the minimization of: 
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where yi is the observed data, xi is the independent variable and β is the set of 

parameters to optimize. 

It works as an iterative procedure, where the user needs to supply initial values 

for β. Depending on the problem to be fitted, one initialization or another may 

converge to different results, either to a local or a global minimum. 

In each iteration, the parameter β is replaced by β+δ. This variation δ needs to be 

estimated. As it is supposed to be small, the function can be written as: 
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Taking into account that when the minimum of the sum of squares is reached (S), 

the gradient of S with respect to β must be 0, then the following set of linear 

equations can be obtained in order to calculate δ: 

 

( ) [ ])(βδλ fyJIJJ TT −=+  

 

where J is the Jacobian matrix whose i-th row equals Ji, λ is a non-negative 

damping factor, and f and y are vectors with i-th component f(xi,β) and yi, 

respectively. 

 

2.2.3 New developments 

 

2.2.3.1 Assessment of the arterial contribution in liver carcinomas 

 

In the modified Tofts model (or St. Lawrence-Lee adiabatic approach), the 

vascular contribution to the tissue curve consists of a normalized coefficient 

which acts as a weighting factor applied to the AIF. However, this approach does 

not consider the change in shape which occurs when comparing the function 

sampled at an artery with the function sampled at the tissue. In most cases, when 

a vascular component can be observed at the tissue enhancement curve, it 

visually corresponds to dispersion (scale and delay) and even a skewness 

(shaping) of the AIF bolus.  

It has been discussed that one of the most important characteristics of liver 

tumors is how the vascularization of the lesion changes from a predominant 

portal blood supply towards a much more arterialized contribution. Therefore it 

is it necessary to develop imaging tools to assess both the amount of new arterial 

vessels and the degree of heterogeneity in the lesions, not only to study 

pathology in a quantitative and reproducible way, but also to evaluate the 

efficacy and effectiveness of antiangiogenic treatments [2]. A new approach 
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based on the application of derivatives and gamma probability density functions 

is proposed to separate vascular and washout phases in order to assess arterial 

vascular contribution more accurately, taking into account both the scale and the 

shape of liver enhancement curves. A new arterial index (AI) is calculated which 

allows to quantify the degree of similarity between any enhancement curve and a 

reference AIF, such as the aorta. This AI is compared with the vascular space 

fraction and the permeability component as calculated from the generalized 

pharmacokinetic model. A voxel-based approach is used in order to obtain the 

derived parametric maps to study both liver and tumor regions separately.  

 

Separation of first pass and washout for the AIF 

The characteristic AIF has two main phases: first pass (fast initial rise and fall) 

and washout (slow decay). This separation can be done in a reproducible way by 

calculating the curve gradients. When the value of the gradient is high, it means 

that the curve changes rapidly (initial peak rise and initial peak descent, 

backflow peak rise and backflow peak descent) and when it is low, it means the 

curve has reached more steady phases (washout phase). With this procedure, the 

first pass phase of the AIF can be extracted (figure 2.15). This new curve can be 

modeled using a gamma probability density function: 
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where Ca is the AIF, Ca
FP and Ca

WO are the first pass and the washout phase of the 

AIF, respectively, α is a shape factor, β is a scale factor and Γ(t) is the value of the 

gamma function at time t.  
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Figure 2.15. Separation of the AIF in 2 phases: first pass and washout, from the information given 

by the gradients. First pass downslope is generated as a smooth exponential decay.  
 
The combination of factors α and β in the gamma function produces different 

shapes which can be used to model the behavior of the arterial bolus dispersion 

and change of shape (figure 2.16). For simplicity, recirculations were included as 

part of the washouts. 

 

 
Figure 2.16. Gamma probability density functions. It can be seen that a progressive decay and 

dispersion is produced as the combination of α and β increases. x represents a random variable. 
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Separation of first pass and washout for the tissue enhancement curves 

Enhancement curves were considered as arterially significant if they complied 

with two criteria: a) their maximum value was higher than the mean plus 3 

standard deviations of the values corresponding to the second half of the curve 

(i.e., the washout phase), and b) their maximum occurred before the maximum 

portal input. If these conditions were met, the curves were then separated using 

the gradients algorithm. Otherwise the curves were considered as only washout 

(figure 2.17). 

  
Figure 2.17. Proposed algorithm for the extraction of the pharmacokinetic parameters by 

separation of enhancement curves into arterially and non-arterially significant. When arterially 
significant, curves are separated into first pass and washout using the gradient, and the AI and 

the common pharmacokinetic parameters (Ktrans1, Ktrans2, kep ,ve, vp) are calculated separately. 
 

PK modeling 

The two-input two-compartment generalized kinetic model [69] adapted to the 

liver dual input is used: 
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where Ct is the tissue enhancement curve, Cv is the portal input function, Ktrans1 is 

the capillary permeability for the arterial contribution, Ktrans2 is the capillary 

permeability for the venous contribution,  vp is the vascular space fraction and kep 

is the washout coefficient. The interstitial space fraction, ve, is obtained as (Ktrans1+ 

Ktrans2)/kep [7]. Pixels whose values were outside the range [0,1] for this parameter 

were automatically discarded from the analysis. All curves were fitted using 

Levenberg-Marquardt non-linear least squares algorithm [83].  

The arterial index (AI) can be calculated using the following expression: 
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where αt and βt are the α and β factors for the tissue first-pass curve, and αa and 

βa are the α and β factors for the arterial input first-pass curve. Values for this 

index range from 0 to 1. Near 1 values of this index correspond to highly 

arterialized curves while near 0 values correspond to minimally or no 

arterialized curves (i.e. curves with more dispersion). This index provides the 

degree of similarity between any arterialized tissue enhancement curve and the 

aortic enhancement curve. 

Colored parametric images were generated for each variable (AI, Ktrans1, Ktrans2, kep, 

ve and vp) to assess regional differences. 

 

Study group and image acquisition 

Fifteen cirrhotic patients with hepatocellular carcinoma (8 men, 7 women, 63±13 

years), not treated previously and with a clinical and analytical follow-up of 9 

months were included.  

All patients were imaged in a 1.5 T scanner (Philips Intera, Philips Healthcare, 

Best, The Netherlands). A 4-channel phased array surface coil was used. To 

perform the kinetic analysis, the following sequences were acquired: 
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 T1 mapping PK study 

Magnetic field 1.5 T 1.5 T 

Sequence T1w sEG T1w sEG 

Orientation Transversal Transversal 

Fat suppression No Yes 

Repetition time 87 ms 70 ms 

Echo time 1.4 ms 1 ms 

Flip angle 5º,15º,30º,45º,70º 60º 

Slices 24 24 

Voxel size 0.8 x 0.8 x 7.5 mm 0.8 x 0.8 x 7.5 mm 

Dynamics - 40 

Temporal 
resolution 

- 3.7 s 

Acquisition time 2 min 2 min 28 s 

Contrast dose - 
0.05 ml/kg @ 4 ml/s  

(Dotarem) 

Table 2.3. Sequence parameters for the liver assessment in 1.5 T. 

 

The patients were asked to breathe slowly during the dynamic study. No special 

consent from the ethics committee was required, as this study is done routinely 

in suspected liver tumors. After acquisition, all images were anonymized and 

transferred to a workstation for post-processing.  

 

Image analysis 

All images were registered to correct for breathing motion misalignments with 

the SPM non linear registration tool (SPM, Wellcome Trust Center for 

Neuroimaging, London, UK). 

Multiple flip angle images were used to calculate pre-contrast T1 maps of the 

liver. Signal intensity vs. flip angle curves were extracted for each pixel and fitted 

to the 3D spoiled gradient echo equation [112]. 
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To perform the kinetic analysis the arterial input, the portal input and the tissue 

enhancement curves were initially obtained. To generate the vascular input 

functions, two regions of interest (ROIs) were manually placed at the aorta and at 

the portal vein and all the pixels within the ROIs were averaged for each time 

step. The liver was also manually segmented and a tissue enhancement curve 

was extracted for each pixel to be independently analyzed (figure 2.18). 

 

 
Figure 2.18. (a) Regions of interest for the PK analysis of the liver: aorta (red), portal vein (blue), 
tumor (brown) and liver parenchyma (green). (b) Typical normalized enhancement functions at 

the aorta, the portal vein, the normal liver and the carcinoma.  
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All curves were smoothed to reduce the noise using local regression with 

weighted linear least squares and first degree polynomials. They were then 

normalized and converted into concentration values. 

