
UNIVERSIDAD POLITÉCNICA DE VALENCIA

Heuristics and metaheuristics
for heavily constrained hybrid

flowshop problems

Thijs Urlings

Submitted in fulfillment of the requirements of
the degree of

DOCTOR OF PHILOSOPHY

Supervised by:
Rubén Ruiz García

Valencia, 2010

Es ist nicht genug zu wissen, man muss auch anwenden.
Es ist nicht genug zu wollen, man muss auch tun.

Knowing is not enough, we must apply.
Willing is not enough, we must do.

Johann Wolfgang von Goethe,
Wilhelm Meisters Wanderjahre, 1821.

I

ABSTRACT

HEURISTICS AND METAHEURISTICS FOR HEAVILY
CONSTRAINED HYBRID FLOWSHOP PROBLEMS

Due to the current trends in business as the necessity to have a large catalogue
of products, orders that increase in frequency but not in size, globalisation
and a market that is increasingly competitive, the production sector faces an
ever harder economical environment. All this raises the need for production
scheduling with maximum efficiency and effectiveness.

The first scientific publications on production scheduling appeared more
than half a century ago. However, many authors have recognised a gap between
the literature and the industrial problems. Most of the research concentrates on
optimisation problems that are actually a very simplified version of reality. This
allows for the use of sophisticated approaches and guarantees in many cases
that optimal solutions are obtained. Yet, the exclusion of real-world restrictions
harms the applicability of those methods. What the industry needs are systems
for optimised production scheduling that adjust exactly to the conditions in the
production plant and that generates good solutions in very little time. This is
exactly the objective in this thesis, that is, to treat more realistic scheduling
problems and to help closing the gap between the literature and practice.

The considered scheduling problem is called the hybrid flowshop problem,
which consists in a set of jobs that flow through a number of production stages.
At each of the stages, one of the machines that belong to the stage is visited.

III

IV

A series of restriction is considered that include the possibility to skip stages,
non-eligible machines, precedence constraints, positive and negative time lags
and sequence dependent setup times. In the literature, such a large number of
restrictions has not been considered simultaneously before. Briefly, in this thesis
a very realistic production scheduling problem is studied.

Various optimisation methods are presented for the described scheduling
problem. A mixed integer programming model is proposed, in order to obtain
optimal solutions for limited cases and in order to analyse the complexity of
each of the problem restrictions. In continuation, seven constructive heuristics
are presented with the purpose of obtaining fast solutions to the problem in more
general cases. Advanced metaheuristic methods are studied in detail, starting
with five genetic algorithms that allow studying the effect of the solution
representation. Three local search based algorithms are proposed, which is very
novel if the elevated complexity of the problem is taken into account. In addition,
novel methods are presented that shift the solution representation during the
search process in order to acquire near-optimal solutions. The obtained results
endorse the use of these new shifting techniques.

In the literature, hardly any publications appear that treat multi-objective
optimisation for the hybrid flowshop problem. In this Ph.D. thesis, two
metaheuristics that produce Pareto fronts for this problem are presented. It
is shown that it is not obvious to measure the results, and a methodology in
order to do so is proposed, using state-of-the-art techniques. Finally, practical
applications are commented in the scope of technology transfer towards
companies.

RESUMEN

HEURÍSTICAS Y METAHEURÍSTICAS PARA PROBLEMAS DE
TALLER DE FLUJO HÍBRIDO ALTAMENTE RESTRINGIDOS

Debido a las actuales tendencias empresariales como la necesidad de tener un
catálogo de productos amplio, pedidos que aumentan en frecuencia pero no en
tamaño, la globalización y un mercado donde la competitividad aumenta, el
sector de la producción encara un entorno económico cada vez más duro. Todo
esto requiere de una programación de la producción con la máxima eficiencia y
eficacia.

Las primeras publicaciones científicas sobre la programación de la pro-
ducción aparecieron hace más de medio siglo. Sin embargo, muchos autores
han reconocido una brecha entre la literatura y la problemática industrial. La
mayoría de la investigación se concentra en problemas de optimización que
no son más que una versión muy simplificada de la realidad. Esto permite el
uso de métodos sofisticados y garantiza la obtención de soluciones óptimas
en muchos casos. No obstante, la exclusión de restricciones existentes en el
mundo real complica la aplicabilidad de dichos métodos. Lo que necesita la
industria son sistemas de programación de la producción optimizada que se
ajusten exactamente a la situación de la planta y que den buenas soluciones en
muy poco tiempo. El objetivo de esta tesis doctoral es precisamente este, el de
tratar problemas de programación más realistas y el de ayudar a cerrar la brecha
entre la literatura y la práctica.

V

VI

El problema de producción tratado es conocido como taller de flujo híbrido,
que consiste en un conjunto de trabajos que pasan por varias etapas productivas.
En cada etapa se visita una de las máquinas que pertenecen a la etapa. Se
consideran una serie de restricciones que incluyen la posibilidad de saltar etapas,
máquinas no elegibles, relaciones de precedencia, solapes y esperas y tiempos
de cambio dependientes de la secuencia. Hasta la fecha, en la literatura no se ha
considerado tal cantidad de restricciones simultáneamente. En conclusión, en
esta tesis se estudia un problema muy realista de programación de la producción.

Para este problema, se presentan varios métodos de optimización. Se
propone un modelo matemático para obtener soluciones exactas en casos
limitados y para analizar la complejidad de cada una de las restricciones. Se
proponen siete heurísticas con el fin de obtener soluciones rápidas en casos
generales. Diversos métodos metaheurísticos avanzados se estudian en detalle,
empezando con cinco algoritmos genéticos que permiten el estudio del efecto de
la representación de la solución. Se proponen tres métodos basados en búsqueda
local, algo muy novedoso si se tiene en cuenta la enorme dificultad del problema
estudiado. Adicionalmente, se estudian métodos novedosos que cambian de
representación de solución durante el proceso de búsqueda para así obtener
soluciones de muy alta calidad. Los resultados conseguidos avalan el uso de
estas nuevas técnicas cambiantes.

En la literatura apenas hay publicaciones que tratan sobre la optimización
multi-objetivo del taller de flujo híbrido. En esta tesis doctoral se presentan
dos metaheurísticas que producen como resultado fronteras de Pareto para este
problema. Se demuestra que no es obvia la manera de medir los resultados
y se propone una metodología para ello, usando técnicas consideradas como
estado del arte. Finalmente, se comentan aplicaciones prácticas en el ámbito de
la transferencia tecnológica hacia empresas.

RESUM

HEURÍSTIQUES I METAHEURÍSTIQUES PER A PROBLEMES DE
TALLER DE FLUX HÍBRID ALTAMENT RESTRINGITS

A causa de les actuals tendències empresarials com ara la necessitat de tenir
un catàleg de productes ampli, comandes que augmenten en freqüència però
no en grandària, la globalització i un mercat on la competitivitat augmenta, el
sector de la producció afronta un entorn econòmic cada vegada més dur. Tot
això requereix d’una programació de la producció amb la màxima eficiència i
eficàcia.

Les primeres publicacions científiques sobre la programació de la producció
van aparèixer fa més de mig segle. No obstant això, molts autors han reconegut
una bretxa entre la literatura i la problemàtica industrial. La majoria de la
investigació es concentra en problemes d’optimització que no són més que
una versió molt simplificada de la realitat. Això permet l’ús de mètodes
sofisticats i garanteix l’obtenció de solucions òptimes en molts casos. No obstant
això, l’exclusió de restriccions existents en el món real complica l’aplicabilitat
d’aquests mètodes. El que necessita la indústria són sistemes de programació
de la producció optimitzada que s’ajusten exactament a la situació de la planta i
que donen bones solucions en molt poc temps. Aquest és precisament l’objectiu
d’aquesta tesi doctoral: tractar problemes de programació més realistes i ajudar
a tancar la bretxa entre la literatura i la pràctica.

El problema de producció tractat s’anomena taller de flux híbrid, i consisteix

VII

VIII

en un conjunt de treballs que passen per diverses etapes productives. En cada
etapa es visita una de les màquines que pertanyen a l’etapa. S’hi consideren una
sèrie de restriccions que comprenen la possibilitat de saltar etapes, màquines
no elegibles, relacions de precedència, solapamentes i esperes i temps de canvi
depenents de la seqüència. Fins a la data, en la literatura no s’ha considerat tal
quantitat de restriccions simultàniament. En conclusió, en aquesta tesi s’estudia
un problema molt realista de programació de la producció.

Per a aquest problema, es presenten diversos mètodes d’optimització.
Es proposa un model matemàtic per a obtenir solucions exactes en casos
limitats i per a analitzar la complexitat de cadascuna de les restriccions. Es
proposen set heurístics amb la finalitat d’obtenir solucions ràpides en casos
generals. Diversos mètodes metaheurístics avançats s’estudien en detall, tot
començant amb cinc algorismes genètics que permeten l’estudi de l’efecte de la
representació de la solució. Es proposen tres mètodes basats en recerca local,
una cosa molt nova si es té en compte l’enorme dificultat del problema estudiat.
Addicionalment, s’estudien mètodes nous que canvien la representació de la
solució durant el procés de recerca per a obtenir així solucions de molt alta
qualitat. Els resultats obtinguts avalen l’ús d’aquestes noves tècniques canviants.

En la literatura a penes hi ha publicacions que tracten sobre l’optimització
multi-objectiu del taller de flux híbrid. En aquesta tesi doctoral es presenten
dues metaheurístiques que produïxen com resultat fronteres de Pareto per a
aquest problema. Es demostra que no és òbvia la manera de mesurar els
resultats i es proposa una metodologia per a això, mitjançant l’ús de tècniques
considerades com estat de l’art. Finalment, es comenten aplicacions pràctiques
en l’àmbit de la transferència tecnològica cap a empreses.

Acknowledgements

Although it might seem different for those who are not involved, working
on science is not an individual thing. Apart from the fact that one always
has to be conscious of the related literature and the work of others, nobody
manages to finish a Ph.D. thesis without help and support of his professional
and private surroundings. Many are those that have played a direct or indirect
role in making this thesis possible. These pages are dedicated to them, in order
to express my thankfulness. It is a hard task to sum up all, but there are some
that I would like to mention explicitly.

First of all, Dr. Rubén Ruiz deserves my absolute thankfulness and
admiration. His dedication and conviction and the capability of always coming
up with new ideas, as well as his successful coordination our team, are a great
example to me. His speed and precision when revising drafts of articles or of
this thesis makes the cooperation with him a privilege.

My colleagues of the Sistemas de Optimización Aplicada group have also
played an important role in introducing me in the world of research and bringing
this thesis to a good end. The continuous exchange of ideas, knowledge sharing
and teaching and learning among each other, has been a fruitful environment
for developing the needed both technical and scientific skills. I am especially
grateful to Gerardo Minella. Working side-to-side with him for four years and a
half has been a pleasure and a luxury because of his constant willingness to help
me solve my programming and other informatics problems. The multi-objective
advances in this thesis are thanks to the fruitful cooperation with him, in which

IX

X

his expertise and efficiency have become clear once again. Furthermore I want
to mention Dr. Michele Ciavotta, whose ideas for multi-objective scheduling in
flowshop problems were useful for the research done in this thesis. Thankful am
I to Dr. Eva Vallada for her continuous attention and for helping me with many
administrative and practical details. For the table conversion from StatGraphics
to LATEX format, the idea and initial code by Alejandro Rodriguez have been
of great value. I want to name the remaining members of the group for their
fellowship: Ketrina, Kostanca, Carlos, Pablo, Catalin, Javier and Luis.

I owe special thanks to Dr. Thomas Stützle, whose guidance, fresh ideas
and structured way of thinking and working turned my stay in the Institut de
Recherches Interdisciplinaires et de Développements en Intelligence Artificielle
into a valuable and important period of my Ph.D. Moreover, he proved his
merit as a coauthor, supplying me with detailed reviews. The assistance of
my coauthor Prof. Dr. Funda Sivrikaya Şerifoğlu has been of key importance
for the literature review and for the different solution representations. Worth
mentioning has been the influence of Dr. Tjark Vredeveld, of the University of
Maastricht. As the corrector of my Masters thesis, that was the basis for this
Ph.D. thesis, he served me with his advice and gave some interesting indications.

This Ph.D. thesis would not have been possible without the support of the
Instituto Technológico de Informática, where I have been working since 2007
and where I have been able to dedicate part of my time to the research that has
resulted in this thesis.

Thanks to all.

XI

To my mother and my father, to Sanne and to Ivo,
for giving me a solid basis of thrust, curiosity and

persistence.

To Carolina, for inspiring and motivating me and
for creating the optimal conditions to reach my

goals.

XIII

CONTENTS

1. Introduction and objectives 1
1.1. Motivation . 3
1.2. Classification of scheduling problems 5
1.3. Objectives . 7

2. The hybrid flexible flow line problem 11
2.1. Example instance . 19
2.2. Literature review . 21

2.2.1. Genetic algorithm applications in realistic scheduling . 21
2.2.2. Genetic algorithms for hybrid flowshop problems . . . 24
2.2.3. Representation schemes for GA applications 27

3. Mathematical model 31
3.1. Introduction . 31
3.2. The MIP model formulation 32
3.3. Computational Evaluation 34

3.3.1. MIP model evaluation 36
3.3.2. MIP model statistical analysis 40

3.4. Conclusions . 48

4. Heuristics 51
4.1. Introduction . 51
4.2. Machine assignment rules . 53

4.2.1. Rules based on current job, current stage 55

XV

XVI CONTENTS

4.2.2. Look-ahead rules . 56
4.3. Solution representations . 68

4.3.1. Permutation with a single rule for machine assignment 69
4.3.2. Permutation with an assignment rule for each job . . . 73
4.3.3. Permutation with the machine assignments for each job 76
4.3.4. Ordered list of tasks for each machine 79

4.4. Dispatching rules . 86
4.5. NEH heuristic . 88
4.6. Conclusions . 93

5. Genetic Algorithms 97
5.1. BGA . 98
5.2. SGA . 103
5.3. SGAR . 103
5.4. SGAM . 104
5.5. EGA . 104

5.5.1. Specific crossover operators 105
5.5.2. Specific mutation operators 106

5.6. Computational Evaluation 108
5.6.1. Calibrations . 109
5.6.2. Comparison among genetic algorithms 114
5.6.3. Comparison with other methods 119

5.7. Conclusions . 124

6. Local Search Algorithms 125
6.1. Introduction . 126
6.2. Memetic Algorithm . 137
6.3. Iterated Local Search . 142
6.4. Iterated Greedy . 145
6.5. Computational Evaluation 146
6.6. Conclusions . 149

CONTENTS XVII

7. Shifting representation algorithms 151
7.1. Mixed Genetic Algorithm . 152
7.2. Shifting Representation Search 159
7.3. Computational Evaluation 166
7.4. Conclusions . 173

8. Multi-objective scheduling 175
8.1. Introduction . 176

8.1.1. Weighted objectives 176
8.1.2. Lexicographical approaches 177
8.1.3. Pareto optimisation 177

8.2. Multi-objective quality measures 180
8.2.1. Quality indicators . 181
8.2.2. Empirical attainment functions 185

8.3. Problem description . 188
8.4. Proposed Algorithms . 193

8.4.1. NSGA-II . 195
8.4.2. RIPG . 196

8.5. Computational Evaluation 198
8.5.1. Calibrations . 199
8.5.2. Comparison among multi-objective algorithms 215

8.6. Conclusions . 232

9. Conclusions and future research 235
9.1. Scheduling software . 239
9.2. Future research . 244
9.3. Publications . 245

Bibliography 249

A. Data for figures 265

B. ANOVA tables 283

C. Best solution values 301

LIST OF FIGURES

1.1. Division of decisions in terms of time horizon 2
1.2. Hybrid flowshop environment. 7

2.1. Graphical view of the steps in the ceramic tile production. . . . 13
2.2. Different types of structures for the graph representing the

precedence relationships. 15
2.3. Graphical example of a negative time lag or overlap. 16
2.4. Graphical example of an anticipatory setup and a non anticipa-

tory setup . 17
2.5. Gantt diagram with an optimal solution for example instance 1. 21

3.1. Decision tree with the first three levels shown in detail, time
limit=300 seconds. 42

3.2. Full simplified decision tree, time limit=300 seconds. 44
3.3. Decision tree with the first three levels shown in detail, time

limit=900 seconds. 47
3.4. Full simplified decision tree, time limit=900 seconds. 50

4.1. Number of problem instances solved by CPLEX within 5 and
15 minutes, respectively. 52

4.2. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 1. Makespan value: 624. 60

4.3. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 2. Makespan value: 668. 61

XIX

XX LIST OF FIGURES

4.4. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 3. Makespan value: 655. 62

4.5. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 4. Makespan value: 557. 63

4.6. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 5. Makespan value: 669. 64

4.7. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 6. Makespan value: 699. 65

4.8. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 7. Makespan value: 556. 66

4.9. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 8. Makespan value: 579. 67

4.10. Gantt of solution obtained applying job permutation (1,3,2,4,5)
and machine assignment rule 9. Makespan value: 580. 68

4.11. Permutation with single machine assignment rule. 71
4.12. Gantt of solution SA. 71
4.13. Number of possible solutions for different numbers of jobs;

permutation with a single rule for machine assignment. 72
4.14. Permutation with a machine assignment rule for each job. . . . 73
4.15. Gantt of solution SB . 74
4.16. Number of possible solutions for different numbers of jobs;

permutation with a machine assignment rule for each job. . . . 75
4.17. Permutation with all machine assignments in the representation. 76
4.18. Gantt of solution SC . 77
4.19. Number of possible solutions for different instance sizes;

permutation with the machine assignments for each job. 78
4.20. Ordered lists of tasks to process for each machine. 80
4.21. Gantt of solution SD. 81
4.22. Number of possible solutions for different instance sizes;

ordered list of tasks for each machine. 85
4.23. Factor means and 99% Tukey confidence intervals for the

machine assignment method in NEH; large instances. 90

List of Figures XXI

4.24. Factor means and 99% Tukey confidence intervals for different
initial orders in NEH; large instances. 91

4.25. Factor means and 99% Tukey confidence intervals for all
heuristics; large instances; deviation of best known solution value. 94

4.26. Factor means and 99% Tukey confidence intervals for all
heuristics; small instances; deviation of the optimum. 95

5.1. A schematic view of a Genetic Algorithm. Constructed from
Ruiz (2003). 98

5.2. One-Point Order crossover operator. 99
5.3. Two-Point Order crossover operator. 100
5.4. Uniform Order Based crossover operator. 100
5.5. Similar Job Order crossover operator; Step 1. 101
5.7. Shift Mutation operator. 101
5.6. Similar Job Order crossover operator; Steps 2 and 3. 102
5.8. Position Mutation operator. 102
5.9. Guaranteed Feasibility Crossover operator (GFX). 106
5.10. Fast Mutation operator. 107
5.11. Factor means and 99% Tukey confidence intervals for the

mutation probability in SGA; large instances. 112
5.12. Interaction and 99% Tukey confidence intervals between the

population size and the selection type in SGA; large instances. 112
5.13. Interaction and 99% Tukey confidence intervals for precedence

relationships and the algorithm; instances with one machine
per stage. 116

5.14. Interaction and 99% Tukey confidence intervals for machine
eligibility and the algorithm; instances with three machines per
stage. 117

5.15. Interaction and 99% Tukey confidence intervals for the allowed
running time and the algorithm; instances with three machines
per stage. 117

XXII LIST OF FIGURES

5.16. Means and 99% Tukey confidence intervals for the genetic
algorithms; instances with three machines per stage for which
the optimum is known. 118

5.17. Interaction and 99% Tukey confidence intervals for the number
of predecessors and the algorithm; large instances. 119

5.18. Interaction and 99% Tukey confidence intervals for the allowed
running time and the algorithm; large instances. 119

5.19. Means and 99% Tukey confidence intervals for GAs, MIP and
heuristics; small instances with three machines per stage. . . . 121

5.20. Means and 99% Tukey confidence intervals for GAs and RS;
small instances with three machines per stage. 121

5.21. Means and 99% Tukey confidence intervals for GAs, MIP and
heuristics; small instances with one machine per stage. 122

5.22. Means and 99% Tukey confidence intervals for GAs and
heuristics; large instances. 123

5.23. Means and 99% Tukey confidence intervals for GAs and NEH;
large instances. 123

6.1. The results of a change in the job permutation. 128
6.2. Example for n = 5 of the adjacent interchange (AI) neighbour-

hood. Using accelerations, the jobs in green do not have to be
recalculated. 129

6.3. Comparison of increment in time (×100%) between local
search with (-a) and without accelerations. 130

6.4. Comparison between first and best improvement. 133
6.5. Comparison between only insertion and adjacent interchange

followed by insertion. 134
6.6. Comparison between only insertion in earlier positions and only

insertion in later positions. 136
6.7. Comparison between only insertion in earlier positions and only

insertion in later positions. 137
6.8. Interaction and 99% Tukey confidence intervals for the local

search probability and max#sol in MA; large instances. . . . 141

List of Figures XXIII

6.9. Distinct local search insertion neighbourhood restrictions. . . . 144
6.10. Factor means and 99% Tukey confidence intervals for the LS

properties for the ILS algorithm; large instances. 144
6.11. Factor means and 99% Tukey confidence intervals for the LS

properties for the IG algorithm; large instances. 147
6.12. Interaction and 99% Tukey confidence intervals for the machine

eligibility and the algorithm; large instances. 148
6.13. Interaction and 99% Tukey confidence intervals for the allowed

running time and the algorithm; large instances. 148

7.1. Influence of the number of jobs on the results of the genetic
algorithms. Interaction and 99% Tukey confidence intervals for
the instances with three machines per stage. 152

7.2. Selection method and population size levels for the MGA.
Interaction and 99% Tukey confidence intervals for the large
instances. 154

7.3. Selection method and population size levels for the MGA.
Interaction and 99% Tukey confidence intervals for the small
instances with three machines per stage. 157

7.4. Influence of each MGA phase. Means and 99% Tukey confi-
dence intervals for the large instances. 157

7.5. Calibration of number of generations in SGA phase. Means
and 99% Tukey confidence intervals for a subset of the large
instances. 158

7.6. The critical path in the earlier shown solution for example
instance 1. 160

7.7. Calibration of the SRS algorithm parameters. Acceptance
temperature t1 and the number of insertions in the perturbation.
Means and 99% Tukey confidence intervals for a subset of the
large instances. 162

7.8. Number of local search iterations done in the second phase of
the SRS algorithm. Means and 99% Tukey confidence intervals
for a subset of the large instances. 166

XXIV LIST OF FIGURES

7.9. Comparison of algorithms. Interaction with the stopping
criterion parameter t. Means and 99% Tukey confidence
intervals for the large instances. 167

7.10. Comparison of algorithms. Interaction with the existence of
precedence relationships. Means and 99% Tukey confidence
intervals for the large instances. 170

7.11. Comparison of algorithms. Interaction with the stopping
criterion parameter t. Means and 99% Tukey confidence
intervals for the small instances with three machines per stage. 171

7.12. Comparison of algorithms. Interaction with the percentage of
eligible machines. Means and 99% Tukey confidence intervals
for the small instances with three machines per stage. 171

7.13. Comparison of algorithms. Means and 99% Tukey confidence
intervals for the small instances with three machines per stage
where 50% of the machines is eligible. 172

7.14. Comparison of algorithms. Means and 99% Tukey confidence
intervals for the small instances with three machines per stage
where all machines are eligible. 172

8.1. Example of two Pareto approximation sets in bi-dimensional
objective space. 184

8.2. Example of visualised empirical attainment functions in bi-
dimensional objective space. 187

8.3. Example visualised differential empirical attainment functions
in bi-dimensional objective space. 188

8.4. Gantt of an optimal solution with respect to the makespan
objective for the problem instance defined in Table 8.1. 194

8.5. Factor means and 99% Tukey confidence intervals for the
mutation probability in NSGA-II; large instances. 202

8.6. Factor means and 99% Tukey confidence intervals for the
population size in NSGA-II; large instances. 206

8.7. Factor means and 99% Tukey confidence intervals for the
crossover probability in NSGA-II; large instances. 206

List of Figures XXV

8.8. Means and 99% Tukey confidence intervals between the number
of iterations without population improvement done before
restart in RIPG; large instances. 209

8.9. Interaction and 99% Tukey confidence intervals between the
number of jobs destructed in the IG phase and the number of
machines per stage; large instances. 214

8.10. Means and 99% Tukey confidence intervals for the number of
jobs destructed in the IG phase; large instances. 214

8.11. Hypervolume means and 99% Tukey confidence intervals for
the multi-objective algorithms; large instances. 217

8.12. ε-indicator means and 99% Tukey confidence intervals for the
multi-objective algorithms; large instances. 219

8.13. Hypervolume indicator means and 99% Tukey confidence
intervals for the multi-objective algorithms; small instances. . 221

8.14. Interaction for the hypervolume indicator and 99% Tukey
confidence intervals between the algorithm and the number
of jobs; small instances. 221

8.15. ε-indicator means and 99% Tukey confidence intervals for the
multi-objective algorithms; small instances. 225

8.16. Interaction for the ε-indicator and 99% Tukey confidence
intervals between the algorithm and the number of jobs; small
instances. 225

8.17. Plot of EAF for NSGA-II. Example instance 5 with 50 jobs, 4
stages and 2 machines per stage. 228

8.18. Plot of EAF for RIPG. Example instance 5 with 50 jobs, 4
stages and 2 machines per stage. 229

8.19. Plot of Diff-EAF for NSGA-II and RIPG. Example instance 5
with 50 jobs, 4 stages and 2 machines per stage. 230

8.20. Plot of Diff-EAF for NSGA-II and RIPG. Example instance 6
with 100 jobs, 4 stages and 4 machines per stage. 231

8.21. Plot of Diff-EAF for NSGA-II and RIPG. Example instance 7
with 100 jobs, 4 stages and 4 machines per stage. 232

XXVI LIST OF FIGURES

9.1. Application of SGA for HFFL problems as treated in this Ph.D.
thesis. 240

9.2. Machine use over time for three different schedules. 241
9.3. Introduction of timetables for machine breakdowns. 242
9.4. Gantt chart with revisited stages and limited buffers between

stages. 243
9.5. Linear combination of two optimisation criterea. 244

LIST OF TABLES

2.1. Example instance 1. Processing times of each job on each
eligible machine. 19

2.2. Example instance 1. Setup times between pairs of jobs at each
machine. 20

3.1. Factors considered in the design of the initial test bed. 35
3.2. MIP model results for n = 7, m = 3, mi = 3 and rmil =

U [1, 200] with a CPU time limit of 300 seconds. 37
3.3. Aggregated MIP model results for a CPU time limit of 300

seconds. 39
3.4. Aggregated MIP model results for a CPU time limit of 900

seconds. 46

4.1. Factors and levels used in the benchmark. 53
4.2. Example instance 2. Processing times of each job on each

eligible machine. 58
4.3. Example instance 2. Setup times between pairs of jobs at each

machine. 59
4.4. Example instance 3. Processing times of each job on each

eligible machine. 69
4.5. Example instance 3. Setup times between pairs of jobs at each

machine. 70

XXVII

XXVIII LIST OF TABLES

4.6. Number of possible solutions for a permutation with a single
rule for machine assignment. 73

4.7. Number of possible solutions for a permutation with a machine
assignment rule for each job. 75

4.8. Number of possible solutions for a permutation with the ma-
chine assignments for each job. 79

4.9. Number of possible solutions for ordered list of tasks for each
machine. 86

4.10. Average CPU times for the large instances. 93

5.1. Factors and levels used in the benchmark. 108
5.2. Test values for the algorithm parameters. 110
5.3. Final values for the BGA parameters after calibration. 111
5.4. Final values for the SGA algorithm parameters after calibration. 113
5.5. Final values for the SGAR algorithm parameters after calibration.113
5.6. Final values for the SGAM algorithm parameters after calibration.114
5.7. Final values for the EGA algorithm parameters after calibration. 115

6.1. Table of means and 99% confidence intervals for the relative
percentage time increase. 131

7.1. Calibration for the MGA. Table of means and 99% confidence
intervals for the large instances. 154

7.2. Influence of each MGA phase. Table of means and 99%
confidence intervals for the large instances. 158

7.3. Calibration of number of generations in SGA phase. Table of
means and 99% confidence intervals for a subset of the large
instances. 159

7.4. Calibration of the SRS algorithm. Table of means and 99%
confidence intervals for a subset of the large instances. 163

7.5. Analysis of Variance for the Average deviation - calibration of
the SRS algorithm. 163

List of Tables XXIX

7.6. Analysis of Variance for the Average deviation - comparison of
the SRS and the MGA with earlier presented algorithms for the
set of large instances. 168

7.7. Comparison of SRS and IG algorithm. Table of means and 99%
confidence intervals for a subset of the small instances where
the optimum is known. 173

8.1. Example instance 4. Processing times and due dates for each job.193
8.2. Analysis of Variance for the Hypervolume - calibration of

NSGA-II for the set of large instances. 201
8.3. Calibration of NSGA-II. Table of means and 99% confidence

intervals for the large instances. 203
8.4. Analysis of Variance for the Hypervolume - Calibration of RIPG.208
8.5. Calibration of RIPG. Table of means and 99% confidence

intervals for the large instances. 210
8.6. Analysis of Variance for the Hypervolume - comparison of

NSGA-II and RIPG for the set of large instances. 216
8.7. Hypervolume means and 99% Tukey intervals - comparison of

NSGA-II and RIPG for the set of large instances. 217
8.8. Analysis of Variance for the Hypervolume - comparison of

NSGA-II and RIPG for the set of small instances. 220
8.9. Hypervolume comparison of NSGA-II and RIPG. Table of

means and 99% confidence intervals for the small instances. . 222
8.10. Analysis of Variance for the Epsilon indicator - comparison of

NSGA-II and RIPG for the set of small instances. 224
8.11. Epsilon indicator means and 99% Tukey intervals - comparison

of NSGA-II and RIPG for the set of small instances. 226

A.1. NEH heuristic with distinct machine assignment methods.
Table of means and 99% confidence intervals for the large
instances. Deviation from best known solution value. 266

A.2. Comparison of heuristic methods. Table of means and 99%
confidence intervals for the large instances. Deviation from
best known solution value. 266

XXX LIST OF TABLES

A.3. Comparison of heuristics. Table of means and 99% confidence
intervals for the small instances. Deviation from the optimum. 267

A.4. Table of means and 99% Tukey intervals for the genetic
algorithms. Small instances with one machine per stage. . . . 268

A.5. Table of means and 99% Tukey intervals for the genetic
algorithms. Small instances with one machine per stage for
which the optimum is known. 269

A.6. Table of means and 99% Tukey intervals for the genetic
algorithms. Small instances with three machines per stage. . . 270

A.7. Table of means and 99% Tukey intervals for the genetic
algorithms. Small instances with three machines per stage
for which the optimum solution is known. 271

A.8. Table of means and 99% Tukey intervals for the genetic
algorithms. Large instances 272

A.9. Table of means and 99% Tukey intervals for the genetic
algorithms and the heuristics. Small instances with three
machines per stage. 273

A.10.Table of means and 99% Tukey intervals for the genetic
algorithms and the heuristics. Small instances with one machine
per stage. 273

A.11.Table of means and 99% Tukey intervals for the genetic
algorithms and the heuristics. Large instances. 274

A.12.Comparison of the local search algorithms with SGA. Table of
means and 99% Tukey intervals for the large instances. 275

A.13.Comparison of the SRS and the MGA with earlier presented
algorithms. Table of means and 99% Tukey intervals for the
large instances. 276

A.14.Comparison of the SRS and the MGA with earlier presented
algorithms. Table of means and 99% Tukey intervals for the
small instances with three machines per stage. 276

A.15.Epsilon indicator means and 99% Tukey intervals - comparison
of NSGA-II and RIPG for the set of large instances. 281

List of Tables XXXI

B.1. Analysis of Variance for the SGA calibration. Large instances. 283
B.2. Analysis of Variance for the SGA calibration, Pmut fixed at

2%. Large instances. 287
B.3. Analysis of Variance for the comparison of the genetic algo-

rithms. Small instances with one machine per stage. 290
B.4. Analysis of Variance for the Average deviation - comparison of

the SRS and the MGA with earlier presented algorithms. Small
instances with three machines per stage. 292

B.5. Analysis of Variance for the Hypervolume - Calibration of
NSGA-II, mutation probability fixed. 294

B.6. Analysis of Variance for the Hypervolume - Calibration of
NSGA-II, mutation probability and population size fixed. . . . 296

B.7. Analysis of Variance for the Hypervolume - Calibration of
RIPG, restart fixed. 297

B.8. Analysis of Variance for the Hypervolume - Calibration of
RIPG, restart and greedy phase fixed. 299

B.9. Analysis of Variance for the Epsilon indicator - comparison of
NSGA-II and RIPG for the set of large instances. 300

C.1. Best found solution values for the small instances with one
machine per stage. 302

C.2. Best found solution values for the small instances with three
machines per stage. 307

C.3. Best found solution values for the large instances. 312

CHAPTER 1
INTRODUCTION AND OBJECTIVES

In recent times, markets have become more and more international. Internet
and other technological developments have increased the speed of communica-
tion, the reach of marketing and the possibilities for distribution. Globalisation
causes greater competition, since the physical distance of competitors loses
importance. These developments demand for a further customisation of the
products a company aims to sell. Clients want to be able to decide on the
features of the product they buy and to choose the configuration they like. This
asks for a wide range of products and makes mass production of a single unique
product a weak business model.
Within the decision making process we can distinguish between long, medium
and short term decisions. Long term or strategic decisions, are for example
how many machines to buy, whether to invest in machinery or to rent it, or
what products to offer to the market. Examples of medium term decisions are
client order acceptance, personnel planning or lot sizing. Scheduling however,
purely involves short time decisions, where the main question is: Which task to
process at what moment on which machine? An overview of the categorisation
of decisions to be taken in a production company, can be found in Figure 1.1.

1

2 CHAPTER 1. INTRODUCTION AND OBJECTIVES

Long-Term

Market

Research

Product Lines

Services

Production

Capacity

Medium-Term

Materials

Planning

Manpower

Planning

Client’s Orders

Production

Planning

Short-Term

Production

Control

Sequencing

Programming

Delivery

Figure 1.1: Division of decisions in terms of time horizon.
Constructed from Ruiz (2003).

Scheduling can be defined as the assignment of start and finish times to
events. In the case of production scheduling, these events are processing tasks.
The constraints are mainly determined by the availability of resources, which
depends on the production environment. Scheduling has become more and more
important in the last decades, due to the simultaneous increase in the number
of products, reduction in the size of orders and shortening delivery times, as
stated by Botta-Genoulaz (1997). Proth (2007) agrees on this and describes how
scheduling evolved from manual to automated and from static to dynamic. The
necessity of new strategies such as customisation of products because of the
more international and more competitive markets, causes the organisation of the
production to be more and more complex. This is where scheduling becomes
highly important. Optimisation of the production schedule allows for increased
production capacity or client satisfaction without machinery investments, since
the set of machines are typically assumed to be fixed. The recent paper on
parallel machines by Li and Yang (2009) is just an example. Other resources
are usually neglected or assumed unlimited. The work by Chen (2004) or Ruiz

1.1. Motivation 3

and Andrés (2007) are examples of exceptions to this assumption.

1.1. Motivation for this Ph.D. thesis

Since the first studies on scheduling by Salveson (1952) and others, a
rich body of literature has been built including a wide range of problems
with various characteristics. Nevertheless, many researchers (Ledbetter and
Cox, 1977; Ford et al., 1987; McKay et al., 1988; Olhager and Rapp, 1995)
have noted in their papers that there has always been a so-called gap between
the theory and practice of scheduling. Dudek et al. (1992); MacCarthy and
Liu (1993), and also McKay et al. (2002) have criticised scheduling research
in general and the flowshop scheduling literature in particular regarding this
gap. Similar conclusions can be found in literature reviews (see Graves, 1981;
Allahverdi et al., 1999; Linn and Zhang, 1999; Vignier et al., 1999; Ruiz
and Vázquez Rodríguez, 2010; Ribas et al., 2010) on different scheduling
environments. Reisman et al. (1997) conducted a statistical review on flowshop
sequencing/scheduling research between years 1952-1994. They discuss the
exponentially growing body of literature on this subject and conclude that from
a total of 170 reviewed papers, only 5 (i.e., 3%) dealt with true applications.
Thirty-four papers or 20% dealt with "applications" that were not grounded in
real-world settings.

The paper by Schutten (1998) tries to fill the gap between the operations
research literature, in which high level algorithms are developed but side con-
straints that occur in practice are not considered, and the production literature
in which myopic algorithms such as priority rules are used to solve practical
problems. The paper illustrates how the shifting bottleneck procedure for
the classical job shop can be extended to deal with practical features such as
transportation times, setups, downtimes, multiple resources and convergent job
routings.
Allaoui and Artiba (2004) also conjecture that there is a large gap between the
literature of scheduling and the real life industry. The paper deals with a prac-
tical and stochastic hybrid flow shop scheduling problem under maintenance

4 CHAPTER 1. INTRODUCTION AND OBJECTIVES

constraints to optimise several objectives based on flow time and due dates.
Also, setup, cleaning and transportation times are taken into account. The paper
aims to show how to integrate simulation and optimisation to tackle this practical
problem, and to illustrate by an experimentation study that the performance
of heuristics applied to this problem can be affected by the percentage of the
breakdown times.
Another paper involving realistic considerations is provided by Low (2005)
who considers a flowshop with multiple unrelated machines. Some practical
processing restrictions such as independent setup and dependent removal times
are taken into account, and the objective is to minimise the total flow time in
the system. A simulated annealing (SA)-based metaheuristic is proposed to
solve the addressed problem. The initial solution is generated by priority rules
like SPT and LPT. Multiple insertion technique is used when scheduling from a
given job sequence at a stage, and two different strategies are tried to obtain the
priority list for stages other than the first one; first come first serve (FCFS) and
FIX, which uses the same job listing as in the first stage for all the other stages.
The time needed to adapt a machine after processing a certain task to its next
task, is usually referred to as a setup time. The existence of setup times is a
common phenomenon, both in industry and in the literature. Botta-Genoulaz
(2000) propose several heuristics for a flowshop with parallel identical machines
in each stage, positive time lags between the stages and precedence con-
straints between jobs as well as sequence-independent setup and removal times.
Scheduling problems are harder if the setup times are sequence dependent, i.e.
if the duration of the setup depends both on the previous and on the next job.
According to Allahverdi et al. (2008), the amount of papers that take sequence
dependent setup times into account is growing rapidly with an average of more
than 40 papers in the last ten years.
In some industrial flowshop environments, once a job has been started at the
first stage processing at the other stages cannot be delayed. This restriction is
known as no-wait and can be found for example in the steel industry, where the
material is not allowed to cool down between stages as this can cause defects in
the composition of the steel. This problem, in combination with setup times, is
studied by Ruiz and Allahverdi (2007b) for the total completion time.

1.2. Classification of scheduling problems 5

The consumption of (half) products in order to complete other jobs demands
precedence relationships between the jobs, since a job cannot be started before
the job that it consumes is completed. In general, a job cannot be started in the
first machine before all predecessors are finished at the last machine. Gladky
et al. (2004) consider the less restricted case in which a job can be started at
a certain stage when all predecessors have been processed at that stage. The
precedence relationships are given per machine in the presented paper.
Another realistic situation is modelled by Naderi and Ruiz (2010), namely the
existence of multiple flowshops for the production of a given set of jobs. In this
problem, denoted as a distributed permutation flowshop, each job is assigned to
one of the identical factories, and for each factory a processing order for the
assigned jobs is to be established. This occurs in basically all sectors where
companies possess more than one production plant or multiple production lines
in one plant.

Although there is a recent trend towards more realistic formulations of
scheduling problems such as the ones reviewed above, there are still not many
research efforts to jointly consider realistic constraints prevailing in real-world
manufacturing environments. One important drawback is that the solutions
of such complex problems are rather difficult to obtain. Indeed, heuristic
and metaheuristic solution approaches are needed to obtain good solutions in
reasonable computational times. Yet, a wealth of such solution approaches
may be developed with different degrees of “blindness” to problem specific
knowledge representing interesting tradeoffs.

1.2. Classification of scheduling problems

Graham et al. (1979) introduced a three-field notation, in order to define
different production scheduling problems in a schematic way. The first field is
used to denote the machine settings, the second field contains the restrictions on
the problem and the third field represents the objective function. The most basic
machine setting, in fact trivial for the maximum completion time objective, is
the one-machine problem, where a set N of n jobs have to be processed by one

6 CHAPTER 1. INTRODUCTION AND OBJECTIVES

machine. This setting is denoted with a “1” in the first field. The problem is to
find an optimal processing order for the jobs on this machine. Reeves (1995a)
developed several heuristics for the total completion time problem with unequal
job release dates; a problem that is proven to be NP-Hard by Rinnooy Kan
(1976).
The most studied setting at the moment, is the flowshop problem, represented
by the letter F : n jobs visit a set M of m machines and each job visits all
machines in the same order. Although the permutation of jobs can be different
for each machine in the most general version of the problem, most research is
done for the permutation flowshop problem. This restricts the permutation of
jobs to be equal for all machines, which reduces the complexity of the problem,
as described in Rad et al. (2009). Johnson (1954) was the first to consider
the flowshop problem. Gupta and Stafford (2006) give a short overview of
research done on the regular flowshop problem. Several reviews are available,
comparing heuristics for the permutation flowshop problem (Ruiz and Maroto,
2005; Hejazi and Saghafian, 2005; Framinan et al., 2004).
Another possible machine setting is the production environment with parallel
machines. In this case, each of the n jobs visits only one of the m machines,
that are arranged in parallel. Considering processing speeds, the machines can
either be identical, uniform or unrelated, denoted respectively by P , Q and R.
The hybrid flowshop is the combination of the last two configurations: a set of
n jobs visits the set of stages M = {1, . . . ,m}, all in the same order. Within
each stage i, 1 ≤ i ≤ m, a set of parallel machines Mi = {1, . . . ,mi} is
present. Each job is processed by one of the mi available machines at this stage.
The first field for this machine setting is HF . The flow of the jobs through
the hybrid shop is shown schematically in Figure 1.2. In 1999, the two first
reviews on hybrid flexible flowline problems appeared, one by Vignier et al.
(1999) and one by Linn and Zhang (1999). The latter conclude that there exists
a gap between theory and practice and that there is need of future research in
this direction. Quadt and Kuhn (2007) categorise the papers on hybrid flowshop
problems in a taxonomy. The most recent reviews are the ones by Ruiz and
Vázquez Rodríguez (2010) and Ribas et al. (2010).

1.3. Objectives 7

Machine 1

Jobs

Enter
Machine 2

Machine m1

Machine 1

Machine 2

Machine m2

Machine 1

Machine 2

Machine mi

Machine 1

Machine 2

Machine mm

Stage mStage iStage 2Stage 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Jobs

Exit

Figure 1.2: Hybrid flowshop environment. Source: Ruiz
(2003).

In jobshop problems, the machines of the set M are neither parallel, nor
structured in stages. The set of operations N = {1, . . . , n} is interrelated by a
set of precedence constraints A, determining the order for machine visiting. An
important heuristic contribution for the jobshop is done by Adams et al. (1988),
who determine the bottleneck in each iteration of their constructive heuristic,
and locally reoptimise considering this bottleneck.

1.3. Objectives

In this Ph.D. thesis, the main objective is the close study of a scheduling
problem that is generally applicable to real-world situations. Doing so, we
aim to diminish the gap between the necessities of the industries and their
planning problems on the one hand, and the scheduling literature with its mainly
theoretical advances on the other hand. In order to reach this goal, we need
to develop advances and effective methods, capable of finding good solutions
for problem instances of a realistic size, within reasonable computing time.
In a nutshell, the algorithms should be able to find solutions that professional
schedulers cannot easily improve manually, within a time span that allows the
scheduler to try different scenarios and “play” with the parameters and settings.
It can be very interesting, for example, to schedule a certain production plan

8 CHAPTER 1. INTRODUCTION AND OBJECTIVES

and see how the objective values change when an additional order is added, or
when the quantity of some product is increased. Other useful scenarios that
require running the scheduling algorithm again could be the effect of adding
a machine in one of the stages or reducing the setup times by assigning more
human resources. In order to compare all such different situation, a certain
flexibility is required, that can only be achieved by short algorithm running
times. In colloquial business language, we could say that the algorithm should
give a result “within the time of going for a coffee”.
The rest of this thesis is structured as follows: Chapter 2 introduces in detail
the hybrid flexible flowline problem that forms the basis for this research. We
highlight a practical application and we give a review on the literature on
realistic scheduling. In Chapter 3 we present a mathematical model for the
problem. The model is used to solve small problem instances and to analyse the
complexity of each of the problem restrictions. Chapter 4 opens the possibility
to solve large problem instances as well, using heuristics. First, we list a
number of machine assignment rules ranging from the straightforward first
available machine rule to advanced look-ahead rules that make extensive use
of the problem data. Then, we give various possible solution representations
for this problem, together with the cardinality of the solution space of each
representation. The chapter is concluded with a group of fast dispatching rules
and an adaptation of the famous NEH heuristic. In Chapter 5, for each of
the earlier given solution representations, a genetic algorithm is developed.
Comparison of the algorithms gives an indication of the effectiveness of each
of the representations. We show some more advanced and modern local search
algorithms in Chapter 6. The algorithms use the philosophy of state-of-the-
art algorithms for the regular flowshop problem, but have been especially
designed for the hybrid flexible flowline that lies closer to problems faced in
reality. Chapter 7 introduces a completely new and highly effective algorithm
that makes use of the problem characteristics in a clever way and shifts from
one solution representation to another. The performance of the metaheuristic
is compared to the performance of the best algorithms presented in earlier
chapters. In Chapter 8 we change our focus from the problem restrictions to the
optimisation criterion. We present two algorithms that allow for the optimisation

1.3. Objectives 9

of multiple objectives at the same time, working with Pareto frontiers. The
conclusions of this thesis are given in the final chapter, Chapter 9.
The tables that are not strictly needed to understanding the concepts and the
results presented in this Ph.D. thesis are given in the appendices, in order to give
the reader the opportunity to consult all data without interrupting the main thread
unnecessarily. Appendix A contains tables with means and interactions that
correspond to the experiments described in the text and to the figures showing
the results graphically. The analysis of variance tables related to those experi-
ments are given in Appendix B. In Appendix C, the best found solution values
are given for the hybrid flexible flowline benchmark instances. The instances
themselves would occupy too much space when printed. They can therefore be
downloaded from http://soa.iti.es/problem-instances.

CHAPTER 2
THE HYBRID FLEXIBLE FLOW LINE PROBLEM

As an introduction to this chapter that defines the problem for this present
thesis, we describe the production process for ceramic tiles. The ceramic tile
sector has a big economical influence on the Castellón region, in the north of
the Valencian Community (Spain). Segura et al. (2004) interviewed 81 ceramic
tile companies on their strategic functioning. The results allow for a division
of the producers in three groups. The first group, formed by 23 enterprises, is
characterised by a main focus on the diversification of their production. Group 2,
containing 30 companies, is mainly concerned with the costs of their production.
The remaining 18 companies do not recognise a significant difference among
the earlier mentioned priorities.
Another survey by Vallada et al. (2005), counting with the cooperation of the
same 81 companies, shed more light on present issues regarding production
scheduling. The authors conclude that the machines can be grouped in
production stages that are visited in the same order. In the small and in some
medium-sized production companies, two stages can be distinguished, namely
the pressing, drying and glazing machines in the first stage, and the firing,
classifying and packaging machines in the second stage. In other medium-sized
and large factories, the machines can be divided in three stages: the pressing,

11

12 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

drying and glazing machines in stage 1; the kiln firing machines in stage 2;
and the classifying and packaging machines in stage 3. Since most companies
have more than one production line, each of the stages consists in a set of
unrelated parallel machines. Moreover, between different batches of tiles time
for machine adjustments is needed. The time the adjustments take depends
on the processing sequence, since the molds are changed less often if batches
of the same size are grouped. The resulting problem is a hard combinatorial
optimisation problem, known as the hybrid flexible flow line problem with
sequence dependent setup times. Since, according to the authors, not even the
largest ceramic tile producers use optimisation methods that solve this problem
in an adequate way, and since no software is available to do so, the development
of methods that allow for flexible production scheduling is required.
For a better understanding of the production process in the ceramic tile sector,
Figure 2.1 demonstrates schematically the different operations that have to be
performed in order to get to the final product. Since some of the subsequent
machines are directly connected by conveyor belts, when modelling the problem
analytically, these can be joined into one stage. Some important additional
properties have to be taken into account when one aims to make feasible
schedules for a ceramic tile factory. Not only the processing time can differ
between parallel machines within a stage, also the physical possibility to process
a certain tile model depends on the machine. Some tiles of large size, for
instance, can only be processed on special machines. Other tiles that have a
specific kind of decoration require another type of machine. The consumption
of auxiliary products in order to complete a more complex article, obliges the
scheduler to adopt another restriction in his model. In order to fabricate a corner
profile, for example, first two flat ceramic surfaces need to be made, which
will then be processed together to form the final corner structure. All auxiliary
products that will be consumed need to be completed before the processing of
the complex structure can start. When creating auxiliary products, but also for
some exceptional simplified final products, stages might be skipped. Although
the processing at a next stage in theory usually starts when processing is finished
at the previous stage, this is not the case when producing ceramic tiles. Since a
job represents a large batch of small products, the first products of the batch

13

can go to the next stage, while the last products are still being processed at the
previous stage. After the kiln firing stage, however, the contrary may happen.
Since the tiles have to cool down before entering in the classification stage,
waiting times should be taken into account. Regarding the setup times, two
possible situations have to be considered. Mostly, the setup can be performed
as soon as the machine is empty. However, in some cases, setup can only
be performed if the job is at the stage. To give an example, for a correct
calibration of the kiln firing machine, some of the tiles need to be present in
order to see if the result is as expected. Another scheduling property that is
sometimes forgotten in theoretical models, is the fact that the machines are
usually processing previous work at the moment of designing a schedule for
new jobs. No jobs can be assigned to a machine until it finishes all jobs that
belong to earlier production plans.

Spray Drying Molding

Single Kiln

Firing

Drying

Glazing

Milling and

Grinding

Raw Material

Preparation

Glaze

Preparation

Selection and

Packing

Figure 2.1: Graphical view of the steps in the ceramic tile
production.

The production scheduling problem faced by the ceramic tile sector has
served as an example and direct inspiration and motivation for the combinatorial
problem that we consider in this Ph.D. thesis. In fact, the problem we treat,
including the restriction, is identical to the one described for the production
of ceramic tiles. As stated above, this problem is known as a hybrid flexible
flow line (HFFL), where flexible means that each job j ∈ N visits a subset
Fj ⊆ M of the stages and skips the remaining ones. This happens in most
industries, as many products might be finished without adding certain options.
Some examples are windshield rain sensors in car manufacturing, painting in
furniture production or the glazing of ceramic tiles.

14 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

The processing time for job j on machine l at stage i is denoted by pilj . These
times depend on the job and the machine, such that machines are unrelated,
and are zero for all the machines at stages that the job does not visit (i.e.,
pilj = 0,∀i /∈ Fj).
An example to demonstrate the need of unrelated machines in order to model
a problem comes from the ceramic tile production. We compare two molding
machines with different sizes. Machine A has a width of 40 inch, while machine
B is of width 24 inch. If both process tiles of 12 inch, machine A is able to mold
3 tiles at a time and machine B is able to do 2. For this job, machine A is 50%
faster than machine B. However, when processing tiles of 10 inch, machine A
can process 4 tiles simultaneously, while machine B still handles 2 tiles. For
this job machine A is 100% faster than machine B. This situation can only be
modelled with unrelated parallel machines at each stage.
Furthermore, the following constraints are considered in this hybrid flexible
flow line:

Eij ⊆Mi is the set of eligible machines for job j in stage i. This means
that not all machines at a given stage might process a job j that visits such
stage. Consider for example a stage with a small and a large machine.
Small products can be processed on either of the two machines whereas
large products can only be processed on the large one. Note that pilj is
irrelevant if l /∈ Eij and that necessarily | Eij |> 0 if i ∈ Fj .

rmil expresses the release date for machine l in stage i. No operation can
be started at machine l before rmil. This allows us to model machines
that did not finish the previous scheduled jobs yet.

Pj ⊆ N \ {j} gives a set of predecessors of job j. Job j cannot start
until all jobs in Pj have finished. This is the case if auxiliary products
are needed to start the processing of the final product. In Figure 2.2,
different types of structures are shown for the precedence constraint graph.
For the most simple type, each job has either zero or one predecessor
and either zero or one successor, so that the relationships form chains.
When jobs have only one predecessor but possibly various successors,
is called an out-tree structure. In the opposite case, when a job can

15

have various predecessors but only one successor, we speak about an
in-tree. In this Ph.D. thesis the most general case is considered, where
various predecessors and various successors are allowed. This is what
best reflects the industrial situation, where on the one hand more than
one auxiliary products can be necessary in order to finish a final product
and on the other hand an auxiliary product can be used for the production
of more than one final product.

1 2

3 5

4

(a) Chain structure

1
2

3

5

4

(b) Out-tree structure

1
2

3
5

4

(c) In-tree structure

1

23
5

4

(d) General structure

Figure 2.2: Different types of structures for the graph
representing the precedence relationships.

lagilj models the time lag for job j between stage i and the next stage
to be visited, when job j is processed on machine l at stage i. A job
in reality often consists of a large quantity of products with the same
specifications, like a batch of ceramic tiles or a batch of bolts and nuts.
If so, the first products can in many cases be processed at the next stage
before finishing the whole job. In other cases, the start at a next stage
might be delayed because of products that have to dry or cool down.
Negative time lags model the former cases whereas positive time lags
model the latter ones. In case of negative time lags, some conditions
have to be fulfilled: | lagilj |≤ pilj and | lagilj |≤ pi+1,l′,j ∀l′ ∈ Ei+1,j ,

16 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

where i + 1 is the next visited stage by job j (not necessarily the next
physical stage in the shop) and l′ an eligible machine in that stage. The
first condition avoids that the job to starts in the next stage before starting
in the current stage; the second condition avoids that the job finishes in
the next stage before finishing in the current stage. A graphical example
of a valid negative time lag is given in Figure 2.3.

Stage 1

Stage 2

0 12

10 26

Figure 2.3: Graphical example of a negative time lag or
overlap.

Siljk denotes the setup time between the processing of job j and job k
on machine l inside stage i. Setup time is the time needed to reconfigure,
clean or adjust a machine between two jobs. The setup time between
painting a black product and a white one is usually larger than the time
needed if the white product is processed before the black one, as remnants
of black paint in the white paint are more evident than remnants of white
paint in the black paint. We therefore treat sequence dependent setup
times. These setup times are assumed separable from the processing
time.

Ailjk is a binary parameter that indicates whether the corresponding
setup is anticipatory (one) or not (zero). Most machine setups can be
performed before the product enters the stage, but in some cases (to attach
the product to the machine, for example) setup has to be postponed until
the product arrives at the machine. Figure 2.4 shows a graphical example
of both.

17

Stage 1

Stage 2 32

2

1

31

97 14 16

10

22

312211 14 177 23

0

Figure 2.4: Graphical example of an anticipatory setup
(between jobs 1 and 2 at stage 2) and a non anticipatory

setup (between jobs 2 and 3 at stage 2).

For furniture manufacturing the same problem characteristics arise. Some of the
products can only be manufactured on specialised machines. Production lines
are seldom encountered empty, so machine availability from the start cannot be
assumed. A drying time has to be taken into account after the painting stage.
This can be modelled as a positive time lag. Attaching pieces of wood to the
machines constitute non-anticipatory setups. Anticipatory setups occur as well,
if the colour of paint has to be changed, for example.

The usual main objective in any company is to maximise either profit, or the
shareholder value, depending on its legal structure. However, with the data we
have it is not possible to deduce the influence of a certain production schedule
on those financial quality measures. Moreover, the goal of a company as a
whole is often not equal to the goal of some department. Just as the commercial
department might have incentives related to the amount of sales rather than to
the costs, the production department is asked to optimise the production rather
than the financial value of the company. We therefore limit ourselves to the
more tangible goals.
Among such goals we can find the minimisation of makespan, flowtime, setup
time, lateness, tardiness, earliness, number of late jobs. More optimisation
objectives can be defined, but these cover the most important ones. Makespan
or maximum completion time is the moment in which the last task is finished.
Flowtime measures the time that the jobs remain in the production plant, i.e.,
the difference between the completion time and the release date for a job. Total
flowtime is directly related to work in progress. Minimisation of setup times

18 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

is especially important if setup cost is extremely high. Lateness measures the
difference between the moment of finishing a job and the moment that it is due
to be finished. Lateness can be either positive or negative. Tardiness is closely
related to lateness. It measures only the difference if a job is completed late;
otherwise tardiness is zero. If late jobs are valueless, no matter how late they are,
the number of late jobs is typically minimised. Especially when stocking costs
are high, just in time management is important. For those cases earliness should
also be minimised. Similar to tardiness, it measures only the difference between
the moment of completing a job and its due date if the job is completed early.
Otherwise earliness is zero. Earliness is usually minimised in combination with
tardiness.
The goal that we aim to optimise for the presented HFFL is makespan or
maximum completion time minimisation. It is the most generic objective, and
it does not depend on the data on due dates. This data is highly important
for lateness related goals, since the problem looses its interest if the due dates
are too tight or too loose. Since choosing adequate due dates is difficult for a
complex problem as the one we consider, we prefer to avoid the need of these
data. Moreover, in practice the producer might have the possibility to negotiate
the due date after scheduling the order. In this case the main interest is not to
meet the due dates set by clients, but to have an efficient schedule and to adapt
the due dates to it. Makespan is mainly production oriented, assuring efficiency
by giving priority to compact schedules. For a more formal definition of
makespan Cilj is used to express the completion time of job j at stage i, where
the job has been assigned to machine l. If we denote LSj = max

i∈Fj

i the last stage

visited by job j, we can define the makespan as Cmax = max
j∈N,l∈ELSj,j

CLSj ,l,j .

Using the three field notation by Vignier et al. (1999) and using some extensions
of our own, we can define this HFFL problem as:

HFFLm, ((RM (i))
(m)
i=1)/Mj , rm, prec, Siljk, Ailjk, lag/Cmax

Although the number of feasible solutions is reduced by machine eligibility,
stage skipping and precedence constraints, many simplifications of this problem

2.1. Example instance 19

have been proven to be NP-Hard. Actually, the standard hybrid flow shop
problem is just a special case of this HFFL problem. Lee and Vairaktarakis
(1994) showed NP-hardness of hybrid flow shop problems in general. That
precedence relationships do not simplify the problem was concluded by Ullman
(1975), who proved that the two parallel machine problem with precedence
constraints is already NP-Hard. The same holds for setup times, as Gupta
(1986) classified the regular flow shop with sequence dependent setup times
as NP-Complete. From the previous discussion, and by reduction to simpler
problems, the considered HFFL problem is obviously NP .

2.1. Example instance

To illustrate the problem, we introduce example instance 1. This example
describes an instance with two stages, where each stage contains three unrelated
parallel machines. Five jobs have to be processed, and Job 4 is a predecessor of
Job 1. Job 4 is not processed in the second stage and Job 5 skips the first stage.
Release times for the machines in Stage 1 are 73, 125 and 98, respectively,
and 113, 135 and 45 for the machines in Stage 2. The remaining data is given in
Tables 2.1 and 2.2, where “-” means the machine is not able to process the job.

Stage 1 2
Machine 1 2 3 4 5 6

Job
1 - 16(0) 53(69) - - 38
2 - - 11(98) - 41 -
3 98(-3) - - 9 19 62
4 70(0) - - - - -
5 - - - - 97 80

Table 2.1: Example instance 1. Processing times of each
job on each eligible machine. In brackets the time lag (if

applicable).

20 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

Job 1 2 3 4 5 1 2 3 4 5

Machine 1 Machine 4
1 - - - - - - - - -
2 - - - - - - - - -
3 - - - 102(1) - - - - -
4 - - 119(0) - - - - - -
5 - - - - - - - - -

Machine 2 Machine 5
1 - - - - - - - - -
2 - - - - - - 117(0) - 104(0)
3 - - - - - 122(0) - - 114(0)
4 - - - - - - - - -
5 - - - - - 110(0) 106(0) - -

Machine 3 Machine 6
1 - 115(0) - - - - 124(1) - 107(0)
2 113(1) - - - - - - - -
3 - - - - 114(0) - - - 119(1)
4 - - - - - - - - -
5 - - - - 83(0) - 88(0) - -

Table 2.2: Example instance 1. Setup times between pairs
of jobs at each machine. A “1” in brackets indicates that

setup times are anticipatory, a “0” that they are not.

The optimal makespan value for example instance 1 is 366. In Figure 2.5
one of the optimal solutions is shown in a Gantt chart.

2.2. Literature review 21

Time

Machine 1

Machine 2

Machine 3

Machine 4 3

1

4

Stage 1

Stage 2 Machine 5

3

15

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1Previous work

50 150 200 300 350100 250

20845

73

125

143

242

360

125 159

10998

113 357 366

135 158 199

262

Machine 6

159

Figure 2.5: Gantt diagram with an optimal solution for
example instance 1.

2.2. Literature review

The review of the relevant literature in this section is organised in the
following way: In Subsection 2.2.1, we describe applications of genetic
algorithms for scheduling problems that are closely related to real-world
production situations. Subsection 2.2.2 is more focused, in the sense that only
papers containing genetic algorithms for hybrid flexible flow line problems are
cited. Finally, an overview of different solution representations for scheduling
problems in the literature, is given in Subsection 2.2.3.

2.2.1. Genetic algorithm applications in realistic
scheduling

Genetic algorithms (GAs) are a popular tool used for solving a range of
optimisation problems including realistic scheduling problems. Oduguwa et al.
(2005) provide a survey on evolutionary computation applications to real-world
problems in metal forming industry, paper industry and chemical industry,
and in scheduling and process planning, engineering design optimisation

22 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

and related manufacturing applications. The survey is on the applications
of the core methodologies of evolutionary computation which are listed as the
genetic algorithms, evolutionary programming, evolution strategies and genetic
programming. The results show that the majority of papers reviewed employ
variants of GAs such as simple GAs, micro GAs, multiple-objective GAs and
GAs with advanced operators.
Ruiz and Maroto (2006) propose the adaptation of a genetic algorithm meta-
heuristic, which performed well in regular flowshops in an earlier study
presented in Ruiz et al. (2006), to a much more realistic version of the problem
with sequence dependent setup times, unrelated parallel machines at each
production stage, and machine eligibility. Such a problem is common in the
production of textiles and ceramic tiles. The proposed algorithm incorporates
four new crossover operators which identify and maintain building blocks
in the form of similar job occurrences in both parents. To avoid premature
convergence in the population, the researchers have implemented two methods,
named restart and generational schemes. Whenever the lowest makespan in the
population does not change for more than Gr generations, the restart procedure
replaces 80% of the worst individuals of the population with both new good
chromosomes and new random genetic material. The proposed generational
scheme does not allow for clones in the population, i.e., a new individual will
only replace the worst individual in the population if its makespan is better than
that of the worst and if its sequence is not already in the population. Parameters
and operators of the GA are determined using an extensive calibration by means
of experimental designs. The proposed algorithm is tested against several
adaptations of other well-known and recent metaheuristics to the problem using
several experiments with a set of 1320 random instances as well as with real data
taken from companies of the ceramic tile manufacturing sector. A statistical
analysis shows that the proposed algorithm is between 53% and 135% more
effective than the second best method, the genetic algorithm by Reeves (1995b).
An industrial application is given by Bertel and Billaut (2004) on a three-stage
hybrid flowshop scheduling problem with recirculation. The problem is to
perform jobs between a release date and a due date, in order to minimise the
weighted number of tardy jobs. An integer linear programming formulation of

2.2. Literature review 23

the problem and a lower bound are proposed. A greedy algorithm and a genetic
algorithm are presented as approximate methods and evaluated on instances
like industrial ones. The representation in the GA is such that each position
in the chromosome corresponds to one operation to schedule, and it contains
a job number. Each job appears recurrently, and the number of recurrences is
equal to the number of operations. Cyclic crossover (Bierwirth, 1995) and swap
mutation are used together with a so-called truncated selection scheme in which
the number of identical chromosomes allowed in the population increases with
increasing iteration number.
In another application, Tanev et al. (2004) hybridise priority/dispatching rules
and GAs by incorporating several such rules in the chromosome representation
of a GA designed to solve the problem of scheduling the customers’ orders in
factories of plastic injection machines (FPIM). The problem is a multiobjective,
real-world, flexible job shop scheduling problem. The chromosomes are in
the form of strings of priority rules like FIFO, SPT, LPT, order due time, and
their variations for selecting the next order for the currently becoming free
machine. Performance evaluations are conducted for evolving a schedule of
400 customers’ orders on an experimental model of FPIM.
Lohl et al. (1998) present an application of a genetic algorithm to a real-world
scheduling problem in polymer industry. The problem is highly constrained.
The quality of the results and the numerical performance is discussed in
comparison with a mathematical programming algorithm. When designing the
chromosome representation, the polymerisation stage is regarded as the stage
where the crucial decisions are made. A linear genome type with the batches
as genes is chosen. The length of the genome is determined by the maximum
number of polymerisation which can be scheduled. The actually scheduled
batches are determined by the schedule builder.
Dorn et al. (1996) describe an experimental comparison of four iterative im-
provement techniques for schedule optimisation including iterative deepening,
random search, tabu search and genetic algorithms. They apply these techniques
on the data of a steel making plant in Austria. To cope with the contradictory and
over-constrained problem, the researchers have developed a model to describe
the gradual satisfaction of given constraints considered explicitly.

24 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

Gilkinson et al. (1995) present a GA application to solve the real-world
scheduling problem of a company that produces laminated paper and foil
products. The manufacturing system is composed of workcell groups (stages
with one or more parallel machines). Jobs may skip some stages. For certain
products, it is possible to process multiple jobs on a single machine. The
objective is a weighted combination of three objectives: minimisation of the
number of late jobs, unbalanced machines and work in process time.
Ruiz and Allahverdi (2007a) address a permutation flowshop with no-wait
condition. This means that no buffers exist between the subsequent machines,
i.e., once a job is finished at one machine, processing should directly start at the
next machine. The optimisation criterion is maximum lateness, which means
that the largest difference between completion time and due date is minimised.
The authors present a dominance rule for the three-machine case, as well as
several heuristics. Four variants of a genetic algorithms are implemented and
compared with the results of two state-of-the-art metaheuristics. The distinct
GA variants either use an elitism approach or a steady-state structure and in
each case appliance of local search can be done or not.
Vallada and Ruiz (2009) present different versions of a genetic algorithm for
the unrelated parallel machine problem with sequence dependent and machine
dependent setup times. They minimise makespan for the given problem. The
difference between the algorithm versions is the use of a local search technique
in the crossover operator and the use of a separate local search operator.

2.2.2. Genetic algorithms for hybrid flowshop problems

GAs are also popular tools to apply to the hybrid flowshop problems. Leon
and Ramamoorthy (1997) explore problem-space-based neighbourhoods for
industrial and randomly generated problems in the context of hybrid flowshop
scheduling. The search is conducted in neighbourhoods generated by perturbing
the problem data and not solutions; hence the name. The performance measures
are the makespan and the mean tardiness. Three simple local search heuristics
are proposed.
Lee et al. (1997) compare a GA to tabu search, simulated annealing and
pair-wise exchange improvement for the lot sizing and scheduling in hybrid

2.2. Literature review 25

flowshops with variable lot sizes. The computational results show the superiority
of the GA for these problems.
Jin et al. (2002) model a real-world application of a printed circuit board
manufacturing system as a three-stage hybrid flowshop problem. The objective
they aim to optimise is the makespan value. They present three subproblem
approaches: a flowshop simplification and two parallel machine models. One
parallel machine method uses both ready and tail times, while the other employs
only ready times. A heuristic is applied to each of the subproblems. Further-
more, a compound approach is presented in the form of a genetic algorithm. The
genetic algorithm is initially seeded with the solutions given by the subproblem
approaches. The genetic algorithm improves those good initial solutions with
16%.
Kurz and Askin (2003, 2004) examine scheduling in hybrid flowshops with
sequence-dependent setup times to minimise makespan. This type of manu-
facturing environment is found in industries such as printed circuit board and
automobile manufacture. An integer program is formulated and discussed.
Because of the difficulty in solving the integer program directly, several
heuristics are developed, including a random keys genetic algorithm which
is found to be very effective for the problems examined.
Sivrikaya Şerifoğlu and Ulusoy (2004) present a GA for makespan minimisation
in hybrid flowshops. They apply roulette selection, exchange mutation and
uniform order-based crossover. The initial population is seeded with three
heuristic rules: shortest processing time (SPT), longest processing time (LPT)
and shortest total processing time (STPT). The results are compared to a lower
bound and to the results of heuristic rules. As the optima are unknown for the
larger instances, a statistical method is used to estimate the optimal solution
values.
Oguz and Ercan (2005) present a new crossover operator (NXO) for genetic
algorithms in list scheduling. They compare it to the partially matched crossover
(PMX). Furthermore, swap mutation and insertion mutation are evaluated. The
best combination turns out to be an algorithm using the new crossover operator
and insertion mutation. The genetic algorithm is shown to outperform a tabu
search algorithm, implemented in order to solve the same problem.

26 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

Torabi et al. (2006) investigate the lot and delivery scheduling problem in a
simple supply chain where a single supplier produces multiple components
on a hybrid flowshop and delivers them directly to an assembly facility. The
objective is to minimise the average of holding, setup, and transportation costs
per unit time. They develop a mixed integer nonlinear program, an optimal
enumeration method to solve the problem, and a hybrid genetic algorithm which
incorporates a neighbourhood search into a basic genetic algorithm that enables
the algorithm to perform genetic search over the subspace of local optima.
More recently, Jenabi et al. (2007) apply a genetic algorithm with a local
improvement procedure to the economic lot sizing and scheduling problem in
hybrid flowshops. The results are compared to those of a simulated annealing
approach. The GA outperforms the SA in solution quality, but requires more
computation time.
Simulation can be used when stochastic hybrid flowshop problems are con-
cerned, as in Yang et al. (2007). In this paper a genetic algorithm is presented for
a multi-layer ceramic capacitor application. The genetic algorithm outperforms
the dispatching rules it is compared to with 33% to 61%.
Jungwattanakit et al. (2008) consider a hybrid flowshop problem with unrelated
machines in each stage. Moreover, sequence dependent setup times are taken
into account. The objective is to minimise a linear combination of two criteria:
makespan on the one hand, and the number of tardy jobs on the other hand.
The authors formulate a mixed integer program and implement a number of
constructive heuristics and several dispatching rules for the problem. Finally
a genetic algorithm is presented. In Jungwattanakit et al. (2009), the authors
compare the genetic algorithm to a tabu search and a simulated annealing
approach. They conclude that simulated annealing leads to the best results
among all methods.
Tavakkoli-Moghaddam et al. (2009) tackle a slightly different problem with
processor blocking. In the hybrid flowshop they treat, a machine is occupied by
a job as soon as processing of the job starts, and only becomes available again
when processing of the job starts at the next stage. Different from the common
scheduling problems, the machine does not necessarily become available when
processing of the job ends. The authors present a combination of a genetic

2.2. Literature review 27

algorithm with a nested variable neighbourhood search, referred to as a memetic
algorithm. A series of experiments shows that the memetic algorithm performs
better than a classic genetic algorithm, without local search.

Approaches different from GAs are also used, see for example the tabu
search by Nowicki and Smutnicki (1998), in this case for simpler problems.
Kochhar et al. (1988) provide a local search approach for a realistic hybrid
flowshop problem with buffer capacities, blocking starvation, breakdowns
and downtimes as well as setup times. Jin et al. (2006) propose some new
lower bounds and implement a simulated annealing and a variable-depth
search algorithm for the hybrid flowshop. Sequence dependent setup times
are added to the problem by Naderi et al. (2010), who tackle a flexible hybrid
flowshop scheduling problem with makespan objective. The authors point out
the excessive simplicity of the regular flowshop and present two algorithms for
this more realistic flowshop. The algorithms, a modified dynamic dispatching
rule heuristic and an iterated local search metaheuristic, outperform seven
algorithms from the literature.

What we can conclude from this subsection is that genetic algorithm
applications for hybrid flowshop problems are not as common in the literature,
as similar applications for simpler problems like the regular flowshop problem
or the parallel machines problem. It is harder to obtain good results for a hybrid
flowshop problem than for less complex problems. In our opinion, however,
this is no reason to neglect this machine setting, especially since it is at least as
frequent in industry as the other mentioned settings.

2.2.3. Representation schemes for GA applications in scheduling

The choice of a representation scheme is an important decision in the
design of a GA which affects other design choices like the crossover and
mutation operators, and eventually the performance of the algorithm. In fact,
an inappropriate representation may lead to the failure of the GA itself. The
representation schemes used in the GA approaches to scheduling problems
are various. Simple permutations of tasks (jobs, operations) are most popular.

28 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

One of the first publications based on this idea, though used in combination
with a tabu search algorithm, was the paper by Voss (1993). Chromosomes
representing priority values (Dhodhi et al., 2002), execution times (Nossal,
1998), and machine assignments (Woo et al., 1997) for tasks are also used.
A compound representation is provided by França et al. (2005) who consider
the problem of scheduling part families and jobs within each part family in
a flowshop manufacturing cell with sequence dependent family setup times
to minimise the makespan. A genetic algorithm and a memetic algorithm
with local search are proposed. The chromosome is a concatenation of K + 1

strings where K is the number of part families. The first string gives the order
in which the families are scheduled on different machines. The rest of the
strings each give the order in which the jobs of family f are processed for
f = 1, . . . ,K. A variant of order crossover and two swap mutation operators
are used. The population structure consists of several clusters, each one having
a leader solution and three supporter solutions.
Some other approaches to scheduling problems use multiple-array chromo-
somes representing more than one dimension of the problem such as the ones
presented by Ghedjati (1999) and Gonçalves et al. (2005). Both these last
papers address problems involving precedence constraints.
The design decisions become more important for applications where the
problem involves precedence constraints. Usually, topological ordering of
tasks is used in the chromosomes. Ramachandra and Elmaghraby (2006) try
to minimise the weighted sum of the completion times of a set of precedence-
related jobs on two parallel identical machines. They test the results obtained
by a GA approach against that obtained by a binary integer programming
model. The chromosome representation is based on topological orderings
of jobs, and schedules are obtained by using the first available machine rule
for machine assignments. The initial population is seeded with heuristically
obtained permutations. The researchers use one point order crossover which
respects precedence constraints. A controlled swap mutation operator swaps
two nodes that are interchangeable with respect to the precedence constraints.
Kwok and Ahmad (1997) try to schedule arbitrary task graphs onto multipro-
cessors, where the task graphs represent parallel programs. They also use

2.2. Literature review 29

topological ordering type of representation in their genetic algorithm. The
nodes of the graph are topologically ordered in the chromosome, and they
are assigned to the processors to minimise the overall execution time of the
program. Again, single point order crossover and controlled swap mutation are
employed.
Ge (1999) addresses a similar problem, namely multiprocessor scheduling of
graphs representing data-flow programs. The researcher employs a systematic
approach to generate feasible permutations of nodes. The chromosome is a
compound of sub-strings. Using the precedence diagram, the distance of each
node z from source s is computed by taking only edge distance into account.
Nodes with the same distance value are grouped in the same cluster. In the
chromosome representation, nodes (jobs) within the same cluster are sequenced
randomly and clusters are concatenated starting from the one with the smallest
distance value.
Another compound type of representation scheme employed for problems
involves priority listings for tasks. Cavory et al. (2004) consider the cyclic job
shop scheduling problem with linear precedence constraints. The chromosome
representation of the GA approach is a compound of distinct sub-chromosomes,
each one related to a machine. Each sub-chromosome indicates a preference
list, corresponding to an order of priority for the processing of the tasks on this
machine. Crossover is partially-mapped crossover. Mutation is a simple swap
operator that exchanges two alleles of a sub-chromosome.
Gonçalves et al. (2005) present a hybrid genetic algorithm for a job shop
scheduling problem. The chromosome representation of the problem is based
on random keys. It includes 2n genes where n is the number of operations.
The first n genes give operation priorities. The second set includes factors to
be used in the computation of delay times for the operations. Parameterized
uniform crossovers are employed. As the mutation operator, one or more new
members of the population are randomly generated from the same distribution
as the original population.
Ghedjati (1999) also uses priority information in the chromosome structure,
this time in a two-dimensional representation scheme. The paper addresses
job-shop scheduling problems with several unrelated parallel machines and

30 CHAPTER 2. THE HYBRID FLEXIBLE FLOW LINE PROBLEM

precedence constraints between the operations of the jobs (with either linear or
non-linear process routings). A chromosome consists of two parts. The first
part contains indices of priority rules to be used for operation assignment, the
second part indices corresponding to one of the seven heuristics for machine
assignment. One point crossover and swap mutation are used as the operators.
Similarly, Wang et al. (1997) also use a chromosome structure consisting of
two parts in their application to the matching and scheduling of interdependent
subtasks of an application task in a heterogenous computing environment.
The matching string represents the subtask-to-machine assignments, and the
scheduling string gives the execution ordering of the subtasks assigned to the
same machine.
Representation schemes other than task orderings and priority listings are also
used although not as often. Nossal (1998), for example, presents a genetic
algorithm for multiprocessor scheduling of dependent, periodic tasks. In this
application, the scheduling problem is encoded by deriving execution intervals
for the tasks, which determine the temporal boundaries for the execution points
in time. The genetic algorithm selects the actual start time for each task from
within the corresponding interval. The scheduler builds and then assesses the
associated schedule with regard to the fulfillment of the deadlines of the tasks
and the inter-task relations.

CHAPTER 3
MATHEMATICAL MODEL

3.1. Introduction

The classic solution to solve combinatorial problems, is to define a math-
ematical model in order to obtain optimal solutions. This is especially suited
for small or relatively easy problems, since large and complex problems cannot
be solved this way, due to time and memory limits. In this chapter we present
a mixed integer programming (MIP) formulation for the hybrid flexible flow
line problem introduced in Chapter 2. The MIP model is tested against a
comprehensive benchmark and the results evaluated by advanced statistical
tools that make use of decision trees. The results allow us to identify the
constraints that increase the difficulty.
There are several well-known branch-and-bound approaches developed for the
relatively easier problem of hybrid flow shop scheduling, for example Brah
and Hunsucker (1991); Rajendran and Chaudhuri (1992); Santos et al. (1995).
Although, to the best of our knowledge, there is not any branch-and-bound
approach developed for the hybrid flexible flow line problem with the same or
similar characteristics as considered here yet, some researchers provide MIP
formulations for simpler problems. Sawik (2000) presents MIP formulations for

31

32 CHAPTER 3. MATHEMATICAL MODEL

scheduling of a flexible flow line with blocking. The machines are assumed to
be identical. The basic MIP formulation is enhanced to model reentrant shops,
where jobs visit a set of stages more than once, and to incorporate alternative
processing routes for jobs. Kurz and Askin (2003) consider a hybrid flexible
flow line environment with identical parallel machines and non-anticipatory
sequence-dependent setup times. Their objective is to minimize the makespan.
They provide a MIP formulation for the problem and propose some lower
bounds. In the survey on exact methods for the hybrid flowshop, Kis and Pesch
(2005) stress the progress of those methods, due to the development of new
tight lower bounds. However, the addition of restrictions such as sequence
dependent setup times make lower bounds such as the one recently proposed by
Haouari and Hidri (2008) inapplicable for the case considered here.

3.2. The MIP model formulation

In the following, we provide a MIP formulation for the HFFL problem
defined in Chapter 2. We first need some additional notation in order to simplify
the exposition of the model:

Gi is the set of jobs that visit stage i, (Gi ⊆ N and Gi = {j|i ∈ Fj}),

Gil ⊆ Gi is the set of jobs that can be processed on machine l inside
stage i, i.e., Gil = {j|i ∈ Fj ∧ l ∈ Eij},

Sk gives the complete and unchained set of successors of job k, i.e.,
Sk = {j|k ∈ Pj}

FSk (LSk) is the first (last) stage that job k visits.

The model involves the following decision variables:

Xiljk =

{
1, if job j precedes job k on machine l at stage i
0, otherwise

Cij = Completion time of job j at stage i
Cmax = Maximum completion time

3.2. The MIP model formulation 33

The objective function is:
minCmax (3.1)

And the constraints are:∑
j∈{Gi,0}
j 6=k,j /∈Sk

∑
l∈Eij∩Eik

Xiljk = 1, k ∈ N, i ∈ Fk (3.2)

∑
j∈Gi

j 6=k,j /∈Pk

∑
l∈Eij∩Eik

Xilkj ≤ 1, k ∈ N, i ∈ Fk (3.3)

∑
h∈{Gil,0}
h6=k,h6=j
h/∈Sj

Xilhj ≥ Xiljk, j, k ∈ N, j 6= k, j /∈ Sk,

i ∈ Fj ∩ Fk, l ∈ Eij ∩ Eik
(3.4)

∑
l∈Eij∩Eik

(Xiljk +Xilkj) ≤ 1, j ∈ N, k = j + 1, . . . , n, j 6= k,

j /∈ Pk, k /∈ Pj , i ∈ Fj ∩ Fk
(3.5)

∑
k∈Gil

Xil0k ≤ 1, i ∈M, l ∈Mi (3.6)

Ci0 = 0, i ∈M (3.7)

Cik + V (1−Xiljk) ≥ max
{

max
p∈Pk

CLSp,p, rmil, Cij +Ailjk · Siljk
}

+(1−Ailjk) · Siljk + pilk,

k ∈ N, i = FSk, l ∈ Eik, j ∈ {Gil, 0}, j 6= k, j /∈ Sk
(3.8)

Cik + V (1−Xiljk) ≥ max
{
Ci−1,k+∑

h∈{Gi−1,0}
h6=k,h/∈Sk

∑
l′∈Ei−1,h∩Ei−1,k

(
lagi−1,l′,k ·Xi−1,l′,h,k

)
,

rmil, Cij +Ailjk · Siljk
}

+ (1−Ailjk) · Siljk + pilk,

k ∈ N, i ∈ {Fk \ FSk}, l ∈ Eik, j ∈ {Gil, 0}, j 6= k, j /∈ Sk

(3.9)

Cmax ≥ CLSj ,j , j ∈ N (3.10)

34 CHAPTER 3. MATHEMATICAL MODEL

Xiljk ∈ {0, 1}
j ∈ {N, 0}, k ∈ N, j 6= k, k /∈ Pj , i ∈ Fj ∩ Fk, l ∈ Eij ∩ Eik

(3.11)

Cij ≥ 0, j ∈ N, i ∈ Fj (3.12)

The set of constraints (3.2) assures that every job should be preceded by exactly
one job on only one machine at each stage. Here only the possible variables
are considered. Note that for every stage and machine we introduce a dummy
job 0, which precedes the first job at each machine. This also allows for the
consideration of initial setup times. Constraint set (3.3) is similar in the way
that every job should have at most one successor. Constraint set (3.4) forces
that if a job is processed on a given machine at a stage, then it should have a
predecessor on the same machine. This is a way of forcing that assignments
are consistent in the machines. Constraint set (3.5) avoids the occurrence of
cross-precedences. Note again that only the possible alternatives are considered.
With constraint set (3.6) we enforce that dummy job 0 can only be predecessor
of at most one job on each machine at each stage. Constraint set (3.7) simply
ensures that dummy job 0 is completed at time 0 in all stages. Constraint set
(3.8) controls the completion time of jobs at the first stage they start processing
by considering all eligible machines. The value V represents a big number
so to make the constraint redundant if the assignment variable is zero. Notice
that precedence relationships are considered by accounting for the completion
of all the predecessors of a given job. Note also that both types of sequence
dependent setup times (anticipatory and non-anticipatory) are also taken into
account. Constraint set (3.9) gives the completion time on subsequent stages.
Here the completion time of the same job in the previous stage along with the
lag time is considered. Constraint set (3.10) defines the maximum completion
time. Finally, (3.11) and (3.12) define just the decision variables.

3.3. Computational Evaluation

We define a complete set of instances to test the MIP model and to
investigate the effect of realistic considerations on problem difficulty. Due
to the complexity of the problem and the number of different characteristics

3.3. Computational Evaluation 35

considered, a total of 10 factors are combined at the levels given in Table 3.1
below.

Factor Symbol Values

Number of jobs n 5, 7, 9, 11, 13, 15
Number of stages m 2, 3
Number of unrelated parallel machines per stage mi 1, 3
Distribution of the release dates for the machines rmil 0, U [1, 200]

Probability for a job to skip a stage PFj 0%, 50%
Probability for a machine to be eligible PEij 50%, 100%
Distribution of the setup times as a percentage

of the processing times
DSiljk U [25, 74], U [75, 125]

Probability for the setup time to be anticipatory PAiljk U [0, 50]%, U [50, 100]%

Distribution of the lag times Dlagilj U [1, 99], U [−99, 99]
Number of directly preceding jobs NPj 0, U [1, 3]

Table 3.1: Factors considered in the design of the initial
test bed.

The number of directly preceding jobs needs some further explanation.
It is the number of “direct” predecessors, i.e., predecessors that are directly
connected in the predecessor graph, without intermediate job. If we consider
job 1 to be a predecessor of job 2 and job a predecessor of job 3, then job 1
is an indirect predecessor of job 3. In an example instance of 15 jobs and a
U [1, 3] distribution for the number of directly preceding jobs, the total number
of predecessor relationships (both direct and indirect) is 35. The highest number
of predecessors for one job is six in the same instance.
The distribution of the processing times is fixed to U [1, 99]. The total number
of combinations is 6 · 29 =3,072. There are three replicates per combination,
so in total there are 9,216 instances. It is important to remark that when
generating the instances all restrictions affecting the data (see Chapter 2 for
details) were considered. For example, every job must visit at least one stage
and at least one machine on every visited stage must be eligible (and thus the
factors PFj and PEij must be controlled). Additionally, special care must be
given to the generation of the precedences among jobs. We will use this set
of instances to test the MIP model. A subset of the instances is available at

36 CHAPTER 3. MATHEMATICAL MODEL

http://soa.iti.es/problem-instances.

3.3.1. MIP model evaluation

For every problem instance, a file containing the model in .LP-format
is constructed and then solved with CPLEX 9.1 on a Pentium IV 3.2 GHz
computer with 1 Gbyte of RAM memory. It could be argued that an ad-
hoc branch and bound algorithm would perform better than the best regarded
commercial solver available. However, we refrained from developing such a
method mainly due to the fact that obtaining a tight lower bound for the HFFL
problem considered is a very daunting task. As a matter of fact, considering
only the sequence-dependent setup times already defeats most possible lower
bounds since the amount of setups depends on the sequence. Using commercial
solvers for flowshop problems with setups has been pursued in the literature.
For example, Stafford and Tseng (2002) solved instances of up to 9 jobs and 9
machines for a F/Sijk/Cmax problem with LINDO commercial solver. The
authors needed about 6,622 and 300 seconds CPU time in a Pentium III 800
Mhz computer for each one of the two models they proposed, respectively.
According to the review and evaluation of heuristics for the same problem in
Ruiz et al. (2005), most exact methods proposed for the F/Sijk/Cmax problem
are very limited and the bounds proposed not tight. For all the above reasons, it
seems plausible that an efficient solver using linear relaxations of variables as
bounds would perform reasonably well.
Due to the large number of instances, we impose a time limit for every model
of 300 seconds. For each model, we record a categorical variable called “type
of outcome” with three possible values 0, 1 and 2. Outcome 0 means that
an optimal solution was found, in which case we record the time needed and
the optimal Cmax value. Outcome 1 means that the 300 seconds time limit
was reached and a feasible integer solution was found. In this case we record
the solution found and the gap between this solution and the best MIP bound.
Lastly, the outcome value 2 indicates that no feasible integer solution could be
found within the time limit.
Table 3.2 shows the results for all the controlled factors in the case of n = 7,
m = 3, mi = 3 and rmil = U [1, 200]. Each cell gives the average of the 3

3.3. Computational Evaluation 37

replicates. In the table, the percentage of instances for which an optimal solution
can be found within the time limit (%Opt) and the average time needed to reach
this optimal solution (Av time) are displayed. The percentage of instances for
which an integer feasible solution is found within the time limit (%Limit) is
also displayed in the table. The percentage of instances for which no solution
could be found (type of outcome 2) can be easily obtained by subtracting these
two percentages from 100 (i.e., 100−%Opt−%Limit) but there are none in this
case.

PAiljk U [0, 50]% U [50, 100]%

Dlagilj U [1, 99] U [−99, 99] U [1, 99] U [−99, 99]

PFj PEij DSiljk NPj 0 U [1, 3] 0 U [1, 3] 0 U [1, 3] 0 U [1, 3]

0% 50% U [25, 74] %Opt 66.67 66.67 66.67 100 0 66.67 33.33 100
Av time 48.64 33.56 169.77 71.79 0 117.49 27.47 83.72
% Limit 33.33 33.33 33.33 0 100 33.33 66.67 0

U [75, 125] %Opt 66.67 100 33.33 100 66.67 100 33.33 100
Av time 69.32 28.01 41.36 5.06 80.17 45.37 57.58 60.7
% Limit 33.33 0 66.67 0 33.33 0 66.67 0

100% U [25, 74] %Opt 0 0 0 0 0 0 0 0
Av time 0 0 0 0 0 0 0 0
% Limit 100 100 100 100 100 100 100 100

U [75, 125] %Opt 0 0 0 0 0 0 0 0
Av time 0 0 0 0 0 0 0 0
% Limit 100 100 100 100 100 100 100 100

50% 50% U [25, 74] %Opt 100 100 100 100 100 100 100 100
Av time 2.03 0.06 9 0.2 0.04 0.04 0.74 0.31
% Limit 0 0 0 0 0 0 0 0

U [75, 125] %Opt 100 100 100 100 100 100 100 100
Av time 0.07 0.04 0.21 0.5 0.23 0.08 0.13 0.16
% Limit 0 0 0 0 0 0 0 0

100% U [25, 74] %Opt 100 33.33 100 100 100 66.67 66.67 100
Av time 4.27 100.83 0.78 74.54 67.9 8 0.31 4.86
% Limit 0 66.67 0 0 0 33.33 33.33 0

U [75, 125] %Opt 100 100 66.67 66.67 100 100 100 100
Av time 14.81 5.87 103.05 2.22 80.78 87.48 9.43 21.7
% Limit 0 0 33.33 33.33 0 0 0 0

Table 3.2: MIP model results for n = 7, m = 3, mi = 3
and rmil = U [1, 200] with a CPU time limit of 300

seconds.

From Table 3.2, it follows for the combination n = 7, m = 3, mi = 3 and
rmil = U [1, 200] that when all stages are visited (PFj = 0%) the models are

38 CHAPTER 3. MATHEMATICAL MODEL

more difficult to solve. The same applies to the case when all machines inside a
stage are eligible (PEij=100%). The combinationPFj = 0% andPEij=100%,
i.e., every stage is visited and every machine is eligible, is especially difficult: In
no instance an optimal solution could be found within the time limit, regardless
of other parameter values. These results confirm what is expected, with more
stages and more eligible machines, more feasible solutions and therefore more
time is needed for obtaining the optimal solution. As regards the MIP model,
the factors that affect the distribution of the data in the instance (rmil, DSiljk,
PAiljk and Dlagilj) do not seem to have a clear significant effect on the
difficulty. The aggregated results for all the values of n, m, mi and averaged
over the other parameters are shown in Table 3.3. As it has been pointed out,
the total number of variables and constraints depends on many factors and
ultimately, on all the data in a given instance. We show the average number of
variables and constraints for the MIP models in Table 3.3 as well.
It can be observed in Table 3.3 that the previous findings are confirmed:
increasing n, m and mi results in harder problems. However, there is an
interesting result. Increasing the number of unrelated parallel machines mi for
the larger values of n (13 and 15) seems to have a positive impact, although
small, on the percentage of instances with integer optimal solutions. For
example, for n = 15, m = 2 and mi = 1 we find that only 0.26% of the
instances end up with optimal solutions but formi = 3 this percentage increases
up to 8.85%. Initially this result might seem counter-intuitive since with more
unrelated parallel machines per stage more variables are needed in the model.
The explanation to this behaviour comes from the fact that n is, by far, the most
influential factor. With n = 15 the number of variables is very large. Having
more unrelated parallel machines at each stage means that the assignment
of jobs to machines at each stage becomes more important. With only one
machine per stage there is no assignment and solutions are solely influenced by
the permutation of the jobs. In other words, more unrelated parallel machines
per stage helps lessening the sheer effect of the number of jobs on the difficulty
of the instances.

We can say that the overall performance of the proposed MIP model, given

3.3. Computational Evaluation 39

m 2 3

n mi 1 3 1 3

5 %Opt 100.00 100.00 100.00 83.07
Av Time 0.30 1.47 11.03 20.63
%Limit 0.00 0.00 0.00 16.93

Variables 34.22 65.49 48.29 93.21
Constraints 121.68 225.27 172.15 322.00

7 %Opt 79.17 77.60 74.48 63.54
Av Time 11.78 17.78 8.93 34.67
%Limit 20.83 22.40 25.52 36.46

Variables 61.21 126.46 83.79 177.46
Constraints 227.64 473.41 313.89 660.57

9 %Opt 53.39 59.38 46.35 39.06
Av Time 30.42 42.73 29.31 33.35
%Limit 46.61 40.62 37.24 58.85

Variables 109.70 213.54 153.79 294.41
Constraints 430.13 832.98 598.00 1136.39

11 %Opt 32.29 29.95 22.92 24.22
Av Time 56.30 31.26 49.36 53.68
%Limit 50.00 69.01 51.04 62.24

Variables 168.55 319.74 236.46 444.31
Constraints 682.27 1274.33 946.11 1755.09

13 %Opt 8.07 17.45 5.73 12.76
Av Time 63.94 48.88 113.05 53.07
%Limit 67.45 71.87 65.63 65.10

Variables 236.02 445.58 330.86 444.31
Constraints 975.39 1802.58 1352.49 1755.09

15 %Opt 0.26 8.85 0.78 3.12
Av Time 81.00 83.13 43.59 92.85
%Limit 72.40 71.61 63.80 70.31

Variables 315.40 598.59 441.51 840.52
Constraints 1319.54 2426.40 1828.30 3386.19

Table 3.3: Aggregated MIP model results for a CPU time
limit of 300 seconds.

its complexity and number of variables, is good. In Table 3.3 we have that
the most complex case is given by n = 15, m = 3 and mi = 3, and only
3.12% of the problems could be solved to optimality and in another 70.31%
of the cases a feasible integer solution was obtained before the time limit was
reached. Therefore in 26.57% of the problems no solution could be found. As
shown, in this case the average number of variables and constraints is more

40 CHAPTER 3. MATHEMATICAL MODEL

than 840 and 3386 respectively. The average gap between the feasible integer
solutions and the best bounds found by CPLEX is 71.48% which is deemed as
large. However, we are only allowing for a total of 300 seconds of CPU time
per instance, which, given the complexity of the problem to be solved, is quite
short.

3.3.2. MIP model statistical analysis

Most valuable statistical tools suited for analysing the effect of the 10
considered factors on the performance of the MIP model are nullified by the
fact that the response variable considered (type of outcome) is categorical.
Under this circumstance, ANOVA technique, for example, cannot be applied.
Non-parametric statistical tests like the well known Kuskal-Wallis or Wilcoxon
signed-rank tests that can take categorical response variables are also not
suitable. Since, with these tools, the choices are limited to mostly paired tests
and with 10 factors and all the possible interactions not too much information
could be obtained. Therefore, we propose the application of an advanced
technique called Automatic Interaction Detection (AID).

AID recursively bisects experimental data according to one factor into
mutually exclusive and exhaustive sets that describe the response variable in the
best possible and statistically significant way. AID works on an interval scaled
or purely categorical response variable and maximises the sum of squares
between groups by means of a given statistic. The original AID technique
was proposed by Morgan and Sonquist (1963). Kass (1980) developed an
improved version called Chi-squared Automatic Interaction Detection (CHAID)
by including statistical significance testing in the partition process and by
allowing multi-way splits of the data. Later, Biggs et al. (1991) further improved
CHAID method and created what is known as Exhaustive CHAID algorithm that
does a more thorough job when examining all possible partitions for each factor.
These techniques are of common use in the fields of Education, Population
Studies, Market Research as well as many others. We use Exhaustive CHAID
for analysing our experimental data. The method starts with all data classified
into a first (root) node. Then, all factors are considered for splitting the node

3.3. Computational Evaluation 41

and the best multi-way split according to the levels of each factor is calculated.
To this end, a statistical significance test is carried out so to rank the factors on
how well they split the node. A Chi-squared (χ2) test is used for categorical
factors. After the node has been split, the same procedure is applied to all
sub-nodes until no more significant partitions can be found or until a given
stopping criterion is met. Usually, a classification or decision tree is obtained
as a result of the application of the method. The resulting tree enables a careful
study of the effect of the different factors, and what is more important, the
interactions between them.

We use SPSS DecisionTree 3.0 software which implements Exhaustive
CHAID algorithms. All 10 factors as well as the response variable are deemed
as categorical (nominal). We choose a minimum number of cases (data) for each
node before splitting of 192. Nodes with fewer cases are not split. Furthermore,
if splitting a parent node results in a child node with less than 96 cases, the node
will not be split. These values are chosen after a close examination of initial
test trees and to avoid splits in the trees on the basis of small data samples.
Furthermore, the values 192 and 96 ensure that we still have a large number
of cases per parent and child nodes. We set a confidence level for splitting of
99.9% and a Bonferroni adjustment for multi-way splits that compensates the
statistical bias in multi-way paired tests. The first three levels of the resulting
tree are shown in Figure 3.1.