 

Statistical analysis 

The values for each calculated parameter were expressed as the mean ± SD and 

the median for the liver and the tumor. Linear dependence between Ktrans1 and 

AI, and between vp and AI was assessed using the Pearson’s correlation 

coefficient (r) for the liver and the tumor.  

 

2.2.3.2 Cartilage parametric maps 

 

The study of the cartilage by clinical arthroscopy reveals that the cartilage may 

suffer regional degenerations and pathological processes. Therefore, 

characterizing it as a whole using the mean or the median as quantitative 

indicators, may surely be leading to important errors, especially if the affected 

areas are small. 

A new visualization tool is proposed to assess regional cartilage properties. It 

consists in the generation of synthetic colored maps for each parameter using all 

the cartilage voxel. 

Knee or ankle images are usually acquired in the sagittal plane to cover all the 

relevant structures. After the cartilage (patellar, femoral, tibial, astragalus) has 

been properly segmented and all the voxel curves have been studied to obtain 

the PK parameters, a series of projections can be made in order to generate 

multiplanar colored maps. Depending on the cartilage under study, one 

projection direction or another is chosen. 

For each projection, each line corresponds to a pixel in the parametric map. All 

the voxels that the line runs through are averaged to calculate the value of the 

pixel. 
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• Patellar cartilage: left-right projection (figure 2.19). 

 

 
Figure 2.19. Ktrans coronal projection of the sagittal slices for the patellar cartilage. The red arrows 

represent the direction in which the values are averaged to generate the final projection. 
 

 

• Femoral cartilage: radial projection (figure 2.20). 

 

 
Figure 2.20. Ktrans radial projection of the sagittal slices for the femoral cartilage. The center must 

be specified manually. 
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• Tibial cartilage: bottom-up projection (figure 2.21). 

 

 
Figure 2.21. Ktrans axial projection of the sagittal slices for the tibial cartilage. 

 

 

• Ankle cartilage (tibio-astragalin): bottom-up projection (figure 2.22). 

 

 
Figure 2.22. Ktrans axial projection of the sagittal slices for the ankle cartilage. 
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It can be seen that all these images can be used to assess regional damage. 

However, this simple methodology has some limitations regarding projection 

errors. 

As absolute coronal or transversal projections are chosen, it is possible that the 

cartilage may not be correctly aligned with these planes, so that it is not 

completely perpendicular. Moreover, cartilages have no plane volumes so 

depending on the region of the cartilage there may be more voxels being 

averaged at a time. These factors will lead to parametric images which will not 

reflect the cartilage as expected and, more importantly, make it very difficult to 

compare one cartilage through consecutive studies, as the knee position will not 

probably be the same. 

One way to solve this bias is by using a segmentation of the bone (which is not 

expected to change significantly between studies) to that the cartilage is projected 

not on an absolute plane, but on the bone surface [113]. This approach does not 

produce 2D parametric images, but rather 3D reconstructions of these parametric 

images. This later approach is currently being implemented. 

 

2.2.3.3 Multivariate image analysis (MIA) 

 

The study of a disease by analyzing several parameters allows having a wide 

amount of information to characterize it in great detail. However, these 

parameters are often related among them and it is sometimes difficult to avoid 

redundancies and extract accurate knowledge. There are data mining tools based 

on the multivariate and the factorial analysis of the information which can be 

used to reduce the dimensionality and help establish classifications from the 

combination of several parameters into discriminant functions [114,115]. These 

classifiers can then be used to group patients (clusters) with similar 

characteristics, which would be otherwise impossible to do with univariate 
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studies. The multivariate analysis of perfusion imaging biomarkers may provide 

new ways to assess the diseases.  

Two tools are proposed to improve diagnose and prognosis with perfusion 

imaging biomarkers: 

 

Principal component analysis (PCA) 

PCA is the workhorse of MIA. The key is the proper reorganization (matricizing) 

of the original N-way array. Unfolding is done so that each voxel becomes a 

single row in the analysis. Thus an image that is originally I x J with K spectral 

channels is reshaped to form a two way array that is I x J x K [116]. 

PCA consists of an orthogonal linear transformation that converts the original 

data into a new coordinate system so that the greatest variance by any projection 

of the data lies on the first coordinate (first principal component), the second 

greatest variance on the second coordinate (second principal component), and so 

on. It involves the computation of the K images covariance matrix and the 

application of diagonalization procedures for extracting the eigenvalues and the 

corresponding eigenvectors. A score plot can then be obtained so that the 

original data is projected onto the principal components in two dimensions. The 

score plot is a scatter plot, where the X axis contains a one principal component 

and the Y axis contains another principal component. This plot contains points 

that represent the original parameters (variables) projected onto the selected 

principal components. The score plot is usually built with the data on the first 

two principal components. 

 

Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) and its related Fisher's linear discriminant 

analysis are methods used to find the linear combination of variables which best 

separate two or more classes. The resulting combination may be used as a linear 

classifier or for dimensionality reduction before later classification. 
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LDA is also closely related to PCA and factor analysis in that both look for linear 

combinations of variables which best explain the data [117]. The aim of  LDA is 

to obtain a function which can be further used in order to generate colored 

nosologic images which are directly linked to the disease. So, instead of 

providing information on quantitative parameters (such as permeability, flow, 

etc.), they will provide a direct index of disease. 

Figure 2.23 shows some examples of parametric maps of the ankle cartilage and 

related nosologic images. 

 

 
Figure 2.23. Parametric maps of the ankle cartilage for (a) a normal subject and (b) a patient with 
osteoarthritis. (c) Nosologic maps obtained from a discriminant function in three cases (from left 

to right: normal, initial degeneration and advanced degeneration). 
 

2.2.3.4 Assessment of region heterogeneities 

 

As it has been already introduced, tumor regions have chaotic vascular 

structures, with arterio-venous shunts and fragile vessels. This type of 

composition makes tumors highly heterogeneous masses, a fact which seems to 

be directly related to their aggressiveness. 
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When tumors are studied with the common statistics, such as the mean, the 

median, the mode or the standard deviation, it is possible to characterize them 

relatively well, as the mean, the median and the mode give an idea of the central 

value and the standard deviation gives an idea of the dispersion of values. 

However, by using whole region histograms, it is possible to obtain two more 

statistics which can assess heterogeneity more directly: 

 

Kurtosis 

The kurtosis is a measure of the “peakedness” of the histogram. Higher kurtosis 

means more of the variance is due to infrequent extreme deviations, as opposed 

to frequent modestly sized deviations. In our context, higher kurtosis is related to 

less heterogeneous regions. 

It is also known as the fourth standardize moment of a distribution: 
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where µ4 is the fourth moment about the mean (or fourth central moment), which 

can be defined as: 
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where E is the expectation operator (the integral of the variable with respect to its 

probability measure). 

 

Skewness 

The skewness is a measure of the asymmetry of a histogram. It can be used to 

assess the shape of a histogram with regard to the apparition of tails over the 

maximum values. 
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It can be defined as: 
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where µ3 is the third moment about the mean. 

 

Study case: liver 

 

Ten patients with hepatocarcinomas were studied using a 2-input 

bicompartimental PK model in 1.5 T multislice DCE-MRI of the liver (24 slices, 40 

dynamics, 3.6 s/dynamic). Two regions of interest within the liver parenchyma 

were manually selected in each case (one for lesion and another for normal 

parenchyma). Histograms of the five PK parameters were calculated: Ktrans1, 

Ktrans2, kep, ve and vp. Histogram heterogeneity was characterized using the 

kurtosis . 
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3. Results and discussion 

 

In this chapter the results corresponding to the clinical applications will be 

presented: OHSS treatment with cabergoline, cartilage degeneration at 1.5 T and 

3.0 T, osteoarthritic cartilage treatment with glucosamine sulfate, study of grade-

IV astrocytomas, influence of magnetic field strength and analysis of 

hepatocellular carcinomas.  

 

3.1 Evaluation of ovarian hyperstimulation syndrome treatment 

 

3.1.1 Results 

 

Both PK models (one- and two-compartments) showed a significant increase in 

Ktrans for the second study in the non-treated women group (figure 3.1). However, 

the differences where bigger in the two-compartment model. The other PK 

parameters did not show statistically significant differences, although a tendency 

towards significance was observed for ve in the two-compartment model (table 

3.1). In the cabergoline group no significant differences were obtained for any 

parameter.  