42 CHAPTER 3. MATHEMATICAL MODEL

n

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
4
3
6
3

.6
0

5 m

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
6
7

.8
7

3
2

%
n

0
4
3

.4
4

4
0
0
3

1
4
5

.2
5

4
1
7
0

2
1
1

.3
2

1
0
4
3

T
o
ta

l
(1

0
0

.0
0

)
9
2
1
6

N
o
d
e

0

C
at

eg
o
ry

%
n

0
9
5
.7

7
1
4
7
1

1
4
.2

3
6
5

2
0
.0

0
0

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

1

C
at

eg
o
ry

%
n

0
1
0
0
.0

0
7
6
8

1
0

.0
0

0

2
0

.0
0

0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

7

C
at

eg
o
ry

%
n

0
9
1

.5
4

7
0
3

1
8

.4
6

6
5

2
0
.0

0
0

T
o
ta

l
(8

.3
3
)

7
6
8

N
o
d
e

8

C
at

eg
o
ry

1
1

9
7

P
F

j

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
6
7
0
.0

4

5
0
%

0
%

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
9
4
4
.6

5

5
0

%
0
%

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
4
9
0

.1
1

5
0
%

0
%

P
F

j
P

F
j

%
n

0
7
3
.7

0
1
1
3
2

1
2
6

.3
0

4
0
4

2
0
.0

0
0

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

2

C
at

eg
o
ry

%
n

0
4
9
.5

4
7
6
1

1
4
5
.8

3
7
0
4

2
4
.6

2
7
1

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

3

C
at

eg
o
ry

%
n

0
2
7

.3
4

4
2
0

1
5
8

.0
7

8
9
2

2
1
4

.5
8

2
2
4

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

4

C
at

eg
o
ry

%
n

0
4
8

.8
3

3
7
5

1
5
1

.1
7

3
9
3

2
0

.0
0

0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

9

C
at

eg
o
ry

%
n

0
1
0

.4
2

8
0

1
8
0

.3
4

6
1
7

2
9

.2
4

7
1

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
1

C
at

eg
o
ry

%
n

0
9
8

.5
7

7
5
7

1
1
.4

3
1
1

2
0
.0

0
0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
0

C
at

eg
o
ry

%
n

0
8
8
.6

7
6
8
1

1
1
1
.3

3
8
7

2
0
.0

0
0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
2

C
at

eg
o
ry

%
n

0
0
.1

3
1

1
7
1

.2
2

5
4
7

2
2
8
.6

5
2
2
0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
3

C
at

eg
o
ry

%
n

0
5
4
.5

6
4
1
9

1
4
4
.9

2
3
4
5

2
0
.5

2
4

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
4

C
at

eg
o
ry

1
5

1
3

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
5
7
8

.8
0

U
[1

,3
]

0

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
4
6
1
.3

6

N
P

j

%
n

0
1
1
.0

0
1
6
9

1
6
7
.5

1
1
0
3
7

2
2
1
.4

8
3
3
0

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

5

C
at

eg
o
ry

%
n

0
3

.2
6

5
0

1
6
9

.5
3

1
0
6
8

2
2
7
.2

1
4
1
8

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

C
at

eg
o
ry

%
n

0
8
.9

8
6
9

1
9
1
.0

2
6
9
9

2
0
.0

0
0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
5

C
at

eg
o
ry

%
n

0
3
.5

2
2
7

1
9
6

.4
8

7
4
1

2
0
.0

0
0

T
o
ta

l
(8

.3
3
)

7
6
8

N
o
d
e

1
7

C
at

eg
o
ry

%
n

0
1
3
.0

2
1
0
0

1
4
4

.0
1

3
3
8

2
4
2

.9
7

3
3
0

T
o
ta

l
(8

.3
3
)

7
6
8

N
o
d
e

1
6

C
at

eg
o
ry

%
n

0
2

.9
9

2
3

1
4
2
.5

8
3
2
7

2
5
4
.4

3
4
1
8

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
8

C
at

eg
o
ry

N
o
d
e

6

U
[1

,3
]

0

N
P

j

Fi
gu

re
3.

1:
D

ec
is

io
n

tr
ee

w
ith

th
e

fir
st

th
re

e
le

ve
ls

sh
ow

n
in

de
ta

il,
tim

e
lim

it=
30

0
se

co
nd

s.

3.3. Computational Evaluation 43

In Figure 3.1, the root node contains all data of the experiment and at that
level, the most significant factor is the number of jobs or n. Therefore, the next
level is composed of one node for every possible value of n. Moreover, this
split is done with a very high level of confidence since the p-value is very close
to 0 and the result of the χ2 statistic is very high, i.e., n is the most influential
factor on the response variable with a statistically significant effect. Within the
resulting six nodes, as the value of n increases the number of cases for which
no solution is found increases. In Node 6, where n = 15, few instances were
solved to optimality.
After this first multi-way split, each node is split in two according to different
factors. For n = 5, m is the most influential factor whereas for 5 ≤ n ≤ 11

the factor PFj (probability for a job j to skip a stage) is more important. As it
has been mentioned, a 0% probability for a stage to be skipped results in more
difficult instances for all the values of n. Surprisingly, for n = 13 and 15 the
factor NPj (Number of preceding jobs for job j) is the most discriminating.
In the child nodes of nodes 5 and 6, there is an interesting observation. For
the instances where there are no precedence relations (nodes 15 and 17 with
NPj = 0) either an optimal solution or an integer feasible solution is found
within the time limit of 300 seconds. In nodes 16 and 18 with NPj = U [1, 3],
about half of the instances remain unsolved. This outcome is again counter-
intuitive and a careful analysis is needed. While adding predecessors results in
fewer variables since a job cannot be scheduled before one of its predecessors,
it greatly complicates some of the constraints of the model, more precisely,
constraint set (3.8). This affects the branch and bound algorithm used by
CPLEX and results in instances being more difficult to solve. For reasons of
space the full tree cannot be shown in detail. Instead we have constructed a
simplified tree shown in Figure 3.2.

44 CHAPTER 3. MATHEMATICAL MODEL

n

m

5

-2

mi
3

384/0/0,-1

319/65/0,PFj3
127/65/0,PEij0%

96/0/0,-50%

31/65/0,-100%
192/0/0,-50%

PFj

7

NPj0%

93/291/0,PEij0

81/111/0,mi50%

9/87/0,-1

72/24/0,-3

12/180/0,m100%
12/84/0,-2

0/96/0,-3

282/102/0,miU [1, 3]
190/2/0,-1

92/100/0,PEij3
87/9/0,-50%

5/91/0,-100%

m50%
384/0/0,-2

373/11/0,mi3
192/0/0,-1

181/11/0,PEij3
96/0/0,-50%

85/11/0,-100%

PFj

9

m
0%

76/308/0,PEij2

69/123/0,mi50%
13/83/0,-1

56/40/0,-3
7/185/0,-100%

4/309/71,NPj
3

0/192/0,-0

4/117/71,miU [1, 3]

4/29/63,-1

0/88/8,-3

PEij
50%

371/13/0,mi50%

180/12/0,NPj1

85/11/0,-0

95/1/0,-U [1, 3]
191/1/0,-3

310/74/0,mi100%

179/13/0,NPj1

83/13/0,-0

96/0/0,-U [1, 3]

131/61/0,m3
76/20/0,-2

55/41/0,-3

PFj

11

NPj

0%

0/384/0,-0

1/163/220,miU [1, 3]

0/28/164,m
1

0/28/68,-2

0/0/96,-3

1/135/56,m3
1/91/4,-2

0/44/52,-3

PEij
50%

283/100/1,mi
50%

108/83/1,NPj1

37/59/0,-0

71/24/1,-U [1, 3]

175/17/0,m3
93/3/0,-2

82/14/0,-3

136/245/3,mi
100% 104/85/3,NPj1

33/63/0,-0

71/22/3,-U [1, 3]
32/160/0,-3

NPj

13

PFj0
0/384/0,-0

69/315/0,PEij50%
57/135/0,mi50%

11/85/0,-1

46/50/0,-3
12/180/0,-100%

PFjU [1, 3]

0/70/314,-0

100/268/16,PEij50%
78/105/9,mi50%

15/72/9,-1

63/33/0,-3
22/163/7,-100%

NPj

15

PFj0

0/384/0,-0

27/357/0,PEij50%
26/166/0,mi50%

2/94/0,-1

24/72/0,-3
1/191/0,-100%

PFjU [1, 3]

0/21/363,m
0%

0/21/171,-2

0/0/192,-3

23/306/55,mi50%

1/142/49,m
1

0/87/9,-2

1/55/40,-3

22/164/6,PEij
3

22/74/0,-50%

0/90/6,-100%

Figure 3.2: Full simplified decision tree, time limit=300
seconds.

3.3. Computational Evaluation 45

In this tree we omit the values of the three types of outcome from the first
three levels, since they can be seen in Figure 3.1. From the fourth level until the
last significant level we show at the edges the factors according to which parent
node is split into child nodes. At a given node we show the absolute values of
the three types of outcome. Also shown is the factor that results in further child
node division or “-” if no further statistically significant divisions are found or
if the stopping criterion for branching is met.
As can be seen, apart from the already mentioned factors n, m and PFj , there
are other factors which determine differences on the three levels of the response
variable. These are mi, NPj and PEij (Probability for a machine in stage i to
be eligible for job j). It is interesting that all other factors which affect mainly
the distributions of setup times, anticipatory setups, lags and release dates for
machines do not appear to be significant. Although not shown here, extending
the previous tree by allowing parent and children nodes to have any number of
data results in very little variations. Therefore, the proposed MIP model does
not seem to be affected by the factors rmil, DSiljk, PAiljk or Dlagilj .

As it has been mentioned before, the average gap obtained for the type of
outcome 1 is more than 70% which makes us think that allowing for more time
would not change the results significantly. In order to test this hypothesis, we
ran all the experiments once more with the only difference that the allowed
CPU time was increased from 300 to 900 seconds. The aggregated results for
all the values of n, m and mi are shown in Table 3.4.
It can be observed that in all situations the percentage of instances with optimal

solutions (%Opt) increases. However, this increase is rather small especially
if we consider that the maximum allowed CPU time has tripled. For n = 15,
m = 3 andmi = 3 we see that the percentage of optimal solutions has increased
from 3.12 to 5.21 and the average time from 92.85 to 261.60 seconds. The total
CPU time necessary for solving all instances with 900 seconds stopping time
has been 1,294 hours (almost 54 days). Allowing for more CPU time seems to
have a small effect on the number of optimal solutions obtained. Carrying out
the exhaustive CHAID analysis yields the tree depicted in Figure 3.3 (only the
first three levels shown).

46 CHAPTER 3. MATHEMATICAL MODEL

m 2 3

n mi 1 3 1 3

5 %Opt 100.00 100.00 100.00 90.36
Av Time 0.32 2.06 10.47 73.14
%Limit 0.00 0.00 0.00 9.64

7 %Opt 83.85 85.16 75.26 69.27
Av Time 60.58 99.33 18.31 75.81
%Limit 16.15 14.84 24.74 30.73

9 %Opt 60.16 65.36 48.44 41.41
Av Time 124.30 89.95 51.38 65.79
%Limit 39.84 34.64 38.54 58.33

11 %Opt 35.68 34.11 28.91 26.56
Av Time 106.81 125.49 140.87 124.99
%Limit 51.56 65.89 45.31 61.98

13 %Opt 14.06 20.31 8.85 16.93
Av Time 254.17 146.95 230.03 209.46
%Limit 61.98 73.44 63.54 61.46

15 %Opt 1.82 12.24 1.56 5.21
Av Time 492.76 176.77 246.60 261.60
%Limit 71.61 72.40 67.45 69.79

Table 3.4: Aggregated MIP model results for a CPU time
limit of 900 seconds.

3.3. Computational Evaluation 47

n

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
4
2
7
0

.5
4

5 m

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
3
7

.9
1

3
2

%
n

0
4
6

.9
0

4
3
2
2

1
4
3

.0
8

3
9
7
0

2
1
0

.0
3

9
2
4

T
o
ta

l
(1

0
0

.0
0

)
9
2
1
6

N
o
d
e

0

C
at

eg
o
ry

%
n

0
9
7
.5

9
1
4
9
9

1
2
.4

1
3
7

2
0
.0

0
0

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

1

C
at

eg
o
ry

%
n

0
1
0
0
.0

0
7
6
8

1
0

.0
0

0

2
0

.0
0

0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

7

C
at

eg
o
ry

%
n

0
9
5

.1
8

7
3
1

1
4

.8
2

3
7

2
0
.0

0
0

T
o
ta

l
(8

.3
3
)

7
6
8

N
o
d
e

8

C
at

eg
o
ry

1
1

9
7

P
F

j

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
7
4
6
.0

4

5
0
%

0
%

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
9
3
5
.0

3

5
0

%
0
%

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
3
9
8

.4
2

5
0
%

0
%

P
F

j
P

F
j

%
n

0
7
8
.3

9
1
2
0
4

1
2
1

.6
1

3
3
2

2
0
.0

0
0

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

2

C
at

eg
o
ry

%
n

0
5
3
.8

4
8
2
7

1
4
2
.8

4
6
5
8

2
3
.3

2
5
1

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

3

C
at

eg
o
ry

%
n

0
3
1

.3
2

4
8
1

1
5
6

.1
8

8
6
3

2
1
2

.5
0

1
9
2

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

4

C
at

eg
o
ry

%
n

0
5
7

.4
2

4
4
1

1
4
2

.5
8

3
2
7

2
0

.0
0

0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

9

C
at

eg
o
ry

%
n

0
1
4

.9
7

1
1
5

1
7
8

.3
9

6
0
2

2
6

.6
4

5
1

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
1

C
at

eg
o
ry

%
n

0
9
9

.3
5

7
6
3

1
0
.6

5
5

2
0
.0

0
0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
0

C
at

eg
o
ry

%
n

0
9
2
.7

1
7
1
2

1
7
.2

9
5
6

2
0
.0

0
0

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
2

C
at

eg
o
ry

%
n

0
0
.3

9
3

1
7
5

.0
0

5
7
6

2
2
4
.6

1
1
8
9

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
3

C
at

eg
o
ry

%
n

0
6
2
.2

4
4
7
8

1
3
7
.3

7

2
0
.3

9
3

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
4

C
at

eg
o
ry

1
5

1
3

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
5
0
5

.5
6

U
[1

,3
]

0

A
d
j.

 P
-v

al
u
e=

0
.0

0
,
χ2

=
4
9
6
.2

9

5
0
%

0
%

N
P

j
P

F
j

%
n

0
1
5
.0

4
2
3
1

1
6
5
.1

0
1
0
0
0

2
1
9
.8

6
3
0
5

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

N
o
d
e

5

C
at

eg
o
ry

%
n

0
5

.2
1

8
0

1
7
0

.3
1

1
0
8
0

2
2
4
.4

8
3
7
6

T
o
ta

l
(1

6
.6

7
)

1
5
3
6

C
at

eg
o
ry

%
n

0
0
.0

0
0

1
6
1
.7

2
4
7
4

2
3
8
.2

8
2
9
4

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
5

C
at

eg
o
ry

%
n

0
5
.3

4
4
1

1
9
4

.6
6

7
2
7

2
0
.0

0
0

T
o
ta

l
(8

.3
3
)

7
6
8

N
o
d
e

1
7

C
at

eg
o
ry

%
n

0
3
0
.0

8
2
3
1

1
6
8

.4
9

5
2
6

2
1

.4
3

1
1

T
o
ta

l
(8

.3
3
)

7
6
8

N
o
d
e

1
6

C
at

eg
o
ry

%
n

0
5

.0
8

3
9

1
4
5
.9

6
3
5
3

2
4
8
.9

6
3
7
6

T
o
ta

l
(8

.3
3

)
7
6
8

N
o
d
e

1
8

C
at

eg
o
ry

N
o
d
e

6

2
8
7

Fi
gu

re
3.

3:
D

ec
is

io
n

tr
ee

w
ith

th
e

fir
st

th
re

e
le

ve
ls

sh
ow

n
in

de
ta

il,
tim

e
lim

it=
90

0
se

co
nd

s.

48 CHAPTER 3. MATHEMATICAL MODEL

The two trees of Figures 3.1 and 3.3 have little differences as regards the
most influential factors. As expected, the number of optimal solutions and
integer solutions (types of outcome 1 and 2) increase in general in Figure 3.3,
while the number of cases for which no solutions are found decreases. At
the root node 46.90% of instances are solved to optimality (from the original
43.44% obtained with 300 seconds maximum CPU time), and the percentage
of unsolved instances has decreased from 11.32 to 10.03. One interesting test
that we can carry out is to see if this observed 3.46% of additional instances
that are solved to optimality when 900 seconds of CPU time are allowed
is statistically significant. Since the two sets of results represent dependent
samples, we have carried out a McNemar (1947) test on paired proportions.
The results of this test are sound. There is a statistically significant difference
between the percentages of instances solved to optimality when increasing
the CPU time with a χ2 value of 313.08 and a p-value close to 0. The 95%
confidence interval of the percentage increase on solutions solved to optimality
is [3.35, 3.50]%. Although there is a statistically significant difference, this
is really small. Obtaining a maximum of 3.50% additional instances solved
to optimality does not compensate the tripled CPU time. The full simplified
tree for the later case in which 15 minutes CPU time are allowed is given in
Figure 3.4.
As can be seen in Figure 3.4, there are fewer levels in the full simplified tree.

This is also an expected outcome since the factors that had a weak effect in
the case with 300 seconds maximum CPU time are nullified when more CPU
time is allowed, i.e., only the main factors n, m, mi, PFj , NPj and PEij are
statistically affecting the difficulty of the MIP model instances.

3.4. Conclusions

In this chapter we have shown a complete formulation as well as a mixed
integer programming mathematical model for the hybrid flexible flowshop
problem defined in Chapter 2. This model allows for the consideration of
realistic scheduling environments. In order to clearly identify the effect of each
considered characteristic on the proposed mathematical model, we have solved

3.4. Conclusions 49

a comprehensive benchmark and carried out an extensive statistical analysis
by means of decision trees. This tool, to the best of our knowledge, has not
been applied to the analysis of MIP model performance before. The analysis
has allowed us to identify some interesting and counter-intuitive interactions
between the many different characteristics of the realistic problem considered.
The results establish a sound basis for further analyses of such a complex
problem and for the development of heuristics and/or metaheuristics, which are
needed to solve larger sized problems in tolerable times. Although considering
instances of up to 15 jobs is not practically relevant, our aim here is not to solve
practically sized problems using MIP models and CPLEX, but to investigate
the effect of the realistic characteristics included in the model on the problem
difficulty. The research in this chapter has lead to the publication of Ruiz et al.
(2008).

50 CHAPTER 3. MATHEMATICAL MODEL

n

m

5

-2

mi3

384/0/0,-
1

347/37/0,-3

PFj

7

NPj0%

139/245/0,-
0

302/82/0,-U [1, 3]

-50%

PFj

9

m
0%

111/273/0,-
2

4/329/51,-3

PEij
50%

376/8/0,-50%

336/48/0,-100%

PFj11

NPj0%

0/384/0,-
0

3/192/189,-U [1, 3]

PEij
50%

307/76/1,-50%

171/211/2,-100%

PFj

13

NPj0%

0/384/0,-
0

0/90/294,-U [1, 3]

PEij
50%

177/200/7,-50%

54/326/4,-100%

NPj

15

PFj
0

0/384/0,-
0

41/343/0,-50%

PFjU [1, 3]

0/39/345,-0%

39/314/31,-50%

Figure 3.4: Full simplified decision tree, time limit=900
seconds.

CHAPTER 4
HEURISTICS

4.1. Introduction

A first effort on solving the presented HFFL problem consists in the mixed
integer programming (MIP) model presented in Chapter 3. The model achieves
optimal solutions, but only for a limited problem size. In a set of 9216 instances
with 5 ≤ n ≤ 15, only 4,003 are solved to optimality within a five minutes limit.
The CPLEX 9.1 solver found a feasible solution without optimality guarantee
in 4,170 cases. For the remaining 1,043 instances, not even a feasible solution
was obtained within 5 minutes. For n = 15 the respective numbers of cases
are 50, 1,068 and 418 out of 1,536 instances. In Figure 4.1 one can see that
allowing CPLEX to run three times more time results in little changes in the
number of instances solved to optimality.

51

52 CHAPTER 4. HEURISTICS

4003 4322

4170 3970

1043 924

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 minutes 15 minutes

Infeasible

Feasible

Optimal

Figure 4.1: Number of problem instances solved by
CPLEX within 5 and 15 minutes, respectively.

In practice, the number of jobs tends to be much higher than 15; depending
on the sector and on the size of the company, schedules of about 100 jobs are
much more common. Besides, CPU times of 15 minutes or more are very
inconvenient as time pressure causes the necessity of almost instant schedules.
Heuristic methods are a solution to both complications; they use to be both
faster and able to manage huge instance sizes.
In order to test, compare and analyse the heuristics, we use a different
benchmark of large instances. The data set is based on six factors with
a two levels for each factor. Four other factors have fixed values, since
it is shown in Chapter 3 that those factors do not have a significant in-
fluence on the hardness of the instances. The levels we use for the data
set are given in Table 4.1. For each factor combination, there are three
instances, resulting in a total of 192 instances. These instances are available at
http://soa.iti.es/problem-instances. Note again that the total
number of predecessors can be higher than the number of direct predecessors.
In an example instance of 100 jobs and a U [1, 5] distribution for NPj , the
total number of predecessor relationships is 320 and the maximum number of

4.2. Machine assignment rules 53

predecessors for one job 26.

Factor Symbol Values

Number of jobs n 50, 100
Number of stages m 4, 8
Number of unrelated parallel machines per stage mi 2, 4
Distribution of the release dates for the machines rmil U [1, 200]

Probability for a job to skip a stage PFj 0%, 50%
Probability for a machine to be eligible PEij 50%, 100%
Distribution of the setup times as a percentage

of the processing times
DSiljk U [75, 125]

Probability for the setup time to be anticipatory PAiljk U [50, 100]%

Distribution of the lag times Dlagilj U [−99, 99]
Number of directly preceding jobs NPj 0, U [1, 5]

Table 4.1: Factors and levels used in the benchmark.

4.2. Machine assignment rules

As has been discussed in Chapter 2, Subsection 2.2.3, there are many
possible solution presentations for the HFFL problem. Representations as
simple as job permutations are possible, as well as complex job-machine
multiple arrays or even schemes with the starting time for each task. This
allows for both semi-active and non semi-active schedules, where a schedule
is defined as semi-active by Pinedo (2008) if no task can be completed earlier
without changing the processing order on any of the machines. If the objective
function includes earliness, the optimal solution can be a non semi-active
schedule. However, for the makespan objective, each non semi-active schedule
is dominated by a semi-active schedule with the same machine assignments
and the same job order. The solution space is much smaller with a permutation
representation. However, only a simple job permutation does not suffice. Given
a certain job permutation, jobs have to be assigned to an eligible machine at
each stage. Therefore, we implemented some existing and some new machine
assignment rules.
Given a certain job permutation, decisions have to be taken on the machine

54 CHAPTER 4. HEURISTICS

assignments at each stage. For those decisions nine machine assignment rules
have been developed. One of the rules is applied to all the stages a job visits
before starting the assignments of the next job in the permutation. All rules
calculate a value for each eligible machine using static information on the
problem instance and dynamic information on the partial schedule established
so far. The machine with the minimal value is chosen.
To describe the machine assignment rules some additional notation needs to be
defined. The machine assigned to job j at stage i is denoted by Tij or by l in
brief. The previous job that was processed at machine l is denoted by k(l). Let
stage i− 1 be the last stage visited by job j before stage i, stage i+ 1 the next
stage to be visited, and stages FSj and LSj the first and last stages job j visits,
respectively. Let furthermore Ai,l,k(l),j = Si,l,k(l),j = 0 for i /∈ Fj or i ∈ Fj
but l /∈ Eij and Ai,l,k(l),j = Si,l,k(l),j = Ci,k(l) = 0 when no preceding job k(l)

exists. Completion times for job j at all visited stages can now be calculated
with the following expressions:

CFSj ,j = max{rmFSj ,l; max
p∈Pj

CLSp,p;CFSj ,k(l) +AFSj ,l,k(l),j · SFSj ,l,k(l),j}

+(1−AFSj ,l,k(l),j) · SFSj ,l,k(l),j + pFSj ,l,j , j ∈ N
(4.1)

Cij = max{rmil;Ci,k(l) +Ai,l,k(l),j · Si,l,k(l),j ;Ci−1,j + lagi−1,Ti−1,j ,j}
+(1−Ai,l,k(l),j) · Si,l,k(l),j + pilj , j ∈ N, i > FSj

(4.2)
The calculations should be made job-by-job to obtain the completion times of
all tasks. For each job, the completion time for the first stage is calculated with
Equation (4.1), considering availability of the machine, completion times of the
predecessors, setup and its own processing time. For the other stages Equation
(4.2) is applied, considering availability of the machine, availability of the job
(including lag), setup and its processing time.
If job j is assigned to machine l inside stage i, the time at which machine l
completes job j is denoted as Lilj . Following our notation, Lilj = Cij given
Tij = l. Furthermore, we refer to the job visiting stage i after job j as job q and
to an eligible machine at the next stage for job j as l′ ∈ Ei+1,j .
Suppose now that we are scheduling job j in stage i, i ∈ Fj . We have to

4.2. Machine assignment rules 55

consider all machines l ∈ Eij for assignment. The proposed assignment rules
are the following:

4.2.1. Rules based on current job, current stage

1. First Available Machine (FAM): Assigns the job to the first available
eligible machine. This is the machine with the minimum liberation time
from its last scheduled job, or lowest release date if no job is scheduled
at the machine yet, i.e. Tij = l such that min

l∈Eij

{max(Lilk; rmil)}.

2. Earliest Starting Time (EST): Chooses the machine that is able to start job
j at the earliest time. Therefore we also have to take the availability of
the job and setup times into account. The decision value can be described
as follows:
min
l∈Eij

{max{rmil;Lilk +Ailkj ·Silkj ; max
h∈Pj

CLShh}+ (1−Ailkj) ·Silkj}

if i = FSj , else
min
l∈Eij

{max{rmil;Lilk+AilkjSilkj ;Ci−1,j+lagi−1,l′,j}+(1−Ailkj)Silkj}.

3. Earliest Completion Time (ECT): Takes the eligible machine capable
of completing job j at the earliest possible time. Thus the difference
with the previous rule is that this rule includes processing times. Job j
is assigned to machine l such that min

l∈Eij

Lilj . We refer to Equations 4.1

and 4.2 for the calculation of this value.

4. Earliest Preparation Next Stage (EPNS): The machine able to prepare the
job at the earliest time for the next stage to be visited is chosen. Therefore
time lags between the current and the next stage are taken into account by
assigning job j to machine l with min

l∈Eij

{Lilj+lagilj}. The rule uses more

information about the continuation of the job, without directly focusing
on the machines in the next stage. If i = LSj this rule reduces to ECT.

56 CHAPTER 4. HEURISTICS

4.2.2. Look-ahead rules

The rules proposed in Subsection 4.2.1 only use information on the current
job and the machines in the current stage. The number of cases that has to be
compared is therefore |Eij | in rules 1 to 4. By making assumptions on future
decisions, or simply by using averages, we can also use information on jobs yet
to schedule and/or machines in later stages. Rules taking into account this type
of information are usually called look-ahead rules. The complexity of those
rules is generally higher.

5. Earliest Completion Next Stage (ECNS): The availability of machines in
the next stage to be visited and the corresponding processing times are
considered as well, since we assign job j to the machine in stage i that
can make the job be finished earliest in the next visited stage i+ 1. Note
that we are assigning only to stage i. Formally, the decision value for ma-
chine l at stage i, can be written as: min

l∈Eij ,l′∈Ei+1,j

{Li+1,l′,j |Tij = l} =

min
l′∈Mi+1

(max{rmi+1,l′ ;Ci+1,k(l′) + Ai+1,l′,k(l′),j · Si+1,l′,k(l′),j ;Lilj +

lagilj}+(1−Ai+1,l′,k(l′),j) ·Si+1,l′,k(l′),j +pi+1,l′,j). The consideration
of the machines in the next stage implies a somewhat longer calculation.
The completion time has to be evaluated for each combination of one
machine at stage i and one machine at stage i+ 1. This means a total of
|Eij | · |Ei+1,j | completion time evaluations. The rule reduces to ECT if
no single minimum is found, or if i = LSj .

6. Forbidden Machine (FM): Excludes machine l∗ that is able to finish job q
earliest. ECT is applied to the remaining eligible machines for job j.
While the foregoing rules are greedy, worse results might be expected for
later jobs. This rule is supposed to obtain better results for later jobs, as it
reserves the machine able to finish the next job earliest. Mathematically,
we choose machine l considering min

l∈Eij

{Lilj − |l − l∗| · I} where I is a

high positive number and l∗ given by min
l∗∈Eiq

{Li,l∗,f + Si,l∗,f,q + pi,l∗,q},

job f being the last job scheduled at l∗. The number of calculations that
has to be made in order to apply this rule is |Eiq|+ |Eij | − 1 if l∗ ∈ Eij
and |Eiq|+ |Eij | otherwise. Note that job j is assigned to machine l∗ if

4.2. Machine assignment rules 57

this is the only eligible machine. ECT is applied if j ∈ Pq as job j has to
be finished as early as possible in this case, or if job j is the last job at
stage i.

7. Next Job Same Machine (NJSM): The assumption is made that job q is
assigned to the same machine as job j. Assigned machine Tij is chosen
such that job q is finished earliest. So machine l is chosen by optimising
min
l∈Eij

Lilj + Siljq + pilq. Note that only job j is assigned. The rule is

especially useful if setups are relatively large, as the foregoing rules do
not take the setup between job j and job q into account. The number of
cases to be compared is |Eij |, just like in the non look-ahead rules. The
difference is that each calculation requires a constant additional amount
of time. Reduces to ECT if job j is the last at this stage.

8. Sum Completion Times (SCT): Completion times of job j and job q are
calculated for all eligible machine combinations at stage i. The number
of combinations is |Eij | · |Eiq|. Machine l is chosen such that the sum
of both completion times is the smallest: min

l∈Eij ,l∗∈Eiq

{Lilj + Li,l∗,q}.

Similar to NJSM, but without the assumption that job q is assigned to the
same machine. Reduces to ECT if job j is the last at stage i.

9. Anticipatory Based (AB): Concentrates on possibilities for future antic-
ipatory setups. Non-anticipatory setups might cause important delays.
Therefore this rule tries to avoid this type of setups. Anticipation factor
AFl =

∑
h∈H

Ailjh · Siljh/|Eih| expresses the expected advantage caused

by the anticipatory setups, H being the set of jobs sequenced after
job j. The factor is subtracted from the EPNS value and the result
min
l∈Eij

{Lilj + lagilj −AFl} gives the machine l to which to assign job j.

The complexity of the calculation is in O(n ·mi). Reduces to EPNS if
job j is the last job at this stage.

Especially for the first five assignment rules, the growing amount of information
used represents a tradeoff between the probability on good schedules on the
one hand, and valuable computation time on the other hand. The remaining

58 CHAPTER 4. HEURISTICS

four rules are designed for alternative assignments, concentrating on drawbacks
of the earlier rules. These rules are original and exploit specific information
of this problem. Since the problem is very complex, more complex machine
assignment rules are needed than mostly used in the literature.
In the following pages, all machine assignment rules are applied to example
instance 2, starting from the same job permutation. As a result, nine different
makespan values are obtained. Table 4.2 gives the processing times and the
time lags for example instance 2 and Table 4.3 gives the anticipatory and non
anticipatory setup times. In example instance 2 no stages are skipped and all
machines are eligible for all jobs. No precedence relationships among jobs
exist in this example. The machine release dates are 149, 85 and 188 for the
machines in stage 1, 127, 55 and 160 for the machines in stage 2, and 184, 104
and 180 for the machines in the third stage.

Stage 1 2 3
Machine 1 2 3 4 5 6 7 8 9

Job
1 70(25) 89(-54) 77(-12) 79(95) 98(-3) 54(71) 67 3 48
2 59(-7) 81(-33) 79(93) 41(19) 52(-20) 84(49) 23 23 71
3 47(43) 14(-14) 27(56) 76(38) 67(89) 76(73) 92 71 6
4 18(39) 24(80) 92(-32) 93(-9) 63(59) 54(96) 90 48 53
5 70(-1) 16(11) 83(3) 32(-13) 95(42) 95(-13) 24 13 37

Table 4.2: Example instance 2. Processing times of each
job on each eligible machine. In brackets the time lag (if

applicable).

4.2. Machine assignment rules 59

Stage Machine Job 1 2 3 4 5

1 1 1 - 92(0) 119(1) 82(1) 104(0)
2 83(1) - 79(1) 86(1) 102(1)
3 122(1) 79(0) - 100(0) 101(1)
4 123(1) 120(1) 92(1) - 85(1)
5 100(1) 124(0) 85(1) 87(1) -

2 1 - 102(1) 123(1) 86(1) 121(0)
2 78(1) - 108(0) 89(0) 85(1)
3 112(1) 84(0) - 95(0) 86(0)
4 92(1) 76(0) 76(1) - 120(0)
5 105(0) 93(1) 122(1) 91(0) -

3 1 - 75(1) 87(0) 100(0) 109(0)
2 114(1) - 78(1) 109(1) 77(0)
3 93(1) 113(1) - 75(0) 112(0)
4 119(1) 92(1) 91(1) - 82(1)
5 87(1) 125(0) 85(1) 125(1) -

2 1 1 - 93(1) 116(0) 83(0) 101(0)
2 87(1) - 104(1) 83(0) 82(0)
3 114(0) 102(1) - 121(0) 100(0)
4 88(0) 75(0) 83(1) - 117(1)
5 78(1) 81(1) 125(1) 90(1) -

2 1 - 97(0) 79(0) 92(0) 109(0)
2 96(1) - 115(0) 123(1) 91(0)
3 86(0) 112(0) - 80(1) 102(1)
4 95(0) 104(1) 104(0) - 113(0)
5 124(1) 100(1) 95(1) 119(0) -

3 1 - 85(0) 101(1) 109(0) 80(1)
2 107(0) - 99(1) 116(1) 123(1)
3 103(0) 77(1) - 123(0) 119(0)
4 76(0) 76(1) 95(0) - 92(0)
5 102(0) 83(1) 95(0) 79(1) -

3 1 1 - 80(0) 115(0) 95(1) 93(1)
2 78(0) - 82(0) 115(1) 86(0)
3 113(1) 96(1) - 114(1) 106(0)
4 100(1) 108(1) 113(0) - 122(0)
5 121(1) 121(1) 98(1) 101(0) -

2 1 - 101(0) 109(1) 112(1) 120(0)
2 117(0) - 90(0) 103(1) 78(1)
3 103(0) 114(0) - 118(1) 118(1)
4 117(1) 85(1) 86(1) - 98(1)
5 86(0) 77(0) 98(0) 98(1) -

3 1 - 86(1) 108(0) 101(1) 121(1)
2 89(0) - 108(0) 101(0) 99(0)
3 110(0) 107(0) - 117(1) 102(0)
4 119(0) 113(0) 122(0) - 117(1)
5 117(1) 86(0) 94(0) 81(1) -

Table 4.3: Example instance 2. Setup times between pairs
of jobs at each machine. A “1” in brackets indicates that

setup times are anticipatory, a “0” that they are not.

60 CHAPTER 4. HEURISTICS

Time

Machine 4

Machine 5

Machine 6

Machine 7

1 4Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

353

366

180

127

359

315

160

24855

408

218

324

457

104 215 462

239

Machine 9

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3

2

297

188

85 174

149 196

276

5

5

4

184 480

218 510

485

Previous work

367

357

280

466498

120 340 403

587 624

330

Figure 4.2: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 1. Makespan

value: 624.

4.2. Machine assignment rules 61

Time

Machine 4

Machine 5

Machine 6

Machine 7

3

1 4Stage 2

Stage 3 Machine 8

3

1

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

353

366

180

127

424

315

160

36455

444

218

360

564

104

215 578

239

Machine 9

Machine 1

Machine 2

Machine 3

1 4Stage 1

3

2

297

188

85 174

149 196

260

5

5

4

184

493

282 668

Previous work

367

284

267

466498

120 456 519

542 555

377

Figure 4.3: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 2. Makespan

value: 668.

62 CHAPTER 4. HEURISTICS

Time

Machine 4

Machine 5

Machine 6

Machine 7

1

4

Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

395

360

180

127

401

299

160

30655

418

239

364

420

104 301 316

206

Machine 9

Machine 1

Machine 2

Machine 3

1 4Stage 1

3

2

297

188

85 174

149 196

260

5

5

4

184 443

304 514

631

Previous work

367

284

267

401

503408

545 655

562

Figure 4.4: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 3. Makespan

value: 655.

4.2. Machine assignment rules 63

Time

Machine 4

Machine 5

Machine 6

Machine 7

1

4

Stage 2

Stage 3 Machine 8

3

1

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

353

366

180

127

359

315

160 248

55 473218

302

453

104 215 462

239

Machine 9

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3

2

297

188

85 174

149 196

276

5

5

4

184 476

218 544398

Previous work

367

357

280

466498

120 324 421

557330

Figure 4.5: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 4. Makespan

value: 557.

64 CHAPTER 4. HEURISTICS

Time

Machine 4

Machine 5

Machine 6

Machine 7

1

4

Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

330

458

180

127

559

315

160

417

55

418

218

364

359

104 215

645

239

Machine 9

Machine 1

Machine 2

Machine 3

1 4Stage 1

3

2

297

188

85 174

149 196

260

5

5

4

184

353

477 669

Previous work

367

284

267

540 572

120 456 519

514 562

500

Figure 4.6: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 5. Makespan

value: 669.

4.2. Machine assignment rules 65

Time

Machine 4

Machine 5

Machine 6

Machine 7 3

1 4

Stage 2

Stage 3 Machine 8

3

1

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

262

449

180

127

591

347

160

55

513244 459

580

104 249

609

271

Machine 9

Machine 1

Machine 2

Machine 3 4

Stage 1

2

311

188

85101

149 219

215

5

5

4

184

509

477 699

Previous work

370

382290

407

490

112

298

207

369 503

385

1

3

417

Figure 4.7: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 6. Makespan

value: 699.

66 CHAPTER 4. HEURISTICS

Time

Machine 4

Machine 5

Machine 6

Machine 7

1

4Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

400

360

180

127

288

322160

401

55

417

239

214

395

104 285

543

294

Machine 9

Machine 1

Machine 2

Machine 3

1Stage 1

3

2

296

188

85 174

149 196

311

5

5

4

184

506

420

404

Previous work

314

295

267

306 449386

508 556

443

4

401

Figure 4.8: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 7. Makespan

value: 556.

4.2. Machine assignment rules 67

Time

Machine 4

Machine 5

Machine 6

Machine 7

1

4

Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

395

368

180

127

401

299

160

30655

418

239

364

387

104 301 316

206

Machine 9

Machine 1

Machine 2

Machine 3

1 4Stage 1

3

275

188

85 174

149 196

260

5

5

4

184 410

304 514

579

Previous work

334

284

271

450 482327

555469

562

2

Figure 4.9: Gantt of solution obtained applying job permu-
tation (1,3,2,4,5) and machine assignment rule 8. Makespan

value: 579.

68 CHAPTER 4. HEURISTICS

Time

Machine 4

Machine 5

Machine 6

Machine 7

1 4Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

100 300 400 600200 500

353

322

180

127

359

315

160

24855

411

218

327

460

104 215 462

239

Machine 9

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3 2

275

188

85 174

149 196

295

5

5

4

184 483

218 510

441

Previous work

334

311

280

454422

120 340 403

580543

330

Figure 4.10: Gantt of solution obtained applying job
permutation (1,3,2,4,5) and machine assignment rule 9.

Makespan value: 580.

4.3. Solution representations

Since the hybrid flowshop problem has multiple dimensions, different
solution representations are possible. Several possibilities that can be found in
literature are given in Subsection 2.2.3. The choice of the representation is of
crucial importance for the results obtained by heuristics or metaheuristics. One
should take into account the tradeoff: A too verbose representation results in an

4.3. Solution representations 69

inefficient algorithm and a too compact representation might exclude important
solutions. In order to illustrate this second point, we use example instance 3 in
this section. The instance consists in five jobs that have to be processed at three
stages, where each stage has three parallel unrelated machines. It is a special
case of the considered problem, while all release dates are assumed to be zero,
no stages are skipped, all machines are eligible and no precedence relationships
exist. Table 8.1 gives the processing times and the time lags and Table 4.5 gives
the anticipatory and non anticipatory setup times.

In the remaining of this section, four distinct solution representations are

Stage 1 2 3
Machine 1 2 3 4 5 6 7 8 9

Job
1 18(29) 62(-24) 23(67) 61(3) 36(70) 24(60) 90 13 86
2 65(92) 29(-18) 98(61) 76(61) 37(18) 18(-2) 82 93 17
3 6(45) 53(-28) 39(-28) 28(-28) 30(82) 78(66) 70 58 52
4 56(-22) 69(-31) 34(-31) 81(38) 95(-37) 31(68) 47 48 71
5 25(-22) 38(96) 57(37) 22(-2) 99(9) 68(5) 14 2 15

Table 4.4: Example instance 3. Processing times of each
job on each eligible machine. In brackets the time lag (if

applicable).

considered in detail.

4.3.1. Permutation with a single rule for machine assignment

The most compact representation consists of a job sequence and the machine
assignment rule used for all jobs. This can be seen in Figure 4.11, where SA, the
best possible solution with this representation, is represented. The makespan for
SA is 191, as can be seen in the Gantt diagram in Figure 4.12. The chromosome
size is n + 1 and the number of possible solutions is n! · r, where r is the
number of machine assignment rules. In Figure 4.13 is shown how the number
of chromosomes grows for increasing n, given that r = 9. Note that some
chromosomes might represent the same solution, as distinct rules might lead
to the same choice of machine assignments. Additionally, permutations can
be infeasible because of the precedence constraints. In case of one precedence

70 CHAPTER 4. HEURISTICS

Stage Machine Job 1 2 3 4 5

1 1 1 - 38(0) 34(0) 32(0) 71(1)
2 42(1) - 51(1) 65(0) 65(0)
3 63(0) 47(0) - 72(1) 25(0)
4 39(1) 39(0) 29(0) - 26(1)
5 37(0) 70(1) 59(0) 30(0) -

2 1 - 33(1) 45(1) 35(0) 72(1)
2 36(1) - 40(1) 68(0) 49(1)
3 45(0) 60(0) - 26(1) 40(1)
4 42(1) 45(0) 50(0) - 59(0)
5 32(1) 56(0) 67(0) 71(0) -

3 1 - 66(0) 70(1) 27(1) 30(1)
2 73(0) - 40(1) 54(1) 25(0)
3 27(1) 27(1) - 26(1) 61(0)
4 28(0) 32(1) 49(0) - 58(1)
5 62(1) 58(1) 60(1) 58(0) -

2 1 1 - 55(0) 69(1) 46(1) 39(1)
2 34(0) - 72(0) 42(1) 73(0)
3 53(0) 44(0) - 37(0) 29(0)
4 70(1) 50(0) 45(1) - 47(1)
5 59(0) 69(0) 32(0) 60(1) -

2 1 - 57(0) 43(1) 51(0) 53(1)
2 69(0) - 63(0) 64(1) 70(0)
3 54(1) 34(1) - 36(0) 39(1)
4 73(0) 73(0) 34(1) - 36(0)
5 74(1) 36(0) 58(1) 34(0) -

3 1 - 52(0) 73(0) 54(1) 61(0)
2 29(1) - 67(1) 69(1) 46(0)
3 43(1) 38(1) - 67(0) 25(0)
4 38(0) 49(0) 33(0) - 70(0)
5 74(0) 50(0) 26(0) 68(1) -

3 1 1 - 52(0) 43(1) 25(0) 47(1)
2 55(1) - 25(0) 46(1) 49(1)
3 52(1) 54(0) - 71(0) 28(0)
4 43(1) 31(1) 59(1) - 41(1)
5 49(1) 69(0) 36(1) 36(1) -

2 1 - 68(1) 66(0) 50(0) 37(0)
2 62(0) - 70(0) 45(1) 40(1)
3 29(1) 35(0) - 45(0) 61(0)
4 53(1) 32(0) 49(0) - 71(0)
5 50(1) 37(0) 27(1) 74(0) -

3 1 - 35(1) 36(1) 26(0) 50(1)
2 57(1) - 39(0) 53(0) 40(0)
3 39(1) 25(1) - 31(1) 66(0)
4 64(0) 30(1) 56(1) - 44(1)
5 49(0) 28(0) 32(1) 56(1) -

Table 4.5: Example instance 3. Setup times between pairs
of jobs at each machine. A “1” in brackets indicates that

setup times are anticipatory, a “0” that they are not.

relationship, the number of feasible chromosomes is half of the total number of
chromosomes. This is only a quarter if two precedence constraints exist between
four distinct jobs, and one third if one job has two precedence relationships.

4.3. Solution representations 71

Note that not all possible solutions are reachable with this representation. For
example, the solution given in Figure 2.5 is not reachable since the jobs do not
visit the machines in the same order (non-permutation solutions).

Job permutation

1 3 4 254

Assignment rule

Figure 4.11: Permutation with single machine assignment
rule.

Time

Machine 4

Machine 5

Machine 6

Machine 7

3

1

4Stage 2

Stage 3 Machine 8

3

1

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

25 75 100 150 17550 125

134

3

57

25

174

85

68 163

6238 106 158 176

23 25 122

57

Machine 9

109

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3

2

25

39

62 95

65 99

124

5

5

4

126 173

75 135

191

Figure 4.12: Gantt of solution SA.

72 CHAPTER 4. HEURISTICS

6 8 10 12 14

0
.0

e+
0

0
2
.0

e+
1

2
4
.0

e+
1

2
6
.0

e+
1

2
8
.0

e+
1

2
1

.0
e+

1
3

1
.2

e+
1

3

n

N
u

m
b

er
 o

f
so

lu
ti

o
n

s

Figure 4.13: Number of possible solutions for different
numbers of jobs; permutation with a single rule for machine

assignment. r = 9.

4.3. Solution representations 73

Number of jobs Number of solutions

5 1,080
7 45,360
9 3,265,920

11 359,251,200
13 56,043,187,200
15 1.17691E+13

Table 4.6: Number of possible solutions for a permutation
with a single rule for machine assignment. r = 9.

4.3.2. Permutation with a machine assignment rule for each job

Allowing independent machine assignment rules for every job in the
sequence yields a more flexible representation. More machine assignment
combinations are possible and as a result more good solutions can be repre-
sented. The best solution for the example problem instance of this section is
solution SB , shown in Figures 4.14 and 4.15. The makespan of this solution
has a value of 185 and is indeed better than any solution with a single machine
assignment rule. This chromosome structure has a size of 2 · n and leads to
n! · rn different chromosomes.

Job permutation 4 1 3 52

Assignment rules 5 3 5 43

Figure 4.14: Permutation with a machine assignment rule
for each job.

74 CHAPTER 4. HEURISTICS

Time

Machine 4

Machine 5

Machine 6

Machine 7

3

1

4Stage 2

Stage 3 Machine 8

3

1

5

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

25 75 100 150 17550 125

94

94

27

122

133

151

3 98

11 29 58 82

185

142

150

173

Machine 9

44

Machine 1

Machine 2

Machine 3

1

4

Stage 1 32

18

34

69 122

89

29

114

5

5

4

61 109

155

171

185

Figure 4.15: Gantt of solution SB .

In Figure 4.16, the number of possible chromosomes is shown for an
increasing number of jobs, given that r is nine.

4.3. Solution representations 75

6 8 10 12 14

0
.0

e+
0

0
5
.0

e+
2

5
1
.0

e+
2

6
1
.5

e+
2

6
2
.0

e+
2

6
2
.5

e+
2

6

n

N
u

m
b

er
 o

f
so

lu
ti

o
n

s

Figure 4.16: Number of possible solutions for different
numbers of jobs; permutation with a machine assignment

rule for each job. r = 9.

Number of jobs Number of solutions

5 7,085,880
7 24,106,163,760
9 1.40587E+14

11 1.25263E+18
13 1.58283E+22
15 2.69239E+26

Table 4.7: Number of possible solutions for a permutation
with a machine assignment rule for each job. r = 9.

76 CHAPTER 4. HEURISTICS

4.3.3. Permutation with the machine assignments for each job

In both foregoing representations, machine assignment rules take the
decisions which machine to use for which job. Instead of taking these decisions
with the help of a rule, the algorithm itself can also work on the assignments. By
incorporating the machine assignments in the representation, the job-machine
combinations can be optimised by the algorithm. This means that there are,
apart from the job sequence, n arrays giving machine assignments associated
with m stages respectively. The best solution for this representation of size
(1 +m)n, solution SC , is demonstrated in Figures 4.17 and 4.18. In the latter
we can see that makespan has decreased to a value of 183 with the increase
of representation directness. It is easy to verify that the number of possible
solutions is n! ·

∏
j∈N

∏
i∈Fj
|Eij |. The increase of the number solutions for

increasing instance size is shown graphically in Figure 4.19. Note that the
number of stages is irrelevant when each stage contains only one machine.

Job permutation 3 2 4 51

1

Machine assignments

1323

4 66 5 4

Stage 1

Stage 2

8 89 Stage 39 7

Figure 4.17: Permutation with all machine assignments in
the representation.

4.3. Solution representations 77

Time

Machine 4

Machine 5

Machine 6

Machine 7

3

1

4Stage 2

Stage 3 Machine 8

3

1

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

25 75 100 150 17550 125

88

11

11

39

139

92

68 163

7147 123 141

183181

121

Machine 9

63

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3

2

18

39

89

29

65 99

114

5

5

4

126 173

144131

156

143

Figure 4.18: Gantt of solution SC .

78 CHAPTER 4. HEURISTICS

6 8 10 12 14

0
.0

e+
0

0
4

.0
e+

1
1

8
.0

e+
1

1
1
.2

e+
1

2

n

N
u

m
b

er
 o

f
so

lu
ti

o
n

s

m = 3

mi = 3

m = 2

mi = 3
mi = 1

Figure 4.19: Number of possible solutions for different
instance sizes; permutation with the machine assignments

for each job.

4.3. Solution representations 79

m mi n Number of solutions

- 1 5 120
7 5,040
9 362,880
11 39,916,800
13 6,227,020,800
15 1.30767E+12

2 3 5 7,085,880
7 24,106,163,760
9 1.40587E+14
11 1.25263E+18
13 1.58283E+22
15 2.69239E+26

3 3 5 1,721,868,840
7 5.27202E+13
9 2.76718E+18
11 2.219E+23
13 2.52353E+28
15 3.86328E+33

Table 4.8: Number of possible solutions for a permutation
with the machine assignments for each job.