For the analysis of percentage differences, statistically significant differences 

were observed between treatment and placebo for Ktrans in the two-compartment 

model: increments of 168.6% for the placebo group and of 54.6% for the treated 

group (p=0.04). 

For the reproducibility analysis, the ICC showed values of 0.96, 0.96 and 0.98 for 

Ktrans, kep and ve in the one-compartment model and of 0.97, 0.97, 0.98 and 0.89 for 

Ktrans, kep, ve and vp in the two-compartment model. 
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Figure 3.1. Ktrans parametric maps for the first (a) and the second (b) MR studies of a non-treated 
patient. These parametric maps allow the analysis of regions with higher permeability (red). It 

can be seen there is an increment of permeability, represented by a higher number of red voxels. 
 

Parameter Group MR 
1-compartment 

model 
p 

2-compartments 
model 

p 

Ktrans 

T 
1 20.4 ± 6.1 

0.070 
20.3 ± 6.7 

0.078 
2 28.1 ± 9.1 28.6 ± 10.4 

P 
1 25.1 ± 10.1 

0.012 
20.2 ± 9.6 

<0.001 
2 37.9 ± 9.1 42.4 ± 9.7 

kep 

T 
1 80.7 ± 10.5 

0.115 
68.7 ± 12.8 

0.050 
2 105.2 ± 40.0 88.9 ± 23.4 

P 
1 101.2 ± 34.9 

0.345 
95.4 ± 55.0 

0.937 
2 114.4 ± 21.1 97.0 ± 14.6 

ve 

T 
1 29.2 ± 5.2 

0.403 
37.3 ± 6.2 

0.476 
2 33.1 ± 11.8 41.0 ± 13.1 

P 
1 31.3 ± 8.6 

0.136 
38.6 ± 10.6 

0.064 
2 36.2 ± 3.2 46.6 ± 5.8 

vp 

T 
1 

- 

30.3 ± 12.0 
0.419 

2 22.5 ± 5.2 

P 
1 30.3 ± 12.0 

0.093 
2 22.5 ± 5.2 

Table 3.1. Results of the PK parameters for the 1st and 2nd MR studies.  T (treated), P (placebo). 
Units: Ktrans and kep (ml/min/100ml); ve and vp (%) 
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3.1.2 Discussion 

 

The differences in the PK parameters between the cabergoline treated patients 

and the non-treated ones demonstrate the effect of the dopamine agonist as 

OHSS repressor. Although in both groups there was an increase of capillary 

permeability, this was significantly lower in the treated group in comparison to 

the non-treated. When analyzing the influence of the PK model, it has been 

demonstrated that the differences between both groups were higher if the two-

compartment model was used. 

This study allowed establishing in an objective way the differences between the 

one- and two-compartment PK models for the characterization of the 

angiogenesis in the OHSS and the influence of the treatment over these variables. 

Comparing the PK parameters of capillary permeability, washout rate, interstitial 

space fraction and vascular space fraction for both models, the significant 

differences have been validated in a reproducible way between patients treated 

with cabergoline and patients treated with placebo. In conclusion, these results 

validate the use of the PK parameters, especially Ktrans, as imaging biomarkers of 

the direct effect of antiangiogenic treatments. 

In this study the ICC has been used to assess reproducibility. This statistic 

parameter provides a measure of retest correlation, taking into account the 

variability between plus within-subject. Another common way of assessing 

reproducibility is with the test-retest root mean square coefficient of variation 

(RMSCV), which provides an estimate of the within-subject variation (similar to a 

normalized standard deviation). The ICC ranges from 0 to 1, with near 1 values 

meaning that the method is highly reproducible. On the other hand, RMSCV can 

take higher values than 1, but near 0 values are related to high reproducilibity. 

Despite these differences, both parameters have been used as good 

reproducibility indicators in this thesis. However, if a thorough study of 
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reproducibility is necessary, both parameters should be considered and 

calculated. 

 

3.2 Assessment of cartilage degeneration in 1.5 T 

 

3.2.1 Results 

 

In the comparison between the three cartilage groups, the one-compartment 

model showed significant differences for Ktrans and ve, with p-values of 0.012 and 

0.001, respectively (figure 3.2). kep was not significantly different (p=0.884). For 

the two-compartment model, significant p-values were also obtained for Ktrans and 

ve (p=0.02 and p=0.007, respectively), but not for kep and vp (p-values of 0.897 and 

0.379, respectively) (table 3.2). 

 

 
Figure 3.2. Box-plots for (a) Ktrans and (b) ve. Both parameters are obtained using the Tofts 
standard method (dismissing vascular contribution). The chart shows the five statistics 

(minimum, first quartile, median, third quartile and maximum). Cartilage parametric maps for 
Ktrans: (c) shows a normal cartilage; (d) shows a cartilage with osteoarthritis. 
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Model Parameter 
Degeneration status 

P 
Normal Chondromalacia Osteoarthritis 

1 compart. 

Ktrans 1,1 ± 0,6 12,0 ± 8,9 21,2 ± 16,0 0,012 

kep 313,2 ± 40,4 279,6 ± 161,1 273,5 ± 141,0 0,893 

ve 0,7 ± 0,7 3,6 ± 2,2 10,5 ± 8,2 0,001 

2 compart. 

Ktrans 0,2 ± 0,5 7,7 ± 6,3 13,2 ± 10,9 0,021 

kep 352,2 ± 54,6 311,7 ± 149,7 321,1 ± 173,0 0,894 

ve 0,7 ± 0,3 3,7 ± 2,6 10,1 ± 9,1 0,007 

vp 0,5 ± 0,1 0,6 ± 0,6 1,3 ± 2,2 0,381 

Table 3.2. PK parameters results. Units: Ktrans and kep (ml/min/100ml), ve and vp (%). 

 

 

Reproducibility analysis 

Except for the RMS_CoV for vp, the other reproducibility values were good or 

very good [11] (range = 8-19%), with kep being the most reproducible parameter 

in both models (table 3.3). 

 

Model Parameter Difference % Difference RMS CoV 

1 compart. 

Ktrans 1,2 ± 1,4 9,2 ± 10,3 9,9 

kep 14,9 ± 5,6 10,2 ± 4,5 8,2 

ve 1,2 ± 1,0 17,1 ± 18,3 14,7 

2 compart. 

Ktrans 1,5 ± 1,3 13,8 ± 10,9 12,8 

kep 17,5 ± 12,2 10,2 ± 7,5 9,2 

ve 1,8 ± 1,2 23,7 ± 24,1 19,0 

vp 0,08 ± 0,08 46,5 ± 58,5 262,1 

Table 3.3. Reproducibility results. Units: Ktrans and kep (ml/min/100ml); ve, vp and RMS CoV (%). 
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3.2.2 Discussion 

 

Patellar cartilage has not been an important focus of attention for the PK analysis 

of perfusion images, probably due to its low perfusion and the limitations of MR 

in spatial and temporal resolutions. However, some studies have pointed to a 

correlation between articular cartilage degeneration and the presence of an 

abnormality in its blood supply and nutrition [47]. 

This study seemed to be one of the first evaluations of the perfusion and PK 

characteristics of the synovium articular cartilage, both in the normal and disease 

status. The DCE-MRI quantification by PK analysis showed a significant 

difference in the Ktrans and ve between normal cartilage and cartilage affected by 

chondromalacia and osteoarthritis. These values showed a surrogate index of an 

increase of microvascularity and interstitial volume as the cartilage degenerates 

to more advanced stages. 

It has been also demonstrated that the results obtained considering or not the 

vascular contribution are different. This difference in the measurements is bigger 

as the degeneration of the cartilage increases, due to a more advanced grade of 

angiogenesis. From this experience, it is suggested not to include vp in the model, 

so that reproducibility and model stability increase. This one-compartment 

analysis may also decrease unnecessary complexity and enlarge the statistical 

difference between cartilage disease states. 

This study has also demonstrated that the methodological reproducibility is 

good, with the only exception of the vascular volume fraction. It was found that 

kep values had an excellent reproducibility, though they did not show differences 

to be used in cartilage tissue characterization. In longitudinal studies, DCE-MRI 

PK analysis could be used to measure the effectiveness of the treatment as the 

reproducibility of the methods has been properly assessed. 