4.3.4. Ordered list of tasks for each machine

A representation is called direct if each chromosome corresponds to a
solution and vice versa. In the case of the HFFL also non-permutation solutions
should be taken into account. This can be achieved with a list of tasks in
processing order for each machine. The size of this representation is equal to
the number of tasks, which is equal to

∑
j∈N |Fj |. In Figures 4.20 and 4.21,

SD, the best solution for the complete solution representation is shown. By
definition, this solution is the optimal solution for this problem instance. As
can be observed, the makespan of 182 is lower than all previous makespans for
this problem instance.
Note that there is no reason to delay any tasks, so all tasks are started at the

earliest possible moment, given by Equations (4.1) and (4.2) in Chapter 4.2.

80 CHAPTER 4. HEURISTICS

53

MachineStage Jobs

1 1

5

2

2

3

4

3

4

1

5

1

3

2

6

2

4

8

7 4

2

15

9 3

Figure 4.20: Ordered lists of tasks to process for each
machine.

If the objective would have been earliness-tardiness or something similar, the
start times of all tasks would have mattered and a direct representation would
request this information within the representation.
The number of possible solutions is equal to the number of possible solutions
for the HFFL problem, without considering precedence constraints and machine
eligibility. To derive the number of solutions we first concentrate a moment on
the problem of non-identical parallel machines, which is actually a HFFL with
only one stage. Let m be the number of parallel machines and let the variable
kl ≤ n be the number of jobs assigned to machine l. We denote the solution
space of the (sub-)problem with m machines Φm. Let’s analyse the solution
space for some small values of m:

card(Φ1) = n! (4.3)

4.3. Solution representations 81

Time

Machine 4

Machine 5

Machine 6

Machine 7

3

14

Stage 2

Stage 3 Machine 8

3

1

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1

25 75 100 150 17550 125

140

116

88

34

165

88

38

124

3 34

106

10076

54 56 160

56

Machine 9

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3

2

6

34

62 95

31 56

124

5

5

4

102 150

106 173

182

Figure 4.21: Gantt of solution SD.

For one machine (Equation 4.3) the solution space is straightforward, since only
one permutation is involved.

card(Φ2) =

n∑
k1=0

(
(nk1)k1!(n− k1)!

)
=

n∑
k1=0

(n!

k1!(n− k1)!
k1!(n− k1)!

)
=

n∑
k1=0

n! = n!
n∑

k1=0

1 =

n!(n+ 1)

(4.4)

The expression (nk1) in Equation 4.4 gives the number of possible combinations
to assign k1 jobs in machine 1 and n − k1 jobs in machine 2. One should

82 CHAPTER 4. HEURISTICS

multiply by k1! to take into account the order of the jobs in machine 1 and by
(n− k1)! for the order in machine 2. The sum over k1 from 0 to n gives the full
amount of possibilities, since any number of jobs in this range can be assigned
to machine 1.
The simplification can also be explained intuitively. Any permutation, cut in two
parts in any position, can be used as a solution. The first part of the permutation
(length 0 to n) is processed in the given order by machine 1, the second part in
the given order by machine 2.
If we add a third machine, then we can divide the jobs previously assigned
to machine 2 among the machines 2 and 3. There are (n−k1k2

) ways to divide
the jobs among these machines, for a given k2. One has to sum over the
possible k2’s. For the number of permutations, we have to substitute the
permutations in machine 2, (n− k1)!, by the permutations in the machines 2
and 3: (k2)!(n− k1 − k2)!. This leads to Equation 4.5:

card(Φ3) =

n∑
k1=0

(
(nk1)k1!

n−k1∑
k2=0

(
(n−k1k2

)k2!(n− k1 − k2)!
))

=

n∑
k1=0

(n−k1∑
k2=0

(
(nk1)k1!(

n−k1
k2

)k2!(n− k1 − k2)!
))

=

n∑
k1=0

(n−k1∑
k2=0

(n!

k1!(n− k1)!
k1!

(n− k1)!
k2!(n− k1 − k2)!

k2!(n− k1 − k2)!
))

=

n∑
k1=0

n−k1∑
k2=0

n! = n!

n∑
k1=0

n−k1∑
k2=0

1 =

n!(n+ 1)(n+ 2)/2
(4.5)

This gives a good indication what the formula for m machines should look
like. The number of possible solutions is given in Theorem 4.1, where we
define the sum of zero elements to be zero (i.e.

∑0
a=1 ka = 0):

Theorem 4.1. (Parallel machines)

4.3. Solution representations 83

card(φm) = n!
n∑

k1=0

n−k1∑
k2=0

· · ·
n−

∑m−2
a=1 ka∑

km−1=0

1

Proof by induction: For m = 1, no sum is involved, such that Theorem 4.1
coincides with Equation 4.3. It is easy to verify with Equations 4.4 and 4.5
respectively that Theorem 4.1 holds for 2 and 3 machines as well.
Let us now assume that Theorem 4.1 is true for m machines. If we add
one machine, then we can divide the jobs assigned to machine m among the
machines m and m + 1. We can cut at any position of any job sequence on
machine m

card(φm+1) = n!

n∑
k1=0

n−k1∑
k2=0

· · ·
n−

∑m−2
a=1 ka∑

km−1=0

(n−∑m−1
a=1 ka∑

km=0

1
)

(4.6)

which also follows from Theorem 4.1. This finishes the proof.

A closer look learns that the expression in Theorem 4.1 can also be written in
a more compact way, without the sums. A solution to the problem of assignment
and task ordering at stage i can be represented as a string for each machine with
the jobs assigned to that machine in the order of processing. All strings can
be concatenated, where a zero is introduced between the strings of each two
following machines. The result is a “long” string of length ni +mi− 1, with ni
jobs and mi− 1 zeros. The string for the first stage of the solution in Figure 2.5,
for example, is “4 3 0 1 0 2”. The number of different long strings that can be
made is the number of permutations of all elements, divided by the number
of permutation of the zeros, since interchanging two zeros does not yield two
different strings. It is easy to verify that the number of partial solutions for
stage i is therefore (ni+mi−1)!

(mi−1)! .

Theorem 4.2. (Parallel machines, a more compact result)

card(φm) = n!

n∑
k1=0

n−k1∑
k2=0

· · ·
n−

∑m−2
a=1 ka∑

km−1=0

1 =
(n+m− 1)!

(m− 1)!

84 CHAPTER 4. HEURISTICS

To formulate the number of solutions for the HFFS we need to introduce
some new notation. The number of jobs visiting stage i is denoted ni =∑

j∈N |i∈Fj
1 and the number of jobs assigned to machine l in stage i is

represented by the variable kil. We will call the solution space of the HFFL
without machine eligibility and precedence constraints Ω. The number of
chromosomes, or card(Ω), given in Theorem 4.3, is easily deducted from
Theorem 4.1. The proof is therefore omitted.

Theorem 4.3. (Hybrid flexible flow line)

card(Ω) =
m∏
i=1

(
ni!

ni∑
ki1=0

· · ·
ni−

∑mi−2
a=1 kia∑

kimi
=0

1
)

=
m∏
i=1

(ni +mi − 1)!

(mi − 1)!

The number of possible solutions for the example in Figure 4.20, with
just five jobs, three stages and five machines, is thus 69,120. For the largest
instances we will use, of 100 jobs and 8 stages, each consisting of 4 parallel
machines, the number of chromosomes is (103!/3!)8, a number too large to
calculate for Microsoft Excel 2003. In Figure 4.22, the increase of the number
of possible chromosomes is shown for increasing values of n. Giving the
number of feasible solutions is extremely difficult and instance-specific, due
to precedence constraints and machine eligibility. To give an idea: precedence
relationships cut down the number of feasible solutions faster than in a
permutation flowshop. A relationship between two jobs that visit all stages
eliminates at least (1− 2m) · 100% of the feasible solutions, as only half of the
permutations is possible in each stage.

4.3. Solution representations 85

6 8 10 12 14

0
.0

e+
0

0
5
.0

e+
2

3
1
.0

e+
2

4
1
.5

e+
2

4

n

N
u

m
b

er
 o

f
so

lu
ti

o
n

s

m = 3

mi = 3

m = 3

mi = 1

m = 2

mi = 3

m = 2

mi = 1

Figure 4.22: Number of possible solutions for different
instance sizes; ordered list of tasks for each machine.

86 CHAPTER 4. HEURISTICS

m mi n Number of solutions

2 1 5 14,400
7 25,401,600
9 1.31682E+11

11 1.59335E+15
13 3.87758E+19
15 1.71001E+24

2 3 5 6,350,400
7 32,920,473,600
9 3.98338E+14

11 9.69395E+18
13 4.27503E+23
15 3.16284E+28

3 1 5 1,728,000
7 1.28024E+11
9 4.77847E+16

11 6.36015E+22
13 2.41458E+29
15 2.23614E+36

3 3 5 16,003,008,000
7 5.97309E+15
9 7.95018E+21

11 3.01822E+28
13 2.79517E+35
15 5.62491E+42

Table 4.9: Number of possible solutions for ordered list of
tasks for each machine.

4.4. Dispatching rules

The idea of dispatching rules is one of the oldest in the scheduling field,
with the first contributions in the late nineteenth century. We adapt some well
known dispatching rules to the HFFL. The jobs are scheduled on a stage-by-
stage basis rather than scheduling each job in all stages. This has the advantage
that non-permutation solutions (as shown in Figure 2.5) can be obtained. The

4.4. Dispatching rules 87

rules are applied at each moment to the jobs that can be scheduled according to
the precedence relationships (i.e. those jobs that are “eligible”). The eligible
jobs set is denoted by R. The details of the heuristics are the following:

Shortest Processing Time (SPT): For each stage, and among eligible
jobs that are processed in that stage, the job with the smallest average
processing time in the stage is scheduled. The average processing time
(APT) for a given job j in a stage i ∈ Fj is calculated as follows:

APTij =

∑
l∈Eij

pilj

|Eij |

We have chosen to use the average processing time rather than the
minimum processing time, as the machine assignment rules schedule the
job in many cases to a machine with a processing time higher than the
minimum, due to the impact of machine availability, setup times, time
lags, etcetera.

Longest Processing Time (LPT): Same as SPT but the job scheduled is
the one with the largest APT .

Least Work Remaining (LWR): For each stage, and among eligible jobs
to be processed in that stage, the job with the smallest sum of average
processing times in the remaining stages (including the present stage) is
scheduled. Note that we only consider the remaining stages in which the
job is processed. Remaining work can be calculated by the following
expression: WRij =

∑m
a=iAPTaj , where APTaj = 0, ∀a /∈ Fj .

Most Work Remaining (MWR): Same as LWR but the job scheduled is
the one with the largest sum of average processing times in the remaining
stages.

Most Work Remaining with Average Setup Times (MWR-AST): It is a
refinement of MWR in which we also consider an average of the pending
setup times. This average setup is calculated for the present job and all

88 CHAPTER 4. HEURISTICS

others in R on the remaining stages and eligible machines, resulting in
scheduling the job with the highest APT/AST calculation as follows:
APT/ASTij =

m∑
k=i,k∈Fj

(
APTkj +

∑
h∈R,h/∈Pj ,k∈Fh

∑
l∈(Ekj∩Ekh)

Skljh

|Hkj |

)

Where Hkj is the set containing all possible setups, i.e., Hkj =

{(h, l ∈ R× Ekj)|k ∈ Fh, h /∈ Pj , l ∈ Ekh}.

The dispatching rules provide the next job to be processed in the current stage.
In addition to that, we need a rule for assigning that specific job to one of its
eligible machines at a given stage. As all dispatching rules are very fast, each
rule is applied for all machine assignment rules described in Section 4.2, and
the best solution is chosen.

4.5. NEH heuristic

The NEH algorithm owes its name to its inventors Nawaz et al. (1983), who
proposed the algorithm for the regular flowshop problem. The algorithm is
profusely used in the scheduling literature and is well known for its efficiency.
Contrary to the previous dispatching rules, the NEH works with a permutation
of jobs that are scheduled one by one in all stages, so the schedule is obtained
in a job-by-job basis. We adapted the algorithm for the HFFL, but for better
understanding we will first explain the original algorithm.
In the first step of the original NEH, jobs are sorted in decreasing total
processing time. In this initial order, precedence constraints may be violated, as
it only indicates the order of insertion in the final permutation.
The NEH algorithm starts by taking the first two jobs of the initial order, and
the schedules associated with the two possible sequences are calculated. The
best sequence from the two is used as a basis for inserting the third job from
the initial order. This third job is inserted in the three possible positions of the
sequence containing the first two jobs, and the best sequence among the three is
kept for inserting the fourth job. The process continues until all jobs have been

4.5. NEH heuristic 89

considered.
We have modified this insertion step of the NEH method in order to take into
account the precedence constraints. When a job is to be scheduled, we look for
the earliest and latest possible insertion position in the incumbent sequence, i.e.,
the job cannot be placed before any of its predecessors and no later than any
of its successors. To adapt the algorithm to hybrid flowshops, total processing
time to determine the initial order has to be replaced by total average processing
time (TAPTj =

∑
i∈Fj

APTij).

To compare different algorithm settings, we run the NEH algorithm on the
set of large instances. We execute the heuristic once for each instance, with
each of the machine assignment rules presented in Chapter 4.2, to compare
their effectiveness. Note that running the algorithm more than once on an
instance makes no sense, as it is a deterministic algorithm and the same solution
value would be obtained. As a measure for the results we calculate the relative
deviation of the best known solution value in percent, and take the average over
the considered set of instances. The best found objective values are given in
Appendix C. In Figure 4.23, the results are shown by means of an Analysis of
Variance (ANOVA). We first concentrate on the first nine methods that refer
to each of the machine assignment rules. The 99% Tukey confidence intervals
serve to determine whether two values are statistically significantly different.
As quite some intervals do not overlap, the choice of a right machine assignment
rule clearly has its importance. We managed to improve over 25% on the most
used FAM rule. We can conclude that ECT, EPNS, ECNS and NJSM yield
better results on average than the other remaining rules, although the other rules
give better results in some occasions.
As the heuristic is quite fast (more details in Section 4.6), all machine
assignment rules can be used together in order to get a better solution. The last
three methods represent the following implementations, respectively:

All: We execute the heuristic once for each machine assignment rule; the
best found solution is stored and determines the final solution value.

Job1: When inserting a job in the partial permutation, all machine assign-

90 CHAPTER 4. HEURISTICS

ment rules are applied for this job. The best combination of assignment
rule and insertion position determines the new partial schedule. Once the
machine assignment rule is chosen for a job, it will not change any more
for that job.

Job3: When a job is inserted in the partial permutation, all machine
assignment rules are tried for the new job, and for the previous job and
the next job in the partial permutation. The best combination determines
the new partial schedule.

Although Job1 and Job3 seem to be more advanced and more flexible, All
obtains the best makespan values. Apparently, the best machine assignment rule
in a partial permutation is often not adequate in the global solution. Moreover,
it is faster than Job3 and equally fast as Job1. We therefore adopt the simple
All machine assignment rule implementation in the rest of this Ph.D. thesis.

Framinan et al. (2003) showed in their paper on the permutation flowshop

R
el

at
iv

e
D

ev
ia

ti
o

n

1 2 3 4 5 6 7 8 9
All

Job1
Job3

20

30

40

50

60

70

Figure 4.23: Factor means and 99% Tukey confidence
intervals for the machine assignment method in NEH; large

instances.

4.5. NEH heuristic 91

problem that changing the initial order can lead to considerable improvements.
We have therefore tested various different initial orders for the HFFL. It seems
logical that avoiding infeasible partial solutions would improve the results. This
can be achieved by inserting the job with highest TAPT , among those that
have all their predecessors scheduled already; the ready jobs. The heuristic
is executed once for each instance with the initial order of the original NEH
implementation (orig) and once for the initial order respecting the precedence
constraints (ready). Another ANOVA in Figure 4.24 shows that giving priority
to the ready jobs is counterproductive. ready is clearly worse than the orig
implementation. This can be explained as follows: Jobs with many predecessors
are kept for the end, when the partial solution is closest to the final solution.
However, because of the large number of predecessors of these jobs only the
last position(s) are feasible and least freedom of choice is given when most
information is available.
The opposite is therefore more effective: jobs with many predecessors have

PrSuc orig ready

32

37

42

47

52

57

62

R
el

at
iv

e
D

ev
ia

ti
o

n

Figure 4.24: Factor means and 99% Tukey confidence
intervals for different initial orders in NEH; large instances.

little freedom and should be ordered in an early stage of the algorithm. The
same holds for jobs with many successors. Less constrained jobs can better be
scheduled later on, when the partial solution is more similar to the final one.
The best initial order is therefore sorting the jobs by decreasing sum of number
of predecessors and successors. In case the sum is equal for various jobs, these

92 CHAPTER 4. HEURISTICS

will be ordered among by decreasing TAPT . We can join both conditions by
calculating the value PrSucj =

∑
k∈Pj

1+
∑

k∈N |j∈Pk
1+

TAPTj
maxk∈N TAPTk

for
each job and ordering the jobs by decreasing PrSucj . Figure 4.24 confirms that
this initial order is more effective than both other implementations. Note that
the three initial orders are equal for instances without precedence constraints;
only instances with precedence constraints are therefore regarded in Figure 4.24.
The pseudocode for this implementation is given in Algorithm 1.

Algorithm 1: HFFL Adaptation of the NEH Heuristic
Input: instance data, assignment rule
Output: permutation π
begin

foreach job j in N do
//calculate total average processing time (TAPT)
set indexj to

∑
i∈Fj

∑
l∈Eij

pilj/|Eij |;

set MaxProc to maxj∈N indexj ;
foreach job j in N do

//decimal part takes care of TAPT ranking
set indexj to indexj/MaxProc;
foreach job k in N do

derive set of successors Suck from the sets of predecessors Pq ,
∀q ∈ N \ k;

//integer part takes care of precedence constraint ranking
set indexj to indexj + |Pj |+ |Sucj |;

put jobs in array InsertOrd in decreasing index order;
set π to (InsertOrd(1));
for k = 2 to n do

set BestMak to a high number, e.g.,
∑

j∈N
∑

i∈Fj
maxl∈Eij pilj ;

for q = 1 to k do
insert job InsertOrd[k] in position q of π;
if no precedence relationships violated in π then

set PartMak to makespan of π using assignment rule;
if PartMak < BestMak then

set BestMak to PartMak;
set BestPos to q;

erase job InsertOrd[k] from position q of π;
insert job InsertOrd[k] in position BestPos of π;

generate schedule with makespan BestMak from π and assignment rule;
return permutation π;

end

4.6. Conclusions 93

4.6. Conclusions

In this chapter, we have presented several well-known dispatching rules,
adapted to the hybrid flexible flow line problem. Furthermore, the NEH heuristic
is applied to this particular problem. Various initial permutations for the NEH
heuristic are tested and compared. The best one, not common in the literature,
first schedules the jobs with many predecessor relationships and leaves the more
flexible jobs, with little or no relationships, for the end.
The performance of all presented heuristics is analysed both for the small
instances of Chapter 3, of which the optimum is known, and for the large
instances described in Section 4.1. In order to get an idea of the needed CPU
times, the averages for the large instances are given in Table 4.10. For the NEH
heuristic, n full solutions and 2 + 3 + · · ·+ (n− 1) = (n(n− 1)/2)− 1 partial
solutions need to be evaluated for each machine assignment rule, if we do not
take into account the precedence constraints. With precedence constraints these
numbers decrease. For the dispatching rules, however, only one solution per
machine assignment rule needs to be evaluated. Therefore, the NEH heuristic
obviously needs much more calculation time than the dispatching rules. Note
furthermore that the calculation of the average setup times in the MWRST rule,
makes the rule 3 to 4 times slower than the other dispatching rules.

Algorithm Average CPU (ms)

SPT 6.67
LPT 6.18
LWR 6.67
MWR 6.98

MWRST 22.30
NEH 3,925

Table 4.10: Average CPU times for the large instances.

The exact calculation time is not such a big issue for these heuristics,
however. All give practically instant solutions for the largest instances. We do
not present the calculation times for the small instances, since the times are so
short that they can hardly be measured.

94 CHAPTER 4. HEURISTICS

The more important issue for these heuristics, is the solution quality. The results
for the large instances are shown graphically in Figure 4.25. An important
conclusion that can be drawn, is that none of the heuristics closely approximates
the best known solutions. Another important point is the fact that the NEH
heuristic justifies the extra CPU time by being with distance the best performing
heuristic.

R
el

at
iv

e
D

ev
ia

ti
o
n

LPT
LWR

MWR
MWRST

NEH
SPT

0

40

80

120

160

200

240

Figure 4.25: Factor means and 99% Tukey confidence
intervals for all heuristics; large instances; deviation of best

known solution value.

For the large instances, we have no known optimal solutions to compare
to. We therefore also give the results for the small instances for which the
optimal solution is found in Chapter 3. Recall that the optimum is found for
4,322 instances; 46.9% of the total of 9,216 instances in the set. The average
deviation from the optimum is given for all heuristics in Figure 4.26. The
conclusions for the large instances still hold. The NEH heuristic has the best
average performance and find the optimum in most (2,008) cases. Although all
heuristics find the optimal solution in some cases, the average deviation from
the optimum is considerable. This indicates the necessity of metaheuristics,
that need more time, but in change obtain solutions closer to the optimum. The

4.6. Conclusions 95

underlying data for the figures can be found in Appendix A, Tables A.2 and A.3.

R
el

at
iv

e
D

ev
ia

ti
o

n

LPT
LWR

MWR
MWRST

NEH
SPT

10

15

20

25

30

35

40

Figure 4.26: Factor means and 99% Tukey confidence
intervals for all heuristics; small instances; deviation of the

optimum.

CHAPTER 5
GENETIC ALGORITHMS

As pointed out in Section 2.2, Genetic Algorithms are very common in the
field of production scheduling. The main advantage of GAs is that the problem
characteristics hardly influence the logic of the algorithm, which makes them
very flexible.
The idea of genetic algorithms is based on the analogy between the development
of good solutions and the development of a species according to Darwin’s theo-
ries. In this analogy, a solution is an individual and the solution representation
is the individual’s DNA or chromosome. A set of solutions is a population of
individuals and if a population is replaced by a new one, we speak about a next
generation. Survival of the fittest and natural selection play a central role in the
evolution of a species, a so does it for the solution search.
The main structure of GAs is the following: A set (or population) of initial
solutions (or individuals) is generated. Solutions are selected to be combined
(or crossed) and changed (or mutated) until a population of the same size is
obtained. The new population replaces the old one and the process is repeated,
until a stopping criterion is met. See Figure 5.1 for a schematic view.
The book by Holland (1992) is the new version of the famous 1975 work that
initiated the use of genetic algorithms in combinatorial optimisation. Another

97

98 CHAPTER 5. GENETIC ALGORITHMS

Evaluation Selection

Evaluation

Crossover

Mutation

Stop

Population

initialization

yes

no

Figure 5.1: A schematic view of a Genetic Algorithm.
Constructed from Ruiz (2003).

good reference for more details on genetic algorithms, is the book by Goldberg
(1989).

In the following of this chapter, five different genetic algorithms are
presented. The first two algorithms employ distinct ways to renew the
population for one and the same solution representation. Of the remaining
three algorithms, each one has its own solution representation. New operators
and procedures to assure feasibility are presented. A computational evaluation
is used to compare the genetic algorithms among each other and with methods
earlier presented in this Ph.D. thesis.

5.1. BGA

The Basic Genetic Algorithm (BGA) uses the standard solution representa-
tion of a single permutation with one machine assignment rule, as explained
in Section 4.3.1. An elitism approach is applied to avoid losing the best
individuals. The best two individuals of a population are copied directly to the
new population, without neither crossover nor mutation.
The different selection methods are the same for all presented GAs. Roulette
selection uses a mapping from makespan value to fitness value. We assign to
each individual a fitness value Fx = max

y∈Pop
Cmax(y) − Cmax(x) + 1, where

5.1. BGA 99

Pop is the population of solutions in the GA. An individual x is chosen with
probability Fx/

∑
y Fy. Note that the addition of 1 in the fitness calculation

is necessary to avoid the risk of division by zero in the selection probability.
Another advantage is that, although selection of good individuals is more
probable, none of the individuals is totally excluded from selection. This avoids
early convergence. Random selection is straightforward; all individuals have
equal probability. Tournament selection randomly takes a number of individuals.
The individual with lowest makespan among them is chosen for crossover.
For the permutation representation many crossover operators are already defined.
One-Point Order Crossover (OP) is one of the most basic crossover operators.
Two chromosomes are cut each in two parts by choosing one random point.
The first part of each chromosome (and the machine assignment rule) is left
unchanged for the offspring, whereas the second part is filled with the missing
jobs in the order they appear in the other solution. See Figure 5.2.

Cut Point

Cut Point

Parent 1

Parent 2

Child 1

Child 2

Step 1 Step 2

2 3 4 51 6

1 4 2 56 3

21

16

1 2 3 46 5

2 6 4 51 3

1

1

8

8

1

8

1

8 1 4 2 56 3

2 3 4 51 6

Figure 5.2: One-Point Order crossover operator.

Two-Point Order Crossover (TP) is quite similar. The chromosomes are divided
into three parts by two random points. The first and the last part (and the
machine assignment rule) remain unchanged, while the middle part is filled
with the missing jobs in the order the occur in the other solution. This is

100 CHAPTER 5. GENETIC ALGORITHMS

illustrated in Figure 5.3.

Cut Point 1

Cut Point 1

Parent 1

Parent 2

Child 1

Child 2

Step 1 Step 2

2 3 4 51 6

1 4 2 56 3

21

16

2 3 4 51 6

6

1 2 4 56 3

2 4 3 51 6

Cut Point 2

Cut Point 2

1

1

8

8

1

8

1

8

5 6

5 3

1 4 2 5 3

Figure 5.3: Two-Point Order crossover operator.

When applying Uniform Order Based Crossover (UOBX, Figure 5.4), one
selects for each location in the child permutation the first unscheduled job of one
of the parent solutions, each with equal probability. The machine assignment
rule is also take from either of the two parents with equal probability.

Parent 1

Parent 2

Child 1 Child 2

2 6 3 41 5 1 2 3 46 51

8

8

2 3 4 51 6 2 3 4 51 61 1

1 4 2 56 3 1 4 2 56 38

Figure 5.4: Uniform Order Based crossover operator.

Note that feasibility regarding precedence constraints is maintained in all three
crossover operators. This is not straightforward. More advanced operators

5.1. BGA 101

as the Similar Job Order Crossover (SJOX) by Ruiz et al. (2006) might
obtain unfeasible offspring from two feasible parents. SJOX copies in Step 1
(Figure 5.5) the jobs that are in the same position in both parents directly to the
offspring. Step 2 and 3 in Figure 5.6 fill the rest off the offspring’s chromosomes
as One-Point Crossover does. In this example, job 4 is a predecessor of job 5,
which is respected in both parents but violated in one of the new individuals.

2 3 41 6

1 4 26 3

Parent 1

Parent 2

Child 1

Child 2

Step 1

8

1

1

8

5

5

5

5

Figure 5.5: Similar Job Order crossover operator; Step 1.

Shift Mutation (SM) does not maintain the precedence feasibility by default. A
job is excluded from the permutation and inserted in a random position of the
partial sequence (see Figure 5.7). To maintain feasibility, the insertion step has
to be modified: insertion of the job is done in a random position not before its
last predecessor and not after its first successor.

Before mutation

5 2 3 41 6After mutation 1

2 3 4 51 61

Figure 5.7: Shift Mutation operator.

Position Mutation (PM) consists in exchanging two neighbouring jobs, as
done in Figure 5.8. Under precedence constraints this is only done if there is no

102 CHAPTER 5. GENETIC ALGORITHMS

Cut Point

Cut Point

Step 2 Step 3

2 3 41 6

1 4 26 3

21

16

2 3 41 6

1 2 3 56 4

2 6 4 51 3

1

8

1

8

1

8

8

1

5

5

5

1 4 26 35

5

5

Figure 5.6: Similar Job Order crossover operator; Steps 2
and 3.

precedence relationship among the two. Note that the set of solutions that can
be obtained with this mutation is actually a subset of the set by SM, as insertion
in the position next to the previous position results in the same change.

Before mutation

2 4 3 51 6After mutation 1

2 3 4 51 61

Figure 5.8: Position Mutation operator.

Apart from the mentioned job mutations, the machine assignment rule might
also be mutated under a certain probability. In this case one of the other rules is
chosen randomly.

The population is initialised with three types of solutions. The solutions of
the first type, are generated by using the NEH heuristic explained in Section 4.5
of Chapter 4. Since the resulting solution depends on the used machine

5.2. SGA 103

assignment rule, for each machine assignment rule that is used in BGA, one
NEH solution is inserted in the initial population. The second type of solutions,
are NEH solutions that are submitted to a number of random mutations. The
solutions of type 1 and type 2 together form 25% of the initial population.
The remaining 75% of the individuals of type 3, are generated by randomly
sequencing eligible jobs; those jobs whose predecessors have already been
sequenced. After the generation of the job sequences, a machine assignment
rule is assigned to each individual, to complete the population initialisation.

5.2. SGA

The structure of the Steady-state Genetic Algorithm (SGA) is radically
different from the standard structure. New individuals do not fill a new
population, but directly replace the worst solutions in the current population.
Replacement is only done if the new individual is better than the individual
it replaces and if the individual does not exist in the population yet. This
replacement scheme results in a higher pressure; elitism is not necessary as only
bad individuals are replaced. Ruiz and Maroto (2006) show the efficiency of
this generational scheme, compared to regular GA implementations, for hybrid
flowshop problems. As the solution representation is the same as for BGA, the
same operators can be used.

5.3. SGAR

The steady-state structure described in the foregoing subsection is also
used for the Steady-state Genetic Algorithm with multiple Rules (SGAR). This
algorithm works with a permutation with a machine assignment rule for each
job, as described in Section 4.3.2. The NEH initialisation does not change; we
apply the same rule for all jobs. For the remaining initial solutions, different
rules in one chromosome are allowed. During crossover and job mutation, the
machine assignment rule sticks to the job it belongs to. After job mutation, the
assignment rule for each job is changed to any other rule with probability Pma.

104 CHAPTER 5. GENETIC ALGORITHMS

5.4. SGAM

The Steady-state Genetic Algorithm with Machine assignments (SGAM)
has a more direct solution representation with the machines each job is assigned
to in the chromosome. For more details about its representation, we refer to
Section 4.3.3.
As in SGAR, the NEH solutions are generated with a single machine assignment
rule. A transformation of the final NEH solutions is made, in order to represent
them correctly for this algorithm. The machine assignments chosen by the
rule are stored in the chromosomes. In other words, the information on the
used machine assignment rule is replaced by the information on job-machine
combinations. Machine assignments stick to the jobs and only change during
the machine assignment mutation, when each job can have one assignment
changed with a certain probability.
In some situations, the machine assignment improvement might “stay behind”
due to permutation improvements. Machine assignment advantageous for a
certain permutation might be less appropriate for another permutation. To detect
and correct this phenomenon, we can temporarily make use of the machine
assignment rules. With certain (low) probability, the solution is compared to a
solution generated with the same permutation, but with the machine assignments
at all visited stages generated by a machine assignment rule. If the solution
with machine assignment is strictly better, the machines assigned by the rule
replace those in the chromosome.

5.5. EGA

While none of the previous genetic algorithms explores the full search
space, the Exact representation Genetic Algorithm (EGA) does. Although the
chromosome structure is not based on a job permutation, which makes the
use of the main operators introduced before impossible, the main structure of
the genetic algorithm does not differ from the previously presented genetic
algorithms. EGA is also a steady-state GA, which determines the way of
introduction of new solutions to be equal to the introduction described for SGA.

5.5. EGA 105

With each machine assignment rule, one NEH solution is generated, after which
the lists of tasks for each machine are stored in the chromosomes. Earlier
mentioned crossover and mutation operators are not applicable for this solution
representation.

5.5.1. Specific crossover operators

For crossover, two operators are proposed. Guaranteed Feasibility
Crossover (GFX) maintains a list of all available tasks for the assignment
to the offspring: tasks whose start times can directly be derived. Among the
tasks that are not scheduled yet, the ones that are available and not preceded by
other unscheduled tasks in their machine, are stored in a list for this parent. At
each iteration, either one of the two parents is chosen and a random task from
this list is assigned to the same machine in the child’s chromosome. When a
complete schedule is obtained for the first child, the process is repeated for the
second child. An example is given in Figure 5.9, where job 4 is a predecessor
of job 5. At the start (iteration 1) the tasks of job 1, job 3 and job 4 in stage 1
are available and the tasks of job 2 in stage 2. Suppose the toss is won by parent
2. Job 4 at stage 1 and job 2 at stage 2 are candidates. Suppose job 4 wins the
toss; the task is scheduled as the first job at machine 1 for the child. At iteration
2, job 1 and job 3 are available in stage 1, job 2 in stage 2 and job 4 in stage 3.
Note that job 5 is no candidate for the second position in the first stage, as job
4 has to be scheduled in all stages for job 5 to be available. This procedure is
continued until all tasks are scheduled.
This is a new and novel crossover operator, resolving the infeasibility issues
caused by the precedence relationships in multiple stages. The implementation
requires more than 100 lines of code and the computational complexity can be
given by O(n2m2), as we have to check the availability of each (unscheduled)
task in each iteration, and the number of iterations might be as large as the
number of tasks.
Fast Crossover (FX) is similar to GFX, but no list of available tasks is main-
tained. For both parents only a list is maintained with the first unscheduled task
in each machine. One of these tasks is scheduled at the same machine for the
child. Note that feasibility of the offspring is not guaranteed. If the offspring

106 CHAPTER 5. GENETIC ALGORITHMS

4 5

Machine

4 51

Stage Jobs

1 1

5

2 2

3

43

1

3

5

4

2

3

1

2

Machine

5 14

Stage Jobs

1 1

5

2 2

3

43

2

3

1

1

2

5

4

3

14

MachineStage Jobs

1 1

5

2 2

3

43

2

1

1

3

4

2

3

5

5

Parent 1 Parent 2

Child 1

Figure 5.9: Guaranteed Feasibility Crossover operator
(GFX).

results to be unfeasible, the unfeasible solution is replaced by an exact copy of
the parent. The advantage is that FX crossover is much faster than GFX.

5.5.2. Specific mutation operators

Similarly, two mutations can be applied to the machine assignment arrays
in the chromosomes. Both place a task at a new position in any of the eligible
machines in the same stage. Fast Mutation (FM) checks the precedence relation-
ships within the new machine. The new position is chosen randomly between the
minimum and maximum position, according to the direct precedence relations.
This, however does not guarantee global feasibility. We use Figure 5.10 as an
example. If we apply mutation on job 5 in the first stage, direct precedence

5.5. EGA 107

constraints do not impose any position after job 4 (its predecessor). However,
placing this task before job 1 leads to an infeasible solution. In this solution,
job 1 cannot be started before termination of job 5 in stage 1. But job 4 cannot
be finished before finishing job 1. As job 5 cannot be started before job 4 is
completed, none of these tasks can be started. This example demonstrates the
complexity of the problem we consider.

14

MachineStage Jobs

1 1

5

2 2

3

43

2

1

1

3

4

2

3

5

5

Figure 5.10: Fast Mutation operator.

Guaranteed Feasibility Mutation (GFM) assures that the new schedule is feasi-
ble. In case of precedence constraints this implies not only direct predecessors
and successors, but also indirect relationships. A task is defined to be indirectly
preceding the task that is going to be inserted either if it is followed in its
machine by a direct predecessor or an indirect predecessor, or if a task of the
same job in a later stage is an indirect predecessor. Analogously, the definition
of an indirect successor task is a task that either follows a direct or an indirect
successor in the same machine, or if a task of the same job in an earlier stage is
an indirect successor. At the moment of inserting a task in a new position, one
has to make sure that it is not inserted after any direct or indirect predecessor
and not before any direct or indirect successor.
Obviously this implies a larger cost in running time than the Fast Mutation, but
no solutions have to be discarded. Due to the recursive character it is very hard
to determine the computational complexity.

108 CHAPTER 5. GENETIC ALGORITHMS

5.6. Computational Evaluation

For the empirical evaluation of the genetic algorithms, both the set of large
instances introduced in Chapter 4 and a subset of the small instances introduced
in Chapter 3, are used. We only use a subset of the latter benchmark, since
various levels for the controlled factors do not have a significant influence
on the hardness of the instances, as shown in Chapter 3. Therefore we
do not consider these factors for the remaining experiments; we fix each
of these factors at the most realistic level. The distribution of the release
dates for machines is fixed at U [1, 200]. The distribution of setup times
as a percentage of the processing times is U [75, 125] and the probability
of the setup to be anticipatory is distributed U [50, 100]%. Time lags are
distributed U [−99, 99]. In total there are 576 small and 192 large instances.
The factor levels are summarised in Table 5.1, and all instances are available at
http://soa.iti.es/problem-instances.

Factor Small instances Large instances

Number of jobs 5, 7, 9, 11, 13, 15 50, 100
Number of stages 2, 3 4, 8
Number of unrelated parallel machines per stage 1, 3 2, 4
Distribution of the release dates for the machines U [1, 200] U [1, 200]

Probability for a job to skip a stage 0%, 50% 0%, 50%
Probability for a machine to be eligible 50%, 100% 50%, 100%
Distribution of the setup times as a percentage

of the processing times
U [75, 125] U [75, 125]

Probability for the setup time to be anticipatory U [50, 100]% U [50, 100]%

Distribution of the lag times U [−99, 99] U [−99, 99]
Number of directly preceding jobs 0, U [1, 3] 0, U [1, 5]

Table 5.1: Factors and levels used in the benchmark.

The stopping criterion for all metaheuristics is given by a time limit
depending on the size of the instance. The algorithms are stopped after a
CPU running time of n

∑
imi · t milliseconds, where t is an input parameter.

Giving more time to larger instances is a natural way of decoupling the results

5.6. Computational Evaluation 109

from the lurking “total CPU time” variable. Otherwise, if worse results are
obtained for large instances, it would not be possible to tell if it is because of the
limited CPU time or because of the instance size. Constructive heuristics also
need more time for larger instances. Besides, with a constant time limit, the
allowed CPU time for small instances would be relatively high, which makes
it very easy for the algorithms. We are mainly interested in short CPU times,
as required in practice as well. The same formula to calculate the allowed
processing time is used in Urlings et al. (2010a,b).

All experiments are executed on a Pentium IV computer with a single 3.0
GHz processor and 1 GB of RAM memory. The algorithm is implemented in
Delphi with the 2007 compiler and under Windows XP Professional operating
system.

5.6.1. Calibrations

In the literature, the values of the algorithm parameters are generally fixed
after some quick tests which are not further commented (as Almada-Lobo and
James (2010) do for their tabu search), or even fixed without tests (Hasija and
Rajendran (2004) is one of many examples that can be given), either random or
following other authors. In other cases, as in the paper of Haq et al. (2004), the
parameter values are just not stated. The reasons are usually that a large number
of parameters is involved, which makes calibration of the algorithm a time- and
resource-consuming task. However, we agree with Hooker (1995) that it is an
important or even necessary step in the process of algorithm development, since
it improves the performance of the algorithms and it helps to understand the
functioning of the algorithms and which parts determine their success.

Before calibration of BGA, the algorithm is subjected to some preliminary
tests to reduce the number of parameter levels to be tested in the fine-tuning
process. Shift Mutation performed clearly better than Position Mutation in
preliminary experiments. Two-Point crossover is not outperformed by any
of the other crossover operators. This fixes the crossover and the mutation
operator.

110 CHAPTER 5. GENETIC ALGORITHMS

The comparison of the machine assignment rules for the NEH algorithm in
Section 4.5 showed the superiority of ECT, EPNS, ECNS and NJSM. Since
a high efficiency is important for the GA, only these four rules are used. The
corresponding four NEH solutions (each one only using one rule) seed the
initial GA population.
The probability of the mutation changing the machine assignment rule is fixed
at 5% per individual.
Crossover probabilities (Pc) of 40% and 60% are tested. Job mutation prob-
abilities (Pmut) are either 1% or 2% per job. As commented, the four best
assignment rules are used. To test the necessity of various machine assignment
rules, a level is added where only EPNS is applied, which implies that the
assignment rule mutation probability is 0. Population sizes of 50, 80 and
200 are compared as are the three selection methods roulette, random and
tournament among five individuals.
The aforementioned setting results in a total number of parameter combinations
of 72. An overview of the tested parameter levels is shown in Table 5.2. Each
algorithm is tested five independent times on each given parameter setting
and instance. As for t in the stopping time formula, we test t =5 and 25
milliseconds.

Parameter BGA & SGA SGAR & SGAM EGA

Num. rules 4, 1 4, 1 N/A
Pop. size 50, 80, 200 50, 80, 200 50, 80, 200

Select type Roulette, Random, Tourn. Roulette, Random, Tourn. Roulette, Random, Tourn.
Pc 40%, 60% 40%, 60% 40%, 60%

Pmut 1%, 2% 1%, 2% 1%, 5%
Pma 5% 1% N/A

Crossover Two-Point Order Two-Point Order GFX
Mutation Shift Mutation Shift Mutation FM, GFM

Table 5.2: Test values for the algorithm parameters.

For experiment with the smallest number of instances, i.e., for the 192 large
instances, this results in 72 parameter settings × 2 t-values × 5 replicates ×
192 problem instances = 138,240 data. Because of the high quantity of results,

5.6. Computational Evaluation 111

the power of the test is very high and the three ANOVA hypotheses of normality,
homoscedasticity and independence of residuals are easily fulfilled. The high
power also allows us to use the high 99% Tukey confidence intervals for the
ANOVAs. The final parameters for BGA for all instance sets are listed in
Table 5.3.
For a more detailed description of the methodology used for the calibration,

mi = 1 mi = 3 Large

Roulette Selection Random Selection Tournament selection
Pop. size = 200 Pop. size = 2001 Pop. size = 200
Pc = 60%1 Pc = 60%1 Pc = 60%
Pmut = 2% Pmut = 2% Pmut = 2%

4 rules1 4 rules1

1 not significant in ANOVA

Table 5.3: Final values for the BGA parameters after
calibration.

SGA is used as an example. We will explain the calibration of SGA for the set
of large instances. The results of the calibration of other algorithms and instance
sets are obtained by applying the same procedure. All ANOVA tables are given
in Appendix B. The tested parameter levels are identical to the levels tested
for BGA. The algorithm parameter with the highest F-Ratio is the mutation
probability, with a value of 2049. This value is much higher than the F-Ratio
of the interaction with time parameter t (214), which indicates robustness and
makes a separated analysis of the factor unnecessary. Investigation of the factor
means plot (see Figure 5.11) shows that a probability of 2% is most suitable, so
we fix the parameter at this value. Running a new ANOVA for the remaining
factors with the fixed mutation probability, the population size appears to be the
most influencing factor with an F-Ratio of 576; again higher than the interaction
F-Ratio. A small population size of 50 is worse than populations of 80 or
200 individuals, so we force the population size to larger than 50. In the next
ANOVA, the interaction between the population size and the selection type is
stronger than any of the factor means. Figure 5.12 shows this interaction. We
fix selection at the most advantageous combination: random selection and a
population size of 200. Of the remaining factors, only crossover probability is

112 CHAPTER 5. GENETIC ALGORITHMS

significant (without interaction) and therefore fixed at 60%. Either usage of the
four machine assignment rules, or only applying EPNS stays unfixed for the
moment due to experiments being inconclusive. After calibration of all GAs for
all instance sets we will fix the insignificant parameters at the most convenient
levels.

Pmut

1% 2%

8.5

8.7

8.9

9.1

9.3

9.5

R
el

at
iv

e
D

ev
ia

ti
o

n

Figure 5.11: Factor means and 99% Tukey confidence in-
tervals for the mutation probability in SGA; large instances.

R
el

at
iv

e
D

ev
ia

ti
o

n

Selection

Pop. size

80

200

7.5

7.8

8.1

8.4

8.7

9

random roulette tournament

Figure 5.12: Interaction and 99% Tukey confidence inter-
vals between the population size and the selection type in

SGA; large instances.

In Table 5.4, the parameter values that are fixed during the calibration, are given.

5.6. Computational Evaluation 113

mi = 1 mi = 3 Large

Random Selection1 Random Selection Random selection
Pop. size = 200 Pop. size = 200 Pop. size = 200
Pc = 60%1 Pc = 60%1 Pc = 60%
Pmut = 2% Pmut = 2%1 Pmut = 2%2

4 rules1 4 rules1

1 not significant in ANOVA, 2 strong interaction with t

Table 5.4: Final values for the SGA algorithm parameters
after calibration.

For SGAR, the probability of the mutation changing the machine assignment
rule is fixed at 1% per job. All other parameter levels are identical to the levels
tested for BGA and SGA. Note that SGAR and SGAM are not calibrated for
instances with a single machine per stage, as the algorithms only differ from
SGA in machine assignment decisions. Machine assignments are trivial for
these instances. The fixed parameter values for the remaining instances are
given in Table 5.5.

mi = 3 Large

Random Selection Random Selection
Pop. size = 2001 Pop. size = 200
Pc = 60%1 Pc = 60%
Pmut = 2%1 Pmut = 2%

4 rules 4 rules1

1 not significant in ANOVA

Table 5.5: Final values for the SGAR algorithm parameters
after calibration.

For SGAM, the probability of the mutation changing the machine assign-
ment rule is fixed at 1% per individual. Recall that the machine assignment
rule is only used to compare between the current makespan and the makespan
obtained by applying this rule on the same job sequence. Comparison will be

114 CHAPTER 5. GENETIC ALGORITHMS

done with a probability of 1% per individual.

mi = 3 Large

Random Selection Roulette Selection
Pop. size = 200 Pop. size = 80
Pc = 60%1 Pc = 60%1

Pmut = 2%1 Pmut = 2%
4 rules 4 rules

1 not significant in ANOVA

Table 5.6: Final values for the SGAM algorithm parameters
after calibration.

Preliminary tests demonstrate that the Fast Crossover operator for EGA
yields worse results than GFX. This is due to the fact that whenever precedence
constraints are present, many of the crossed individuals appear to be infeasible.
The larger the problem instance, the larger the probability that some restriction
is violated. Therefore only a very small part of the generated individuals for
the largest problems is used in the continuation of the algorithm. The rest of
the crossover actions is simply a waste of time. Fast Crossover is therefore not
regarded in the calibration process. Job mutation probabilities (Pmut) are either
1% or 5% per machine in the calibration experiments. The remaining levels are
left unchanged with respect to the other genetic algorithms in this Chapter. The
final parameter settings for the EGA can be found in Table 5.7. Note that this is
the only algorithm where a (low) crossover probability of 40% is preferred to a
higher probability of 60%. This is easily explained by the more time consuming
Guaranteed Feasibility Crossover operator.

5.6.2. Comparison among genetic algorithms

The calibrated GAs are tested with more time as well. Apart from the data
obtained with t = 5 and t = 25, the calibrated algorithms are executed with
t = 125 milliseconds for the CPU time limit. This results in 1.25 seconds for
the smallest and 400 seconds for the largest instances. We first compare the
solution quality of the various calibrated genetic algorithms among themselves,

5.6. Computational Evaluation 115

mi = 1 mi = 3 Large

Random Selection Random Selection Roulette Selection
Pop. size = 200 Pop. size = 200 Pop. size = 80
Pc = 40% Pc = 40% Pc = 40%
Pmut = 5% Pmut = 5% Pmut = 5%
GF mutation1 GF mutation GF mutation2

1 not significant in ANOVA, 2 strong interaction with t

Table 5.7: Final values for the EGA algorithm parameters
after calibration.

to compare the various solution representations.
We first present an ANOVA for the smallest instances (mi = 1) in the set
of instances described at the beginning of this section. The set contains 288
instances, that are actually regular flowshop problems, since parallel machines
are found in none of the stages. Recall that only BGA, SGA and EGA are
evaluated for this set, as SGAR and SGAM reduce to SGA when no machine
assignment decisions have to be made. Each algorithm is executed five times for
three different values of t. The ANOVA in Table B.3 shows that stage skipping
PFj is the most important factor over the algorithms, all the instance properties
and running time. Stage skipping makes the problem easier, as less tasks are
involved. There is no interaction with the algorithms however, which form
the second most important factor. Although the exact solution used in EGA is
complete (i.e., the optimal solution is reachable), this algorithm is on average
far worse than BGA and SGA. The steady state structure gives the SGA a slight,
but statistically significant, advantage compared to BGA. Figure 5.13 shows
the strongest interaction, which is between the algorithms and the existence of
precedence relationships. EGA appears to perform better than the other two
algorithms under the restriction of precedence constraints, mainly because the
solution space is smaller and EGA.
An ANOVA only for the instances with one machine per stage for which the
optimum is guaranteed by the MIP model also confirms the inefficiency of EGA.
In this case, since the problem instances are very easy, no difference can be
found between BGA and SGA. The data are given in Table A.5.
For mi = 3 the percentage of eligible machines PEij is the most important

116 CHAPTER 5. GENETIC ALGORITHMS

Precedence relationships

R
el

at
iv

e
D

ev
ia

ti
o
n

Algorithm

BGA

EGA

SGA

0

0.4

0.8

1.2

1.6

2

2.4

No Yes

Figure 5.13: Interaction and 99% Tukey confidence in-
tervals for precedence relationships and the algorithm; in-

stances with one machine per stage.

factor. The percentage of eligible machines logically influences the importance
of machine assignments. The interaction between the algorithm and PEij is
shown in Figure 5.14. If only half of the machines is eligible the differences
in performance are small, but if all machines can process all jobs, the machine
assignment rules are proven to be more efficient than incorporating the assign-
ments into the representation. This is a counter-intuitive result since one would
expect an exact machine assignment representation to perform better. However,
the proposed machine assignment rules outperform the exact representations. In
Figure 5.15, one can see that the difference decreases for larger running times.
If we limit the ANOVA to the instances with three machines per stage for
which the optimum is known, the results change in a surprising way. As shown
in Figure 5.16, the EGA obtains the best results for this instance set. These
problem instances are relatively easy, and only the EGA algorithm is able to
search the full search space.
For the large instances the most important factor is NPj , i.e., the number
of predecessors. These constraints make the problem harder to solve for the
GAs. The interaction of this factor and the GAs can be found in Figure 5.17.

5.6. Computational Evaluation 117

R
el

at
iv

e
D

ev
ia

ti
o

n

PEij

50%
100%

0

2

4

6

8

10

BGA
EGA

SGA
SGAM

SGAR

Figure 5.14: Interaction and 99% Tukey confidence inter-
vals for machine eligibility and the algorithm; instances

with three machines per stage.

t (in ms)

R
el

at
iv

e
D

ev
ia

ti
o

n

Algorithm

BGA

EGA

SGA

SGAM

SGAR

2

3

4

5

6

7

8

5 25 125

Figure 5.15: Interaction and 99% Tukey confidence in-
tervals for the allowed running time and the algorithm;

instances with three machines per stage.

Again, we find here other counter-intuitive results. Presumably, with precedence
constraints, less job permutations are feasible and therefore the search space

118 CHAPTER 5. GENETIC ALGORITHMS

R
el

at
iv

e
D

ev
ia

ti
o
n

BGA
EGA

SGA
SGAM

SGAR

2.2

2.6

3

3.4

3.8

4.2

4.6

Figure 5.16: Means and 99% Tukey confidence intervals
for the genetic algorithms; instances with three machines

per stage for which the optimum is known.

becomes smaller. However, the operators of the GAs are much more time
consuming when precedence relations are present in order to preserve feasibility
and hence the worse results. The influence of this factor is especially large
for EGA and SGAM. The complicated EGA operators are especially slow
under precedence constraints and SGAM spends more running time on machine
assignments and has therefore less time to concentrate on the job sequence,
which is more important in the case of precedence constraints.
Also interesting is the performance of each algorithm for the different allowed
running times, shown in Figure 5.18 for the large instances. For EGA we see
the behavior one would expect; increasing the allowed running time leads to
significantly better results. The same holds, in a weaker sense, for SGAM. There
is a clear improvement when increasing t from 5ms to 25ms, but increasing
further does not pay off. BGA, SGA and SGAR do obtain better solutions
with longer running times, but the difference is quite small. This proves that
the algorithms with less direct solution representations and therefore smaller
search spaces, need less time to explore a large part of the solution space than
algorithms based on more verbose representations. Note that not only the
relative, but also the absolute differences are large.

5.6. Computational Evaluation 119

R
el

at
iv

e
D

ev
ia

ti
o

n
NPj

0

U[1,5]

0

5

10

15

20

25

30

BGA EGA SGA SGAM SGAR

Figure 5.17: Interaction and 99% Tukey confidence inter-
vals for the number of predecessors and the algorithm; large

instances.

R
el

at
iv

e
D

ev
ia

ti
o

n

t (in ms)

5

25

125

0

4

8

12

16

20

24

BGA EGA SGA SGAM SGAR

Figure 5.18: Interaction and 99% Tukey confidence inter-
vals for the allowed running time and the algorithm; large

instances.

5.6.3. Comparison with other methods

To test the quality of the proposed GAs, we compare them with several
other methods. Boyer and Hura (2005) presented a random scheduling (RS)
algorithm for sequencing all tasks in a distributed heterogeneous computing
environment. They show that their algorithm is less complex than evolutionary
algorithms, computes schedules in less time and requires less memory and
fewer parameter fine-tuning. We implement an RS algorithm as a benchmark; a

120 CHAPTER 5. GENETIC ALGORITHMS

minimum all algorithms have to achieve to be considered effective and efficient.
If a given algorithm is outperformed by RS, it is either fundamentally wrong
or very time consuming. The RS algorithm just produces random solutions
until a given termination criterion is met. The solutions are represented by a
random feasible job sequence and a machine assignment rule (see Figure 4.11).
Note that Random Scheduling (RS) is not calibrated as it does not have any
parameters. The machine assignment rule in RS is randomly chosen among
ECT, EPNS, ECNS and NJSM at each iteration.

For small instances, the MIP results in Ruiz et al. (2008) are used as a
comparison. For both small and larger instances, we also use the results of the
dispatching rules and the specific adaptation of the NEH heuristic, as described
in Chapter 4. Since those heuristic are very fast, they are run once for each
machine assignment rule. The minimum of these results is the final solution
value.
In Figure 5.19 the results for the small instances with three machines per stage
are plotted for all implemented methods. A more detailed plot of the best
methods in Figure 5.20. Note that the Tukey intervals for all GAs and RS are
narrower than those of the MIP and heuristics methods. The reason is that for
each instance, there is only one result for the MIP and heuristics, as these are
deterministic methods. For the GAs and RS there are 15 results (five replicates
and three t values). Note furthermore that we used the MIP results with the
time limit of 15 minutes; the best results obtained in Ruiz et al. (2008). Some
instances were solved to optimality within this time limit, some ended up with
a non-optimal solution and in some cases no feasible solution was found within
the 15 minutes bound. The shown relative deviation is the average for all cases
where an optimal or feasible solution was obtained. The hardest instances
are therefore not included in the average MIP deviation. It is clear that the
dispatching rules, although improved with the variety of machine assignment
rules, do not even approach the performance of any other method. However,
one has to take into account that the computation time for the dispatching rules
is extremely short (for these instances, less than a millisecond on average).
An even more important result is that all remaining methods give better results

5.6. Computational Evaluation 121

R
el

at
iv

e
D

ev
ia

ti
o

n

BGA

EGA

LPT

LWR

MIP

MWR

MWRST

NEH

RS

SGA

SGAM

SGAR

SPT

0

10

20

30

40

Figure 5.19: Means and 99% Tukey confidence intervals
for GAs, MIP and heuristics; small instances with three

machines per stage.

BGA EGA RS SGA SGAM SGAR

2

3

4

5

6

R
el

at
iv

e
D

ev
ia

ti
o

n

Figure 5.20: Means and 99% Tukey confidence intervals
for GAs and RS; small instances with three machines per

stage.

than the MIP in less computation time. Not only the needed computation time
is problematic for the model; with longer running times the memory capacity
becomes a problem, too.
NEH does not reach the solution quality of the GAs and RS, but we have to take
into account that this is a fast heuristic, compared to algorithms with longer
running times.
Surprisingly, the performance of RS is even better than the performance of

122 CHAPTER 5. GENETIC ALGORITHMS

EGA and SGAM. Apparently these two algorithms do not profit of the more
verbose solution representations; at least not for the tested running times. The
simplicity and speed of RS seems to be an advantage for solving small instances
of a complex problem as the one addressed in this Ph.D. thesis.
BGA, SGA and SGAR are the best implemented methods. The steady state
structure seems to be advantageous, but the difference is not significant. Intro-
ducing for each job an assignment rule does not consume too much running
time, but machine assignments are not improved much either.

The results for the small instances with a single machine per stage (Fig-
ure 5.21) are similar. Only SGAR and SGAM are left out since no machine
assignment is needed in this case. Note that the dispatching rules obtain worse
results than for three machines per stage. Since each machine assignment rule
yields the same solution, we do not take the best out of several solutions in this
case.

BGA

EGA

LPT

LWR

MIP

MWR

MWRST

NEH

RS

SGA

SPT

0

10

20

30

40

50

60

R
el

at
iv

e
D

ev
ia

ti
o

n

Figure 5.21: Means and 99% Tukey confidence intervals
for GAs, MIP and heuristics; small instances with one

machine per stage.

Concentrating on the large instances (see Figure 5.22) the differences in average
relative percentage deviation are huge and some slight changes in the ranking
are noticed. Contrary to the results of the small instances, EGA and SGAM are
significantly better than RS. The lack of structure in the solution search of RS

5.6. Computational Evaluation 123

starts to play a role when the search space is larger. This method is therefore
also outperformed by NEH, which only needs a few seconds for these instances
(Table 4.10). As already mentioned in the GA comparison, the operators in
EGA are very time consuming. For large instances this is even worse than for
the small ones. EGA thus finishes as the worst GA, but still improves the initial
NEH solutions significantly, as seen in Figure 5.23.

R
el

at
iv

e
D

ev
ia

ti
o

n

BGA
EGA

LPT
LWR

MWR
MWRST

NEH
RS

SGA
SGAM

SGAR
SPT

0

40

80

120

160

200

240

Figure 5.22: Means and 99% Tukey confidence intervals
for GAs and heuristics; large instances.

BGA EGA NEH SGA SGAM SGAR

0

5

10

15

20

25

30

R
el

at
iv

e
D

ev
ia

ti
o

n

Figure 5.23: Means and 99% Tukey confidence intervals
for GAs and NEH; large instances.

124 CHAPTER 5. GENETIC ALGORITHMS

5.7. Conclusions

Five genetic algorithms employing several different solution representation
schemes have been presented in this Chapter. They are subjected to a extensive
calibration. The calibration results in a total CPU time of 4,255 hours and
12 minutes, which means slightly more than 22 days in a cluster of 8 parallel
computers. The time investment is worth it, since it teaches us about the
behaviour of the algorithms and performance is stronger when the parameter
settings are calibrated. Despite, many publications can be found in literature,
where no calibration is done or the calibration is not mentioned.
Considering the algorithm parameters, the instance characteristics and the time
limit, the algorithm parameters appear least important. This indicates that the
algorithms are robust as regards instance characteristics and CPU time.
The research presented in this chapter has lead to the publication of Urlings
et al. (2010a).

CHAPTER 6
LOCAL SEARCH ALGORITHMS

To solve combinatorial problems that are too big to be solved to optimality,
often a local search method is called into action. In local search we start with a
certain solution and try to change this solution in such a way that we get a new
solution. The changes we use define the neighbourhood: a function connecting
each solution to a subset of the solution set. From every new solution we go
to one of its neighbours. A possible definition of local search could thus be a
metaheuristic method that aims to optimise an objective function, going from
one solution to another solution in its neighbourhood, describing a path through
the search space doing so.

The simplest local search algorithm is iterative improvement: we always
pick the best neighbour until we get to a local optimum; a solution better than
all its neighbours. However, this local optimum might be very far away from
the global optimum. The challenge of a local search algorithm is therefore to
converge towards better solutions, without getting stuck in a local optimum
worse than the global optimum.

125

126 CHAPTER 6. LOCAL SEARCH ALGORITHMS

6.1. Introduction

Whereas GAs are famous for their flexibility, Local Search (LS) algorithms
often obtain better results, especially for relatively simple problems. According
to Hoos and Stützle (2004), “. . . LS methods are surprisingly simple, and the
respective algorithms are rather easy to understand, communicate and imple-
ment. Yet, these algorithms can often solve computationally hard problems
very efficiently and robustly.”
A condition for their good performance, however, is the use of speedups or
accelerations, which highly depend on the problem. When we consider non-
permutation representations, as for example the solution representations used
for EGA, the implementation of accelerations is highly complicated and its
effectiveness minimal. This is due to the large amount of interconnections
between the tasks within a production schedule. Changing a certain task of
position does not only change the start and finish time of the tasks of the same
job in the following stages and the start and finish times of the tasks after
the moved task; the precedence relationships cause changes in possibly all
machines. As a result of these drawbacks of direct representations for local
search algorithms, all algorithms in this Section work with a single permutation
and one machine assignment rule.

Probably the most important decision in local search design is the definition
of the neighbourhood. Large neighbourhoods are powerful, but time consuming.
The smallest neighbourhood in our problem is Adjacent Interchange (AI), which
consists in interchanging pairs of adjacent jobs in the job permutation. The pair
of adjacent jobs whose interchange causes the largest decrease of the makespan,
is interchanged. This neighbourhood for permutations is quite standard and also
used in Dannenbring (1977). In the case of our problem, because of precedence
relationships, the number of neighbours is always ≤ n− 1.
The Insertion neighbourhood is much more extensive. The neighbourhood
is defined as the set of solutions that can be reached by excluding one job
from the job sequence and inserting this job in another position within the
same sequence. For precedence constraints, the number of reinsertion positions

6.1. Introduction 127

per job is generally lower than n − 1; the job can only be inserted after its
last predecessor and before its first successor. Considering the n jobs in a
sequence, and disregarding for the moment the precedence constraints, there
is a maximum number of neighbours of n(n − 1) − (n − 1) = (n − 1)2, as
insertion of the job in position i at position i− 1 gives the same neighbour as
inserting the job in position i− 1 at position i.
The complete search of the latter neighbourhood results in strong local optima.
However, too much valuable CPU time is used by the LS and few iterations
can be done. To limit the neighbourhood size, one can insert a job a maximum
number of positions (b) towards the beginning of the sequence or a maximum
number (e) towards the end. We will denote this limited search Insert(b,e).
Note that Insert(1,0), Insert(0,1), Insert(1,1) and AI are actually the same
neighbourhood and that Insert(n,n) is the unlimited search. Another way to
decrease the needed time, is not continuing until reaching a local optimum, but
stopping LS after a given number of neighbourhood scans.

As many similar permutations have to be compared, it seems straightforward
to implement some accelerations. The faster a local search is, the more searches
can be done (or generations made by the GA) per unit of time. However, the
complexity of the problem we consider limits the possibilities to accelerate.
The accelerations by Taillard (1990), for example, are not applicable to our
problem. This type of accelerations does not take into account the case of
hybrid flowshops where machine assignments can change due to a change in
the job permutation.
What can be done is using the part of the permutation that is unaffected by the
movements. Suppose that the jobs in the positions j and j + 1 are interchanged.
Then, the tasks of the jobs until position j − 1 remain unaffected (for j > 1).
An example is given in Figure 6.1. Job 4 is placed before job 3. This does
not affect the start nor the finish times of the previous jobs; job 5 and 1. The
rest of the jobs, however, can possibly be assigned to other machines. Note
that the stability of the previous jobs only holds for non look-ahead machine
assignment rules. If instead of rule 1 (earliest available machine), rule 7 (next
job same machine) is applied, then the machine assignments of job 1 are directly

128 CHAPTER 6. LOCAL SEARCH ALGORITHMS

influenced by the exchange between job 3 and 4. In this example job 5 is not
affected, however, if stage skipping occurs the assignments of all jobs might
change. If jobs skip stages, the next job used for the assignment rule is the next
job visiting the stage, which is not necessarily the next job in the permutation.

Job permutation

1 3 4 254

Assignment rule

(a) Change in permutation.

35

MachineStage Jobs

1 1

5

2

2

3

4

3

4

1

5

4

1

2

6

2

3

8

7 4

2

15

9 3

(b) Task order and assignment before job
exchange.

34

MachineStage Jobs

1 1

5

2

2

3

4

3

5

1

5

2

1

3

6

2

4

8

7 3

215

9 4

(c) Task order and assignment after job
exchange.

Figure 6.1: The results of a change in the job permutation.

For calculation of the importance of the accelerations, precedence con-
straints among jobs complicate the matter considerably. Forgetting about
precedence constraints for the moment, it is easy to see that the number of
job calculations without accelerations for AI is (n − 1)n. n − 1 neighbours
should be considered and each of the n jobs is assigned to a machine at all
stages it visits. Now we will consider the same case with accelerations. In

6.1. Introduction 129

Original permutation 1 3 4 25

Neighbours

5 3 4 21

3 1 4 25

1 4 3 25

1 3 2 45

Figure 6.2: Example for n = 5 of the adjacent interchange
(AI) neighbourhood. Using accelerations, the jobs in green

do not have to be recalculated.

order to obtain the first neighbour, we interchange the positions of the first
two jobs, assign all n jobs to the machines and calculate their finish times. To
get the second neighbour, we put the first job back in its original position and
interchange the second and the third job. Since the first job in this neighbour
is distinct from the first job in the previous neighbour, all n jobs should be
assigned and calculated again. The third neighbour has the same job in the
first position as the second neighbour and can use its completion times. A
graphical example is given in Figure 6.2. The total number of job calculations
is consequently n + n + (n − 1) + · · · + 3 = n(n + 1)/2 + n − 3. For
large numbers of n this gets close to 50%. For the insertion neighbourhood
comparable results are to be found. The precedence constraints, however,
reduce the time advantage. Suppose that, in an example with n jobs (n divisible
by 3 without loss of generality), only the job at position n/3 and at position n/2
can be interchanged with their neighbours. Then n+ (1 + 2n/3) = 5n/3 + 1

job calculations have to be made, which is a time advantage of only about 1/6

compared to the regular 2n calculations.
To study the influence of the accelerations and the effectiveness of the local

search techniques in practice, we run 800 generations of the SGA introduced
in Chapter 5, and then apply local search to the population. Local search is
repeated until the solutions are not improved anymore. For the 800 generations,

130 CHAPTER 6. LOCAL SEARCH ALGORITHMS

R
el

at
iv

e
T

im
e

D
ev

ia
ti

o
n

AI
AIa

(2,2)
(2,2)a

(n,n)
(n,n)a

0

1.5

3

4.5

6

7.5

9

10.5

Figure 6.3: Comparison of increment in time (×100%)
between local search with (-a) and without accelerations.

computation times range from 30 seconds for the smaller instances, till 15
minutes for the largest instances of 100 jobs and 32 machines (distributed over
8 stages). For each neighbourhood search, three executions are done with
accelerations and three without accelerations.
For each execution the relative increase in time is measured. An ANOVA is
used to analyse the results. In Figure 6.3, the means and confidence intervals
are shown for each neighbourhood with and without accelerations. If the
99% Tukey intervals do not overlap, we can assume a difference with an error
probability of 1%. The impact of the accelerations depends on the size of
the neighbourhood. For Insert(n,n), an average time saving of about 28.6% is
measured. The values for the small neighbourhoods are so small compared to the
larger neighbourhoods that no significant difference can be seen. However, in a
second ANOVA without Insert(n,n), the accelerations for AI and Insert(2,2) are
significant. Consulting Table 6.1, the Insert(2,2) local search with accelerations
is about 40.1% faster than the version without accelerations. For AI this is even
46.8%. Note that makespan values remain unchanged.

In preliminary tests several local search implementations are compared.
Several design choices have to made. The issues we address here are the

6.1. Introduction 131

Local Acceleration Mean Stnd. Lower Upper
Search Error Limit Limit

AI Standard 12.35 10.50 -14.70 39.40
Accelerated 6.57 10.50 -20.48 33.62

Time reduction 46.81
Insert(2,2) Standard 28.48 10.50 1.43 55.53

Accelerated 17.07 10.50 -9.98 44.12
Time reduction 40.05

Insert(n,n) Standard 1024.04 10.50 997.00 1051.09
Accelerated 731.57 10.50 704.52 758.62

Time reduction 28.56

Table 6.1: Table of means and 99% confidence intervals
for the relative percentage time increase.

following:

When to decide to make a move,

Whether to apply a preprocess with a smaller neighbourhood or not,

Where to allow insertion,

Which order to treat the jobs in.

We start with the first question: when to decide to make a move. The choices
we have are first and best improvement: when we check all positions for a job,
we can either insert the job at the first position that yields a better solution, or
wait until we have seen all positions for this job and insert it at the best position.
In Figure 6.4 the two options are compared, applying local search with insertion
neighbourhood on a NEH solution for each large instance. Different symbols
are used for instances with different characteristics, such that the influence of
stage skipping and precedence constraints can be seen. Points at the diagonal 45
degree line indicate instances where first and best improvement have the same
behaviour. If first improvement obtains a better makespan value for an instance
than best improvement, a dot appears above the 45 degree line in Figure 6.4(a).
In Figure 6.4(b) the number of successful local search operations is compared;
the number of actually performed insertions. Figure 6.4(c) shows a histogram

132 CHAPTER 6. LOCAL SEARCH ALGORITHMS

of the number of neighbourhood scans when reaching a local optimum. From
these last two Figures, we can conclude that best improvement needs less local
search steps and less neighbourhood scans. This enables us to limit the number
of neighbourhood scans in a later stage of the calibration. We will therefore
continue with best improvement.

6.1. Introduction 133

0

10

20

30

40

50

60

70

0 20 40 60 80

First

B
es

t

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(a) Average Relative Percentage Deviation.

0

20

40

60

80

100

0 50 100 150

First

B
es

t

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(b) Local Search improvements.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

First

Best

N
u

m
b

er
 o

f
sc

a
n

s

(c) Neighbourhood scans.

Figure 6.4: Comparison between first and best improve-
ment.

134 CHAPTER 6. LOCAL SEARCH ALGORITHMS

Having the first issue solved, we consider the next choice; whether to apply
a preprocess or not. To be more precise, the question is either to begin directly
searching the insertion neighbourhood or first get a local optimum for the adja-
cent interchange neighbourhood and then change to insertion neighbourhood.
Figure 6.5 shows the differences in a similar way as Figure 6.4. There are quite
some instances where long processing time is needed for insertion local search
from the start, while the processing time for these instances is shorter if adjacent
interchange has been applied first (Figure 6.5(b)). On basis of this we decide to
search the AI to local optimum first, when applying local search.

0

10

20

30

40

50

60

70

0 20 40 60 80

insert

A
I-

in
se

rt

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(a) Average Relative Percentage Deviation.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

insert

A
I-

in
se

rt

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(b) CPU Time (seconds).

Figure 6.5: Comparison between only insertion and adja-
cent interchange followed by insertion.

6.1. Introduction 135

The following design decision is where to allow insertion of a job. We are
interested in knowing whether only insertions in an earlier position and only
insertion in a later position lead to the same results. We test allowing insertion
in an earlier position at a maximum distance of 100 positions (which in fact is
each earlier position for the instances we use) and allowing insertion in a later at
a maximum distance of 0 positions (which means no insertion in later positions).
We denote this as “100-0 insertion”. In Figure 6.6 we compare this with the
opposite: 0-100 insertion. The latter needs less CPU time on average, as more
instances appear below the diagonal in Figure 6.6(b). The explication is simple:
the acceleration reuse the information on first part of the permutation, until the
first job that has changes position. If we always insert in a later position, the
number of unchanged jobs at the start of the permutation is larger, such that
more information can be reused.

We now arrive to the last issue: in which order to consider the jobs. The
most straightforward implementation starts scanning new positions for the first
job and works from the start (or front) of the permutation towards the end (or
back) of the permutation. Because of the accelerations we are interested in
trying the opposite as well, starting from the back and working towards the front.
The comparison is shown in Figure 6.7. The test appears to be useful, as starting
from the back of the permutation results in shorter CPU times (Figure 6.7(b)).
The reason is the following: The last neighbourhood scan does not have be
finished completely. If the last improvement has been made for job j, when
reaching job j again without further improvements we know we have reached a
local optimum and we can stop the local search. If we start from the back we
can skip in this last neighbourhood scan all jobs before job j, for which only
little information can be reused (as they are at the beginning of the permutation).
Therefore we save more time than when we start from the front and skip the
jobs after job j, where more information can be reused.

Summarising the foregoing: Considering CPU time and solution quality,
the best implementation starts with a search in the adjacent interchange neigh-

136 CHAPTER 6. LOCAL SEARCH ALGORITHMS

0

10

20

30

40

50

60

70

0 20 40 60 80

100-0

0
-1

0
0

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(a) Average Relative Percentage Deviation.

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5

100-0

0
-1

0
0

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(b) CPU Time (seconds).

Figure 6.6: Comparison between only insertion in earlier
positions and only insertion in later positions.

bourhood, until a local optimum is reached. Then the neighbourhood is made
larger by allowing insertions of jobs at a larger distance, as insertion showed to
be better than interchange in an earlier stage. For each job, the best insertion is
performed until no improvements can be made anymore. Starting from the job
in the last position results in lower computation times, as most information on
the schedules can be reused. The pseudocode of the resulting local search that
we will call Best Insertion Reverse Search is given in Algorithm 2.

6.2. Memetic Algorithm 137

0

10

20

30

40

50

60

70

0 20 40 60 80

back

fr
o
n

t

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(a) Average Relative Percentage Deviation.

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8

back

fr
o
n

t

no skip, no prec

skip, no prec

no skip, prec

skip, prec

(b) CPU Time (seconds).

Figure 6.7: Comparison between only insertion in earlier
positions and only insertion in later positions.

6.2. Memetic Algorithm

A memetic algorithm (MA) is a GA with a local search on certain indi-
viduals at certain moments. We start from the SGA, as this appears to be
the most effective GA (see Section 5.7) and as the solution representation is
appropriate for a fast and efficient local search. Each time after creating two
new individuals in the SGA algorithm, local search is applied with probability
pLS. The procedure is not applied to the (possibly poor) new individuals, but

138 CHAPTER 6. LOCAL SEARCH ALGORITHMS

Algorithm 2: Best Insertion Reverse Search
Input: instance data, permutation π, b, e, scansmax

Output: permutation π
begin

set C∗max to current makespan;
set scans to 0;
repeat

set improved to False;
set scans to scans+ 1;
for j = n down to 1 do

for i = max{j − b, 1} to min{j + e, n} do
if i 6= j then

insert job π(j) in position i;
calculate Cmax; if π is feasible and Cmax < C∗max then

set C∗max to Cmax;
set i∗ to i;
set improved to True;

undo insertion;
if improved = True then insert job π(j) in position i∗;

until improved = False or scans = scansmax ;
return π;

end

to an already accepted individual in the population.
We apply local search with a adjacent interchange neighbourhood to one
of the individuals with the best makespan. If no improvement is made, in
the next iteration AI-search is applied to one of the individuals with the
second-best makespan value. When all makespans have had one individual AI-
investigated, the investigated individual with lowest makespan is taken for LS
with a maximum insertion distance of two positions. Once all makespan values
have had their individual searched for this neighbourhood, the full insertion
neighbourhood is scanned for each job for the same individuals in the same
order. When all jobs have been investigated, we know that the individuals are
local optima for all implemented LS neighbourhoods and we start investigating
the remaining individuals of the population, with makespans equal to the locally
optimal individuals.
The number of individuals in the population with the same makespan plays

6.2. Memetic Algorithm 139

an important role in this procedure. GK represents the set of individu-
als in the current population with makespan value K. Because of the in-
direct solution representation, seemingly different individuals with differ-
ent chromosomes might in fact represent the same solution. In order to
avoid to have too many identical solutions in the population, a new in-
dividual is only accepted if it is better than the worst individual in the
population and if the permutation does not exist in the population yet and
if the number of individuals with this same makespan does not exceed a
given number max#sol. Pseudocode for the MA is given in Algorithm 3.

140 CHAPTER 6. LOCAL SEARCH ALGORITHMS

Algorithm 3: Memetic Algorithm
Input: instance data, Pc, Pmut, Pma, PLS ,max#sol

Output: schedule
begin

initialise population pop;
initialise indexi with value 0, ∀i ∈ pop;
while time < max time do

select two random solutions from population;
if random < Pc then

apply two-point order crossover;

foreach offspring individual i do
for j = 1 to n do

if random < Pmut then
perform mutation for the job at position j in individual i;

if random < Pma then
change machine assignment rule for individual i;

if unique solution AND soli < max
j∈pop

solj AND card(Gsoli) < max#sol

then
set indexi to 0;
replace worst individual by individual i;

if random < PLS then
//get the individuals with highest index of each set GCmax

foreach distinct Cmax that occurs in pop do
define set ICmax of individuals i such that indexg ≤ indexi ≤ 2,
∀g ∈ GCmax ;

//get the union of all previously selected individuals
define set I =

⋃
ICmax , ∀Cmax ∈ pop;

//get the individuals with lowest index of the union
define set J of individuals j where indexj ≤ indexi, ∀i ∈ I;
//get the individual with lowest makespan of the latter set
get individual k such that solk ≤ solj , ∀j ∈ J ;
switch the value of indexk do

case 0 local search in k on insert1,0 neighbourhood;
case 1 local search in k on insert2,2 neighbourhood;
case 2 local search in k on insertn,n neighbourhood;
if k improved then

set indexk to 0;
else

increase indexk;

return schedule of individual i such that soli ≤ solj , ∀j ∈ pop;
end

6.2. Memetic Algorithm 141

Preliminary tests show that it is far more effective to apply local search in the
Memetic Algorithm only in the iterations after half of the allowed CPU time,
than to do so directly from the start. It seems plausible to allow the SGA to
carry out the initial coarse search which is in turn also faster than with LS.
To test the configuration, we compare the local search probability pLS equal to
0, 10% and 100% and the maximum number of individuals with the same
solution value max#sol equal to 1, 15 and 200 (total population). The
algorithm is executed five times for each combination and for each instance.
However, we now only concentrate on the large instances. These are the
hardest and therefore most important instances. We define termination criterion
parameter t to be 25 milliseconds. This corresponds to 80 seconds for the
largest instances of 100 jobs and 32 machines. In Figure 6.8 the interactions and
the 99% Tukey confidence intervals are shown. The best results are obtained
for pLS =10%. With respect to 100%, a smaller part of the running time is
consumed and the genetic algorithm has more power. A maximum number of
15 individuals with the same makespan is the best tested configuration.

max#sol

Prob. LS

0%

10%

100%

4.5

5

5.5

6

6.5

7

1 15 200

R
el

at
iv

e
D

ev
ia

ti
o

n

Figure 6.8: Interaction and 99% Tukey confidence intervals
for the local search probability and max#sol in MA; large

instances.

142 CHAPTER 6. LOCAL SEARCH ALGORITHMS

6.3. Iterated Local Search

ILS algorithms can be found in many different fields. Stützle (1998) uses it
to optimise the permutation flowshop problem, den Besten et al. (2001) apply it
to the single machine total weighted tardiness problem and Stützle (2006) shows
another implementation for the quadratic assignment problem. The simplicity
of this type of algorithms is their strongest point. They are relatively easy to
implement, the number of parameters is low and if the local search is efficient,
the performance is typically very good. The algorithm works as follows: An
initial solution is chosen and local search is applied to this solution. The main
loop of ILS does first a solution perturbation, next applies local search and
then decides from which solution to continue. Generally, better solutions are
always accepted; for worse solutions, Martin et al. (1991) propose to use the
acceptance criterion of simulated annealing. If the new solution is better, it is
directly accepted; otherwise it is accepted with a probability of egap/temp, where
temp is a temperature parameter and gap the percentage difference between
the current and previous solution. The importance of a good calibration of this
acceptance criterion is shown in Stützle (1998). Lourenço et al. (2002) can be
used as a good guide for ILS.
The adapted NEH heuristic in combination with the FPNS machine assignment
rule is used to generate the initial solution. In the ILS calibration, different
perturbation possibilities are tested, all based in GA mutations. The permutation
is subject to a number NrPert of either random adjacent interchanges (similar
to Position Mutation), random inserts (similar to Shift Mutation) or random
interchanges. An interchange is defined as placing the job in position a in
another position b and placing the job that was in position b in position a. Note
that the precedence constraints for both jobs have to be checked. The last two
perturbation types can be limited in length, that is how far away a job is moved
from its current position. Pseudocode for the ILS implementation is given in
Algorithm 4.

We will compare the configurations of full neighbourhood, allowing inser-
tion until 4 positions towards the beginning and 9 towards the end, 9 towards the

6.3. Iterated Local Search 143

Algorithm 4: Iterated Local Search
Input: instance data, b, e, scansmax, pert
Output: permutation πopt

begin
created initial solution with NEH heuristic;
repeat

apply local search with insertb,e neighbourhood;
until time > max time or scans = scansmax ;
set C∗max and Copt

max to Cmax;
set π∗ and πopt to current permutation π;
while time < max time do

for i = 1 to pert do
choose a random position j in U [1, n];
insert the job from position j in a random feasible position in
U [max{j − b, 1},min{j + e, n}];

repeat
apply local search with insertb,e neighbourhood;

until time >= max time or scans = scansmax ;
if Cmax <= C∗max or random < e(C

∗
max−Cmax)/temp then

set C∗max to Cmax;
set π∗ to current permutation π;
if Cmax < Copt

max then
set Copt

max to Cmax;
set πopt to current permutation π;

else
set current permutation π to π∗;

return πopt;
end

beginning and 4 towards the end, 4 in both directions and 9 in both directions.
All neighbourhood configurations are shown in Figure 6.9.
Another way to speed up local search is to not repeat scanning the neighbour-
hood until arrival in a local optimum, but stopping after a number of complete
neighbourhood scans. We test 2 scans for the full neighbourhood and 3 scans
for the restricted neighbourhoods.

The allowed running time parameter t is set to 25 milliseconds. An ANOVA
shows that exploring the full neighbourhood until reaching a local optimum
yields the best results, see Figure 6.10. This same figure shows that forward

144 CHAPTER 6. LOCAL SEARCH ALGORITHMS

4-4

4-9

9-4

9-9

full

Figure 6.9: Distinct local search insertion neighbourhood
restrictions.

insertions should not be treated equally as backward insertions, as a maximum
of 4 positions towards the beginning of the sequence and 9 towards the end is
clearly better than the opposite. The temperature parameter for the acceptance
formula should be set to 1% for the best average results, although lower values
are better for the instances without precedence constraints. The best perturbation
is done by performing 6 random adjacent interchanges.

5.5

6

6.5

7

7.5

8

8.5

full 4-9 full

2x

4-9

3x
9-4 9-4

3x
4-4 4-4

3x
9-9 9-9

3x

R
el

at
iv

e
D

ev
ia

ti
o
n

Figure 6.10: Factor means and 99% Tukey confidence
intervals for the LS properties for the ILS algorithm; large

instances.

6.4. Iterated Greedy 145

6.4. Iterated Greedy

Ruiz and Stützle (2007, 2008) proposed an IG algorithm, which can been
seen as a special variant of ILS for the permutation flowshop problem. Each
iteration of IG consists of two phases. In the first phase, the solution is partially
destructed by removing a number of randomly chosen jobs. In the second phase,
the jobs are inserted again in random order. Insertion happens as in the NEH
heuristic; a job is inserted at the best position and stays there when the next job
arrives for insertion.
Adapted versions of IG can be applied to other scheduling problems. Fanjul
Peyró and Ruiz (2010), for example, use IG techniques for an unrelated parallel
machines problem. We designed the necessary adaptations in order to apply
IG to the HFFL problem we consider. This section gives the details on this
algorithm.
The construction phase takes more time than a regular perturbation, so one
might expect this algorithm to be slower than the standard ILS implementations.
However, because of its greediness the solution after perturbation is expected to
be better. Therefore, the local search needs less time and it is generally expected
to be more accurate for short running times or extremely large search spaces.
Pseudocode for the destruction and construction phase is given in Algorithm 5;
the rest of the algorithm is equal to ILS.

For IG, the same neighbourhoods are considered as for ILS. Different from
this latter algorithm, a restricted neighbourhood shows a better performance
than the full one in Figure 6.11. Note that the confidence intervals are larger
then for ILS, as less parameters imply less data in the calibration. Allowing a
maximum distance of 4 positions towards the beginning of the sequence and 9
positions towards the end has the lowest average deviation from the best known
solution, although an ANOVA shows that there is no significant difference with
a maximum of 9 in both directions. Another important result is that a limited
number of neighbourhood scans has a negative influence on the results. The
average best temperature parameter is temp = 0.5%, although again lower
temperatures are preferred for instances without precedence constraints and

146 CHAPTER 6. LOCAL SEARCH ALGORITHMS

Algorithm 5: Destruction and Construction phase of Iterated Greedy
Input: instance data, π, dest
Output: permutation π
begin

//destruction
for i = 1 to dest do

choose a random position j in U [1, n+ 1− i];
remove the job at position j from π;
insert the job in set R;

//construction
for i = 1 to dest do

choose a random job j from set R;
find earliest feasible position min in π for job j;
find latest feasible position max in π for job j;
set C−max to a high number, e.g.,

∑
j∈N

∑
i∈Fj

maxl∈Eij pilj ;

for k = min to max do
insert job j in position k of π;
if current makespan Cmax < C−max then

set C−max to current makespan Cmax;
set k− to k;

remove job j from π;

insert job j in position k− of π;
remove job j from set R;

return π;
end

higher with precedence constraints. Destructing 4 jobs yields the best results,
especially when only half of the machines are eligible.

6.5. Computational Evaluation

Let us now compare the local search algorithms with SGA, the best
performing GA. We now run all algorithms on the full set of large instances,
for t = 5, t = 25 and t = 125. We can see a strong correlation between
the eligibility of the machines and the performance of the distinct algorithms.
Using a multi-factor ANOVA, Figure 6.12 shows that SGA and MA do better if
any machine can be chosen, while the ILS and IG algorithms perform better if
each job can be assigned only to a subset of the machines. In SGA and MA a

6.5. Computational Evaluation 147

5.3

5.7

6.1

6.5

6.9

full 4-9 full

2x

4-9

3x
9-4 9-4

3x
4-4 4-4

3x
9-9 9-9

3x

R
el

at
iv

e
D

ev
ia

ti
o
n

Figure 6.11: Factor means and 99% Tukey confidence
intervals for the LS properties for the IG algorithm; large

instances.

population of several solutions is used, while in ILS and IG there is only one
solution. This might indicate an advantage for population algorithms if the
number of eligible machines is high. The most important result, however, is
that a subtle, intensively worked local search helps to improve or excel the GA
performance, as both MA and IG improve the average results of the SGA and
the MA is better or without significant difference in all cases.
The interaction with the allowed running time has a lower F-Ratio, but is
interesting to light out as well. From Figure 6.13, we can conclude that the SGA
obtains good results for short running times, but that local search is needed to
obtain better results if more running time is allowed. Among the local search
algorithms, the best average for IG is caused by the relatively good results for
short CPU times. For medium or long execution times, no significant difference
with MA is observed. A table of means is included in Appendix A.

148 CHAPTER 6. LOCAL SEARCH ALGORITHMS

Eligible machines

R
el

at
iv

e
D

ev
ia

ti
o

n

Algorithm

IG

ILS

MA

SGA

5.1

5.6

6.1

6.6

7.1

7.6

8.1

50% 100%

Figure 6.12: Interaction and 99% Tukey confidence inter-
vals for the machine eligibility and the algorithm; large

instances.

t (in ms)

R
el

at
iv

e
D

ev
ia

ti
o
n Algorithm

IG

ILS

MA

SGA

2

4

6

8

10

12

5 25 125

Figure 6.13: Interaction and 99% Tukey confidence inter-
vals for the allowed running time and the algorithm; large

instances.

6.6. Conclusions 149

6.6. Conclusions

In this Chapter, three more algorithms are presented. Adaptations of
algorithms that were proposed for simpler scheduling problems or even other
fields of research are able to find good solutions for this HFFL. However, we
have found that the algorithmic issues that arise for these realistic problems
are different from those on the very simple problems traditionally studied in
scheduling theory. This is most noticeable at the local search component. While
local search still plays a role even for these complex problems, its impact
appears to be less dominant than for the simpler ones. Therefore, more complex
search strategies need to be developed. This is what we will do in Chapter 7.
The research in this chapter has lead to the publication of Urlings and Ruiz
(2007), where the memetic algorithm is presented.

CHAPTER 7
SHIFTING REPRESENTATION ALGORITHMS

In the previous chapters, each of the algorithms has its own solution
representation scheme, with its own disadvantages and limitations. The more
indirect representations are efficient, but cover only a small part of the solution
space. The optimal solution might be outside this subset of solution space. More
verbose representations cover a larger subset or even the whole solution space.
Those representations, however, tend to lead to highly inefficient algorithms.
The EGA, for example, starts to be too time consuming for instances with
more than 10 jobs, as can be seen in Figure 7.1. These observations are the
motivation for a couple of novel algorithms with a solution representation
that changes over time. In Section 7.1, a genetic algorithm with a changing
solution representation is presented. The computational results indicate that
the change in representation hardly yields any advantage in the case of this
genetic algorithm. Section 7.2 introduces a local search algorithm, where the
representation shifts from indirect to direct. The outcome of the empirical
analysis is very promising in this case. The scientific results of the research
contained in this chapter are summarised in Urlings et al. (2010b).

151

152 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

n

R
el

at
iv

e
D

ev
ia

ti
o

n

Algorithm

BGA
EGA
SGA
SGAM
SGAR

0

2

4

6

8

10

5 7 9 11 13 15

Figure 7.1: Influence of the number of jobs on the results
of the genetic algorithms. Interaction and 99% Tukey
confidence intervals for the instances with three machines

per stage.

7.1. Mixed Genetic Algorithm

The mixed genetic algorithm (MGA) is basically a combination of the SGA
and the EGA, both described in detail in Chapter 5. The algorithm starts with the
most indirect representation, which is a single job permutation and a machine
assignment rule. When part of the CPU time is consumed by the first phase, all
solutions in the population are represented with the full solution representation
of a ordered task list for each machine. Then the second phase, that searches
the full search space, starts, and continues until the stopping criterion is met.
Both the first and the second part use the steady state population renewal.
The philosophy of the algorithm is quite straightforward. The first phase serves
to get a population of good solutions in an efficient way and the second phase
does a more detailed search around these good solutions. This should help to
overcome the drawbacks of both solution representations when they are used
on their own. A compact pseudocode is given in Algorithm 6.
In order to calibrate the algorithm, we allow different values for the population

7.1. Mixed Genetic Algorithm 153

Algorithm 6: Mixed Genetic Algorithm
Input: instance data, pop
Output: schedule
begin

initialise population;
repeat

update population using SGA;
until time > 0.5 × max time ;
convert representation of each solution;
repeat

update population using EGA;
until time > max time ;
find schedule of best individual;
return schedule;

end

size, the crossover probability and the mutation probability, and we compare
several methods for selection. The respective values are: 50, 80, 120 and
200 individuals; 40% and 60%; 1% and 2% per job; random, roulette and
tournament selection. The running time is defined by t ∈ {5, 25}ms. We do an
experiment with full factorial design, where the algorithm is executed 5 times
for each parameter combination for each instance.
For the large instances, the most important parameter is the selection method.
The parameter with the second most influence, is the population size. We
can conclude from their interaction, shown graphically in Figure 7.2, that
the algorithm has some trouble maintaining its population diversity. Random
selection and a large population (120 individuals) are both needed to handle
this problem. When these factors are fixed, only the mutation probability is
statistically significant. A 2% probability is most advantageous. All details on
the means and the interactions are given in Table 7.1.

154 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

Population size

R
el

at
iv

e
D

ev
ia

ti
o

n

Selection

Random

Roulette

Tournament

10

10.5

11

11.5

12

12.5

13

50 80 120 200

Figure 7.2: Selection method and population size levels for
the MGA. Interaction and 99% Tukey confidence intervals

for the large instances.

Table 7.1: Calibration for the MGA. Table of means and
99% confidence intervals for the large instances.

Level 2nd Level Count Mean Stnd. Error Lower Limit Upper Limit

Population size
50 23040 12.094 0.0248759 12.0299 12.1581
80 23040 11.5585 0.0248759 11.4944 11.6225
120 23040 11.1815 0.0248759 11.1175 11.2456
200 23040 10.8371 0.0248759 10.7731 10.9012

Selection
Random 30720 10.7503 0.0215431 10.6948 10.8057
Roulette 30720 11.5558 0.0215431 11.5003 11.6113

Tournament 30720 11.9473 0.0215431 11.8918 12.0027
Crossover probability

40% 46080 11.4489 0.0175899 11.4035 11.4942
60% 46080 11.3867 0.0175899 11.3414 11.432

Mutation probability
1% 46080 11.7069 0.0175899 11.6616 11.7522
2% 46080 11.1287 0.0175899 11.0834 11.174

Time parameter t
5 46080 12.8212 0.0175899 12.7759 12.8665

25 46080 10.0144 0.0175899 9.96909 10.0597
Population size by selection

50 Random 7680 11.1989 0.0430863 11.0879 11.3099

7.1. Mixed Genetic Algorithm 155

50 Roulette 7680 12.2611 0.0430863 12.1501 12.3721
50 Tournament 7680 12.822 0.0430863 12.711 12.9329
80 Random 7680 10.7462 0.0430863 10.6352 10.8572
80 Roulette 7680 11.7372 0.0430863 11.6262 11.8482
80 Tournament 7680 12.1919 0.0430863 12.081 12.3029

120 Random 7680 10.5046 0.0430863 10.3936 10.6156
120 Roulette 7680 11.348 0.0430863 11.237 11.459
120 Tournament 7680 11.692 0.0430863 11.581 11.803
200 Random 7680 10.5513 0.0430863 10.4403 10.6623
200 Roulette 7680 10.877 0.0430863 10.766 10.988
200 Tournament 7680 11.0831 0.0430863 10.9721 11.1941

Population size by crossover probability
50 40% 11520 12.0748 0.0351798 11.9842 12.1655
50 60% 11520 12.1131 0.0351798 12.0225 12.2037
80 40% 11520 11.5624 0.0351798 11.4718 11.653
80 60% 11520 11.5545 0.0351798 11.4639 11.6452

120 40% 11520 11.2433 0.0351798 11.1527 11.3339
120 60% 11520 11.1198 0.0351798 11.0292 11.2104
200 40% 11520 10.9149 0.0351798 10.8243 11.0055
200 60% 11520 10.7594 0.0351798 10.6688 10.85

Population size by mutation probability
50 1% 11520 12.4675 0.0351798 12.3769 12.5581
50 2% 11520 11.7204 0.0351798 11.6298 11.8111
80 1% 11520 11.8841 0.0351798 11.7935 11.9748
80 2% 11520 11.2328 0.0351798 11.1422 11.3234

120 1% 11520 11.4549 0.0351798 11.3643 11.5455
120 2% 11520 10.9082 0.0351798 10.8175 10.9988
200 1% 11520 11.0209 0.0351798 10.9303 11.1115
200 2% 11520 10.6534 0.0351798 10.5628 10.744

Population size by time parameter t
50 5 11520 13.2056 0.0351798 13.1149 13.2962
50 25 11520 10.9824 0.0351798 10.8918 11.073
80 5 11520 12.8051 0.0351798 12.7145 12.8957
80 25 11520 10.3118 0.0351798 10.2212 10.4024

120 5 11520 12.6339 0.0351798 12.5433 12.7245
120 25 11520 9.72921 0.0351798 9.63859 9.81982
200 5 11520 12.6401 0.0351798 12.5495 12.7307
200 25 11520 9.03419 0.0351798 8.94358 9.12481

Selection by crossover probability
Random 40% 15360 10.8223 0.0304666 10.7438 10.9008
Random 60% 15360 10.6782 0.0304666 10.5998 10.7567
Roulette 40% 15360 11.5885 0.0304666 11.51 11.667
Roulette 60% 15360 11.5232 0.0304666 11.4447 11.6016

Tournament 40% 15360 11.9358 0.0304666 11.8573 12.0142
Tournament 60% 15360 11.9587 0.0304666 11.8803 12.0372
Selection by mutation probability

Random 1% 15360 10.9486 0.0304666 10.8701 11.027

156 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

Random 2% 15360 10.552 0.0304666 10.4735 10.6304
Roulette 1% 15360 11.8603 0.0304666 11.7818 11.9388
Roulette 2% 15360 11.2514 0.0304666 11.1729 11.3298

Tournament 1% 15360 12.3117 0.0304666 12.2333 12.3902
Tournament 2% 15360 11.5828 0.0304666 11.5043 11.6613
Selection by time parameter t

Random 5 15360 12.5817 0.0304666 12.5032 12.6602
Random 25 15360 8.91879 0.0304666 8.84031 8.99727
Roulette 5 15360 12.8056 0.0304666 12.7271 12.8841
Roulette 25 15360 10.3061 0.0304666 10.2276 10.3846

Tournament 5 15360 13.0762 0.0304666 12.9977 13.1547
Tournament 25 15360 10.8183 0.0304666 10.7399 10.8968
Crossover probability by mutation probability

40% 1% 23040 11.7022 0.0248759 11.6381 11.7663
40% 2% 23040 11.1955 0.0248759 11.1314 11.2596
60% 1% 23040 11.7115 0.0248759 11.6475 11.7756
60% 2% 23040 11.0619 0.0248759 10.9978 11.1259

Crossover probability by time parameter t
40% 5 23040 12.8853 0.0248759 12.8213 12.9494
40% 25 23040 10.0124 0.0248759 9.94829 10.0764
60% 5 23040 12.757 0.0248759 12.6929 12.8211
60% 25 23040 10.0164 0.0248759 9.95235 10.0805

Mutation probability by time parameter t
1% 5 23040 13.012 0.0248759 12.9479 13.076
1% 25 23040 10.4018 0.0248759 10.3377 10.4658
2% 5 23040 12.6304 0.0248759 12.5663 12.6944
2% 25 23040 9.62703 0.0248759 9.56295 9.69111

For the small instances with 3 machines per stage, the calibration leads to the
same result, as shown in Figure 7.3. Random selection is better than both
other options and a population of size 120 is good as well, although it is
not significantly different from a population size of 80 or 200. A mutation
probability of 2% seems slightly better, but the factor is also not significant for
a confidence interval of 99%.
In order to measure the contribution of each of the two phases in the algorithm,
a series of tests is done, enabling and disabling each phase. If both stages are
disabled, the population is only initialised with NEH and random solutions and
the best initial solution is returned. The results for the large instances are shown
in Figure 7.4. The figure shows that the SGA phase is very important and that

7.1. Mixed Genetic Algorithm 157

Population size

R
el

at
iv

e
D

ev
ia

ti
o
n

Selection

Random

Roulette

Tournament

2.5

2.7

2.9

3.1

3.3

3.5

50 80 120 200

Figure 7.3: Selection method and population size levels for
the MGA. Interaction and 99% Tukey confidence intervals

for the small instances with three machines per stage.

R
el

at
iv

e
D

ev
ia

ti
o

n

MGAEGA

0

5

10

15

20

25

30

NEH SGA

Figure 7.4: Influence of each MGA phase. Means and 99%
Tukey confidence intervals for the large instances.

the EGA phase does not have a significant contribution to the results. The exact
values of the means and intervals are given in Table 7.2.