In this study, several assumptions were made. Cartilage has a low perfusion, 

there is a linear conversion between intensity and concentration, a direct use of 
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the concentration curves can be employed without mathematical exponential 

approximation [10,17] and there is no need for dynamic image registration. 

Moreover, only the widest patellar transverse slice image was analyzed in each 

patient to improve the quality of the manual segmentation of the cartilage. 

Although this single analysis may be representative of the cartilage general state, 

a more detailed study should comprise the analysis of the whole cartilage to 

avoid missing partial distributions of the disease. Also, it is necessary to consider 

the bias of not having pathological proof of the normal cartilage and of some 

cases with degeneration. 

In conclusion, it has been demonstrated that the PK analysis of the patellar 

cartilage presents statistical difference in the capillary permeability and 

interstitial component between normal and disease status. Even more, these 

abnormalities are higher with more diseased stages. Therefore, it seems 

reasonable to include more patients in future studies for better assessments. 

 

3.3 Assessment of femoropatellar cartilage degeneration in 3.0 T 

 

3.3.1 Results 

 

Statistically significant differences were found for Ktrans (1.7±2.0, 4.9±5.0, 10.0±11.5 

ml/min/100ml, p=0.002, for normal, initial and advanced degeneration, 

respectively) and ve (2.0±2.0, 4.5±2.2, 8.4±7 %, p<0.001) in the patellar cartilage, 

and for Ktrans (3.1±2.3, 4.6±4.0, 10.2±8.8, p=0.008) in the femoral cartilage (figure 

3.3).  

The Student-Newman-Keuls post-hoc test could discriminate advanced 

degeneration in all cases, but not between normal and initial degeneration. 
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Figure 3.3. (a) Box-plots showing the differences in Ktrans and (b) ve for the patelar cartilages, and 

(c) Ktrans for the femoral cartilages. 
 

 

3.3.2 Discussion 

 

It was shown that as cartilage degeneration progresses, there is an increase in its 

vascularization when analyzed in a 3.0 T system. PK parameters, specifically 

capillary permeability and interstitial volume fraction, can be used as surrogate 

image biomarkers of disease progression. These results agree with those obtained 

in the previous study on a 1.5 T magnet. Neoangiogenesis maps may be useful in 

the diagnosis and follow-up of arthritis. 
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The applied PK model dismisses vascular contribution, as cartilage is a naturally 

avascular tissue. Therefore, a specific term to model a highly vascularized 

situation was assumed unnecessary. Further studies should try to assess cartilage 

degeneration in earlier stages. 

In conclusion, PK parameters obtained from 3.0 T DCE-MRI are able to depict the 

neovascularity associated to cartilage degeneration.  

 

 

3.4 Evaluation of glucosamine sulfate for the osteoarthritis 

treatment 

 

3.4.1 Results 

 

Glucosamine sulfate treatment was considered clinically effective. Statistically 

significant differences were found in both the pain and the functional outcome 

scores for patients under glucosamine compared with the control group. 

Treatment with glucosamine sulfate reduced patients pain and improved their 

knee function compared with the controls (p<0.01 for both clinical indexes). Table 

3.4 summarizes the results for the clinical evaluations before the first MR study 

and 6 months afterwards. 

 

 
Controls Glucosamine sulfate 

p 
Baseline 6 months Baseline 6 months 

VAS 6.8 ± 0.4 7.0 ± 0.0 (3.3 ± 7.4%) 7.3 ± 1.1 
3.6 ± 1.3 

(-51.8 ± 12.3%) 
< 0.001 

AKS 26.0 ± 5.5 26.0 ± 5.5 (0 ± 0%) 18.6 ± 6.9 
42.9 ± 2.7 

(165.5 ± 114.6%) 
< 0.01 

Table 3.4. Summary of results for the clinical evaluation of the patients. Values express mean ± 
standard deviation and the 6 months percentage of change in parenthesis. 
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Figure 3.4. Cartilage parametric maps for Ktrans in a patient with osteoarthritis for the first (a) and 

second (b) MR examinations. There is an increase in the values of permeability. (c) % difference in 
Ktrans for all patients (glucosamine and controls) and for both chondromalacia and osteoarthritis. 

 
 

In the PK analysis, there was a statistically significant difference in the controls 

vs. glucosamine for Ktrans, with higher values in the glucosamine sulfate group (-

54.4% vs. 126.7%, controls vs. glucosamine sulfate, respectively) (figure 3.4). The 

kep differences were not statistically different. Regarding ve, there was a trend 

towards higher differences in percentage in the glucosamine sulfate group 

(p=0.11). Table 3.5 summarizes the values of the parameters and the differences 

in the MR-calculated parameters between the two MR examinations. 
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Parameter Group MR1 MR2 Difference (%) p 

Ktrans 

Controls 17.1 ± 7.1 12.5 ± 3.2 
-54-4 ± 21.2 

(9.5) 
p < 0.001 

Glucosamine 9.1 ± 6.5 14.4 ± 8.3 
126.7 ± 56.9 

(21.5) 

kep 

Controls 367.0 ± 130.5 314.5 ± 237.3 
4.6 ± 96.2 

(43.0) 
p = 0.76 

Glucosamine 287.9 ± 342.4 373.4 ± 130.4 
-11.7 ± 85.1 

(32.2) 

ve 

Controls 14.2 ± 11.4 9.3 ± 2.7 
-36.1 ± 90.8 

(40.6) 
p = 0.11 

Glucosamine 9.3 ± 6.2 20.4 ± 16.1 
118.4 ± 204.7 

(77.4) 

Table 3.5. Summary of the results for the difference in the main PK parameters in both proposed 
models. The values are shown as mean ± standard deviation (standard error of the mean). Units: 

Ktrans and kep (ml/min/100ml), ve (%). 

 

The power calculation curve for Ktrans, obtained for the worst case (highest 

standard deviation, 56.9% for the glucosamine group, alpha=0.05, n1=10 and 

n2=6), showed a value of 0.64 for a difference of 72.3% (mean percentage 

difference between glucosamine and controls). For VAS, the power calculation 

(highest standard deviation, 12.6%, alpha=0.05, n1=10 and n2=6) showed a value 

of near 1 for a difference of 55.1%. For AKS no power calculation was obtained 

since the control group had null standard deviation and the difference was 

165.4%. 

 

3.4.2 Discussion 

 

In an effort to increase the in-vivo knowledge of the cartilage status, MR imaging 

can be used to quantitatively assess different biomarkers. The most evaluated 
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parameters are cartilage thickness and volume, delayed contrast-enhancement 

and the physical properties of the T2 and T1 relaxation times. 

Mature articular chondrocytes in physiological condition are essentially devoid 

of vascular structure. However, blood vessel growth into the articular cartilage 

may contribute to cartilage damage. Different studies have pointed to a 

correlation between articular cartilage degeneration and the presence of an 

abnormality in its blood supply and nutrition [40-47,101]. Although diffusion 

from the synovium fluid into the cartilage matrix is a known mechanism for 

cartilage nutrition, a direct blood supply from the subchondral bone is observed 

in osteoarthritis patients [118,119]. 

In this sense, DCE-MRI pharmacokinetically derived parameters can be used as a 

biosignature of cartilage degeneration. PK models focus directly on the tissue 

microvascular function, providing a reliable and reproducible measurement of 

angiogenesis and capillary membrane permeability properties. This technique, 

although lacking global standardization, is considered an accurate and validated 

neoangiogenesis biomarker even in complex models [120]. 

Reproducibility of the PK cartilage calculations for 1.5 Tesla acquisitions is high, 

with a very low test–retest root mean square coefficient of variation (9–19% for 

Ktrans, 8–15% for kep and 14–23% for ve) [101,103]. In this series, influence of time 

and treatment was much larger than methodological variability (control group, 

root mean square coefficient of variation of 30% for Ktrans, 110% for kep and 71% 

for ve; glucosamine group, root mean square coefficient of variation of 76% for 

Ktrans, 98% for kep and 98% for ve). Even more, when compared with previous 

studies using the same methodology in different populations, all the results had 

a similar range of values [101]. 

This study showed a clear influence of glucosamine sulfate treatment in the PK 

results. There is a significant difference in Ktrans after glucosamine administration 

compared with the control group. Patients treated with glucosamine sulfate had 

an increment in their cartilage capillary permeability as evaluated after 6 months 
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of medication. There was also an increment in the volume of the interstitial space 

ve, but the difference was not significant, most probably due to the small number 

of cases and the large standard deviation. The kep did not show any significant 

change between both examinations, in neither group of patients, due to the fact 

that the cartilage enhancement curves had very slow washout (the curve decay 

modeled with the kep parameter). This means that kep cannot be used as a 

biomarker to assess differences in cartilage status. 

Glucosamine sulfate stimulates the synthesis of proteoglycans and, together with 

other biochemical properties, improves the quality of the cartilage matrix. As 

found in this study, glucosamine sulfate administration has an effect on the 

capillary properties of cartilage, at least if evaluated 6 months after treatment 

onset.  Although a decrease in the angiogenesis parameter values with treatment 

was initially expected, the observed effect was the opposite: an increase in the 

cartilage vascular permeability after treatment. This result could be associated 

with an increment in the angiogenesis associated with the promotion of 

reparative cartilage processes and with the metabolic cascades linked to the drug, 

as this repairing process may be energy consuming.  

As the 6-months PK evaluation seems to relate to the increased metabolic effect 

of glucosamine sulfate on cartilage, it seems reasonable that the curative effect of 

glucosamine sulfate should be evaluated over a longer period, most probably at 

least 12 months after starting the administration of the drug. In order to test if PK 

MR evaluates an increase of cartilage metabolism and perfusion in patients 

treated with glucosamine sulfate, another study will be required with different 

methodology and examination times to be confirmed. 

As PK analysis of DCE-MR images may model the vascular and interstitial 

behavior of different pathological conditions in tissues, the obtained parameters 

in this study must be considered reproducible, as similar MR sequences, contrast 

injection protocols and measurement procedures were used. The fact that the 

molecular weights of glucosamine sulfate (456 Daltons) and the used gadolinium 
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chelate (gadodiamide DTPA_BMA, Omniscan) (573 Daltons) are quite similar 

makes this PK modeling even more promising to evaluate the effect of 

glucosamine sulfate on the capillary properties of the diseased cartilage. If the 

finding of a significant increase in Ktrans in osteoarthritic patients receiving 

glucosamine sulfate is replicated in a larger series, this parameter could be 

considered a surrogate endpoint of treatment effect, reflecting most probably an 

increase of the microvascularity and membrane permeability in the glucosamine 

sulfate group. It has to be noted that the prescription formulation of glucosamine 

sulfate (1,500 mg once a day) was used, which has an established PK profile and 

clinical trial evidence. It is not known whether these results would be applicable 

to other glucosamine or glucosamine sulfate dietary supplement or generic 

preparations. 

One bias of this study is the use of mean values to characterize cartilage. This 

whole analysis may hide the presence of degenerated regions whose values are 

minimized when averaged with the rest of the cartilage. Parametric maps, 

histograms or regional analysis and visualization tools should be used in order to 

depict abnormal regions and interpret local results. These representations will 

offer additional information on degeneration location, size and grading. 

Also, the choice of the AIF for the PK study may affect the reproducibility among 

different sites, as other studies related to PK analysis use different input curves, 

such as population averaged or reference curves [14,106]. In this study, 

individual input curves were used, chosen directly from the popliteal artery in 

each case, as both the spatial and temporal resolutions of the acquisition 

sequence were high enough. 

As cartilage degeneration is also associated with changes in synovium and 

subchondral vascularization, this may be a source of bias. Cartilage tissue was 

carefully segmented, excluding synovium and subchondral bone, making sure 

that only cartilage was included in the image analysis. Therefore, the 

contribution of other “non-cartilage” structures to the cartilage evaluation can be 
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neglected. Also, as the differences between the two groups of patients were 

evaluated, the variability associated with the methodology should be present in 

both groups and cannot explain the different group results. The values obtained 

from the power calculation allow an acceptable degree of confidence in the 

results. 

In conclusion, glucosamine sulfate decreases pain and improves the functional 

outcome in patients with cartilage degeneration. Glucosamine sulfate treatment 

has also an effect on the vascular properties and cartilage metabolism. The strong 

relationship between treatment and increment in the cartilage capillary 

permeability (Ktrans) allows proposing its measurement as a surrogate marker for 

the 6-months glucosamine sulfate effect on the degenerated cartilage metabolism. 

 

3.5 Characterization of grade-IV CNS astrocytomas 

 

3.5.1 Results 

 

Significant differences were obtained among the three regions of interest for 

CBV, CBF, Ktrans and vpfp (p<0.001), either using the mean, the median or all the 

distributions (figure 3.5). The other parameters did not show significant 

differences. CBV was globally the best parameter to separate tumor, peritumoral 

area and healthy tissue.  

The analysis of the histogram shape showed statistically significant differences 

for the kurtosis of Ktrans and kep, as well as for the skewness of CBV, CBF, Ktrans and 

vpfp. These values were significantly different between the tumor and the healthy 

region, while no separation could be made for the peritumoral area. Most 

parameters showed higher kurtosis in the healthy region, in comparison to the 

peritumoral and the tumor (figure 3.6), a fact that is related to tumor 

heterogeneity. 
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Figure 3.5. Box plots showing CBV, CBF, Ktrans and vpfp for each region. 

 

 
Figure 3.6. Example of normalized histograms for (a) Ktrans and (b) kep. It can be seen that the 

kurtosis is much higher in the normal region than in the tumor and the peritumoral areas.  
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The best discriminant function was obtained for a combination of Ktrans and CBV, 

with an 84.4% of the regions classified correctly: F = 0.054 · Ktrans + 3.933 · CBV – 3 

(with centroids in 2.482 / -0.716 / -1.766, for tumor, peritumoral and normal 

areas, respectively). To obtain this function the whole distribution of values and 

the mean were used. This function classified correctly 14 tumor regions (1 was 

interpreted as peritumoral), 11 peritumoral (2 were interpreted as tumors and 2 

as normal) and 13 normal (2 were interpreted as peritumoral). These 

classification results are slightly better than when CBV was used alone to classify 

the regions (78% classified correctly). Finally, a series of nosologic images were 

obtained from the discriminant function (figure 3.7). 

 

3.5.2 Discussion 

 

Most studies focusing on the differentiation of tumor grades have used the CBV 

or the relative CBV (normalized by the contralateral white matter). This method 

is widely used but also has some limitations, especially regarding the selection of 

ROIs. In an attempt to overcome this, the use of histograms has been proposed, 

 
Figure 3.7. (a) Nosologic image obtained from the discriminant function. (b) Results of the 
discriminant function for each region. It can be seen that tumor and normal tissue can be 
perfectly separated. However, there are some peritumoral regions which are incorrectly 

classified. This may be due to mistakes in the manual selection of the ROIs, which are related to 
the infiltrating properties of these tumors. 
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with better results [111]. The heterogeneous spatial distribution of the results has 

been used to differentiate tumor grades, especially between grade-III and grade-

IV. The aim of this study was not differentiating tumor grades, as all of them 

where proved grade-IV, but to improve the differentiation of the different 

regions. This was achieved by the use of discriminant functions, which combine 

several parameters in order to improve the statistical power of each individual 

variable. 

When the parameters were studied separately, the best results were found for 

CBV. The relationship between tumor and healthy region for the CBV was 

approximately 3.5, which is a little lower than other published results. This may 

be due to the use of the whole tumor region, instead of smaller ROIs which are 

focused only on the maximum values [121]. 

The standard MR protocol used to calculate the PK parameters used a T1-

weighted sequence. In this work, it has been assumed that the contrast media 

concentration could also be calculated from a dynamic susceptibility-contrast 

sequence [122]. Although it is not possible to visualize the same effects with both 

sequences, the obtained Ktrans values are in accordance with those published in 

the literature, and could be used to differentiate the three regions properly. 

The kurtosis results presented in this study agree with those of previous studies 

[111], where the heterogeneity is directly related to tumor aggressiveness. 

The main limitation of the study is the way regions are selected. It is often 

extremely difficult to separate regions clearly, due to the infiltrating 

characteristics of the glioblastomas. This causes margins to be located beyond the 

visual margins of the images, a fact that may be leading to some mistakes in the 

results. 
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3.6 Magnetic field strength influence 

 

3.6.1 Results 

 

PK analysis 

Statistically significant differences were observed between the 1.5 and 3.0 T 

groups for Ktrans (mean ± SD; 5.44 ± 2.27 vs. 1.01 ± 0.41, respectively; p=0.005) and 

vp (2.93 ± 1.30 vs. 0.75 ± 0.64; p=0.007) (figure 3.8). There were no significant 

differences for kep (658.21 ± 275.61 vs. 410.89 ± 204.06; p=0.08) and ve (5.03 ± 5.83 

vs. 0.81 ± 0.80; p=0.14) values, although a clear trend was observed. 