158 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

SGA EGA Count Mean Stnd. Error Lower Limit Upper Limit

No No 320 25.291 0.3638 24.354 26.228
No Yes 320 24.437 0.3638 23.500 25.374
Yes No 320 6.071 0.3638 5.134 7.008
Yes Yes 320 6.060 0.3638 5.123 6.997

Table 7.2: Influence of each MGA phase. Table of means
and 99% confidence intervals for the large instances.

Another test that shows the contribution of each phase, is a calibration of
the moment to change from the SGA phase to the EGA phase. We tested for a
subset of the large instances (taking only the first of every three replicates for
each instance parameter setting) a change in solution representation after 100,
200, 500 and 800 population generations. As can be observed in Figure 7.5,
the later the change in solution representation, the better the results. The data
for the figure are given in Table 7.3. This test, together with the previous one,
proves that the EGA phase does not have a valuable contribution for the large
instances in this algorithm.

Generations

R
el

at
iv

e
D

ev
ia

ti
o
n

100 200 500 800

7

8

9

10

11

Figure 7.5: Calibration of number of generations in SGA
phase. Means and 99% Tukey confidence intervals for a

subset of the large instances.

7.2. Shifting Representation Search 159

Generations Count Mean Stnd. Error Lower Limit Upper Limit

100 640 10.5613 0.144623 10.1888 10.9339
200 640 9.32623 0.144623 8.9537 9.69875
500 640 8.18299 0.144623 7.81047 8.55552
800 640 7.78921 0.144623 7.41668 8.16173

Table 7.3: Calibration of number of generations in SGA
phase. Table of means and 99% confidence intervals for a

subset of the large instances.

7.2. Shifting Representation Search

Based on the foregoing observations, we developed a new algorithm we
named shifting representation search (SRS). This algorithm starts with an
indirect solution representation and changes to the full representation when
half of the allocated CPU time has elapsed. For local search on the full
representation, we do not insert complete jobs, but tasks, where a task is
the processing of a job on one machine. The local search neighbourhood is
defined as follows: a task is inserted into all possible positions in the task list of
the current machine and in the lists of all other eligible machines in the same
stage.
In the first phase, we apply the iterated greedy algorithm presented in Chapter 6,
as it was shown to be the best performing algorithm with a single job
permutation representation. Moreover, IG has a better performance than ILS
algorithms in general, which has been shown in Ruiz and Stützle (2007). In
the second phase, we perform an iterated local search in the full search space.
Perturbation is a random insertion of a task in a feasible position of the task list
of another machine. Iterated greedy is not chosen for this representation, since
the makespan evaluation of schedules with missing tasks is questionable and
both hard and inefficient in terms of implementation.
Having a close look at a schedule, one can see that the makespan of that
particular schedule is actually determined by a path of critical tasks. In
Figure 7.6, the critical path for the example solution of instance 1 is shown.
The sum of the release time, the processing times of the tasks, the setup time

160 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

and the time lag results in the makespan value of 366. The part that we can
influence are the tasks on this critical path: job 4 and 3 at machine 1 and job 3
at machine 4.

Time

Machine 1

Machine 2

Machine 3

Machine 4 3

1

4

Stage 1

Stage 2 Machine 5

3

15

Setup

2

2

Job 3 Job 4Job 2 Job 5Job 1Previous work

50 150 200 300 350100 250

20845

73

125

143

242

360

125 159

10998

113 357 366

135 158 199

262

Machine 6

159

Figure 7.6: The critical path in the earlier shown solution
for example instance 1.

If a non critical task a is inserted between tasks b and c, then the makespan
can only decrease if task c is critical and if the setupba + proca + setupac <

setupbc, such that task c finishes earlier. Since this case is very rare, improving
the makespan value by moving a task that is not on the critical path is very
improbable. Taking into account that operations on a full representation are
fairly time expensive, we only apply local search to tasks on the critical path.
Nowicki and Smutnicki (1996) limit the neighbourhood size in a similar way;
they apply local search on the critical tasks in a jobshop problem. Since they
do not take setup times into account, only moves of tasks on the critical path
can improve the solution value.
It is fairly easy to follow the critical path in opposite direction from the end of
the schedule; it begins at the task with completion time equal to the makespan
value. In the example in Figure 7.6 this is job 3 at machine 4. The previous
critical task is either the foregoing task at the same machine, the previous task

7.2. Shifting Representation Search 161

of the same job, or the last task of one of the predecessors. The previous task in
the example is job 3 at machine 1. The critical path might also split when the
completion time of two or more tasks is exactly equal to the makespan value,
or when two or more tasks determine together the starting time of another task
at the critical path. In this case, the makespan value can not be improved by
insertion of only one task, thus local search is stopped. A pseudocode of the
local search in this second phase is given in Algorithm 7.
We do not change the local search configuration within the IG algorithm,

Algorithm 7: Local Search on complete representation
Input: instance data, schedule
Output: schedule
begin

get task with completion time = current makespan C∗max;
repeat

set improved to False;
foreach eligible machine l do

foreach position i at machine l do
insert task at machine l in position i;
if new schedule feasible and new makespan Cmax < C∗max then

set C∗max to Cmax;
set schedule∗ to current schedule;
set improved to True;

undo insertion;

if improved then
set current schedule to schedule∗;
get task with completion time = current makespan C∗max;

else
//previous task is the task that determines the start time of the current task
if task has exactly one previous task in the critical path then

set task to previous task in the critical path;
else

break;

until task does not exists ;
return current schedule;

end

but we do calibrate the remaining algorithm parameters again. Note that, in
interaction with the second phase, a different configuration might be better. We
test destruction of 4 and of 6 jobs and temperatures (t1) of 0.001, 0.003, 0.01

162 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

and 0.03. For the second phase, we consider a number of perturbations of 2
and 4 and for the temperature (t2) the same values as in the first phase.
The strongest factor is the number of random insertions done in the perturbation
operator in the second phase. Applying only two random movements is clearly
more advantageous than applying four. The second most important parameter
is the temperature t1 for the acceptance criterion in the first phase. Among the
four values, 0.01 yields the best result. In Figure 7.7, an ANOVA plot shows the
interaction between the perturbation and temperature t1. These two parameters
fixed, temperature t2 can be chosen. A value of 0.001 is significantly better than
0.01 and 0.03, and better in mean but without significant difference compared
to 0.003. Although the difference with 0.003 is not significant, we fix t2 at
0.001. For the number of excluded jobs in the destruction phase, no significant
difference exists between the two levels. We choose a destruction of four jobs,
which results in a slightly lower mean. More detailed data can be found in the
means Table 7.4 and the ANOVA Table 7.5.

Temperature t1

R
el

at
iv

e
D

ev
ia

ti
o
n

Perturbation

2

4

4.8

5.1

5.4

5.7

6

6.3

0.001 0.003 0.01 0.03

Figure 7.7: Calibration of the SRS algorithm parameters.
Acceptance temperature t1 and the number of insertions
in the perturbation. Means and 99% Tukey confidence

intervals for a subset of the large instances.

7.2. Shifting Representation Search 163

Level Count Mean Stnd. Error Lower Limit Upper Limit

destr
4 10240 5.51329 0.0188408 5.46475 5.56182
6 10240 5.44669 0.0188408 5.39815 5.49522

pert
2 10240 5.27402 0.0188408 5.22549 5.32256
4 10240 5.68595 0.0188408 5.63742 5.73448
t1

0.001 5120 5.78333 0.026645 5.7147 5.85197
0.003 5120 5.26444 0.026645 5.19581 5.33308
0.01 5120 5.13323 0.026645 5.06459 5.20186
0.03 5120 5.73894 0.026645 5.67031 5.80757
t2

0.001 5120 5.3179 0.026645 5.24927 5.38653
0.003 5120 5.33819 0.026645 5.26956 5.40682
0.01 5120 5.50756 0.026645 5.43892 5.57619
0.03 5120 5.75629 0.026645 5.68766 5.82493

Table 7.4: Calibration of the SRS algorithm. Table of
means and 99% confidence intervals for a subset of the

large instances.

Table 7.5: Analysis of Variance for the Average deviation -
calibration of the SRS algorithm.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:destr 22.7098 1 22.7098 6.25 0.0124

B:pert 868.76 1 868.76 239.00 0.0000

C:t1 1667.98 3 555.992 152.96 0.0000

D:t2 632.242 3 210.747 57.98 0.0000

E:Repetition 32.2805 4 8.07012 2.22 0.0642

F:n 10470.9 1 10470.9 2880.62 0.0000

G:m 3985.35 1 3985.35 1096.39 0.0000

H:mi 19360.2 1 19360.2 5326.11 0.0000

I:F 1855.79 1 1855.79 510.54 0.0000

J:E 16032.8 1 16032.8 4410.72 0.0000

K:P 8545.96 1 8545.96 2351.04 0.0000

164 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

Interactions
AB 0.161326 1 0.161326 0.04 0.8331

AC 188.504 3 62.8346 17.29 0.0000

AD 2.52847 3 0.842824 0.23 0.8742

AE 237.708 4 59.427 16.35 0.0000

AF 2.64401 1 2.64401 0.73 0.3937

AG 143.37 1 143.37 39.44 0.0000

AH 21.0023 1 21.0023 5.78 0.0162

AI 4.09117 1 4.09117 1.13 0.2887

AJ 66.2139 1 66.2139 18.22 0.0000

AK 594.377 1 594.377 163.52 0.0000

BC 17.2062 3 5.7354 1.58 0.1924

BD 94.9563 3 31.6521 8.71 0.0000

BE 0.43235 4 0.108087 0.03 0.9983

BF 3.1641 1 3.1641 0.87 0.3508

BG 0.602913 1 0.602913 0.17 0.6838

BH 51.6389 1 51.6389 14.21 0.0002

BI 255.818 1 255.818 70.38 0.0000

BJ 33.0341 1 33.0341 9.09 0.0026

BK 20.6235 1 20.6235 5.67 0.0172

CD 26.3538 9 2.9282 0.81 0.6111

CE 283.554 12 23.6295 6.50 0.0000

CF 401.357 3 133.786 36.81 0.0000

CG 411.663 3 137.221 37.75 0.0000

CH 214.399 3 71.4665 19.66 0.0000

CI 217.612 3 72.5374 19.96 0.0000

CJ 23.7893 3 7.92975 2.18 0.0880

CK 5861.79 3 1953.93 537.54 0.0000

DE 3.96211 12 0.330176 0.09 1.0000

DF 20.0923 3 6.69742 1.84 0.1370

DG 9.49133 3 3.16378 0.87 0.4556

DH 91.1917 3 30.3972 8.36 0.0000

DI 293.966 3 97.9888 26.96 0.0000

DJ 123.906 3 41.302 11.36 0.0000

DK 4.66555 3 1.55518 0.43 0.7331

EF 19.0227 4 4.75567 1.31 0.2642

EG 153.016 4 38.254 10.52 0.0000

EH 44.5174 4 11.1293 3.06 0.0156

EI 48.7295 4 12.1824 3.35 0.0095

EJ 54.4991 4 13.6248 3.75 0.0047

EK 48.8171 4 12.2043 3.36 0.0094

7.2. Shifting Representation Search 165

FG 367.787 1 367.787 101.18 0.0000

FH 260.877 1 260.877 71.77 0.0000

FI 1839.01 1 1839.01 505.92 0.0000

FJ 2651.66 1 2651.66 729.49 0.0000

FK 1635.72 1 1635.72 450.00 0.0000

GH 67.597 1 67.597 18.60 0.0000

GI 2082.6 1 2082.6 572.93 0.0000

GJ 220.261 1 220.261 60.60 0.0000

GK 3942.78 1 3942.78 1084.68 0.0000

HI 9.21912 1 9.21912 2.54 0.1113

HJ 482.579 1 482.579 132.76 0.0000

HK 52.1988 1 52.1988 14.36 0.0002

IJ 236.246 1 236.246 64.99 0.0000

IK 432.927 1 432.927 119.10 0.0000

JK 122.494 1 122.494 33.70 0.0000

Residual 73862.5 20320 3.63497

Total (corrected) 161836.0 20479

In order to measure the efficiency of the quite specific local search in the
second phase of the algorithm, we have measured the number of local search
iterations that can be done within the time limit. Here, we understand as one
iteration, one critical path search until the moment of improvement or until
stopping because of a critical path split or because of reaching the end of the
critical path. The results of this test are shown graphically in Figure 7.8, where
distinction is made between problem instances of 50 or 100 jobs and between
instances with and without stage skipping. As can be expected, the higher
the number of tasks in the problem instance, the longer the critical path and
the more time each neighbourhood search takes. Therefore, less local search
iterations are done in the case of 100 jobs and if no stages are skipped.

166 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

n

It
er

at
io

n
s

se
co

n
d
 p

h
as

e Stage skipping

0%

50%

0

50

100

150

200

250

300

50 100

Figure 7.8: Number of local search iterations done in the
second phase of the SRS algorithm. Means and 99% Tukey

confidence intervals for a subset of the large instances.

7.3. Computational Evaluation

To the comparison at the end of Chapter 6, we can now add the two
algorithms that are presented in this Chapter. For the large instances, Figure 7.9
shows the performance of each algorithm for each tested value of t, in
milliseconds. We can see that SRS outperforms all other algorithms with
a significant difference, regardless of the stopping criterion. MGA is about
the worst algorithm for each t value, although the difference with ILS is not
statistically significant for 5ms and 25 ms.

7.3. Computational Evaluation 167

t (in ms)

R
el

at
iv

e
D

ev
ia

ti
o

n

IG
ILS
MA
MGA
SGA
SRS

0

3

6

9

12

15

5 25 125

Figure 7.9: Comparison of algorithms. Interaction with
the stopping criterion parameter t. Means and 99% Tukey

confidence intervals for the large instances.

The most important interaction with the algorithms, is the interaction with
the existence of precedence relationships, as we can see in Table 7.6. Recall
that half of the instances incorporates precedence constraints and half does
not. The results for this interaction are given in Figure 7.10. The instances
with precedence constraints are clearly harder than the instances without these
constraints. The SRS algorithm yields the best average results thanks to its good
behaviour for instances with precedence restrictions. This is due to the fact that
local search on the complete representation has a smaller neighbourhood in
this case, since many insertions are not allowed. MGA obtains by far the worst
results for these instances, since many infeasible solutions are generated in the
second phase. For more details on this problem we refer to the analysis of the
EGA results in Section 5.7. For the instances without precedence relationships,
the differences among all algorithms are smaller, but the ranking does not really
change. SRS algorithm is among the best methods and MGA among the worst.

168 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

Table 7.6: Analysis of Variance for the Average deviation -
comparison of the SRS and the MGA with earlier presented

algorithms for the set of large instances.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:Algorithm 17861.8 5 3572.37 426.05 0.0000

B:Repetition 7.3837 4 1.84593 0.22 0.9273

C:n 6377.88 1 6377.88 760.64 0.0000

D:m 20813.0 1 20813.0 2482.19 0.0000

E:mi 7460.67 1 7460.67 889.77 0.0000

F:F 5340.23 1 5340.23 636.89 0.0000

G:E 7420.86 1 7420.86 885.02 0.0000

H:P 78765.1 1 78765.1 9393.67 0.0000

I:Replicate 19.3316 2 9.66578 1.15 0.3158

J:t 109960.0 2 54979.9 6557.00 0.0000

Interactions
AB 114.265 20 5.71324 0.68 0.8488

AC 2957.59 5 591.518 70.55 0.0000

AD 809.846 5 161.969 19.32 0.0000

AE 4470.32 5 894.064 106.63 0.0000

AF 2234.32 5 446.864 53.29 0.0000

AG 11879.2 5 2375.84 283.35 0.0000

AH 8656.56 5 1731.31 206.48 0.0000

AI 111.701 10 11.1701 1.33 0.2063

AJ 3588.26 10 358.826 42.79 0.0000

BC 36.9046 4 9.22616 1.10 0.3544

BD 34.2071 4 8.55179 1.02 0.3954

BE 12.9359 4 3.23396 0.39 0.8190

BF 2.89691 4 0.724229 0.09 0.9867

BG 34.1083 4 8.52707 1.02 0.3969

BH 15.5794 4 3.89484 0.46 0.7619

BI 30.4534 8 3.80668 0.45 0.8887

BJ 14.9479 8 1.86848 0.22 0.9870

CD 1148.76 1 1148.76 137.00 0.0000

CE 117.926 1 117.926 14.06 0.0002

CF 930.442 1 930.442 110.97 0.0000

CG 1463.32 1 1463.32 174.52 0.0000

CH 5246.72 1 5246.72 625.73 0.0000

CI 74.9156 2 37.4578 4.47 0.0115

7.3. Computational Evaluation 169

CJ 5220.15 2 2610.07 311.28 0.0000

DE 209.623 1 209.623 25.00 0.0000

DF 2135.8 1 2135.8 254.72 0.0000

DG 3279.85 1 3279.85 391.16 0.0000

DH 15841.6 1 15841.6 1889.29 0.0000

DI 155.872 2 77.9359 9.29 0.0001

DJ 3640.51 2 1820.26 217.09 0.0000

EF 139.434 1 139.434 16.63 0.0000

EG 620.784 1 620.784 74.04 0.0000

EH 454.66 1 454.66 54.22 0.0000

EI 54.7583 2 27.3791 3.27 0.0382

EJ 210.419 2 105.21 12.55 0.0000

FG 14.6231 1 14.6231 1.74 0.1866

FH 74.2158 1 74.2158 8.85 0.0029

FI 403.449 2 201.725 24.06 0.0000

FJ 254.297 2 127.148 15.16 0.0000

GH 11284.8 1 11284.8 1345.85 0.0000

GI 492.396 2 246.198 29.36 0.0000

GJ 1250.23 2 625.113 74.55 0.0000

HI 208.003 2 104.002 12.40 0.0000

HJ 18295.2 2 9147.6 1090.96 0.0000

IJ 27.0545 4 6.76362 0.81 0.5207

Residual 143441.0 17107 8.38492

Total (corrected) 505721.0 17279

170 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

Predecessor relationships

R
el

at
iv

e
D

ev
ia

ti
o

n

Algorithm

IG

ILS

MA

MGA

SGA

SRS

4

7

10

13

No Yes

Figure 7.10: Comparison of algorithms. Interaction with
the existence of precedence relationships. Means and 99%

Tukey confidence intervals for the large instances.

For smaller instances, the comparison leads to a somewhat different ranking.
If we consider the set of small instances with three machines per stage (recall
that the remaining small instances have one machine per stage and are therefore
regular flowline problems), we obtain the ANOVA results shown in Figure 7.11.
The SRS algorithm dominates all other methods for this instance set as well,
even in a more convincing way. The major difference between the small and
the large instances can be observed for the MGA. Whereas the algorithm is
not at all effective for the large instances, it is among the best methods after
SRS. The most important interaction with the algorithms in this ANOVA, is
the percentage of eligible machines. This interaction is shown in Figure 7.12,
where the earlier conclusions for the small instances are confirmed.

7.3. Computational Evaluation 171

t (in ms)

R
el

at
iv

e
D

ev
ia

ti
o

n

BGA
EGA
IG
MGA

SGA
SGAM
SGAR
SRS

0

2

4

6

8

5 25 125

Figure 7.11: Comparison of algorithms. Interaction with
the stopping criterion parameter t. Means and 99% Tukey
confidence intervals for the small instances with three

machines per stage.

Elegible machines

R
el

at
iv

e
D

ev
ia

ti
o

n

BGA
EGA
IG
MGA
SGA
SGAM
SGAR
SRS

0

2

4

6

8

10

50% 100%

Figure 7.12: Comparison of algorithms. Interaction with
the percentage of eligible machines. Means and 99%
Tukey confidence intervals for the small instances with

three machines per stage.

172 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

Since Figure 7.12 is a bit hard to read, we have split the analysis and created
Figures 7.13 and 7.14 where each of the instance factors is shown separately.

R
el

at
iv

e
D

ev
ia

ti
o
n

BGA

EGA

IG

MGA

SGA

SGAM

SGAR

SRS

0

0.5

1

1.5

2

2.5

3

Figure 7.13: Comparison of algorithms. Means and 99%
Tukey confidence intervals for the small instances with three
machines per stage where 50% of the machines is eligible.

R
el

at
iv

e
D

ev
ia

ti
o
n

BGA

EGA

IG

MGA

SGA

SGAM

SGAR

SRS

0

2

4

6

8

10

Figure 7.14: Comparison of algorithms. Means and 99%
Tukey confidence intervals for the small instances with three

machines per stage where all machines are eligible.

7.4. Conclusions 173

In order to know how far we actually are from the optimum, we can use the
subset of small instances of 5 to 15 jobs, for which the optimum is found by the
MIP approach. We compare the two best performing algorithms, namely SRS
and IG, on this set of 272 instances with known optima, running each algorithm
five times on each instance, for each of the t values that are used for the large
instances as well. Out of the 4,080 algorithm runs, SRS gives the optimum in
3,906 cases (96%) and IG in 3,118 cases (76%). Note that the MIP approach
needed up to 15 minutes to find the optimum for some instances, whereas the
longest running time for the presented metaheuristics is less than 17 seconds for
t = 125ms, for the largest instance of 15 jobs and 3 stages, with 3 machines at
each stage. From the results in Table 7.7 we can see that the SRS metaheuristic
obtains far better results than the IG. The IG gets close to the optimum for
most instances, but is unable to reach the optimum due to its limited solution
representation in many cases. Because of the representation shift in SRS, this
new algorithm obtains the optimal solution for most instances. This shows that
the use of a shifting solution representation is even more successful for small
instances.

Algorithm Mean Stnd. Error Lower Limit Upper Limit

SRS 0.28 0.075 0.0867797 0.474453
IG 2.00 0.075 1.80473 2.19241

Table 7.7: Comparison of SRS and IG algorithm. Table
of means and 99% confidence intervals for a subset of the

small instances where the optimum is known.

7.4. Conclusions

In this chapter, we have shown some possibilities of changing the solution
representation during the algorithm. For the case of the first presented genetic
algorithm, no significant improvement is registered. The second phase, where a
genetic algorithm searches the full search space, appears to be too inefficient to
lead to any advantage for the large instances. In the case of carefully designed
local search algorithm, however, a shift in the solution representation has a

174 CHAPTER 7. SHIFTING REPRESENTATION ALGORITHMS

significant impact. As a result, the algorithm called SRS, a new algorithm
for the hybrid flexible flowline problem, based on the problem characteristics,
proves to outperform all earlier presented methods. Note that, although the
local search implementation is quite case-specific, the main idea of shifting the
solution representation is generally applicable.
The hybrid flexible flowline problem is a composite problem in the sense that it
is composed of different subproblems. In fact, this composition is the case for
many real-life problems. Vehicle routing problems, for instance, are composed
of a partitioning and a routing problem. Another example is the very large scale
integration (VLSI) design problem, that is composed of two subproblems: the
choice which components to place and the choice where to place the chosen
components. Although we have no data on the application on those problems,
the idea of focussing on a subproblem in a first phase and considering all
problem aspects in a later phase is likely to yield good solutions in those cases
as well.
The research presented in this chapter is summarised in Urlings et al. (2010b).

CHAPTER 8
MULTI-OBJECTIVE SCHEDULING

In all previous chapters, a realistic production environment is studied, where
many real-world restrictions are taken into account. For that environment, the
maximum completion time was minimised. In industry, however, more goals
than maximum completion time, or makespan, are faced. Total flowtime, which
is the sum of the time each job remains in the system, is a common objective
for schedulers. Total flowtime minimisation reduces work in process (WIP) and
cycle times. Another common goal is the minimisation of tardiness. Typically,
producers face due dates of the production orders, fixed with their clients.
Tardiness can be defined as the non-negative difference between the completion
time of a production order and its due date. Different tardiness variants can be
considered: total tardiness, maximum tardiness, total weighted tardiness and
maximum weighted tardiness are the most common examples.
The optimisation of only one objective has its limitations. An optimal solution
for the makespan objective is very efficient from the production point of view,
but might be terrible regarding client service. An optimal solution for a tardiness
criterion might meet all client wishes for the current production planning, but
can be highly inefficient and therefore decrease the production capacity. This
indicates a clear tradeoff between efficiency and client service, indicating the

175

176 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

need of multi-objective optimisation. In the recent review on hybrid flowshop
problems by Ruiz and Vázquez Rodríguez (2010), the need for multi-objective
approaches for this problem is confirmed.
This chapter is structured as follows: In Section 8.1, an introduction on multi-
objective optimisation is given. Section 8.2 introduces some ways to evaluate
the performance of multi-objective algorithms and explains the importance of
this step. In Section 8.3, we introduce the problem that is treated in this chapter.
The two algorithms that we implemented for the above mentioned problem
are described in Section 8.4. Both the calibration of those algorithms and the
comparison between them are given in Section 8.5. Finally, in Section 8.6, the
results are compared and the conclusions of this chapter are drawn.

8.1. Introduction

Technically, the optimisation of multiple objectives can be done in different
ways. In this section, we distinguish the three main streams within multi-
objective optimisation, describe briefly in what each method consists and give
some references.

8.1.1. Weighted objectives

The easiest and most common method is to summarise the objectives in
one new objective. A linear combination is made of the objective functions
in order to get a single objective function that represents each of the former
goals partially. For a problem with two objectives functions F and G, the new
objective function H will be defined as follows: H : α · F + (1 − α) · G
where α is a decision parameter that can be used to indicate the importance
of each of the two objectives. This kind of optimisation is also referred to
as the “a priori” approach, since the weights (α and 1 − α in this case) are
chosen before the optimisation process. Although it is done for many problems
and applications, especially because of the fact that the actual optimisation
process is not more complicated, there are some important drawbacks. It is
not clear how the weights should be established and things get complicated if
the original functions are not in the same scale. For a scheduling example we

8.1. Introduction 177

refer to Sivrikaya Şerifoğlu and Ulusoy (1999), who address a parallel machine
problem and minimise a linear combination of earliness and tardiness. In a
more recent paper by Davoud Pour and Ashrafi (2009), a linear combination of
earliness, tardiness, completion time and the due date chosen by the decision
maker is minimised for a flexible flowshop problem with setup times.

8.1.2. Lexicographical approaches

Another, less straightforward manner to take more than one objective into
account, is by limiting the solution space to solutions that are “good enough”
for all but one of the objectives, and optimise for this new solution space the
remaining objective. This methodology is called lexicographic optimisation.
If we again consider the two objective functions F and G, we either add a
constraint limiting the value of F and optimise G, or add a constraint limiting
the value of G and optimise F . In Ruiz and Allahverdi (2009), a combination
of both lexicographical optimisation and a linear combination of objectives
is applied. They set a maximum value for tardiness and optimise a linear
combination of makespan and tardiness for the regular flowshop problem.

8.1.3. Pareto optimisation

The former two ways of working actually convert a problem with multiple
separate objective functions into a problem with one single objective function;
either by combining the functions or by converting all but one of the functions
into constraints. The goal is, as usually, to find the best solution for this
optimisation problem. A more desirable approach is Pareto optimisation, which
works differently. In Pareto optimisation, we do not search for the best solution
for one optimisation problem. Instead, we search for a set of solutions for a
set of optimisation problems. For each solution, all objective functions are
evaluated. One solution is said to dominate another solution if at least one of the
objective values is better and none of them is worse. In this way we can define
a set of non-dominated solutions that form the so called Pareto front. Among
these solutions, none can be said to be better than another solution in the front.
This method is also known as “a posteriori”, since the choice which solution of

178 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

the Pareto front to implement is made after the optimisation procedure. In the
rest of this chapter, when speaking about multi-objective optimisation, we refer
to Pareto optimisation.

Minella et al. (2008) give an overview and evaluation of multi-objective
algorithms for the regular flowshop problem. For the hybrid flowshop problem,
hardly any research on multi-objective methods exists. Behnamian et al. (2009)
implemented a metaheuristic with three phases to tackle the hybrid flowshop
with identical machines in each stage and with setup times. The first stage
is a multi-objective adaptation of the genetic algorithm by Kurz and Askin
(2004). The second and third phases are a hybrid metaheuristic and a constraint
covering method. The description of this method, however, is not clear since
they seem to consider a single objective function.
Dugardin et al. (2010) present a new algorithm called L-NSGA, using a Lorenz
dominance relationship, and compare it with the optimum found by full solution
enumeration, and to adaptations of NSGA-II and SPEA2. The problem they
consider however, is different from the standard hybrid flowshop problem, since
it models the reentrance of jobs in a stochastic way.

We present some definitions that will be used in this chapter. In order to do
so, we consider M objective functions f1, . . . , fM for the problem. First we
introduce the notation that has to do with solutions.
Better: for some objective function fj , j = 1, 2, . . . ,M , a solution x1
is better that another solution x2 (fj(x1) C fj(x2)) if and only if fj is a
minimisation function and fj(x1) < fj(x2), or fj is a maximisation function
and fj(x1) > fj(x2).
Strong (or strict) domination: a solution x1 strongly dominates another
solution x2 (x1 ≺≺ x2) if and only if fj(x1) C fj(x2) ∀j = 1, 2, . . . ,M ,
i.e., x1 is better than x2 for all objective values.
Domination: a solution x1 dominates another solution x2 (x1 ≺ x2) if and
only if the following two conditions are met:

fj(x1) 7 fj(x2) ∀j = 1, 2, . . . ,M , i.e., x1 is not worse than x2 for any
of the objectives.

8.1. Introduction 179

∃j ∈ {1, 2, . . . ,M} : fj(x1) C fj(x2), i.e., at least for one objective, x1
is better than x2.

Weak domination: a solution x1 weakly dominates another solution x2
(x1 � x2) if and only if the first domination condition is met, i.e., x1 is
not worse than x2 for any of the objectives.
Incomparable solutions: solution x1 and x2 are incomparable (x1 ‖ x2 or
x2 ‖ x1) if and only if the following two conditions are met:

∃j ∈ {1, 2, . . . ,M} : fj(x1) C fj(x2), i.e., at least for one objective, x1
is better than x2.

∃j ∈ {1, 2, . . . ,M} : fj(x2) C fj(x1), i.e., at least for one objective, x2
is better than x1.

This notation can be extended for solution sets as follows:
Better: set A is better that set B (A C B) if and only if ∀xi ∈ B ∃xj ∈ A :

xj � xi and A 6= B.
Strong (or strict) domination: a set A strongly dominates another set B
(A ≺≺ B) if and only if ∀xi ∈ B ∃xj ∈ A : xj ≺≺ xi.
Domination: a set A strongly dominates another set B (A ≺ B) if and only if
∀xi ∈ B ∃xj ∈ A : xj ≺ xi.
Weak domination: a set A weakly dominates another set B (A � B) if and
only if ∀xi ∈ B ∃xj ∈ A : xj � xi.
Incomparable sets: solution setsA andB are incomparable (A ‖ B orB ‖ A)
if and only if the following two conditions are met:

A � B, i.e., A does not weakly dominate B.

B � A, i.e., B does not weakly dominate A.

Nondominated set: Subset A∗ ⊆ A where x∗ � x ∀x∗ ∈ A∗, x ∈ A.
Pareto global optimum solution: A solution that is not dominated by any
solution in the feasible solution space xi : @xj ≺ xi.
Pareto global optimum set: A set is called a Pareto global optimum set if
it contains all and only Pareto global optimum solutions. Such a set is also
referred to as Pareto front.

180 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

8.2. Multi-objective quality measures

Since the output of a Pareto optimisation method is not a single solution
to the scheduling problem, but a set of solutions that approximates the Pareto
front (approximation set), the usual quality measures such as the average
relative percentage deviation are no longer applicable. Instead, the quality
of approximation sets should be compared among each other. This is not
straightforward at all. If all solutions in an approximation set A are dominated
by solutions in a approximation set B, then obviously set B is better than set A.
But often some solutions from set A dominate some solutions of set B and
some solutions of set B dominate some solutions of set A. In this case it is not
clear which approximation set is preferable. In this section we show several
ways to define the best approximation set in such a case.
Zitzler et al. (2008) distinguish three procedures for comparing multi-objective
algorithms. A first procedure is based on the Pareto dominance relations among
solution sets. One executes two algorithms A and B many times and counts the
number of times that the approximation set of A strongly, regularly or weakly
dominates the set of B; and the number of times that the set of B strongly,
regularly or weakly dominates the set of A. A second procedure calculates a
quality indicator for each approximation set. Using such an indicator, the usual
methods for the comparison of single-objective algorithms can be applied. The
last option the authors propose, is to use empirical attainment functions, that
register the differences between approximation sets.
The first method using Pareto dominance has several important drawbacks.
First of all, this technique can only be applied for the comparison of two
algorithms. If three algorithms are to be analysed, comparison of A with
B, B with C and A with C is required. More generally, for k algorithms,∑k−1

i=1 i = k(k − 1)/2 pairs of algorithms should be compared. This can easily
get out of hand. Moreover, some information is lost during this approach. The
only information that is used is if one approximation set dominates another, but
not in which extend. Therefore, an algorithm always producing approximation
sets that just dominate the sets of another algorithm is evaluated in the same
way as an algorithm that outperforms the other algorithm with a huge difference.

8.2. Multi-objective quality measures 181

Each time two approximation sets are incomparable, that is, none of the two
dominates the other, no information is added to the analysis. Because of the
previously mentioned grounds, we do not include dominance ranking in this
Ph.D. thesis.

8.2.1. Quality indicators

A quality indicator assigns a real value to a set of solutions. This value can
be used to compare the quality of distinct sets of solutions. The first and most
important requirement of such an indicator, is the so called Pareto-compliance.
This means that a set of solutions that dominates another set of solutions should
have a better value than the other set that it dominates. Knowles et al. (2006)
show that several common used indicators are not Pareto-compliant, which can
lead to wrong or misleading conclusions. Some examples of such metrics are
generational distance and maximum deviation from the best Pareto front. These
measures are applied in the quite recent publications by Rahimi-Vahed et al.
(2007) and Geiger (2007).
Zitzler et al. (2008) appoint the hypervolume indicator (IH) and the unary
multiplicative epsilon indicator (I1ε) as the state-of-the-art regarding quality
measures and show that both fulfill the Pareto-compliance requirements. In the
following, the two indicators are highlighted and their calculation is explained.

The hypervolume indicator (IH) is proposed in Zitzler and Thiele (1999).
Given a problem with a set of M objective functions, we can consider an
M -dimensional space of objective values. An approximation set divides this
space in two: the part that is dominated or covered by the approximation set
and the part that is not covered. If the approximation set is optimal, or equal
to the Pareto front, then no feasible solutions have their objectives values in
the uncovered part of the objective values space. The hypervolume indicator
is based on the volume of the covered space by each of the approximation
sets. The volume that we measure is limited by the approximation set on
the one hand, and by a reference point on the other hand. Without loss
of generality, we will assume from here on that all objective functions are
minimisation functions. Then the reference point is chosen to be r, where

182 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

fj(r) = f+j + 0.2 · (f+j − f
−
j) for j = 1, 2, . . . ,M , and f+j and f−j are the

maximum and the minimum values found for objective j, respectively. When
calculating the hypervolume indicator for a number of approximation sets, first
the objective values are normalised. The resulting normalised hypervolume
indicator is denoted I|H|. For each solution x, the normalised value gj(x) is
defined as gj(x) = (fj(x)− f−j)/(f+j − f

−
j), so that 0 will correspond to the

best value found in all approximation sets, and 1 to the worst value. It is easy to
verify that the maximum possible hypervolume is 1.2M for a approximation
set consisting of a single solution xb dominating all other sets. In this case,
fj(xb) = f−j for j = 1, 2, . . . ,M . On the other hand, the worst possible
approximation set has a volume of 0.2M . Such a set exists of a single solution
xw, for which fj(xw) = f+j for j = 1, 2, . . . ,M .

Zitzler et al. (2003) define in their article the concept of weak ε-dominance.
One solution x1 weakly ε-dominates another solution x2 for a given ε > 0

(x1 �ε x2) if and only if fj(x1) 7 ε · fj(x2), ∀j = 1, 2, . . . ,M . Based on
this definition, they define a binary ε-indicator Iε in order to compare two
approximation sets A and B. The definition is rewritten by Minella et al. (2008)
and results as follows:

I2ε (A,B) = infε∈R{∀xB ∈ B∃xA ∈ A : xA �ε xB}
= maxxB minxA maxj fj(xA)/fj(xB)

(8.1)

where xA and xB are solutions given by the algorithms A and B, respectively.
In order to better understand the last expression, we explain how to obtain this
result. For all possible pairs xA and xB , the objective j is chosen that maximises
the quotient fj(xA)/fj(xB). Then, for each solution xB , xA is chosen so that
maxj fj(xA)/fj(xB) is minimised. Finally, xB is chosen in such a way that
minxA maxj fj(xA)/fj(xB) is maximised. When one of the objective takes the
value of zero, which can happen in the case of tardiness, Iε can not be calculated.
Therefore, and since a normalisation of objectives is required to obtain fair
results, a transformation is applied to the objective values. The normalisation
function gj(x) is defined as follows: gj(x) = (fj(x) − f−j)/(f+j − f

−
j) + 1.

8.2. Multi-objective quality measures 183

The normalised indicator is defined

I2|ε|(A,B) = max
xB

min
xA

max
j
gj(xA)/gj(xB) (8.2)

In order to avoid the necessity to compare each pair of two approximation sets,
the authors also introduce a unary ε-indicator I1|ε|, which is defined as follows:

I1|ε|(A) = I2|ε|(A,P) (8.3)

where P is the Pareto global optimum set. Since the Pareto front is usually not
known when comparing metaheuristics, the indicator can slightly be modified
in order to apply it. Instead of the Pareto optimum set P , we use the Pareto best
known set P̂ . In order to obtain this set we select the non-dominated solutions
from the union of all approximation sets. That is, P̂ contains only and all Pareto
best known solutions.
Due to the transformation, values for I1|ε| are between 1 and 2. A value of
1 is obtained if there is a solution xA ∈ A for which the following holds:
fj(xA) = f−z ∀j ∈ {1, 2, . . . ,M}. Since the minimum for all objectives is
found in one solution, it is easy to see that A = P̂ = {xA} in this case. Since
P̂ is not influenced by A, and usually contains more than one solution, for most
problems it is impossible to obtain a I1|ε| equal to 1, even if the Pareto front is
completely covered. On the contrary, I1|ε| = 2 only if for all solution xA ∈ A,
there is a j ∈ {1, 2, . . . ,M}, such that fj(xA) = f+z .

When comparing the two indicators, one of the differences is that the
hypervolume indicator reacts directly on whatever change in the approximation
set, but might ignore changes in the best known Pareto approximation set, while
the ε-indicator might not change if a solution in the set is improved or added,
but is more sensitive to changes in the best known Pareto approximation. The
results of the two indicators can be contradictory. This can be shown with a
simple example:
Consider in the bi-dimensional objective space two approximation sets A and
B, where A = {a1, a2} and B = {b1}. The three objective vectors have the
following values: a1 = {1, 6}, a2 = {6, 1} and b1 = {3, 3}. These vectors are

184 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

visualised in Figure 8.1. It is easy to verify that A‖B. Let us now calculate
both quality indicators.

a1

a2

b1

r

0

1

2

3

4

5

6

7

1 2 3 64 5 7

P

A

B
^

Objective 1

O
b
je

ct
iv

e
2

Figure 8.1: Example of two Pareto approximation sets in
bi-dimensional objective space.

The hypervolume indicator. We will first calculate the non normalised
hypervolume IH for both approximation sets. The maximum objective
values are given by f+1 = f+2 = 6, while the minima are f−1 = f−2 = 1.
Therefore, the reference point r that limits the area to the top and to the
right is {6 + 0.2(6− 1), 6 + 0.2(6− 1)} = {7, 7}. Now calculation of
the indicator is easy: IH(A) = ((7− 6) · (7− 1)) + ((6− 1) · (7− 6)) =

6 + 5 = 11 and IH(B) = ((7 − 3) · (7 − 3)) = 16. When applying
normalisation, I|H|(A) = IH(A)/(6 − 1)2 = 11/25 = 0.44 and
I|H|(B) = IH(B)/25 = 16/25 = 0.64. This indicates a victory for
approximation set B.

The ε-indicator. Since the choice of the objective j in the first step is
already influenced by the normalisation, we start directly with the calcula-
tion of I1|ε|. Since a1‖a2, a1‖b1 and a2‖b1, the best known Pareto approxi-

8.2. Multi-objective quality measures 185

mation set for this problem instance is P ∗ = {a1, a2, b1}. Now I1|ε|(A) =

I2|ε|(A, P̂) = max{min{1, 2},min{2/1.4, 2/1.4},min{2, 1}} =

max{1, 10/7, 1} ≈ 1.43 and I1|ε|(B) = I2|ε|(B, P̂) = max{1.6, 1, 1.6} =

1.6. In this case, approximation set A wins.

In this example, the hypervolume indicator signalised that B is preferred to A,
while the ε-indicator shows a preference for set A. This expresses in numbers
what can otherwise only be seen graphically: that the two approximation sets
are not comparable. Since the use of these two indicators can help to distinguish
these cases, we opt for using both the hypervolume indicator and the ε-indicator.

8.2.2. Empirical attainment functions

Another way for evaluating approximation sets is based on goal-attainment
and was initiated by Grunert da Fonseca et al. (2001). They say that an optimiser
attains a goal, in this case an objective vector, if at least one of the elements of
its resulting approximation set weakly dominates the objective vector. Given
this concept, they define the attainment function α for a given Pareto optimiser
and a point z in the M -dimensional objective space as the probability that z is
(weakly) dominated by any approximation set A = a1, a2, . . . , aN obtained by
the optimiser, where N is the number of solutions in set A. More formally:

αA(z) = P (A � z) = P (a1 � z ∨ a2 � z ∨ · · · ∨ aN � z) (8.4)

Here P (·) is the probability of a certain event and ∨ is the logical operator “or”.
The problem when using this attainment function in practice, is that the exact
probabilities are unknown. However, when the optimiser has been executed
several times, the function can be estimated empirically. The resulting estimated
function is denominated the empirical attainment function (EAF). The empirical
attainment function αn(z) that estimates the probability of attaining z with the
help of n approximation sets A1, A2, . . . , An generated independently by the
considered multi-objective optimiser is defined as follows:

αn(z) =
1

n

n∑
i=1

I(Ai � z)· (8.5)

186 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

where I(·) takes the value 1 or 0 when the described event happens or not,
respectively.
Since the attainment function depends on the objective vector z, it is not easy
to draw a conclusion when comparing two Pareto optimisers. In order to cope
with this inconvenience, Zitzler et al. (2008) propose a way to visualise the
outcome of multiple optimiser runs. This method is based on the concept of
k%-attainment sets. A Pareto approximation set Ak is a k%-attainment set if
and only if Ak weakly dominates all objective vectors z that have been attained
in at least k% of the n runs. Consequently, the attainment surface Sk of Ak can
be defined as all vectors z, weakly dominated by Ak.

Sk = z ∈ <M‖ 1

n

n∑
i=1

I(Ai � z) ≥ k/100 (8.6)

where Ai, 1 ≤ i ≤ n are the independently generated Pareto approximation
sets. These attainment surfaces can visually be shown when two objectives are
considered. In order to show more information in one graph, several attainment
surfaces can be shown one over the other, always with the k%-attainment
surface on top of the l%-attainment surface, for k > l. If a darker colour is
used for higher attainment surfaces, the incremental graph is quite intuitive to
understand. The example of Subsection 8.2.1 is used to draw the attainment
functions of the set of two Pareto approximation sets. In this case they are
treated as is they were generated by one algorithm. The white area is not
covered by any of the sets, the grey area is covered by one of them and the
black area is attained by both approximation sets.
For comparison between two algorithms, we propose to use the differential
empirical attainment functions (Diff-EAF). The definition of a Diff-EAF
between the Pareto optimisers A and B in a given point z is as follows:
δn(z) = 1

n

∑n
i=1 I(Ai � z)− I(Bi � z). The outcome is in between 100%,

when optimiser A attains vector z in all runs and optimiser B in none of them,
and -100%, when the contrary happens. For clear visualisation, two colours can
be used; one colour for the area where δ > 0 and another colour for δ < 0. In
such a graph, the performance of A is equal to the performance of B wherever
the area is not coloured. The stronger either of the colours is, the larger the

8.2. Multi-objective quality measures 187

0

1

2

3

4

5

6

7

1 2 3 64 5 7

0%

50%

100%

O
b
je

ct
iv

e
2

Objective 1

Figure 8.2: Example of visualised empirical attainment
functions in bi-dimensional objective space.

difference between one algorithm and the other, for this instance. Such a graph
is given for the earlier used example in Figure 8.3. The area coloured in red
is attained in 100% of the cases by algorithm A and in 0% of the cases by
algorithm B. The blue area, in contrast, is attained in 0% of the cases by A and
in 100% by B. Note that there is only one case for each of the algorithms in
this example.

The attainment function approach is different from the quality indicators
in the sense that the output is in M -dimensional space, instead of a real
number. Therefore, it contains more information and differences between Pareto
optimisation algorithms can be analysed in more detail. The computational cost,
however, is considerably higher for the attainment functions. Moreover, the
visualised empirical attainment functions are applied only for two optimisers
and one instance. Consequently, they cannot be used for the evaluation of
massive experiments. However, some instances can be analysed in detail using
this technique. These example instances can give some visual indications about
how two algorithms differ among each other. We will therefore use the empirical

188 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

0

1

2

3

4

5

6

7

1 2 3 64 5 7

100%

0%

100%

Objective 1

O
b
je

ct
iv

e
2

Figure 8.3: Example visualised differential empirical at-
tainment functions in bi-dimensional objective space.

attainment function visualisation in addition to the hypervolume and epsilon
indicators.

8.3. Problem description

In this chapter, we consider a hybrid flowshop problem. The flowshop
consists in a set M of m stages, where each stage i contains a set Mi of mi

parallel unrelated machines. A set N of n jobs is given, where each job j has a
due date dj . Each job j has to be processed by exactly one machine l at every
stage i, where the processing time is defined pilj . Two objectives are considered
simultaneously, namely makespan and total tardiness. If we define Cj to be the
the completion time of job j at the last stage, then makespan can be denoted
max
j∈N

Cj and total tardiness
∑n

j=1 max(Cj − dj , 0).

Note that most of the constraints that are treated in the previous chapters are
dropped now. One has to realise that multi-objective scheduling is far more
complex than single-objective scheduling. In the multi-objective scheduling

8.3. Problem description 189

literature, hardly any research on hybrid flowshop problems can be found, as
demonstrated in Ruiz and Vázquez Rodríguez (2010) and Ribas et al. (2010).
If we would have converted the complete problem of the previous chapters into
a Pareto multi-objective problem, a sound basis would have been missing and
the connection with existing literature would have been lost. The most similar
problem considered in the literature, is a hybrid flowshop problem with identical
machines, by Behnamian et al. (2009). The assumption of identical machines
reduces the complexity in an important way, since machine assignments lose
their importance.
The single objective mathematical model for this problem is considerably
shorter than the model for the highly constrained HFFL, presented in Chapter 3.
The model involves the following decision variables:

Xjki =

{
1, if job j precedes job k at stage i
0, otherwise

Yjil =

{
1, if job j on stage i is scheduled in machine l
0, otherwise

Cji = Completion time of job j at stage i
Cmax = Maximum completion time

The objective function is either:

minCmax (8.7)

or

min

n∑
j=1

max(Cj − dj , 0) (8.8)

And the constraints are:

mi∑
l=1

Yjil = 1, j ∈ N, i ∈M (8.9)

mi∑
l=1

Yjil · pilj ≤ Cij − Ci−1,j , j ∈ N, i ∈M (8.10)

190 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

V (2− Yjil − Ykil +Xjki) + cij − cik ≥ pilj , j, k ∈ N, j < k (8.11)

V (3− Yjil − Ykil −Xjki) + cik − cij ≥ pilk, j, k ∈ N, j < k (8.12)

C0j = 0, j ∈ N, (8.13)

Yjil ∈ {0, 1}, j ∈ N, i ∈M, l ∈Mi (8.14)

Xjki ∈ {0, 1}, j ∈ N, i ∈M, l ∈Mi (8.15)

Cij ≥ 0, j ∈ N, i ∈M (8.16)

Cmax ≥ Cmj , j ∈ N (8.17)

where V is a high positive value.
The set of constraints (8.9) guarantees that each job is assigned to exactly one
machine at every stage. Constraints set (8.10) assures that a job does not start in
certain stage, before it finishes in the previous stage. Constraint sets (8.11) and
(8.12) prevent two jobs assigned to the same machine from overlapping. The
constraints set (8.13) represents the fact that C0j is the release time of job j,
which is assumed to be zero in this chapter. Constraint sets (8.14), (8.15) and
(8.16) define the domain for the decision variables. Finally, the set (8.17) is
needed for the makespan objective.
Not only the constraints are different in this HFS model, compared to the HFFL
model in Chapter 3, but also the decision variables. Recall that the decision
variables Xiljk in the HFFL model equal 1 if job j precedes job k on machine l
at stage i. The amount of variables is

∑m
i=1min

2, which is usually more
than the amount of variables for the HFS model presented in this Chapter:
mn2 +

∑m
i=1min. The rare condition that the number of decision variables is

higher for the HFS model can be deducted as follows:

variables HFFL < variables HFS∑m
i=1min

2 < mn2 +
∑m

i=1min∑m
i=1min−

∑m
i=1mi < mn∑m

i=1mi < m n
n−1

(8.18)

8.3. Problem description 191

This only occurs if most stages have only one machine and if the number of
jobs is very low, i.e., m = 3,

∑m
i=1mi = 4 and n = 2.

In order to generate valid instances for this problem, we start from the
instances used for the HFFL in the previous chapters. We take the 288 small
instances with three machines per stage and ignore all constraints that are not
considered in this chapter: setup times, release dates, precedence relationships
and time lags. The small instances with a single machine per stage are not
used in this chapter, since those do not represent the hybrid flowshop problem,
strictly taken. According to most definitions, a hybrid flowshop has more than
one machine in at least one of the stages. Of the instances with three machines
per stage, we eliminate all instances with stage skipping and with machines
that are not eligible. This allows us to continue with 72 small instances. In
order to generate relevant due dates for the jobs, we need the optimal makespan
value, or an estimation of it. We run the above given model with the makespan
objective in CPLEX, with a time limit of one hour. If the optimum is found by
CPLEX within the time limit, we are done; otherwise we need to estimate the
optimal makespan. Fortunately, CPLEX found a feasible solution that can serve
as an upper bound for every problem instance. CPLEX also returns a lower
bound for each problem instance.
Apart from that, we implemented two fast lower bounds. For both lower bounds
we define the processing time for a job j at a stage i to be the minimum
processing time among the different processing times on the machines in
stage i, as formally described in Equation 8.19. The first lower bound (LB1)
in Equation 8.20, is the highest sum of processing times for a job. The second
lower bound (LB2) in Equation 8.21 is less straightforward. For each stage
i, we calculate the minimum total processing time at stage i and deduce the
average minimum workload per machine. Then we add for each stage i the
minimum time needed to be able to start the first task at stage i. As there are mi

machines at stage i, and the first job at each machine first needs to be processed
first in all previous stages, the minimum time previous to stage i is the mith
smallest sum of processing times over the stages previous to stage i. Similarly,
the minimum time after stage i equals the mi-th smallest sum of processing

192 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

times over the stages after stage i. Note that sort+z (S)c is used to denote the
c-th element of a set S, where the set S is arranged in increasing order.

pij = min
l∈Mi

pilj (8.19)

LB1 = max
j∈N

m∑
i=1

pij (8.20)

LB2 = max
i∈M

(n∑
j=1

pij + sort+k (

i−1∑
a=1

pak)mi + sort+o (

m∑
b=i+1

pbo)mi

)
(8.21)

The initial estimation of the optimal makespan (C̃max) is calculated as the
average between the upper bound given by the feasible solution found by
CPLEX, and the minimum of the three lower bounds; the lower bound by
CPLEX, LB1 and LB2. In mathematic notation: C̃max = 1

2(CPLEXmax +

max{CPLEXmin, LB1, LB2}). Some initial tests showed that the estimation
was very high in some cases, which means that the upper bound is further away
from the optimal makespan than the lower bound. We have therefore adapted
the NEH implementation of Section 4.5 to this problem. If the NEH solution
has a smaller solution value than the initial estimation C̃max, we substitute
the estimation by the makespan of the NEH solution. This defines the final
estimation Ĉmax as follows:

Ĉmax = min{C̃max, NEH} (8.22)

The due dates are generated considering the makespan estimation and two
instance parameters: the tardiness factor (T) and the due date range (R). Each
due date dj for job j is chosen with the help of a uniform probability distribution
between Cmax(1−T −R) and Cmax(1−T +R). This method to generate due
dates is introduced by Potts and Van Wassenhove (1982) and later used by many
others, e.g. Armentano and Ronconi (1999). The values for T and R are chosen
equal to the values in the review of Vallada et al. (2008): T = {0.2, 0.4, 0.6}
and R = {0.1, 0.3, 0.5}. All combinations of the parameters lead to a total of
72 · 9 = 578 small instances. One third of them is used as a set of test instances;

8.4. Proposed Algorithms 193

the rest form the benchmark for the final comparison of algorithms. For the
large instances the same procedure is used, which leads to a calibration set
of 144 instances and a final benchmark of 288 large instances. All instances
can be downloaded from http://soa.iti.es/problem-instances.

We introduce example instance 4, based on the instance used in Section 4.3.
The processing times remain unchanged, and the remaining constraints and
problem data are ignored. See Table 8.1 for the processing times and the added
due dates. In Figure 8.4, an optimal solution with respect to the makespan
objective is shown. The makespan is determined by the processing times of
job 4; it is easy to determine that the makespan of 112 is the optimum. Note that
in most cases the jobs are assigned to the same machine as in Figure 4.21, but
that machine assignments change in several cases. The lateness for the jobs is
13, -9, -13, 14 and -7, respectively. The jobs that do not meet their due dates are
job 1 and job 4. Their lateness determines the total tardiness for this solution to
be 13 + 14 = 27.

Stage 1 2 3
Machine 1 2 3 4 5 6 7 8 9 dj

Job
1 18 62 23 61 36 24 90 13 86 94
2 65 29 98 76 37 18 82 93 17 92
3 6 53 39 28 30 78 70 58 52 105
4 56 69 34 81 95 31 47 48 71 98
5 25 38 57 22 99 68 14 2 15 101

Table 8.1: Example instance 4. Processing times and due
dates for each job.

8.4. Proposed Algorithms

If finding optimal solutions for hybrid flowshop problems with a single
objective is hard, and in practice only feasible for small problem instances,
finding an optimal Pareto front is even more so. Full enumeration of all feasible

194 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Time

Machine 4

Machine 5

Machine 6

Machine 7

14

Stage 2

Stage 3 Machine 8

3

1

2

2

Job 3 Job 4Job 2 Job 5Job 1

25 75 10050

34

66

6

65

66

34

29

89

92 94

56

Machine 9

Machine 1

Machine 2

Machine 3

1

4

Stage 1

3

2

6

34

29

31 49

5

5

4

65 112

34 107

83

3

Figure 8.4: Gantt of an optimal solution with respect to
the makespan objective for the problem instance defined in

Table 8.1.

solutions, as applied by Dugardin et al. (2010), is limited to tiny problems. In
the search for a good Pareto front, the use of metaheuristics is therefore more
adequate. In this section we show the hybrid flowshop adaptation of the state-
of-the-art NSGA-II method and we present a new multi-objective algorithm
called RIPG.
Both algorithms use a job permutation π1 as solution representation. The
permutation π1 determines the order in which the jobs are assigned in the first

8.4. Proposed Algorithms 195

stage. For the assignment of jobs to machines, the Earliest Completion Time
(ECT) rule, presented in Chapter 4, is used. According to this rule, jobs are
assigned to the machine that is able to finish the job earliest. When all jobs
are scheduled in the first stage, the jobs are put in increasing order of finishing
time. This order, or job permutation, denoted π2, is the order in which the jobs
are launched in the second stage. In general, the order πi in which jobs are
scheduled in stage i, is the order in which they are finished processing in stage
i− 1, for 2 ≤ i ≤ m. Note that this stage-by-stage scheduling of tasks usually
leads to better solutions than job-by-job scheduling, since changing the job
permutation through the stages avoids unnecessary idle times. For the HFFL
problem considered in the previous chapters, assignment on stage-by-stage
basis is impossible due to the precedence constraints, but that does not play a
role here.

8.4.1. NSGA-II

After the first Non-dominated Sorting Genetic Algorithm (NSGA) by
Srivinas and Deb (1994), Deb et al. (2002) presented its successor, NSGA-
II. The algorithm starts with a population of randomly generated individuals,
where the population size pop is an input parameter. Random selection is used
in order to choose two individuals for One-Point Order Crossover. Then shift
mutation is applied to the outcome of the crossover. The new individuals are
inserted in a new population. When the new population has reached size pop, a
fast non-dominated sorting method is applied to the population. This method
divides the population in subsets F = (F1, F2, . . . , FN), where Fi dominates
Fj if and only if i < j. We maximise k such that

∑k
i=1 |Fi| ≤ pop and define

the new population F1∪, . . . ,∪Fk. A crowding-comparison operator is used
to sort the individuals in Fk+1 and defines the new population as the first l
individuals, where l = pop−

∑k
i=1 |Fi|. This procedure is repeated until the

stopping criterion is met.
A pseudocode for NSGA-II is given in Algorithm 8. For more details, the reader
is referred to Deb et al. (2002), who are the founders of the original algorithm,
and to Minella et al. (2008), who evaluated the algorithm for the permutation
flowshop problem, together with 22 other algorithms.

196 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Algorithm 8: Non-dominated Sorting Genetic Algorithm II
Input: instance data, pop
Output: set of non-dominated solutions
begin

for i = 1 to pop do
generate one random initial solution;
insert individual in Population;

repeat
for i = 1 to pop/2 do

randomly select two solutions of Population;
apply one-point order crossover to selected solutions;
apply shift mutation to crossed solutions;
insert new solutions in NewPopulation;

copy NewPopulation into Population;
empty NewPopulation;
apply non-dominated sorting to Population in order to define fronts;
while size of Population > pop do

empty Temp;
copy individuals of worst front of Population to Temp;
delete individuals of worst front from Population;

apply crowding-distance comparison sorting to Temp;
copy the first (pop - size of Population) individuals to Population;

until time > max time ;
return non-dominated solutions in NewPopulation;

end

8.4.2. RIPG

The new Restarted Iterated Pareto Greedy (RIPG) algorithm is based on
the Iterated Greedy algorithm, that is originally presented by Ruiz and Stützle
(2007) for the permutation flowshop problem. In Chapter 6 we have proposed a
new version adapted to the hybrid flexible flowline problem. A computational
evaluation has proven good performance for the hybrid problem. In this chapter
we have further developed the algorithm in order to make it applicable to and
effective for Pareto optimisation. Since the consideration of multiple objectives
implies working with a set of solutions instead of working with a single solution,
the required changes are important and allows us to speak of a new algorithm,
rather than a modified existing algorithm.
In the case of single objective optimisation, it is common knowledge that a

8.4. Proposed Algorithms 197

good initialisation is important for good final results. When optimising more
than one objective, it is difficult to find a initial solution that is good for all
objectives. Instead, an initial set of solutions with one good solution for each
of the objectives, is a good start for the algorithm. The presence of a specific
solution for each optimisation criterion avoids the Pareto approximation set to
be concentrated too much in one direction and assures a “wide” approximation
set. When optimising makespan and tardiness, the initial solutions are generated
with two distinct constructive heuristics. The heuristic by Nawaz et al. (1983) is
famous for its good results and efficiency for the makespan criterion in flowshop
problems. Its adaptation for hybrid flowshop in Chapter 4 had been proven
to be just as effective. The modified heuristic is therefore used to generate an
initial solution with a good makespan value. For the creation of a solution with
a low tardiness value, the heuristic of Rajendran and Ziegler (1997) is applied.
Beginning with these two solutions, the main loop is entered, where each
iteration includes the following operators: Selection, which chooses one
solution that will be subject to a Greedy Phase (GP). This phase, directly
inspired in the IG, first excludes a number of jobs (given by a parameter) to
include them again one by one. When a job is included, this is done at all
positions respectively. The resulting partial solutions are compared and the non
non-dominated ones are maintained for inclusion of the next job. The IG phase
therefore has one solution as input and a set of solutions as output. Selection is
applied again in order to choose a solution for local search, where a job can be
inserted in a new position within a maximum distance (parameter) of its current
position.
In preliminary tests, the algorithm sometimes got stuck, i.e., no new solutions
were added to the approximation front before the termination criterion is met.
Therefore, a restart mechanism is added to the algorithm. If a certain number
of iterations without improvement is done, the algorithm is restarted. The
number of iterations is given by an input parameter for the algorithm. All non-
dominated solutions are saved in a global archive and a new random population
is initialised. When the termination criterion is met, the dominated solutions
in the global archive are deleted and the other solutions are the output of the
algorithm. The pseudocode for RIPG is given in Algorithm 9.

198 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Algorithm 9: Restarted Iterated Pareto Greedy
Input: instance data, restart
Output: set of non-dominated solutions
begin

foreach objective function do
generate directed initial solution;
insert solution in WorkingSet;

eliminate dominated solutions from WorkingSet;
set Iteration to 0;
set Cardinality to size of WorkingSet;
repeat

select one solution of WorkingSet;
apply greedy phase to selected solution in order to obtain NewSet;
copy NewSet into WorkingSet;
empty NewSet;
eliminate dominated solutions from WorkingSet;
select one solution of WorkingSet;
apply local search to selected solution in order to obtain NewSet;
copy NewSet into WorkingSet;
empty NewSet;
eliminate dominated solutions from WorkingSet;
if size of WorkingSet 6= Cardinality then

set Iteration to 0;
set Cardinality to size of WorkingSet;
if Iteration > restart then

insert WorkingSet into GlobalSet;
empty WorkingSet;
for i = 1 to 100 do

generate random initial solution;
insert solution in WorkingSet;

eliminate dominated solutions from WorkingSet;
set Iteration to 0;

until time > max time ;
insert WorkingSet into GlobalSet;
return non-dominated solutions in GlobalSet;

end

8.5. Computational Evaluation

In this section, the computational results for the two developed multi-
objective metaheuristics are presented, analysed and interpreted. Different
from the tests done in the previous chapters, the computational experiments are

8.5. Computational Evaluation 199

executed on a cluster of 12 identical computers, each with Intel Core 2 Duo
E6600 processors running at 2.4 GHz with 2 GB of RAM. Both algorithms
are compiled in Delphi 2009 and run under Windows XP. Newer computers
are used for the tests in this chapter, since computers evolve over time and the
computers of the previous chapters started to be old over the course of time.
Moreover, they required more maintenance and are now outnumbered by the
new cluster. No quantitative comparison is made between the experiments
done in each of the clusters, so the results are not affected by the change in
hardware. The stopping criterion is the same for both algorithms and given
by a CPU time limit depending on the instance size. The limit is calculated
with the following formula: t · n ·

∑m
i=1mi milliseconds, where t is a time

parameter. We have fixed t at 100 milliseconds for the tests reported in this
section. Multi-objective problems are harder to solve, because of the more
complicated solution dominance definitions. Therefore smaller values for t do
not show the full potential of the algorithms.

8.5.1. Calibrations

In Chapter 5 we have seen that the calibration of genetic algorithms is a
key element for good performance. The same holds for algorithms based in
local search, as shown in Chapter 6. Taking this into account, NSGA-II and
RIPG should also be calibrated. For calibration of the algorithm we use the 144
large test instances that were generated as described in Section 8.3. For each
parameter setting and each instance, 5 independent runs are done. We use the
hypervolume indicator in order to measure outcome quality of the algorithm.
The advantage of the hypervolume indicator is that it is fast and practical on the
one hand, and trustworthy on the other hand, since it fulfills the requisitions for
being Pareto-compliant. An analysis of variance (ANOVA) is used to interpret
the results.

In the calibration of NSGA-II, we take three parameters into account:

Crossover probability: 50%, 70%, 90%.

Mutation probability (per job): 30%, 70%, 1/n.

200 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Population size: 10, 30, 100.

The mutation type has already been fixed to shift mutation in a prior stage,
due to clear dominance with respect to the other mutation types. For the same
reason, the crossover type that is used is one-point order crossover. For a
description of both operators, we refer the reader to Chapter 5.
This results in a total amount of 33 · 144 · 5 = 6, 480 algorithm runs. In CPU
time, this means a calibration of 729 hours. The F-values, that determine the
statistical significance of each parameter, are given in Table 8.2. As can be
observed, the mutation probability has the highest F-value; this parameter is
therefore fixed first. Two of the tested probabilities are constant values (30%
per job and 70% per job, respectively). The third value, however, depends on
the problem instance. The probability is given by the formula 1

n · 100%, which
for the large instances is either 2% when n = 50 of 1% when n = 100. From
Figure 8.5 we can conclude that the highest probability of 70% is preferable
over the lower probabilities. Note that the hypervolume is to be maximised,
different from the average percentage deviation in the graphs of the previous
chapters. More exact data can be taken from Table 8.3.

8.5. Computational Evaluation 201

Table 8.2: Analysis of Variance for the Hypervolume -
calibration of NSGA-II for the set of large instances.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 65.7549 1 65.7549 1606.17 0.0000

B:m 0.354098 1 0.354098 8.65 0.0033

C:mi 132.004 1 132.004 3224.43 0.0000

D:T 0.373747 2 0.186874 4.56 0.0104

E:R 1.97975 2 0.989873 24.18 0.0000

F:Pop 70.1695 2 35.0847 857.00 0.0000

G:Mut 1310.44 2 655.218 16004.78 0.0000

H:Cross 13.6614 2 6.83069 166.85 0.0000

I:Rep 1.28425 4 0.321062 7.84 0.0000

Interactions
AB 0.531077 1 0.531077 12.97 0.0003

AC 6.90459 1 6.90459 168.66 0.0000

AD 0.330212 2 0.165106 4.03 0.0177

AE 0.295131 2 0.147565 3.60 0.0272

AF 1.42348 2 0.71174 17.39 0.0000

AG 52.5022 2 26.2511 641.23 0.0000

AH 0.299526 2 0.149763 3.66 0.0258

AI 0.609992 4 0.152498 3.73 0.0049

BC 6.91643 1 6.91643 168.95 0.0000

BD 0.590489 2 0.295245 7.21 0.0007

BE 1.02873 2 0.514366 12.56 0.0000

BF 0.161732 2 0.080866 1.98 0.1387

BG 0.67392 2 0.33696 8.23 0.0003

BH 0.0510211 2 0.0255105 0.62 0.5363

BI 0.370119 4 0.0925297 2.26 0.0601

CD 5.7089 2 2.85445 69.72 0.0000

CE 1.29974 2 0.649869 15.87 0.0000

CF 2.53179 2 1.26589 30.92 0.0000

CG 3.04683 2 1.52341 37.21 0.0000

CH 0.110518 2 0.0552589 1.35 0.2593

CI 0.362189 4 0.0905472 2.21 0.0651

DE 12.6098 4 3.15244 77.00 0.0000

DF 0.336991 4 0.0842478 2.06 0.0835

DG 0.0336013 4 0.00840032 0.21 0.9356

DH 0.130036 4 0.032509 0.79 0.5288

202 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

DI 0.185477 8 0.0231846 0.57 0.8063

EF 0.109149 4 0.0272873 0.67 0.6152

EG 0.39749 4 0.0993725 2.43 0.0457

EH 0.121935 4 0.0304837 0.74 0.5614

EI 0.231152 8 0.028894 0.71 0.6868

FG 2.14082 4 0.535205 13.07 0.0000

FH 0.237482 4 0.0593705 1.45 0.2146

FI 0.626715 8 0.0783394 1.91 0.0535

GH 2.10206 4 0.525516 12.84 0.0000

GI 0.472164 8 0.0590205 1.44 0.1734

HI 0.17387 8 0.0217338 0.53 0.8342

Residual 789.26 19279 0.0409389

Total (corrected) 2500.89 19439

Mutation prob.

H
y

p
er

v
o

lu
m

e

30% 70% 1n

0.54

0.74

0.94

1.14

1.34

Figure 8.5: Factor means and 99% Tukey confidence
intervals for the mutation probability in NSGA-II; large

instances. (Higher is better.)

8.5. Computational Evaluation 203

Table 8.3: Calibration of NSGA-II. Table of means and
99% confidence intervals for the large instances.

Level Count Mean Stnd. Lower Upper
Error Limit Limit

Grand mean 19440 0.915288

n

50 9720 0.973447 0.00205227 0.968161 0.978733

100 9720 0.857129 0.00205227 0.851843 0.862415

m

4 9720 0.919556 0.00205227 0.91427 0.924842

8 9720 0.91102 0.00205227 0.905734 0.916306

mi

2 9720 0.997692 0.00205227 0.992405 1.00298

4 9720 0.832884 0.00205227 0.827598 0.838171

T

0.2 6480 0.920936 0.00251351 0.914461 0.92741

0.4 6480 0.910247 0.00251351 0.903773 0.916721

0.6 6480 0.914681 0.00251351 0.908207 0.921155

R

0.2 6480 0.922653 0.00251351 0.916179 0.929128

0.6 6480 0.901019 0.00251351 0.894544 0.907493

1 6480 0.922192 0.00251351 0.915717 0.928666

Pop
10 6480 0.984202 0.00251351 0.977728 0.990677

30 6480 0.923871 0.00251351 0.917396 0.930345

100 6480 0.837791 0.00251351 0.831317 0.844265

Mut
0.3 6480 1.03952 0.00251351 1.03304 1.04599

0.7 6480 1.15241 0.00251351 1.14593 1.15888

1n 6480 0.553943 0.00251351 0.547468 0.560417

Cross
0.5 6480 0.94874 0.00251351 0.942266 0.955215

0.7 6480 0.913219 0.00251351 0.906745 0.919693

0.9 6480 0.883905 0.00251351 0.87743 0.890379

Rep
1 3888 0.911915 0.00324493 0.903557 0.920274

2 3888 0.909108 0.00324493 0.90075 0.917466

3 3888 0.930821 0.00324493 0.922463 0.93918

4 3888 0.915582 0.00324493 0.907224 0.92394

5 3888 0.909013 0.00324493 0.900655 0.917371

204 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

n by Pop
50 10 3240 1.05437 0.00355464 1.04521 1.06352

50 30 3240 0.977335 0.00355464 0.968179 0.986491

50 100 3240 0.888638 0.00355464 0.879482 0.897794

100 10 3240 0.914036 0.00355464 0.90488 0.923193

100 30 3240 0.870407 0.00355464 0.861251 0.879563

100 100 3240 0.786944 0.00355464 0.777788 0.7961

n by Mut
50 0.3 3240 1.07153 0.00355464 1.06238 1.08069

50 0.7 3240 1.16415 0.00355464 1.15499 1.17331

50 1n 3240 0.684658 0.00355464 0.675502 0.693814

100 0.3 3240 1.0075 0.00355464 0.998341 1.01665

100 0.7 3240 1.14066 0.00355464 1.13151 1.14982

100 1n 3240 0.423227 0.00355464 0.414071 0.432384

n by Cross
50 0.5 3240 1.00169 0.00355464 0.992536 1.01085

50 0.7 3240 0.975648 0.00355464 0.966492 0.984804

50 0.9 3240 0.943 0.00355464 0.933844 0.952157

100 0.5 3240 0.895788 0.00355464 0.886632 0.904944

100 0.7 3240 0.85079 0.00355464 0.841634 0.859946

100 0.9 3240 0.824809 0.00355464 0.815653 0.833965

m by Pop
4 10 3240 0.991792 0.00355464 0.982636 1.00095

4 30 3240 0.928528 0.00355464 0.919371 0.937684

4 100 3240 0.838348 0.00355464 0.829192 0.847504

8 10 3240 0.976612 0.00355464 0.967456 0.985768

8 30 3240 0.919214 0.00355464 0.910058 0.92837

8 100 3240 0.837234 0.00355464 0.828078 0.84639

m by Mut
4 0.3 3240 1.04947 0.00355464 1.04031 1.05863

4 0.7 3240 1.1591 0.00355464 1.14994 1.16825

4 1n 3240 0.5501 0.00355464 0.540944 0.559256

8 0.3 3240 1.02956 0.00355464 1.0204 1.03872

8 0.7 3240 1.14571 0.00355464 1.13656 1.15487

8 1n 3240 0.557786 0.00355464 0.548629 0.566942

m by Cross
4 0.5 3240 0.954345 0.00355464 0.945189 0.963501

4 0.7 3240 0.918429 0.00355464 0.909273 0.927586

4 0.9 3240 0.885893 0.00355464 0.876737 0.895049

8 0.5 3240 0.943135 0.00355464 0.933979 0.952291

8 0.7 3240 0.908009 0.00355464 0.898852 0.917165

8.5. Computational Evaluation 205

8 0.9 3240 0.881917 0.00355464 0.87276 0.891073

mi by Pop
2 10 3240 1.0771 0.00355464 1.06794 1.08626

2 30 3240 1.01165 0.00355464 1.00249 1.0208

2 100 3240 0.904329 0.00355464 0.895172 0.913485

4 10 3240 0.891305 0.00355464 0.882149 0.900461

4 30 3240 0.836095 0.00355464 0.826939 0.845251

4 100 3240 0.771253 0.00355464 0.762097 0.780409

mi by Mut
2 0.3 3240 1.1356 0.00355464 1.12644 1.14476

2 0.7 3240 1.2377 0.00355464 1.22854 1.24686

2 1n 3240 0.619774 0.00355464 0.610618 0.62893

4 0.3 3240 0.94343 0.00355464 0.934274 0.952586

4 0.7 3240 1.06711 0.00355464 1.05796 1.07627

4 1n 3240 0.488112 0.00355464 0.478955 0.497268

mi by Cross
2 0.5 3240 1.0289 0.00355464 1.01974 1.03805

2 0.7 3240 0.998924 0.00355464 0.989768 1.00808

2 0.9 3240 0.965253 0.00355464 0.956097 0.97441

4 0.5 3240 0.868583 0.00355464 0.859427 0.877739

4 0.7 3240 0.827514 0.00355464 0.818358 0.836671

4 0.9 3240 0.802556 0.00355464 0.7934 0.811712

The other parameters are fixed similarly. The population size, which is the
next algorithm parameter in importance, is fixed to the smallest value. This
fixes the population at a size of 10 individuals, as we can see in Figure 8.6. The
last parameter to be fixed is the crossover probability. Figure 8.7 shows that
the smallest probability, namely 50%, yields the best results. This fixes the last
instance parameter for NSGA-II.

206 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Population size

H
y

p
er

v
o

lu
m

e

10 30 100

1

1.04

1.08

1.12

1.16

1.2

1.24

Figure 8.6: Factor means and 99% Tukey confidence
intervals for the population size in NSGA-II; large instances.

(Higher is better.)

Crossover prob.

H
y

p
er

v
o

lu
m

e

50% 70% 90%

1.18

1.2

1.22

1.24

1.26

Figure 8.7: Factor means and 99% Tukey confidence
intervals for the crossover probability in NSGA-II; large

instances. (Higher is better.)

RIPG also has three parameters that should be calibrated. The parameters
and its levels are:

8.5. Computational Evaluation 207

Number of jobs destructed in IG phase:

• 3 jobs,

• 5 jobs,

• 10 jobs.

Neighbouring jobs considered in local search:

• 3 jobs at both sides,

• 5 jobs at both sides,

• No local search.

Moment of restart:

• After 10 iterations without change in the population,

• After 2n iterations without change in the population,

• No restart.

Since the number of parameter configurations is equal to the number of different
setting for NSGA-II, the CPU time required for this calibration is equal as well:
729 hours. The ANOVA results are given in Table 8.4. In that table we can see
that the restart parameter has the highes F-value and should therefore be fixed
first. In Figure 8.8, one can see that applying a restart when 2n iterations have
been done without any improvement in the populations, is the best option for
RIPG. This is confirmed by the data in Table 8.5.

208 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Table 8.4: Analysis of Variance for the Hypervolume -
Calibration of RIPG.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 19.5218 1 19.5218 467.86 0.0000

B:m 5.66431 1 5.66431 135.75 0.0000

C:mi 0.198711 1 0.198711 4.76 0.0291

D:T 2.12475 2 1.06238 25.46 0.0000

E:R 0.0691669 2 0.0345834 0.83 0.4366

F:Restart 623.177 2 311.589 7467.58 0.0000

G:Greedy 73.1477 2 36.5738 876.53 0.0000

H:LocalSearch 5.3514 2 2.6757 64.13 0.0000

I:Rep 0.327426 4 0.0818565 1.96 0.0974

Interactions
AB 7.45596 1 7.45596 178.69 0.0000

AC 1.78673 1 1.78673 42.82 0.0000

AD 4.272 2 2.136 51.19 0.0000

AE 0.300696 2 0.150348 3.60 0.0273

AF 186.735 2 93.3677 2237.66 0.0000

AG 67.2393 2 33.6197 805.73 0.0000

AH 9.90714 2 4.95357 118.72 0.0000

AI 0.131665 4 0.0329162 0.79 0.5322

BC 4.9609 1 4.9609 118.89 0.0000

BD 2.66438 2 1.33219 31.93 0.0000

BE 4.74424 2 2.37212 56.85 0.0000

BF 4.93911 2 2.46955 59.19 0.0000

BG 0.644688 2 0.322344 7.73 0.0004

BH 0.0238262 2 0.0119131 0.29 0.7516

BI 0.0982541 4 0.0245635 0.59 0.6708

CD 2.08448 2 1.04224 24.98 0.0000

CE 0.271025 2 0.135512 3.25 0.0389

CF 33.5871 2 16.7935 402.48 0.0000

CG 60.9849 2 30.4924 730.79 0.0000

CH 1.41409 2 0.707046 16.95 0.0000

CI 0.129239 4 0.0323098 0.77 0.5417

DE 1.97393 4 0.493482 11.83 0.0000

DF 0.154316 4 0.0385791 0.92 0.4484

DG 1.02371 4 0.255926 6.13 0.0001

DH 0.342078 4 0.0855194 2.05 0.0846

8.5. Computational Evaluation 209

DI 0.37819 8 0.0472738 1.13 0.3370

EF 0.0790415 4 0.0197604 0.47 0.7552

EG 0.113566 4 0.0283914 0.68 0.6054

EH 0.280328 4 0.070082 1.68 0.1516

EI 0.236372 8 0.0295465 0.71 0.6847

FG 49.1041 4 12.276 294.21 0.0000

FH 9.82821 4 2.45705 58.89 0.0000

FI 0.0902494 8 0.0112812 0.27 0.9756

GH 9.58266 4 2.39566 57.41 0.0000

GI 0.445293 8 0.0556616 1.33 0.2211

HI 0.256038 8 0.0320047 0.77 0.6320

Residual 804.427 19279 0.0417255

Total (corrected) 2019.32 19439

Iterations

H
y

p
er

v
o

lu
m

e

No restart 2n 10

0.65

0.75

0.85

0.95

1.05

1.15

Figure 8.8: Means and 99% Tukey confidence intervals
between the number of iterations without population im-
provement done before restart in RIPG; large instances.

(Higher is better.)

210 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Table 8.5: Calibration of RIPG. Table of means and 99%
confidence intervals for the large instances.

Level Count Mean Stnd. Lower Upper
Error Limit Limit

Grand mean 19440 0.827002

n

50 9720 0.858692 0.0020719 0.853355 0.864028

100 9720 0.795313 0.0020719 0.789976 0.80065

m

4 9720 0.809933 0.0020719 0.804596 0.81527

8 9720 0.844072 0.0020719 0.838735 0.849409

mi

2 9720 0.823805 0.0020719 0.818468 0.829142

4 9720 0.830199 0.0020719 0.824863 0.835536

T

0.2 6480 0.82448 0.00253754 0.817944 0.831017

0.4 6480 0.815647 0.00253754 0.80911 0.822183

0.6 6480 0.84088 0.00253754 0.834344 0.847416

R

0.2 6480 0.824407 0.00253754 0.81787 0.830943

0.6 6480 0.828833 0.00253754 0.822296 0.835369

1 6480 0.827768 0.00253754 0.821232 0.834304

Restart
R0 6480 0.739553 0.00253754 0.733016 0.746089

R1 6480 1.07652 0.00253754 1.06998 1.08305

R2 6480 0.664938 0.00253754 0.658402 0.671474

Greedy
G0 6480 0.740461 0.00253754 0.733925 0.746997

G1 6480 0.865073 0.00253754 0.858536 0.871609

G2 6480 0.875474 0.00253754 0.868937 0.88201

LocalSearch
LS0 6480 0.848115 0.00253754 0.841579 0.854651

LS1 6480 0.80758 0.00253754 0.801044 0.814116

LS2 6480 0.825312 0.00253754 0.818776 0.831848

n by Restart
50 R0 3240 0.642793 0.00358863 0.633549 0.652036

50 R1 3240 1.12733 0.00358863 1.11808 1.13657

50 R2 3240 0.805954 0.00358863 0.79671 0.815198

100 R0 3240 0.836313 0.00358863 0.827069 0.845557

100 R1 3240 1.0257 0.00358863 1.01646 1.03495

8.5. Computational Evaluation 211

100 R2 3240 0.523922 0.00358863 0.514679 0.533166

n by Greedy
50 G0 3240 0.839977 0.00358863 0.830733 0.849221

50 G1 3240 0.904536 0.00358863 0.895292 0.91378

50 G2 3240 0.831562 0.00358863 0.822318 0.840805

100 G0 3240 0.640945 0.00358863 0.631701 0.650189

100 G1 3240 0.825609 0.00358863 0.816365 0.834853

100 G2 3240 0.919385 0.00358863 0.910142 0.928629

n by LocalSearch
50 LS0 3240 0.848022 0.00358863 0.838779 0.857266

50 LS1 3240 0.852539 0.00358863 0.843296 0.861783

50 LS2 3240 0.875513 0.00358863 0.866269 0.884757

100 LS0 3240 0.848208 0.00358863 0.838964 0.857452

100 LS1 3240 0.762621 0.00358863 0.753377 0.771865

100 LS2 3240 0.775111 0.00358863 0.765867 0.784354

m by Restart
4 R0 3240 0.739188 0.00358863 0.729945 0.748432

4 R1 3240 1.0642 0.00358863 1.05496 1.07344

4 R2 3240 0.626408 0.00358863 0.617165 0.635652

8 R0 3240 0.739917 0.00358863 0.730673 0.749161

8 R1 3240 1.08883 0.00358863 1.07959 1.09807

8 R2 3240 0.703468 0.00358863 0.694224 0.712712

m by Greedy
4 G0 3240 0.731012 0.00358863 0.721768 0.740256

4 G1 3240 0.84668 0.00358863 0.837436 0.855924

4 G2 3240 0.852106 0.00358863 0.842862 0.86135

8 G0 3240 0.74991 0.00358863 0.740666 0.759154

8 G1 3240 0.883465 0.00358863 0.874221 0.892709

8 G2 3240 0.898841 0.00358863 0.889597 0.908085

m by LocalSearch
4 LS0 3240 0.832316 0.00358863 0.823072 0.84156

4 LS1 3240 0.789083 0.00358863 0.779839 0.798327

4 LS2 3240 0.808399 0.00358863 0.799155 0.817643

8 LS0 3240 0.863914 0.00358863 0.85467 0.873158

8 LS1 3240 0.826077 0.00358863 0.816833 0.835321

8 LS2 3240 0.842225 0.00358863 0.832981 0.851468

mi by Restart
2 R0 3240 0.769098 0.00358863 0.759855 0.778342

2 R1 3240 1.09923 0.00358863 1.08998 1.10847

2 R2 3240 0.60309 0.00358863 0.593847 0.612334

4 R0 3240 0.710007 0.00358863 0.700763 0.719251

212 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

4 R1 3240 1.05381 0.00358863 1.04456 1.06305

4 R2 3240 0.726786 0.00358863 0.717542 0.73603

mi by Greedy
2 G0 3240 0.800621 0.00358863 0.791377 0.809865

2 G1 3240 0.871368 0.00358863 0.862124 0.880611

2 G2 3240 0.799427 0.00358863 0.790183 0.808671

4 G0 3240 0.680301 0.00358863 0.671057 0.689545

4 G1 3240 0.858777 0.00358863 0.849534 0.868021

4 G2 3240 0.95152 0.00358863 0.942276 0.960764

mi by LocalSearch
2 LS0 3240 0.833907 0.00358863 0.824663 0.843151

2 LS1 3240 0.805624 0.00358863 0.79638 0.814868

2 LS2 3240 0.831884 0.00358863 0.822641 0.841128

4 LS0 3240 0.862323 0.00358863 0.853079 0.871567

4 LS1 3240 0.809536 0.00358863 0.800292 0.81878

4 LS2 3240 0.818739 0.00358863 0.809496 0.827983

Restart by Greedy
R0 G0 2160 0.667793 0.00439515 0.656472 0.679115

R0 G1 2160 0.772588 0.00439515 0.761267 0.783909

R0 G2 2160 0.778277 0.00439515 0.766956 0.789598

R1 G0 2160 1.05433 0.00439515 1.04301 1.06565

R1 G1 2160 1.1224 0.00439515 1.11108 1.13372

R1 G2 2160 1.05281 0.00439515 1.04149 1.06413

R2 G0 2160 0.499256 0.00439515 0.487935 0.510577

R2 G1 2160 0.700227 0.00439515 0.688906 0.711548

R2 G2 2160 0.795331 0.00439515 0.78401 0.806652

Restart by LocalSearch
R0 LS0 2160 0.735482 0.00439515 0.724161 0.746803

R0 LS1 2160 0.732247 0.00439515 0.720926 0.743569

R0 LS2 2160 0.750929 0.00439515 0.739608 0.76225

R1 LS0 2160 1.07828 0.00439515 1.06696 1.0896

R1 LS1 2160 1.07092 0.00439515 1.0596 1.08225

R1 LS2 2160 1.08035 0.00439515 1.06902 1.09167

R2 LS0 2160 0.730586 0.00439515 0.719264 0.741907

R2 LS1 2160 0.619568 0.00439515 0.608247 0.630889

R2 LS2 2160 0.644661 0.00439515 0.63334 0.655982

Greedy by LocalSearch
G0 LS0 2160 0.796469 0.00439515 0.785148 0.80779

G0 LS1 2160 0.706137 0.00439515 0.694816 0.717458

G0 LS2 2160 0.718776 0.00439515 0.707455 0.730098

G1 LS0 2160 0.892046 0.00439515 0.880725 0.903368

8.5. Computational Evaluation 213

G1 LS1 2160 0.844882 0.00439515 0.833561 0.856203

G1 LS2 2160 0.858289 0.00439515 0.846968 0.86961

G2 LS0 2160 0.85583 0.00439515 0.844508 0.867151

G2 LS1 2160 0.871721 0.00439515 0.860399 0.883042

G2 LS2 2160 0.89887 0.00439515 0.887549 0.910192

If we generate another ANOVA with fixed restart configuration (see
Table B.7), the highest F-value is obtained by the interaction between the
number of destructed jobs in the IG phase of the algorithm on the one hand and
the number of machines per stage on the other hand. This interaction is shown
in Figure 8.9. Destructing only 3 jobs appears to have a bad performance for
4 machines per stage, while a destruction of 10 jobs leads to bad results for
2 machines per stage. However, since we are interested in which parameter
setting works best in general, for fixing the destruction setting we concentrate
on the means plot in Figure 8.10. From there we can conclude that the best
value for the destruction is a number of 5 jobs. Now, the local search parameter
does not have any significant influence on the results any more. We therefore
choose to keep the algorithm as simple as possible and exclude the local search
phase.

214 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Destruction

H
y
p
er

v
o
lu

m
e

mi

2

4

0.94

0.98

1.02

1.06

1.1

1.14

1.18

3 5 10

Figure 8.9: Interaction and 99% Tukey confidence intervals
between the number of jobs destructed in the IG phase and
the number of machines per stage; large instances. (Higher

is better.)

Destruction

H
y
p
er

v
o
lu

m
e

3 5 10

1.04

1.06

1.08

1.1

1.12

1.14

Figure 8.10: Means and 99% Tukey confidence intervals
for the number of jobs destructed in the IG phase; large

instances. (Higher is better.)

8.5. Computational Evaluation 215

8.5.2. Comparison among multi-objective algorithms

After calibration of both algorithms in the previous subsection, the two
presented algorithms can now be compared with their final parameter settings.
We will first compare them for the large instances. Instead of the 144 test
instances used for the calibration, the algorithms are now run on the 288 final
instances. For a better precision, 10 replicates are done for each algorithm on
each instance. The allowed CPU time is the same as in the calibration; t is fixed
at 100 milliseconds, which means that the largest instances of 100 jobs and 32
machines distributed over 8 stages are processed for 320 seconds.
Table 8.6 gives the ANOVA for the hypervolume indicator on the set of large
instances. The used method is most significant in this analysis, which facilitates
to draw clear conclusions. In Figure 8.11 it becomes clear that NSGA-II
outperforms RIPG for the large instances with a big difference. The detailed
numbers are given in Table 8.7.

216 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 7.10795 1 7.10795 55.08 0.0000

B:m 0.102194 1 0.102194 0.79 0.3735

C:mi 5.86954 1 5.86954 45.48 0.0000

D:T 1.37121 2 0.685604 5.31 0.0050

E:R 1.18473 2 0.592367 4.59 0.0102

F:Method 64.8675 1 64.8675 502.68 0.0000

G:Rep 0.688255 9 0.0764728 0.59 0.8042

Interactions
AB 0.0186164 1 0.0186164 0.14 0.7041

AC 1.24052 1 1.24052 9.61 0.0019

AD 4.78962 2 2.39481 18.56 0.0000

AE 0.489927 2 0.244964 1.90 0.1499

AF 6.59181 1 6.59181 51.08 0.0000

AG 1.23904 9 0.137672 1.07 0.3839

BC 0.718889 1 0.718889 5.57 0.0183

BD 0.407864 2 0.203932 1.58 0.2060

BE 0.229893 2 0.114946 0.89 0.4104

BF 4.49792 1 4.49792 34.86 0.0000

BG 0.615938 9 0.0684375 0.53 0.8535

CD 2.91408 2 1.45704 11.29 0.0000

CE 4.70003 2 2.35002 18.21 0.0000

CF 17.5095 1 17.5095 135.69 0.0000

CG 0.578191 9 0.0642434 0.50 0.8770

DE 1.76385 4 0.440962 3.42 0.0085

DF 0.414087 2 0.207043 1.60 0.2011

DG 2.06203 18 0.114557 0.89 0.5940

EF 0.702781 2 0.351391 2.72 0.0658

EG 0.555534 18 0.030863 0.24 0.9996

FG 0.953314 9 0.105924 0.82 0.5969

Residual 728.322 5644 0.129044

Total (corrected) 862.507 5759

Table 8.6: Analysis of Variance for the Hypervolume -
comparison of NSGA-II and RIPG for the set of large

instances.

8.5. Computational Evaluation 217

H
y
p
er

v
o
lu

m
e

NSGA-II RIPG

0.61

0.65

0.69

0.73

0.77

0.81

0.85

Figure 8.11: Hypervolume means and 99% Tukey confi-
dence intervals for the multi-objective algorithms; large

instances. (Higher is better.)

Table 8.7: Hypervolume means and 99% Tukey intervals
- comparison of NSGA-II and RIPG for the set of large

instances.

Level Count Mean Stnd. Lower Upper
Error Limit Limit

Grand mean 5760 0.730402

n

50 2880 0.765531 0.00669379 0.748289 0.782773

100 2880 0.695274 0.00669379 0.678032 0.712516

m

4 2880 0.72619 0.00669379 0.708948 0.743432

8 2880 0.734614 0.00669379 0.717372 0.751857

mi

2 2880 0.69848 0.00669379 0.681238 0.715722

4 2880 0.762324 0.00669379 0.745082 0.779566

T

0.2 1920 0.747478 0.00819818 0.726361 0.768595

0.4 1920 0.733629 0.00819818 0.712511 0.754746

0.6 1920 0.7101 0.00819818 0.688983 0.731217

R

0.2 1920 0.746132 0.00819818 0.725014 0.767249

0.6 1920 0.733627 0.00819818 0.71251 0.754744

218 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

1 1920 0.711449 0.00819818 0.690331 0.732566

Method
NSGA-II 2880 0.836524 0.00669379 0.819281 0.853766

RIPG 2880 0.624281 0.00669379 0.607039 0.641523

n by Method
50 NSGA-II 1440 0.905481 0.00946644 0.881097 0.929865

50 RIPG 1440 0.625581 0.00946644 0.601197 0.649965

100 NSGA-II 1440 0.767566 0.00946644 0.743182 0.79195

100 RIPG 1440 0.622982 0.00946644 0.598598 0.647366

m by Method
4 NSGA-II 1440 0.860256 0.00946644 0.835872 0.88464

4 RIPG 1440 0.592125 0.00946644 0.567741 0.616509

8 NSGA-II 1440 0.812791 0.00946644 0.788407 0.837175

8 RIPG 1440 0.656438 0.00946644 0.632054 0.680822

mi by Method
2 NSGA-II 1440 0.859736 0.00946644 0.835352 0.88412

2 RIPG 1440 0.537224 0.00946644 0.51284 0.561608

4 NSGA-II 1440 0.813311 0.00946644 0.788927 0.837695

4 RIPG 1440 0.711338 0.00946644 0.686954 0.735722

T by Method
0.2 NSGA-II 960 0.844836 0.011594 0.814972 0.8747

0.2 RIPG 960 0.65012 0.011594 0.620256 0.679984

0.4 NSGA-II 960 0.837043 0.011594 0.807179 0.866908

0.4 RIPG 960 0.630214 0.011594 0.60035 0.660078

0.6 NSGA-II 960 0.827691 0.011594 0.797827 0.857555

0.6 RIPG 960 0.592509 0.011594 0.562645 0.622374

R by Method
0.2 NSGA-II 960 0.837358 0.011594 0.807493 0.867222

0.2 RIPG 960 0.654906 0.011594 0.625041 0.68477

0.6 NSGA-II 960 0.84312 0.011594 0.813255 0.872984

0.6 RIPG 960 0.624134 0.011594 0.59427 0.653998

1 NSGA-II 960 0.829094 0.011594 0.799229 0.858958

1 RIPG 960 0.593804 0.011594 0.56394 0.623668

For validation on the results, the Epsilon indicator can also be consulted
for the same data. In Figure 8.12 is shown that the ε-indicator support the
conclusion drawn by consulting the hypervolume. Recall that a lower ε-indicator
corresponds to a better Pareto approximation front.

8.5. Computational Evaluation 219

E
p

si
lo

n
 I

n
d

ic
at

o
r

NSGA-II RIPG

1.3

1.34

1.38

1.42

1.46

1.5

1.54

Figure 8.12: ε-indicator means and 99% Tukey confidence
intervals for the multi-objective algorithms; large instances.

(Lower is better.)

For the small instances, the same analysis can be done. The two algorithms
are compared with the same parameter setting as for the large instances. This
time, the input data is the set of 462 instances with 5 to 15 jobs. The highest
CPU time per run is limited by n

∑
imi·t = 15·3·3·100 = 13,500 milliseconds,

which is equal to 13.5 seconds.
In Table 8.8, the ANOVA results for the hypervolume indicator are shown. One
can see that none of the interactions has a higher F-value than the F-value of the
used method. In Figure 8.13 the comparison of NSGA-II and RIPG is shown
graphically. In contrast to the results for the large instances, RIPG outperforms
NSGA-II for the small instances tested here. The more deterministic approach
that requires more objective evaluations is inefficient and slow for the large
instances, but appears to be very effective for the small instances. The most
important instance factor is the number of jobs n. The interaction between the
used algorithm and n is shown in Figure 8.14. We can see that no significant
difference can be found for 5 or 7 jobs; those instances are too easy. For 7 to 15
jobs, RIPG is the better algorithm. The underlying numbers for both figures
can be found in Table 8.9.

220 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 134.82 5 26.9639 148.14 0.0000

B:m 10.943 1 10.943 60.12 0.0000

C:T 0.157465 2 0.0787327 0.43 0.6489

D:R 0.81652 2 0.40826 2.24 0.1062

E:Method 22.515 1 22.515 123.70 0.0000

F:Repetition 0.260285 9 0.0289205 0.16 0.9976

Interactions
AB 55.177 5 11.0354 60.63 0.0000

AC 13.514 10 1.3514 7.42 0.0000

AD 11.1208 10 1.11208 6.11 0.0000

AE 12.7651 5 2.55302 14.03 0.0000

AF 2.2069 45 0.0490422 0.27 1.0000

BC 0.0251207 2 0.0125604 0.07 0.9333

BD 1.64656 2 0.823282 4.52 0.0109

BE 1.0199 1 1.0199 5.60 0.0179

BF 0.0852685 9 0.00947427 0.05 1.0000

CD 7.47692 4 1.86923 10.27 0.0000

CE 0.236158 2 0.118079 0.65 0.5227

CF 0.357004 18 0.0198336 0.11 1.0000

DE 0.164898 2 0.0824492 0.45 0.6357

DF 0.262171 18 0.0145651 0.08 1.0000

EF 0.339626 9 0.0377362 0.21 0.9934

Residual 1542.94 8477 0.182014

Total (corrected) 1818.85 8639

Table 8.8: Analysis of Variance for the Hypervolume -
comparison of NSGA-II and RIPG for the set of small

instances.

8.5. Computational Evaluation 221

H
y
p
er

v
o
lu

m
e

NSGA-II RIPG

0.92

0.95

0.98

1.01

1.04

1.07

Figure 8.13: Hypervolume indicator means and 99% Tukey
confidence intervals for the multi-objective algorithms;

small instances. (Higher is better.)

n

H
y
p
er

v
o
lu

m
e

NSGA-II
RIPG

0.74

0.84

0.94

1.04

1.14

1.24

1.34

5 7 9 11 13 15

Figure 8.14: Interaction for the hypervolume indicator and
99% Tukey confidence intervals between the algorithm and

the number of jobs; small instances. (Higher is better.)

222 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Table 8.9: Hypervolume comparison of NSGA-II and
RIPG. Table of means and 99% confidence intervals for

the small instances.