 

 
Figure 3.8. DCE-MRI sagittal slices showing the segmented cartilage with overlaid Ktrans values in 

(a) 1.5 T and (b) 3.0 T. Box-plots for (c) Ktrans and (d) ve comparing the influence of the MR field 
strength on these parameters 

 

When the same subject controls were evaluated in both 1.5 and 3.0 T equipments, 

a difference in Ktrans was also present (5.77 ± 2.49 vs. 0.95 ± 0.24; p=0.030). 
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However, there were no significant differences for kep (510.65 ± 190.60 vs. 595.54 ± 

55.61; p=0.42), ve (5.89 ± 7.11 vs. 0.86 ± 0.46; p=0.25) and vp (4.88 ± 3.54 vs. 1.27 ± 

0.32; p=0.09) values. 

 

Reproducibility analysis 

All the examinations were analyzed twice, the second time 7 days after the first 

analysis. The ROIs for the popliteal artery and the cartilage were manually 

drawn again by the same researcher. Reproducibility of the PK calculations, 

assessed in the 24 acquisitions, showed a test-retest root mean square coefficient 

of variation of 0.13, 0.10, 0.23 and 0.18 for Ktrans, kep, ve and vp, respectively. Except 

for ve, the values of reproducibility were good or very good [43], being kep the 

most reproducible parameter with a 10% coefficient of variation. 

Comparing field strength, reproducibility for 1.5 T showed values of 0.19, 0.15, 

0.23 and 0.15 for Ktrans, kep, ve and vp, respectively, and for 3.0 T values of 0.10, 0.06, 

0.24 and 0.20 for Ktrans, kep, ve and vp, respectively. 

 

3.6.2 Discussion 

 

At the time of this study, all previous PK studies had been obtained from 1.5 T, 

so the influence of the main magnetic field strength in the PK parameters 

extracted from DCE-MRI of the patellar cartilage was unknown. If field strength 

modifies the normal range values, these should be given separately to be used 

clinically. Even more, the reproducibility of the intrasubject results needs to be 

assessed to fully define this biomarker. 

In this study, it was demonstrated that the PK variables are in fact influenced by 

field strength, at least between 1.5 T and 3.0 T. The reproducibility from this 

study is similar to previous results [46], at least regarding methodology. 

However, other factors such as the influence of the radiofrequency pulses in 

different equipments, the contrast media or the use of different AIFs, remain 
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unclear. Future studies should focus on the analysis of not only the magnetic 

field strength, but also these other factors which may probably provide 

additional variability to the PK analysis of DCE-MR images.  

If this PK analysis has to be used in longitudinal studies for drug trials, the 

effectiveness of the treatment has to be larger than the normal fluctuations in 

methodological reproducibility. PK parameters are reproducible as long as 

similar field strengths, sequences and image processing techniques are used. 

In conclusion, we have demonstrated that although the PK analysis of the 

patellar cartilage may be used as a biomarker of the capillary permeability and 

interstitial component of the cartilage, it is influenced by the field strength. 

Overall, 3.0 T analysis shows more consistent and reproducible calculations. 

Therefore, the range of normal values of these parameters should be adjusted to 

the field strength. 

 

3.7 Assessment of the arterial contribution in liver carcinomas 

 

3.7.1 Results 

 

All the parameters showed a clear differentiation between liver and tumors in 

the parametric colored maps (fig. 3.9). The AI maps showed a wider value range 

inside the lesion in comparison with the vp maps, a fact probably related to the 

greater sensitivity of AI to tumor heterogeneity (fig. 3.9a and 3.9f).  

The mean ± SD and the median for the liver and the tumor are shown in table 3.6.  

There were statistically significant differences between liver and tumor for all the 

parameters. The AI showed much higher values than vp for both the tumor and 

the liver.  
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Figure 3.9. Parametric colored maps for the calculated parameters: (a) AI, (b) Ktrans1, (c) Ktrans2, (d) kep, (e) ve and 

(f) vp. Units: AI and vp (no units), Ktrans1 (ml/min/100ml). 
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Tissue N Ktrans1 Ktrans2 kep ve AI vp 

Liver 15 
13.7±11.3 

(11.5±11.7) 
175.8±158.4 

(181.3±169.9) 
348.0±209.8 

(349.2±217.7) 
0.49±0.09 

(0.50±0.09) 
0.12±0.26 

(0.00±0.05) 
0.02±0.05 

(0.01±0.00) 

Tumor 15 
151.5±36.4 

(149.5±33.9) 
232.8±176.5 
(17.9±34.5) 

1869.2±1950.0 
(562.0±134.3) 

0.37±0.06 
(0.37±0.07) 

0.56±0.24 
(0.57±0.21) 

0.04±0.05 
(0.01±0.00) 

pmean 15 <0.001 0.481 0.033 0.005 <0.001 0.472 
pmedian 15 <0.001 0.021 0.024 0.003 <0.001 1.000 

Table 3.6. Mean values for tumor and liver. Values are mean ± standard deviation, with the 
median between brackets. (Units: Ktrans1, Ktrans2, kep: ml/min/100ml; ve, AI and vp: no units). 

 

Correlation coefficients were poor (r < 0.5) for AI-vp (r = 0.062 and r = -0.083, for 

liver and tumor, respectively) and AI-Ktrans1 (r = 0.143 and r = 0.440, for liver an 

tumor, respectively). After plotting each pair of values it could be seen that there 

was not a patent linear relationship between AI and vp, and between AI and 

Ktrans1, neither in the liver nor in the tumor (fig. 3.10).  

 
(a) 

 
(b) 

Figure 3.10. Dispersion plots comparing the values of the comparisons between AI vs. vp and AI 
vs. Ktrans1, for one representative case: (a) liver and (b) tumor. Units: AI and vp (no units), Ktrans1 

(ml/min/100ml). 
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3.7.2 Discussion 

 

This work has focused on the quantification of neoangiogenesis and 

neovascularization in hepatocellular carcinoma lesions from DCE-MR images. 

One of the main characteristics of tumors development is the formation of new 

vascular structures with chaotic architectures [23]. In comparison to the normal 

tissue, these structures show highly heterogeneous microvascular properties, as 

it can be seen from the pharmacokinetic analysis of DCE-MR images, where 

permeability, washout rate, interstitial volume and vascular volume can be 

quantified. The MR capability to quantify these parameters with both high 

spatial and temporal resolutions allows using voxel-based analysis where, apart 

from mean regional values, heterogeneity can also be assessed at the tumor and 

the peritumoral regions with great accuracy [123]. In the widely used generalized 

pharmacokinetic model, the vascular term vp is introduced in order to quantify a 

significant arterial contribution to the enhancement curve of a tissue [69]. 

However, as it has been shown, a scaling factor such as vp may not be enough to 

characterize the dispersion of the AIF bolus. In fact, this is not caused by a 

limitation of the model, but by the need of using relatively distant arteries as 

input functions to the tissue of interest (such as the aorta in the study of liver 

perfusion). This choice introduces a bias which needs to be taken into account 

when analyzing any tissue. Ideally, several different smaller arteries should be 

used to study the whole liver, depending on their distance to the voxels under 

study. However, nowadays it is not possible to achieve such high spatial 

resolutions in DCE-MR clinical studies. Therefore, vascularization needs to be 

quantified in a different way, not as an absolute volume fraction, but as a relative 

measurement in comparison with the shape and the scale of the selected artery. 

Pharmacokinetic modeling of the liver is characterized by the use of a dual input, 

as the liver receives blood both from the hepatic artery and the portal vein. This 

property introduces further complexity in the model, as two input functions 
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need to be introduced to fit the tissue response curves. However, if certain 

conditions are met, this dual input does not add any problem to characterize the 

arterial contribution. If the temporal resolution is high enough it is not difficult to 

separate aorta and portal peaks in time. In our study there were usually three or 

four dynamics between each peak, with enough time to detect any curve whose 

maximum was located during the arterial phase, i.e. after the aorta peak and 

before the portal peak. This criterion was always applied before any posterior 

operation on the curves, so that only voxels with significant arterial contribution 

were further processed to obtain the arterial index. At the same time, another 

criterion was applied to classify voxels into arterially and non-arterially 

significant. It consisted of comparing the maximum value of each voxel curve 

with the mean values plus three standard deviations of the second half of the 

curve. Although choosing the number of standard deviations is a relatively 

arbitrary decision, it proved to be robust enough to prevent any noisy curve to be 

interpreted as arterially significant. 

The use of gradients to study changes in the curves suffered from some 

limitations, especially if the application handles noisy curves. Image registration 

can solve movement artifacts partially. In this study, non-rigid registration was 

used and the resulting images and the extracted curves were qualitatively better. 

Moreover, additional smoothing of the curves was considered necessary in order 

to make gradients more robust. However, it is known that smoothing tools 

reduce oscillations but also lower peaks which may be of interest (i.e. an arterial 

peak). To correct this undesired effect, when the curve peak was detected using 

the gradient, its smoothed values were substituted by the original ones, thus 

preserving the originally acquired arterial peak.  

First pass phase curves were fitted with gamma probability density functions 

because of their particular shape. This gamma-based function is comprised of a 

bolus (similar to a Gaussian function) and a tail, which is appropriate to model 
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the behavior of a fast rise and a fast (but slightly slower) decay of a first pass 

curve. 

The comparison of the proposed AI and the generalized kinetic model (vp and 

with Ktrans1) showed poor correlation values. As it has been stated, these 

parameters cannot be easily compared, as they represent different concepts, but 

some facts can be concluded: first, the AI showed a much wider range of values 

than vp, a fact that suggests it can be used for a more specific assessment of lesion 

heterogeneity; and second, AI provides a different information, as it can be seen 

from the lack of a clear linear relationship (fig. 3.10). In this study the Pearson 

correlation coefficient was used because it was expected to observe linear 

relationships between the variables. Other relationships should be studied in 

future studies including a larger cohort of patients.  

Although AI, vp and Ktrans1 showed a bad correlation, it can be hypothesized that 

they are all modeling the first pass of the enhancement curve, especially when 

there is a significant arterial contribution. However, if the first pass phase is 

extracted from an enhancement curve (fig. 2.15), and the remaining washout 

curve is fitted to the generalized kinetic model, the resulting Ktrans1 is lower than 

that obtained using the whole enhancement curve. Therefore, it is difficult to 

assess how Ktrans1 models first pass, perfusion or permeability, three concepts 

which are different but clearly related. 

In table 3.6 the median values of the distributions are also given. This statistic has 

the property of neglecting outliers, which can be easily obtained in complex 

fitting processes. Many studies related to pharmacokinetic modeling are now 

including the median values in their results because they seem to provide a more 

robust and coherent estimate of the behavior of a region. For instance, in table 3.6 

it can be seen that if the mean is used, Ktrans2 increases in the tumor in comparison 

to the liver, while if the median is used it is much lower in the tumor. Another 

statistical approach which seems promising is the use of histograms to 

characterize regional heterogeneity, as histograms provide the possibility to 
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analyze different data subgroups (such as maximum percentiles) and offer 

statistics directly related to the heterogeneity of the region (such as the kurtosis). 

The proposed AI offers new information for the assessment of hepatocellular 

carcinoma, as it complements the parameters obtained from the traditional 

kinetic analysis (arterial permeability, venous permeability or arterial ratio) 

which have been used as imaging biomarkers for assessing tumor aggressiveness 

or treatment effectiveness. It has been demonstrated that this index can offer 

relevant information about the lesion heterogeneity, as it is especially sensitive to 

changes in the arterial phase. This could help to further characterize the 

vascularization structures of the tumor, though with obvious constraints due to 

spatial and temporal resolution limitations. Further studies with more patients 

and higher magnetic fields should be carried out. Also, the use of this new 

imaging biomarker for the assessment of antiangiogenic drugs should be 

validated. 

In conclusion, a new method has been proposed to characterize hepatocellular 

carcinoma lesions from the arterial vascularization point of view. A new imaging 

biomarker has been calculated in order to quantify the degree of similarity of the 

tissue enhancement curves in comparison to the AIF, taking into account both 

the change of scale and the dispersion of the bolus.  

 

3.8 Assessment of region heterogeneities in hepatocarcinomas 

 

3.8.1 Results 

 

Kurtosis showed significantly different values between the lesion and the normal 

parenchyma for Ktrans1 (2.4±0.7 and 4.5±2.5, respectively, p=0.039). No significant 

differences were obtained for the rest of parameters though a tendency towards 

lower kurtosis values was observed for the lesion ROIs. 
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3.8.2 Discussion 

 

Lesion heterogeneities in hepatocarcinoma lesions can be quantified using 

histogram analysis, particularly with the calculation of the kurtosis. Lower 

values of kurtosis were observed for every PK parameter when comparing lesion 

and normal parenchyma histograms. More cases and further histogram analysis 

techniques need to be assessed. 
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4. Future work 

 

4.1 Arterial input function 

 

Several studies have shown the variability associated to the AIF selection [80,124-

128]. Three different approaches are commonly taken: 

• A reference AIF, modeled as a biexponential decay [72] 

• An individual AIF, measured manually at some major vessel for each subject 

• A population based AIF, obtained as a mean AIF from different individual 

AIFs 

In [124] the individual AIF is proposed as the best solution to minimize 

variability and maximize the accuracy of patient-based results. Nowadays all MR 

equipments allow acquiring data at a high enough temporal resolution so that 

AIFs can be correctly sampled at almost every artery. A visual analysis of these 

AIFs will show that they present the usual pattern: baseline, fast rise, peak, fast 

decay, recirculation (especially in bigger arteries) and washout. 

A much more interesting approach is that proposed in [81] where independent 

components analysis (ICA) is used to track the AIF from a major vessel into 

tissue smaller vessels, which will be irrigating the region of interest more 

directly. ICA is a signal processing technique developed to solve the problem 

blind source separation (BSS), which consists in extracting a series of signals 

(sources) which cannot be observed directly from another group of signals which 

are a mixture of the these sources. ICA assumes that any observed signal is a 

linear combination of independent sources [129]. 

Theoretically, a more accurate AIF can be obtained using ICA. However, the 

detection of smaller vessels depends on image spatial resolution and the 

presence of partial volume effects which may mix tissue and vessel into the same 

voxel, thus blurring the net vascular contribution of a small vessel. Moreover, the 
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selection of big ROIs (such as in the study of the liver) may introduce difficulties 

when it comes to selecting which AIF is more appropriate for each part of the 

liver. Ideally, a different AIF should be selected for each voxel of the ROI under 

analysis, but the methodology proposed in [81] assumes a check point to select 

which AIF is likely to be used for the analysis from a series of possible curves, 

depending on the proximity to the ROI. So, if only the centroid of a ROI is used 

to measure AIF proximity, it may introduce important bias, underestimating or 

overestimating the AIF of each part of the ROI.  

A possible solution is the division of the initial ROI into a series of subROIs so 

that the AIF of each subROI can be assessed separately. Again, this may be a 

slow process if the division demands many user interactions. But it can also be 

optimized if a multi-resolution strategy is followed. The proposed approach 

consists in estimating the initial AIF from the centroid of the ROI, then the ROI is 

split in two equal subROIs from which the centroid is also obtained. A new pair 

of AIFs is selected for each of the subROIs. If the AIFs are significantly different 

from the initial AIF then the subROIs are split again and the process is repeated 

until the selected AIF is no longer different. Finally, each ROI voxel is labeled 

according to its own AIF. 

Although it may look like a long process, the AIF is not expected to vary so 

much, so the recursive process will most probably stop after a few subdivisions. 

Also, this modification should only be applied to those ROIs which are 

considerably big and which are expected to have several AIFs. 

 

4.2 PK modeling of kidneys 

 

DCE-MRI PK modeling of the kidneys presents an additional complexity to that 

presented in this thesis, as it is often modeled with a three-compartment model 

[130]: vessels, interstitial space and nephrons. This feature implies the necessity 

to include additional variables in the model, as well as further studies of the 
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influence of each parameter. Up to now there are not many studies so, as a future 

application, it is proposed to study the nephrotoxicity of a radioactive drug 

(cisplanitum) in a longitudinal study with DCE-MRI. 