Level Count Mean Stnd. Lower Upper
Error Limit Limit

Grand mean 8640 0.989299

n

5 1440 0.942778 0.0112427 0.913818 0.971737

7 1440 1.1715 0.0112427 1.14254 1.20046

9 1440 1.1537 0.0112427 1.12474 1.18265

11 1440 0.917478 0.0112427 0.888518 0.946437

13 1440 0.878938 0.0112427 0.849978 0.907897

15 1440 0.871404 0.0112427 0.842445 0.900364

m

2 4320 0.95371 0.00649099 0.93699 0.97043

3 4320 1.02489 0.00649099 1.00817 1.04161

T

0.2 2880 0.994609 0.00794981 0.974131 1.01509

0.4 2880 0.984156 0.00794981 0.963678 1.00463

0.6 2880 0.989132 0.00794981 0.968655 1.00961

R

0.2 2880 0.999117 0.00794981 0.978639 1.01959

0.6 2880 0.992725 0.00794981 0.972247 1.0132

1 2880 0.976055 0.00794981 0.955578 0.996533

Method
NSGA-II 4320 0.938251 0.00649099 0.921531 0.954971

RIPG 4320 1.04035 0.00649099 1.02363 1.05707

n by Method
5 NSGA-II 720 0.942778 0.0158996 0.901823 0.983733

5 RIPG 720 0.942778 0.0158996 0.901823 0.983733

7 NSGA-II 720 1.16537 0.0158996 1.12441 1.20632

7 RIPG 720 1.17763 0.0158996 1.13668 1.21859

9 NSGA-II 720 1.09949 0.0158996 1.05854 1.14045

9 RIPG 720 1.2079 0.0158996 1.16694 1.24885

11 NSGA-II 720 0.817939 0.0158996 0.776984 0.858894

11 RIPG 720 1.01702 0.0158996 0.976062 1.05797

13 NSGA-II 720 0.784539 0.0158996 0.743584 0.825494

13 RIPG 720 0.973336 0.0158996 0.932382 1.01429

15 NSGA-II 720 0.819392 0.0158996 0.778437 0.860347

15 RIPG 720 0.923417 0.0158996 0.882462 0.964372

8.5. Computational Evaluation 223

m by Method
2 NSGA-II 2160 0.891797 0.00917965 0.868152 0.915443

2 RIPG 2160 1.01562 0.00917965 0.991978 1.03927

3 NSGA-II 2160 0.984704 0.00917965 0.961059 1.00835

3 RIPG 2160 1.06507 0.00917965 1.04143 1.08872

T by Method
0.2 NSGA-II 1440 0.93663 0.0112427 0.90767 0.965589

0.2 RIPG 1440 1.05259 0.0112427 1.02363 1.08155

0.4 NSGA-II 1440 0.938803 0.0112427 0.909843 0.967762

0.4 RIPG 1440 1.02951 0.0112427 1.00055 1.05847

0.6 NSGA-II 1440 0.93932 0.0112427 0.910361 0.96828

0.6 RIPG 1440 1.03894 0.0112427 1.00998 1.0679

R by Method
0.2 NSGA-II 1440 0.944729 0.0112427 0.91577 0.973689

0.2 RIPG 1440 1.0535 0.0112427 1.02454 1.08246

0.6 NSGA-II 1440 0.938845 0.0112427 0.909885 0.967804

0.6 RIPG 1440 1.0466 0.0112427 1.01765 1.07556

1 NSGA-II 1440 0.931179 0.0112427 0.902219 0.960138

1 RIPG 1440 1.02093 0.0112427 0.991973 1.04989

For the ε-indicator the importance of the algorithm is higher than the
importance of the number of jobs, as can be learned from Table 8.10. In
Figure 8.15, the comparison of NSGA-II and RIPG is shown for the ε-indicator.
The result is coherent with the hypervolume comparison. Figure 8.16, however,
shows some slight differences between the two indicators. For 7 jobs, there
is quite some difference in the advantage of RIPG when the ε-indicator is
used, although the significance intervals overlap. When using the hypervolume,
though, the averages practically coincide. Also, the performance of RIPG seems
to be practically equal for 5 to 13 jobs, in the case of the ε-indicator. For these
values of n, I1|ε| = 1 or I1|ε| ≈ 1. Recall that 1 ≤ I1|ε| ≤ 2 and that the best
possible value for the ε-indicator is 1. For the hypervolume indicator, however,
the obtained values fluctuate more and the maximum value of 1.44 is not closely
approximated in any of the cases. These differences support the earlier claim
that the hypervolume indicator represents more information than the ε-indicator.

224 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 75.3747 5 15.0749 307.36 0.0000

B:m 0.872704 1 0.872704 17.79 0.0000

C:T 0.239978 2 0.119989 2.45 0.0867

D:R 0.12455 2 0.0622752 1.27 0.2810

E:Method 54.1929 1 54.1929 1104.94 0.0000

F:Repetition 0.57565 9 0.0639611 1.30 0.2287

Interactions
AB 13.4805 5 2.69611 54.97 0.0000

AC 0.769726 10 0.0769726 1.57 0.1090

AD 0.977938 10 0.0977938 1.99 0.0300

AE 39.0716 5 7.81432 159.33 0.0000

AF 2.01467 45 0.0447705 0.91 0.6386

BC 0.0279469 2 0.0139734 0.28 0.7521

BD 0.0263367 2 0.0131683 0.27 0.7645

BE 0.0271147 1 0.0271147 0.55 0.4572

BF 0.319807 9 0.0355341 0.72 0.6869

CD 1.27444 4 0.318609 6.50 0.0000

CE 0.130026 2 0.0650132 1.33 0.2657

CF 0.277645 18 0.0154247 0.31 0.9974

DE 0.166221 2 0.0831104 1.69 0.1837

DF 0.228771 18 0.0127095 0.26 0.9993

EF 0.546119 9 0.0606799 1.24 0.2668

Residual 415.763 8477 0.049046

Total (corrected) 606.483 8639

Table 8.10: Analysis of Variance for the Epsilon indicator
- comparison of NSGA-II and RIPG for the set of small

instances.

8.5. Computational Evaluation 225

E
p
si

lo
n
 I

n
d
ic

at
o
r

NSGA-II RIPG

1

1.04

1.08

1.12

1.16

1.2

Figure 8.15: ε-indicator means and 99% Tukey confidence
intervals for the multi-objective algorithms; small instances.

(Lower is better.)

n

E
p

si
lo

n
 I

n
d

ic
at

o
r NSGA-II

RIPG

0.97

1.07

1.17

1.27

1.37

1.47

5 7 9 11 13 15

Figure 8.16: Interaction for the ε-indicator and 99% Tukey
confidence intervals between the algorithm and the number

of jobs; small instances. (Lower is better.)

226 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Table 8.11: Epsilon indicator means and 99% Tukey inter-
vals - comparison of NSGA-II and RIPG for the set of small

instances.

Level Count Mean Stnd. Lower Upper
Error Limit Limit

Grand mean 8640 1.10944

n

5 1440 1.0 0.00583607 0.984967 1.01503

7 1440 1.02083 0.00583607 1.0058 1.03587

9 1440 1.04765 0.00583607 1.03262 1.06268

11 1440 1.19453 0.00583607 1.1795 1.20956

13 1440 1.14121 0.00583607 1.12618 1.15625

15 1440 1.25243 0.00583607 1.2374 1.26747

m

2 4320 1.09939 0.00336946 1.09071 1.10807

3 4320 1.11949 0.00336946 1.11081 1.12817

T

0.2 2880 1.11683 0.00412673 1.1062 1.12746

0.4 2880 1.10664 0.00412673 1.09601 1.11727

0.6 2880 1.10486 0.00412673 1.09423 1.11549

R

0.2 2880 1.11446 0.00412673 1.10383 1.12509

0.6 2880 1.10858 0.00412673 1.09795 1.11921

1 2880 1.10528 0.00412673 1.09465 1.11591

Method
NSGA-II 4320 1.18864 0.00336946 1.17996 1.19732

RIPG 4320 1.03025 0.00336946 1.02157 1.03892

n by Method
5 NSGA-II 720 1.0 0.00825345 0.97874 1.02126

5 RIPG 720 1.0 0.00825345 0.97874 1.02126

7 NSGA-II 720 1.04167 0.00825345 1.02041 1.06293

7 RIPG 720 1.0 0.00825345 0.97874 1.02126

9 NSGA-II 720 1.0953 0.00825345 1.07404 1.11656

9 RIPG 720 1.0 0.00825345 0.97874 1.02126

11 NSGA-II 720 1.38634 0.00825345 1.36508 1.4076

11 RIPG 720 1.00272 0.00825345 0.981458 1.02398

13 NSGA-II 720 1.28169 0.00825345 1.26043 1.30295

13 RIPG 720 1.00074 0.00825345 0.979483 1.022

15 NSGA-II 720 1.32686 0.00825345 1.3056 1.34812

15 RIPG 720 1.17801 0.00825345 1.15675 1.19927

8.5. Computational Evaluation 227

m by Method
2 NSGA-II 2160 1.18036 0.00476513 1.16809 1.19264

2 RIPG 2160 1.01842 0.00476513 1.00615 1.0307

3 NSGA-II 2160 1.19692 0.00476513 1.18465 1.20919

3 RIPG 2160 1.04207 0.00476513 1.02979 1.05434

T by Method
0.2 NSGA-II 1440 1.2001 0.00583607 1.18507 1.21513

0.2 RIPG 1440 1.03355 0.00583607 1.01852 1.04858

0.4 NSGA-II 1440 1.18062 0.00583607 1.16559 1.19566

0.4 RIPG 1440 1.03266 0.00583607 1.01763 1.0477

0.6 NSGA-II 1440 1.1852 0.00583607 1.17017 1.20024

0.6 RIPG 1440 1.02452 0.00583607 1.00949 1.03955

R by Method
0.2 NSGA-II 1440 1.19834 0.00583607 1.1833 1.21337

0.2 RIPG 1440 1.03059 0.00583607 1.01556 1.04563

0.6 NSGA-II 1440 1.18898 0.00583607 1.17394 1.20401

0.6 RIPG 1440 1.02819 0.00583607 1.01316 1.04322

1 NSGA-II 1440 1.17861 0.00583607 1.16358 1.19365

1 RIPG 1440 1.03196 0.00583607 1.01692 1.04699

In order to obtain more information about the differences between the
two algorithms, empirical attainment functions can be visualised for some
instances. In order to generate the visualisations, 100 replicates are done for
each algorithm, for each instance we want to show. Algorithm run covering a
point therefore corresponds to 1% in the EAF. The first instance for which the
EAF are analysed is an instance of 50 jobs, 4 stages and 2 parallel machines in
each stage. We will refer to this instance as example instance 5. In Figure 8.17,
the empirical attainment function are shown for NSGA-II. The solid red area
is covered in all 100 runs; the solid white area is not covered in any run. The
grade of the curved area in between indicates the number of runs in which the
objective vectors are attained.

228 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Makespan

1,2101,2001,1901,1801,1701,1601,1501,1401,1301,1201,110

T
o
ta

l T
a
rd

in
e
s
s

4,500

4,400

4,300

4,200

4,100

4,000

3,900

3,800

3,700

3,600

3,500

3,400

3,300

3,200

3,100

3,000

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Figure 8.17: Plot of EAF for NSGA-II. Example instance
5 with 50 jobs, 4 stages and 2 machines per stage.

Figure 8.18 shows the empirical attainment functions graphically for RIPG
for the same example instance. It is easy to see that RIPG performs worse
for this example instance. Both on total tardiness and on makespan, NSGA-II
achieves to cover the area with a higher probability, if we compare one figure
with the other.

8.5. Computational Evaluation 229

Makespan

1,2101,2001,1901,1801,1701,1601,1501,1401,1301,1201,110

T
o
ta

l T
a
rd

in
e
s
s

4,500

4,400

4,300

4,200

4,100

4,000

3,900

3,800

3,700

3,600

3,500

3,400

3,300

3,200

3,100

3,000

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Figure 8.18: Plot of EAF for RIPG. Example instance 5
with 50 jobs, 4 stages and 2 machines per stage.

In order to facilitate the comparison between the empirical attainment func-
tions of two algorithms, the difference between the EAFs can be summarised
in one graph. This graph is referred to as the differential empirical attainment
function. In Figure 8.19, such a graph is shown for example instance 5. On the
bottom and on the left, the difference is zero since neither of the two algorithms
covers this part in any run. In the right upper corner, the difference is zero since
both algorithms always cover this point. In between, the grade of red indicates
in which extend NSGA-II outperforms RIPG.

230 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Makespan

1,2101,2001,1901,1801,1701,1601,1501,1401,1301,1201,110

T
o
ta

l T
a
rd

in
e
s
s

4,500

4,400

4,300

4,200

4,100

4,000

3,900

3,800

3,700

3,600

3,500

3,400

3,300

3,200

3,100

3,000

 100%

 90%

 80%

 70%

 60%

 50%

 40%

 30%

 20%

 10%

 0%

 -10%

 -20%

 -30%

 -40%

 -50%

 -60%

 -70%

 -80%

 -90%

-100%

Figure 8.19: Plot of Diff-EAF for NSGA-II and RIPG. In
red the area where NSGA-II outperforms RIPG. Example
instance 5 with 50 jobs, 4 stages and 2 machines per stage.

NSGA-II is not better than RIPG for all large instances. In Figure 8.20 an
example is given where RIPG outperforms NSGA-II. The differential empirical
attainment function is shown for example instance 6; an instance with 100
jobs, 4 stages and 4 parallel machines per stage. The blue colour indicates
where RIPG covers the objective space more often than NSGA-II does. It is
curious to see the full blue area on the bottom of the graph. This means that
in practically all runs, RIPG finds solutions with a good makespan and zero
tardiness, whereas NSGA-II almost never finds solutions with zero tardiness.

8.5. Computational Evaluation 231

Makespan

1,1401,1201,1001,0801,0601,0401,0201,000980960940920900880860

T
o
ta

l T
a
rd

in
e
s
s

950

900

850

800

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

 100%

 90%

 80%

 70%

 60%

 50%

 40%

 30%

 20%

 10%

 0%

 -10%

 -20%

 -30%

 -40%

 -50%

 -60%

 -70%

 -80%

 -90%

-100%

Figure 8.20: Plot of Diff-EAF for NSGA-II and RIPG. In
blue the area where RIPG outperforms NSGA-II. Example
instance 6 with 100 jobs, 4 stages and 4 machines per stage.

Another interesting instance, is example instance 7 of exactly the same size
as example instance 6. In Figure 8.21, if one looks well, one can see that there
is a light red area close to the axes and a bit stronger blue area above and to the
right of this red area. This means that NSGA-II obtains on the one hand very
good approximation sets in a slightly higher number of cases than RIPG. On
the other hand, NSGA-II also returns bad approximation sets more often than
RIPG. We can interpret this as an indication that the best Pareto approximation
sets for this instance are obtained by NSGA-II, but that the genetic algorithm is
less stable than RIPG.

232 CHAPTER 8. MULTI-OBJECTIVE SCHEDULING

Makespan

1,000990980970960950940930920910900890880870860850840830

T
o
ta

l T
a
rd

in
e
s
s

900

850

800

750

700

650

600

550

500

450

400

350

300

250

200

 100%

 90%

 80%

 70%

 60%

 50%

 40%

 30%

 20%

 10%

 0%

 -10%

 -20%

 -30%

 -40%

 -50%

 -60%

 -70%

 -80%

 -90%

-100%

Figure 8.21: Plot of Diff-EAF for NSGA-II and RIPG. In
blue the area where RIPG outperforms NSGA-II and in
red the area where NSGA-II outperforms RIPG. Example
instance 7 with 100 jobs, 4 stages and 4 machines per stage.

8.6. Conclusions

In this chapter, it has been shown that there is practically no multi-objective
research done for the hybrid flexible flowline problem. This is confirmed by the
hybrid flowshop reviews of Vignier et al. (1999), Linn and Zhang (1999), Quadt
and Kuhn (2007), Ruiz and Vázquez Rodríguez (2010) and Ribas et al. (2010).
We have presented two algorithms for solving the hybrid flowshop problem

8.6. Conclusions 233

with unrelated parallel machines in each of the stages. Pareto optimisation is
done for two objectives, namely makespan and total tardiness. Different quality
measures are used to analyse the results in detail and to avoid biases caused by
the chosen performance indicator. The conclusions that can be drawn from the
analysis are given in this section.
More randomness contributes to a better algorithm in the case of large problem
instances for this multi-objective scheduling problem. This can be concluded
both from the comparison between NSGA-II and RIGP, and from the calibration
of NSGA-II. In NSGA-II, as in all genetic algorithms, the solution changes are
done mainly in a random way. The changes done in RIPG are more greedy and
compare many options before changing a solution. This comparison of options
is costly for the problem we treat here and therefore results in an algorithm that
is inefficient for large instances.
Moreover, as shown in Chapter 6, accelerations are an important ingredient for
success when local search is applied. However, the accelerations implemented
in that chapter are not suitable for the hybrid flowshop problem treated here.
Because of the precedence constraints in the HFFL problem considered in the
previous chapters, none of the tasks of a job can be planned before all tasks
of its predecessor are fixed in the schedule. This obliges the algorithms to
generate the schedule on job-by-job basis. Since the job-permutation solution
representation is coherent with the scheduling order, the proposed accelerations
are possible in that case. In the HFS problem in this chapter, however, no
precedence constraints are considered. This allows the algorithms to assign the
jobs to machines on a stage-by-stage basis, establishing the job permutation at
each stage as the order in which they are finished in the previous stage. This
results in better solutions, but contrasts with the solution representation. The
earlier used accelerations are therefore not possible for the methods proposed in
this chapter. This clearly affects the RIPG results, especially for large instances.
We are currently working on a journal publication, based on the research pre-
sented in this chapter. Some initial results have been accepted for presentation
in the Twelfth International Workshop on Project Management and Scheduling
and publication in the proceedings.

CHAPTER 9
CONCLUSIONS AND FUTURE RESEARCH

Since the first publications in the field of scheduling, more than half a
century ago, there has existed a gap between the literature in this field on the one
hand and the necessities of production schedulers in practice on the other hand.
This can be learned from the literature review in this Ph.D. thesis. Scientific
research has been concentrated in most of the cases on problems that represent a
simplification of reality, which somehow restricts the practical interest. Usually
a number of assumptions is made in order to obtain a favourable mathematical
formulation or facilitate the implementation of efficient and effective algorithms.
In other cases, practical applications are studied. This kind of research is
obviously connected to the real world in a close way. However, the applications
are usually too specific to create the possibility of large-scale implementation.
What has been shown in several research papers over the last decades, is that
the industry could take profit of an easy and flexible tool that generates good
solutions exactly for their problems without assumptions that may cause the
solution of the algorithm to be infeasible in practice. These solutions, moreover,
need to be available in a short timespan, so that different scenarios can easily
be compared and changes in the production plan can almost immediately be
adopted in the schedule. This requirement excludes the possibility of lengthy

235

236 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

overnight calculations.
In this Ph.D. thesis, the central objective has been to contribute on closing this
gap between the scheduling literature and what real-life production planning
asks for, as described in Chapter 1. Whereas most papers in the line of
realistic scheduling consider only one or two realistic restrictions, we therefore
treat a hybrid flexible flow line together with various constraints that occur
in many production environments. Among the modelled real-life problem
characteristics we can find stage skipping, machine eligibility, precedence
constraints, time lags, machine release dates and sequence dependent setup
times, either anticipatory or not. From the literature review in Chapter 2, it can
be concluded that the addressed problem is more complex than the problems
usually treated in literature and allows for direct implementation in real-world
situations.

For this problem, we have shown a complete formulation, as well as a mixed
integer linear programming model in Chapter 3. We introduced a benchmark
of problem instances, taking into account the numerous problem restrictions.
A commercial solver (CPLEX) was used to obtain the optimal solutions for
a number of instances, and analysis of the results gave information about the
addition in complexity for each of the problem restrictions.
Since the mathematical model is only suitable for problem instances of small
size, some heuristic methods were adapted for this problem in Chapter 4.
Among those heuristics we find six dispatching rules and the well-known NEH
heuristic. All had to be modified in order to be able to generate solutions for the
hybrid flexible flow line problem. Usually the heuristics are applied to regular
flowshop problems.

Furthermore, in Chapter 5 we have implemented and compared genetic
algorithms with distinct solution representations. The solution representations
range from simple job sequences with a single machine assignment rule (BGA
and SGA), job sequences with per-job machine assignment rules (SGAR),
complete machine assignments (SGAM), to the exact representation of the
solution with per-machine job sequences (EGA).

237

Neither crossover nor mutation operators were defined in the literature for
this last representation. We have introduced two new crossover operators and
two new mutation operators are introduced for EGA. For the other algorithms,
several new machine assignment rules are proposed.

For the evaluation and comparison of the different algorithms, a subset of
the earlier created benchmark of problem instances is used. All five genetic
algorithms are subject to a parameter calibration, using ANOVA statistical
techniques. The algorithms prove to be robust with respect to the allowed
running time and to the characteristics of the instances.
Once calibrated, the genetic algorithms are compared to some other existing
methods. For the small instances the solution values of a MIP model with 15
minutes time limit are available. For both the small and the large instances, five
dispatching rules and a NEH adaptation, all using the machine assignment rules,
are used for comparison. All genetic algorithms outperform the MIP model
and all heuristics. A random solution generator (RS) with the same time limit
as for the GAs is used for comparison. For small instances RS is comparable
to EGA and better than SGAM; for large instances all proposed GAs show a
better performance.
The algorithms with less direct solution representations (BGA, SGA, SGAR)
already show good results for small allowed running time. More running
time causes an insignificantly small improvement in the solution value. The
algorithms with more verbose solution representation (SGAM and especially
EGA) profit more from the extra time, but still do not reach the solution quality
of the earlier mentioned algorithms.

Local search is a very powerful technique that is profusely used in the
literature. However, when applied to practical and realistic problems, the CPU
time requirements are extremely high. The complexity of the problem dealt
with in this Ph.D. thesis, is a clear disadvantage for local search techniques.
Contrary to simple scheduling problems, where straightforward local search
techniques are frequently applied, it seems that such techniques are neither easy
nor apparently as profitable when applied to much more complex environments.

238 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

In Chapter 6, we have advanced towards a better understanding of local
search based algorithms for complex scheduling problems. We have evaluated
various local search neighbourhood implementations for the hybrid flexible
flow line problem. We have shown the limited possibilities of applying regular
accelerations. The consequences of each neighbourhood search have been
shown.
A new compound way of applying local search within a genetic algorithm
has been presented. The resulting memetic algorithm scans the local search
neighbourhood less often than usually, as the problem does not allow for all
common accelerations. In addition to that, adaptations were given of algorithms
that were proposed for simpler scheduling problems or other fields of research,
namely Iterated Local Search and Iterated Greedy. The results indicated that
curtailed and carefully crafted local search procedures are able to find good
solutions for this HFFL and start to show their promise. However, we have found
that the algorithmic issues that arise for these realistic problems are different
from those on the very simple problems traditionally studied in scheduling
theory. This was most noticeable at the local search component. While local
search still plays a role even for these complex problems, its impact appears
to be less dominant than for the simpler ones. More complex search strategies
need to be developed.

In Chapter 7, a shift of representation in the search has been shown as a
novel idea to improve the solution quality. In the case of a Mixed Genetic
Algorithm, the second phase lacks to have a significant impact. A new local
search based algorithm called Shifting Representation Search, is also proposed.
The first phase, consisting in a iterated greedy search on a job permutation,
assures that a good solution can be found in little time. When it gets hard for
the iterated greedy to improve the solution due to the limitations of the compact
solution representation, a shift in the solution representation is done. Starting
from then, an iterated local search continues with the best found solution,
searching the full solution space. In order to improve the efficiency, only the
tasks on the critical path are considered in the local search. This novel algorithm
has been proven to outperform all earlier presented methods, both for the large

9.1. Scheduling software 239

and for the small instances. Note that, although the local search implementation
is quite case-specific and based on the problem characteristics, the main idea of
shifting the solution representation is generally applicable.
The hybrid flexible flowline problem is a composite problem in the sense that it
is composed of different subproblems. In fact, this composition is the case for
many real-life problems. Vehicle routing problems, for instance, are composed
of a partitioning and a routing problem. Another example is the very large scale
integration (VLSI) design problem, that is composed of two subproblems: the
choice which components to place and the choice where to place the chosen
components. Although we have no data on the application on those problems,
the idea of focussing on a subproblem in a first phase and considering all
problem aspects in a later phase is likely to yield good solutions in those cases
as well.

In Chapter 8, a multi-objective hybrid flowshop problem has been tackled.
Just as in the more restricted HFFL problem, the parallel machines in each
stage have been assumed to be unrelated, which is the most general case. Both
makespan as a measure for efficiency and total tardiness as a indicator for client
satisfaction were optimised at the same time. Pareto domination techniques
were applied to define a set of non-dominated solutions, among which none is
better nor worse than one of the others on both objective values.
Two algorithms have been developed for this problem. A genetic algorithm
candidate was found in the form of an adaptation for the hybrid flowshop
problem of the known NSGA-II. In this thesis, a new local search algorithm
called RIPG has been presented, especially designed for multi-objective
scheduling problems. The computational results showed that RIPG outperforms
NSGA-II for small problem instances, but that NSGA-II is more effective for
larger instances.

9.1. Scheduling software

We claim that the scheduling problem we consider is very realistic. The
best way to prove this is by an implementation in a real life environment. The

240 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

presented SGA and the NEH adaptation are implemented in SeKuen, a finite
capacity production scheduling software, currently being deployed at two of the
biggest partners in the Spanish ceramic tile sector, namely Porcelanosa S.A. and
TAULELL S.A. Other important ceramic tile manufacturing companies using
SeKuen are Halcón Cerámicas S.A. and ColorKer Cerámicas S.A. SeKuen is
used in other sectors as well, like in Frost-Trol S.A., a producer of refrigerators
for supermarkets. Framinan and Ruiz (2010) describe in a detailed way what
the necessities and the difficulties are, when implementing a scheduling system
in an industrial environment. In Figure 9.1 an implementation of the SGA
algorithm in a real life application is shown. The graph shows the evolution of
the makespan value over time. The diagonal lines in the Gantt chart represent
the precedence relationships.

Figure 9.1: Application of SGA for HFFL problems as
treated in this Ph.D. thesis.

Figure 9.2 shows three different machine use diagrams for three different
schedules. The schedules are generated by the rapid access heuristic of
Dannenbring (1977), by the NEH heuristic presented in Section 4.5 and by the

9.1. Scheduling software 241

SGA introduced in Section 5.2. The diagrams show the percentage of used
machines on the vertical axis, and the time on the horizontal axis.

Figure 9.2: Machine use over time for three different
schedules.

In addition to the problem characteristics treated in this thesis, SeKuen
offers the possibility to enter machine downtimes, as shown in Figure 9.3.
Availability of machines can be defined for the entire plant, per stage, and/or per
machine. Machines might not be available because of holidays, breakdowns,
weekends, maintenance, etcetera. Unavailability of machines is indicated in the
Gantt diagrams with a narrow grey bar, as can be seen in the Gantt below the
calendar.

242 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Figure 9.3: Introduction of timetables for machine break-
downs.

Stage revisiting is also allowed and the order of the stages is not fixed in
SeKuen. In Figure 9.4, for example, job 11 first visits stage 1 (where it is
assigned to PRENSA2), then it is processed at stage 2 (HORNO1) and after that
returns to stage 1 (PRENSA2). This actually goes beyond the complexity of a
flow line problem. Furthermore, limited buffers between stages are considered.
The processing times at stage 1 are considerably shorter than the ones at stage 2.
So when job 11 visits stage 1 for the second time, PRENSA2 has to wait after
processing a part of the job, until HORNO1 delivers the rest of the job at stage 1.
This waiting time is indicated with diagonal black lines.

9.1. Scheduling software 243

Figure 9.4: Gantt chart with revisited stages and limited
buffers between stages.

We have done an effort as well to work with more than one objective.
Since Pareto optimisation is very time consuming and the output of a frontier
of solutions is not very practical, we have chosen for linear combinations of
objectives. In the menu in Figure 9.5, the two objectives and the weight of
each objective can be chosen. In the upper right corner, the values for all
implemented objectives are given for a certain solution.

244 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Figure 9.5: Linear combination of two optimisation
criterea.

The creation, maintenance and implementation of SeKuen is a joint
effort of the research group Sistemas de Optimización Aplicada of the
Instituto Tecnológico de Informática. Note that SeKuen is in continu-
ous development and that more current information about the research
group and about SeKuen is available at http://www.soa.iti.es and
http://www.sekuen.com, respectively.

9.2. Future research

First of all, our intention is to continue in the line of multi-objective
optimisation for the hybrid flowshop problem. Advanced techniques such as
local search acceleration or shifting representation can lead to a new algorithm
that outperforms the existing ones. Apart from developing new solution
techniques, more work is needed in order to further close the gap between
the theory and practice of scheduling. In order to do so, the more restricted

9.3. Publications 245

hybrid flexible flow line can be considered in a multi-objective environment.
Obviously, this will make the task for the optimisation methods even harder,
situation which causes new design issues.
Although we are considering highly realistic and complex hybrid flexible
flowshop problems, there is still a number of restrictions that are currently
not addressed in our research. The scheduling software SeKuen includes some
of these issues. We refer to the possibility to take machine downtimes into
account from a scientific point of view, even as limited buffer capacity between
machines, or recirculation. It would be very interesting to model these issues
and investigate in which extend the problem increases in complexity by adding
those constraints.
Adopting other real-world situations such as the possibility of preemption or
the need for resources other than machines make the solutions offered even
more generally applicable. Errors when processing the jobs on machines and
breakdowns or wearing on the machines might ask for adaptation of the existing
schedule. This is intrinsically a multi-objective scheduling problem, since both
the efficiency of the new schedule and the amount of changes between the old
and the new schedule should be taken into account. Furthermore, we should
take into account that all data used in the considered HFFL is deterministic and
known in advance. In reality, input data like processing and setup times are
usually stochastic, which is something that could be taken into account as well
when modelling the problem.

Apart from all open research issues, we see as an important part of our
contribution the conversion of research results to industrial results. The
outcomes of this Ph.D. thesis will therefore be translated into extensions and
advances of SeKuen, so that our progress in this field truly helps the industry in
improving their production scheduling process.

9.3. Publications

Our research has already lead to one publication in Computers and Opera-
tions Research; an international journal with an impact factor of 1.366 in 2008.

246 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

In the paper, a mixed linear integer programming model is given and CPLEX
is used to obtain solutions a bench of small problem instances. The results are
used to analyse the complexity of each of the problem restrictions. Furthermore,
several heuristics are presented, in order to obtain solutions for larger problem
instances.

Ruiz, R., Sivrikaya Şerifoğlu, F., and Urlings, T. (2008). Modeling realistic
hybrid flexible flowshop scheduling problems. Computers & Operations
Research, 35(4):1151-1175.

Another paper is published in the opening issue of International Journal of
Metaheuristics; a promising new journal, given the good reputation of the board.
The paper contains the genetic algorithms presented in this Ph.D. thesis, with the
machine assignment rules and the various solution representations. Comparison
is made with improved versions of the heuristics that were presented in the
above mentioned paper.

Urlings, T., Ruiz, R., and Sivrikaya Şerifoğlu, F. (2010). Genetic algorithms
with different representation schemes for complex hybrid flexible flow line
problems. International Journal of Metaheuristics, 1(1):30-54.

A third article is accepted for publication in the European Journal of
Operational Research; an leading international journal in the field, with an
impact factor of 1.627 in 2008. This paper is the fruit of a visit of three months in
IRIDIA, a research institute in the Université Libre de Bruxelles. There, analysis
of and important improvements in the local search algorithms were made. Apart
from the adapted ILS and IG, a completely new algorithm is proposed in the
paper, using a shift in the solution presentation. This representation shift allows
the algorithm to quickly achieve a strong local optimum and then continue with
a more sophisticated search in order to improve on this solution.

Urlings, T., Ruiz, R., and Stützle, T. (2010). Shifting representation
search for hybrid flexible flowline problems. European Journal of Operational

9.3. Publications 247

Research, (In Press).

For further transference of the results of our research, we presented our
work in numerous national and international conferences. One conference lead
to publication in Lecture Notes in Computer Science:

Urlings, T., and Ruiz, R. (2007). Local Search in Complex Scheduling
Problems. Engineering Stochastic Local Search Algorithms, 4638:202-206.
SLS Workshop, Brussels, Belgium; September 6-8, 2007.

The remaining conference contributions have been published in the respec-
tive proceedings:

Ruiz, R., Sivrikaya Şerifoğlu, F., and Urlings, T. (2006). An evolutionary
approach to realistic hybrid flexible flowshop scheduling problems. Tenth
International Workshop on Project Management and Scheduling, Poznań,
Poland; April 26-28, 2006.

Ruiz, R., Sivrikaya Şerifoğlu, F., and Urlings, T. (2006). Secuenciación
mediante algoritmos evolutivos en complejos talleres flexibles. XXIX Congreso
Nacional de Estadística e Investigación Operativa, Tenerife, Spain; May 15-19,
2006.

Urlings, T., Ruiz, R., and Sivrikaya Şerifoğlu, F. (2006). Heuristics for
Highly Constrained Hybrid Flexible Flowshop Scheduling Problems. 21st
European Conference on Operational Research, Reykjavik, Iceland; July 2-5,
2006.

Urlings, T., Ruiz, R., and Sivrikaya Şerifoğlu, F. (2007). Genetic algorithms
for complex hybrid flexible flow line problems. Eighth Workshop on Models
and Algorithms for Planning and Scheduling Problems, Istanbul, Turkey; July
2-6, 2007.

248 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Urlings, T., Ruiz, R., and Sivrikaya Şerifoğlu, F. (2007). Genetic algorithms
for complex hybrid flexible flow line problems. Fourth OR Peripatetic Post-
Graduate Programme, Guimarães, Portugal; September 12-15, 2007.

Urlings, T., Stützle, T., and Ruiz, R. (2008) Local Search Engineering for
highly constrained flow line problems. Eleventh International Workshop on
Project Management and Scheduling, Istanbul, Turkey; April 28-30, 2008.

Urlings, T., and Ruiz, R. (2009) Búsqueda local avanzada para talleres de
flujo híbridos altamente restringidos. XXXI Congreso Nacional de Estadística e
Investigación Operativa Murcia, Spain; February 10-13, 2009.

Urlings, T., and Ruiz, R. (2009) A new algorithm for multidimensional
scheduling problems. Ninth Workshop on Models and Algorithms for Planning
and Scheduling Problems Abbey Rolduc, The Netherlands; June 29-July 3,
2009.

Urlings, T., and Ruiz, R. (2009) A new algorithm with shifting representa-
tion for hybrid flowline problems. 23rd European Conference on Operational
research Bonn, Germany; July 5-8, 2009.

Urlings, T., Minella, G., and Ruiz, R. (2010) Bi-objective Pareto opti-
mization for the hybrid flowshop problem. Twelfth International Workshop on
Project Management and Scheduling, Tours, France; April 26-28, 2010.

BIBLIOGRAPHY

Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure
for job shop scheduling. Management Science, 34(3):391–401.

Allahverdi, A., Gupta, J. N. D., and Aldowaisan, T. (1999). A review of
scheduling research involving setup considerations. Omega-International
Journal of Management Science, 27(2):219–239.

Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y. (2008). A
survey of scheduling problems with setup times or costs. European Journal
of Operational Research, 187(3):985–1032.

Allaoui, H. and Artiba, A. (2004). Integrating simulation and optimization to
schedule a hybrid flow shop with maintenance constraints. Computers and
Industrial Engineering, 47:431–450.

Almada-Lobo, B. and James, R. J. W. (2010). Neighbourhood search meta-
heuristics for capacitated lot-sizing with sequence-dependent setups. Inter-
national Journal of Production Research, 48(3):861–878.

Armentano, V. A. and Ronconi, D. P. (1999). Tabu search for total tardiness
minimization in flowshop scheduling problems. Computers and Operations
Research, 26(3):219–235.

Behnamian, J., Fatemi Ghomi, S. M. T., and Zandieh, M. (2009). A multi-
phase covering pareto-optimal front method to multi-objective scheduling
in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Systems
with Applications, 36(8):11057–11069.

249

250 BIBLIOGRAPHY

Bertel, S. and Billaut, J. C. (2004). A genetic algorithm for an industrial
multiprocessor flow shop scheduling problem with recirculation. European
Journal of Operational Research, 159(3):651–662.

Bierwirth, C. (1995). A generalized permutation approach to job-shop schedul-
ing with genetic algorithms. OR Spektrum, 17(2-3):87–92.

Biggs, D., De Ville, B., and Suen, E. (1991). A method of choosing multiway
partitions for classification and decision trees. Journal of Applied Statistics,
18(1):49–62.

Botta-Genoulaz, V. (1997). Considering bills of metrial in hybrid flow shop
scheduling problems. In Proceedings of the 1997 IEEE, International
Symposium on Assembly and Task Planning, pages 194–199, Marina del
Rey, CA. IEEE.

Botta-Genoulaz, V. (2000). Hybrid flow shop scheduling with precedence
constraints and time lags to minimize maximum lateness. International
Journal of Production Economics, 64(1-3):101–111.

Boyer, W. F. and Hura, G. S. (2005). Non-evolutionary algorithm for schedul-
ing dependent tasks in distributed heterogeneous computing environments.
Journal of Parallel and Distributed Computing, 65(9):1035–1046.

Brah, S. A. and Hunsucker, J. L. (1991). Branch and bound algorithm for
the flow-shop with multiple processors. European Journal of Operational
Research, 51(1):88–99.

Cavory, G., Dupas, R., and Gonçalves, G. (2004). A genetic approach to solving
the problem of cyclic job shop scheduling with linear constraints. European
Journal of Operational Research, 161(1):73–85.

Chen, Z. L. (2004). Simultaneous job scheduling and resource allocation on
parallel machines. Annals of Operations Research, 129(1-4):135–153.

Dannenbring, D. G. (1977). Evaluation of flow shop sequencing heuristics.
Management Science, 23(11):1174–1182.

Bibliography 251

Davoud Pour, H. and Ashrafi, M. (2009). Solving multi-objective sdst
flexible flow shop using grasp algorithm. International Journal of Advanced
Manufacturing Technology, 44(7-8):737–747.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2002). A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on
Evolutionary Computation, 6(2):182–197.

den Besten, M., Stützle, T., and Dorigo, M. (2001). Design of iterated
local search algorithms - an example application to the single machine
total weighted tardiness problem. Applications of Evolutionary Computing,
Proceedings, 2037:441–451. Lecture Notes in Computer Science.

Dhodhi, M. K., Ahmad, I., Yatama, A., and Ahmad, I. (2002). An inte-
grated technique for task matching and scheduling onto distributed heteroge-
neous computing systems. Journal of Parallel and Distributed Computing,
62(9):1338–1361.

Dorn, J., Girsch, M., Skele, G., and Slany, W. (1996). Comparison of iterative
improvement techniques for schedule optimization. European Journal of
Operational Research, 94(2):349–361.

Dudek, R. A., Panwalkar, S. S., and Smith, M. L. (1992). The lessons of
flowshop scheduling research. Operations Research, 40(1):7–13.

Dugardin, F., Yalaoui, F., and Amadeo, L. (2010). New multi-objective method
to solve reentrant hybrid flow shop scheduling problem. European Journal
of Operational Research, 203(1):20–31.

Fanjul Peyró, L. and Ruiz, R. (2010). Iterated greedy local search methods for
unrelated parallel machine scheduling. European Journal of Operational
Research. doi: 10.1016/j.ejor.2010.03.030.

Ford, F. N., Bradbard, D. A., Ledbetter, W. N., and Cox, J. F. (1987). Use of
operations research in production management. Production and Inventory
Management, 28(3):59–62.

http://dx.doi.org/10.1016/j.ejor.2010.03.030

252 BIBLIOGRAPHY

Framinan, J. M., Gupta, J. N. D., and Leisten, R. (2004). A review and classi-
fication of heuristics for permutation flow-shop scheduling with makespan
objective. Journal of the Operational Research Society, 55(12):1243–1255.

Framinan, J. M., Leisten, R., and Rajendran, C. (2003). Different initial
sequences for the heuristic of nawaz, enscore and ham to minimize makespan,
idletime or flowtime in the static permutation flowshop sequencing problem.
International Journal of Production Research, 41(1):121–148.

Framinan, J. M. and Ruiz, R. (2010). Architecture of manufacturing scheduling
systems: Literature review and an integrated proposal. European Journal of
Operational Research, 205(1):237–246.

França, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P., and Veltink, K. J.
(2005). Evolutionary algorithms for scheduling a flowshop manufacturing
cell with sequence dependent family setups. Computers and Industrial
Engineering, 48(3):491–506.

Ge, Q. W. (1999). Paradeg-processor scheduling for acyclic switch-less program
nets. Journal of the Franklin Institute-Engineering and Applied Mathematics,
336(7):1135–1153.

Geiger, M. J. (2007). On operators and search space topology in multi-
objective flow shop scheduling. European Journal of Operational Research,
181(1):195–206.

Ghedjati, F. (1999). Genetic algorithms for the job-shop scheduling problem
with unrelated parallel constraints: heuristic mixing method machines and
precedence. Computers and Industrial Engineering, 37(1-2):39–42.

Gilkinson, J. C., Rabelo, L. C., and Bush, B. O. (1995). A real-world scheduling
problem using genetic algorithm. Computers and Industrial Engineering,
29:177–181.

Gladky, A. A., Shafransky, Y. M., and Strusevich, V. A. (2004). Flow
shop scheduling problems under machine-dependent precedence constraints.
Journal of Combinatorial Optimization, 8(1):13–28.

Bibliography 253

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

Gonçalves, J. F., Mendes, J. J. D. M., and Resende, M. G. C. (2005). A hybrid
genetic algorithm for the job shop scheduling problem. European Journal of
Operational Research, 167(1):77–95.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979).
Optimization and approximation in deterministic sequencing and scheduling:
A survey. Annals of Operations Research, 5:287–326.

Graves, S. C. (1981). A review of production scheduling. Operations Research,
29(4):646–675.

Grunert da Fonseca, V., Fonseca, C. M., and Hall, A. O. (2001). Inferential
performance assessment of stochastic optimisers and the attainment function.
In Evolutionary Multi-Criterion Optimization, First International Conference,
vol. 1993 of Lecture Notes in Computer Science. Spring-Verlang, 1993:213–
225.

Gupta, J. N. D. (1986). Flowshop schedules with sequence dependent setup
times. Journal of the Operations Research Society of Japan, 29(3):206–219.

Gupta, J. N. D. and Stafford, E. F. (2006). Flowshop scheduling research after
five decades. European Journal of Operational Research, 169(3):699–711.

Haouari, M. and Hidri, L. (2008). On the hybrid flowshop scheduling problem.
International Journal of Production Economics, 113(1):495–497.

Haq, A. N., Ravindran, D., Aruna, V., and Nithiya, S. (2004). A hybridisation of
metaheuristics for flow shop scheduling. International Journal of Advanced
Manufacturing Technology, 24(5-6):376–380.

Hasija, S. and Rajendran, C. (2004). Scheduling in flowshops to minimize total
tardiness of jobs. International Journal of Production Research, 42(11):2289–
2301.

254 BIBLIOGRAPHY

Hejazi, S. R. and Saghafian, S. (2005). Flowshop-scheduling problems with
makespan criterion: a review. International Journal of Production Research,
43(14):2895–2929.

Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA.

Hooker, J. (1995). Testing heuristics: We have it all wrong. Journal of
Heuristics, 1:33–42.

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations
and Applications. The Morgan Kaufmann Series in Artificial Intelligence.
Morgan Kaufmann, San Francisco, CA, USA.

Jenabi, M., Fatemi Ghomi, S. M. T., Torabi, S. A., and Karimi, B. (2007).
Two hybrid meta-heuristics for the finite horizon elsp in flexible flow lines
with unrelated parallel machines. Applied Mathematics and Computation,
186(1):230–245.

Jin, Z. H., Ohno, K., Ito, T., and Elmaghraby, S. E. (2002). Scheduling hybrid
flowshops in printed circuit board assembly lines. Production and Operations
Management, 11(2):216–230.

Jin, Z. H., Yang, Z., and Ito, T. (2006). Metaheuristic algorithms for the
multistage hybrid flowshop scheduling problem. International Journal of
Production Economics, 100(2):322–334.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1(1):61–68.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., and Werner, F. (2008).
Algorithms for flexible flow shop problems with unrelated parallel machines,
setup times, and dual criteria. International Journal of Advanced Manufac-
turing Technology, 37(3-4):354–370.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., and Werner, F. (2009).
A comparison of scheduling algorithms for flexible flow shop problems with

Bibliography 255

unrelated parallel machines, setup times, and dual criteria. Computers &
Operations Research, 36(2):358–378.

Kass, G. V. (1980). En exploratory technique for investigating large quantities
of categorical data. Applied Statistics, 29(2):119–127.

Kis, T. and Pesch, E. (2005). A review of exact solution methods for the
non-preemptive multiprocessor flowshop problem. European Journal of
Operational Research, 164(3):592–608.

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial of stochastic
multiobjective optimizers. Technical Report Technical Report 214, Computer
Engineering and Networks Laboratory (TIK), ETH. Revised version.

Kochhar, S., Morris, R. J. T., and Wong, W. S. (1988). The local search
approach to flexible flow line scheduling. Engineering Costs and Production
Economics, 14(1):25–37.

Kurz, M. E. and Askin, R. G. (2003). Comparing scheduling rules for flexible
flow lines. International Journal of Production Economics, 85(3):371–388.

Kurz, M. E. and Askin, R. G. (2004). Scheduling flexible flow lines with
sequence-dependent setup times. European Journal of Operational Research,
159(1):66–82.

Kwok, Y. K. and Ahmad, I. (1997). Efficient scheduling of arbitrary task graphs
to multiprocessors using a parallel genetic algorithm. Journal of Parallel and
Distributed Computing, 47(1):58–77.

Ledbetter, W. N. and Cox, J. F. (1977). Operations research in production
management: An investigation of past and present utilization. Production
and Inventory Management, 18(3):84–91.

Lee, C. Y. and Vairaktarakis, G. L. (1994). Minimizing makespan in hybrid
flowshops. Operations Research Letters, 16(3):149–158.

256 BIBLIOGRAPHY

Lee, I., Sikora, R., and Shaw, M. J. (1997). A genetic algorithm-based approach
to flexible flow-line scheduling with variable lot sizes. Ieee Transactions on
Systems Man and Cybernetics Part B-Cybernetics, 27(1):36–54.

Leon, V. J. and Ramamoorthy, B. (1997). An adaptable problem-space-based
search method for flexible flow line scheduling. IIE Transactions, 29(2):115–
125.

Li, K. and Yang, S. L. (2009). Non-identical parallel-machine scheduling re-
search with minimizing total weighted completion times: Models, relaxations
and algorithms. Applied Mathematical Modelling, 33(4):2145–2158.

Linn, R. and Zhang, W. (1999). Hybrid flow shop scheduling: A survey.
Computers and Industrial Engineering, 37(1-2):57–61.

Lohl, T., Schulz, C., and Engell, S. (1998). Sequencing of batch operations for a
highly coupled production process: Genetic algorithms versus mathematical
programming. Computers and Chemical Engineering, 22:S579–S585.

Lourenço, H., Martin, O., and Stützle, T. (2002). Iterated local search. In
Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics, pages
321–353, Norwell, MA, USA. Kluwer Academic Publishers.

Low, C. (2005). Simulated annealing heuristic for flow shop scheduling
problems with unrelated parallel machines. Computers and Operations
Research, 32(8):2013–2025.

MacCarthy, B. L. and Liu, J. Y. (1993). Addressing the gap in scheduling
research - a review of optimization and heuristic methods in production
scheduling. International Journal of Production Research, 31(1):59–79.

Martin, O. C., Otto, S. W., and Felten, E. W. (1991). Large-step markov chains
for the traveling salesman problem. Complex Systems, 5(3):299–326.

McKay, K. N., Pinedo, M., and Webster, S. (2002). Practice-focused research
issues for scheduling systems. Production and Operations Management,
11(2):249–258.

Bibliography 257

McKay, K. N., Safayeni, F. R., and Buzacott, J. A. (1988). Job-shop scheduling
theory - what is relevant. Interfaces, 18(4):84–90.

McNemar, Q. (1947). Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika, 12(2):153–157.

Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of
multiobjective algorithms for the flowshop scheduling problem. INFORMS
Journal on Computing, 20(3):451–471.

Morgan, J. N. and Sonquist, J. A. (1963). Problems in analysis of survey data,
and a proposal. Journal of the American Statistical Association, 58(302):415–
434.

Naderi, B. and Ruiz, R. (2010). The distributed permutation flowshop
scheduling problem. Computers & Operations Research, 37(4):754–768.

Naderi, B., Ruiz, R., and Zandieh, M. (2010). Algorithms for a realistic variant
of flowshop scheduling. Computers & Operations Research, 37(2):236–246.

Nawaz, M., Enscore, E. E., and Ham, I. (1983). A heuristic algorithm for
the m-machine, n-job flowshop sequencing problem. Omega-International
Journal of Management Science, 11(1):91–95.

Nossal, R. (1998). An evolutionary approach to multiprocessor scheduling of
dependent tasks. Future Generation Computer Systems, 14(5-6):383–392.

Nowicki, E. and Smutnicki, C. (1996). A fast taboo search algorithm for the
job shop problem. Management Science, 42(6):797–813.

Nowicki, E. and Smutnicki, C. (1998). The flow shop with parallel machines:
A tabu search approach. European Journal of Operational Research, 106(2-
3):226–253.

Oduguwa, V., Tiwari, A., and Roy, R. (2005). Evolutionary computing in
manufacturing industry: an overview of recent applications. Applied Soft
Computing, 5(3):281–299.

258 BIBLIOGRAPHY

Oguz, C. and Ercan, M. (2005). A genetic algorithm for hybrid flow-shop
scheduling with multiprocessor tasks. Journal of Scheduling, 8(4):323–351.

Olhager, J. and Rapp, B. (1995). Operations research techniques in manufactur-
ing planning and control systems. International Transactions in Operational
Research, 2(1):7–13.

Pinedo, M. (2008). Scheduling: Theory, Algorithms and Systems. Springer,
New York, third edition.

Potts, C. N. and Van Wassenhove, L. N. (1982). A decomposition algorithm
for the single machine total tardiness problem. Operations Research Letters,
1:177–81.

Proth, J. M. (2007). Scheduling: New trends in industrial environment. Annual
Reviews in Control, 31(1):157–166.

Quadt, D. and Kuhn, H. (2007). A taxonomy of flexible flow line scheduling
procedures. European Journal of Operational Research, 178(3):686–698.

Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing
heuristics for minimizing makespan in permutation flowshops. Omega-
International