 

4.3 Multivariate image analysis 

 

Although a small application of MIA has been also presented in this thesis, more 

research on this field is required as it is a very promising approach for extracting 

further knowledge about the disease and how the combination of one-way 

analysis with multivariate techniques can improve the results. 

 

4.4 Analysis of curve fitting results 

 

The results presented in this thesis have been interpreted by experienced 

radiologists and the applications have demonstrated that they represented the 

physiological reality accurately. During the corresponding test phases for each 

application, all fittings were qualitatively assessed by the observation of the 

acquired and the fitted curves. Once it was seen that most curves were fitted 

correctly, the batch processes were released and all the cases were analyzed 

automatically. However, a more strict approach should focus on the study of the 

fitting residuals in order to study normality, possible local minima or lack of 

convergence. 

 

4.5 Methodological standardization 

 

As it has been already introduced in this thesis, one of the most important 

problems for a widespread application of DCE-MRI PK modeling is the lack of 

standardization both in acquisition and in post-processing methodologies. This 
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prevents its use in multi-center trials or the publication of standard ranges of 

normality and disease. 

There are currently some initiatives focused on the production of white papers 

for the use of PK parameters in the evaluation of antiangiogenic treatments [2]. 

Also, a new research institution, the European Institute for Biomedical Imaging 

Research (EIBIR) has recently been set up in order to lump together researchers, 

government and companies so that common efforts can be made. 

 

4.6 Comparison of DCE-MRI PK modeling with IVIM and ASL 

 

IVIM (intravoxel incoherent motion) and ASL (arterial spin labeling) are 

techniques which offer quantitative information about the perfusion without the 

need of an exogenous contrast agent. With the new hardware and software 

developments they are becoming more and more fashionable, as they provide a 

quantitative tool to assess perfusion without the risks associated to contrast 

media. 

IVIM is based on MR diffusion weighted images (DWI) using several b-values 

sampled at a high rate in the lower range. In comparison to the traditional 

diffusion quantitation using the apparent diffusion coefficient (ADC), IVIM 

allows to separate the two different movements that water experiences in a voxel: 

a fast component, related to perfusion (low b-values), and a slow component, 

related to diffusion (high b-values). Therefore, the decay curve which relates 

signal intensity with the corresponding b-value can be separated into two parts 

using this equation [131]: 
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where f is the perfusion fraction, D is the extravascular diffusion component and 

D* is the intravascular perfusion component. 
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ASL is based on the magnetic marking of blood flow using radiofrequency 

pulses. Firstly, blood hydrogen nuclei are excited with radiofrequency pulses just 

before entering the region of interest, so that the longitudinal magnetization is 

inverted. Then, when excited blood enters the region of interest an image is 

acquired with the original magnetization of the tissue plus the blood 

magnetization. Finally, a second image is acquired without magnetic marking 

and a subtraction is performed, so only the magnetization corresponding to the 

initial magnetic marking remains and a perfusion image is provided. This 

technique is currently being implement in most new MR equipments. 

These techniques are complex and have some limitations, but it is necessary to 

validate their performance in the clinical routine. A comparison of these 

techniques with the PK modeling of DCE-MR images is proposed in order to 

establish the reproducibility and accuracy of all those parameters which have 

similar physiological meaning.  

 

4.7 Development of an integrated post-processing clinical tool 

 

The software developed in this thesis has been implemented in Matlab as a tool 

designed for research purposes. Although it also has the possibility of 

transferring the results into a clinical report, its main aim was to be a benchwork 

for the study of the PK models. 

Right now it has become a relatively mature software and many parts of it are 

very stable. Also, all the methodological developments presented in this thesis 

use a lot of algorithms which are shared among other post-processing tools, such 

as filtering or registration. This scenario suggests the necessity of integrating it 

along with other tools into a common post-processing platform. This platform 

should consist of a basic kernel, with all the common functions (DICOM support, 

visualization and image preparation) and several modules for each application 

that uses a particular set of algorithms. 
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5. Conclusions 

 

• The series of methodological developments and clinical applications 

presented in this thesis have demonstrated the feasibility of DCE-MRI PK 

analysis as a powerful medical tool for the study of angiogenesis in a non-

invasive way.  

• A pre-processing methodological development has focused on the data 

preparation. A temporal filter used to smooth enhancement curves 

without losing first-pass information was developed and implemented. It 

was based on the application of local regression with weighted linear least 

squares and first degree polynomials, corrected by the calculation of the 

curve gradients and the substitution of the first pass filtered values by the 

original data values. Although some image registration algorithms have 

been used through this thesis, these temporal filter has also been 

presented as a registration tool, as it has been shown that the main point 

of registration for PK analysis should be the extraction of accurate 

enhancement curves rather than accurate geometrical transforms. 

• Regarding clinical applications, one main scope has been the study of 

different diseases. This work has focused on the study of cartilage 

degeneration, liver tumors (hepatocellular carcinoma) and grade-IV 

astrocytomas. In all the cases it has been demonstrated that PK parameters 

can effectively be used to characterize and separate diseased from normal 

tissues, even in relatively small numbers of patients. The obtaining of 

value ranges for normal and different stages of the disease is essential, in 

order to use these parameters in the clinical practice as early biomarkers of 

disease.  

• On the evaluation of treatments, ovarian hyperstimulation syndrome 

(OHSS) treatment with cabergoline and osteoarthritic cartilage treatment 
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with glucosamine sulfate have been studied. Both OHSS and osteoarthritis 

are diseases which have an important angiogenic component, so it was 

hypothesized and also demonstrated, that the PK parameters, especially 

Ktrans, could be used to assess microvascular changes induced by these 

treatments.  

• Two new developments have been carried out for data analysis and 

results presentation. First, the application of multivariate analysis 

techniques to the PK parametric images, which resulted in the generation 

of nosologic images. These images can directly offer information about the 

probability of disease for a certain voxel or region, which is the natural 

consequence of handling quantitative parametric maps. To obtain them, 

factorial and discriminant analysis were used. Second, the development of 

a new visualization tool for the improved assessment of regional cartilage 

damage, both of the knee and the ankle. This tool was based on the 

multiplanar projections on coronal (patelar cartilage), transversal (tibial 

and tibio-astragalin cartilage) and radial (femoral cartilage) planes. The 

histograms kurtosis and the skewness were introduced as statistical 

measures of region heterogeneities. 

• Another main methodological development has focused on the analysis of 

the arterial vascularization in hepatocellular carcinomas. It has been 

demonstrated that, in comparison to other established PK parameters such 

as Ktrans and vp, the newly developed arterial index (AI) offers a different 

type of information considering the enhancement curve shape and scale. 

The AI assesses the degree of similarity between tissues and a reference 

AIF, like the aorta. The calculation of the AI was based on the separation 

of the first pass and washout phases of the enhancement curves and the 

fitting of the first pass curve to a gamma probability density function. This 

new index complements the generalized PK analysis. 
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• The reproducibility of both the image acquisition and the image analysis 

methodology has also been properly assessed in all the developments and 

clinical applications. Even a study comparing magnetic field intensity (1.5 

T vs. 3.0 T) was also carried out in order to evaluate the variability of the 

results. 

• A software tool for the application of PK models in clinical routine has 

been implemented in the Radiology Departments of Hospital Quirón 

Valencia and Hospital Universitari Dr. Peset of Valencia. 
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Appendix 

 

Developed software 

 

All the applications presented in this thesis have been developed in Matlab 

R2006b (The Mathworks Inc., Natick, MA, USA). A set of tools and graphical 

user interfaces (GUIs) were built in order to test and apply all the methodologies. 

The basic workflow followed in all the cases was (figure A.1): 

 

 
Figure A.1. PK analysis workflow. 
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Main GUI  

 

 
Figure A.2. Main GUI. 

 

Characteristics: 

• DICOM / Analyze support 

• Image explorer for other images than DCE-MRI 

• Visualization functions: zoom, move, contrast, length measures, subtraction, 

filters and plots 

• PK modeling: 1 or 2 compartments, 1 or 2 inputs, normalization options and 

intensity to concentration conversion options 

• Batch processing for multiple studies 
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Specific cartilage GUI 

 

 
Figure A.3. Cartilage GUI. 

 

Specific characteristics: 

• Cartilage segmentation 

• T1 mapping 

• 2D projections 

 

 


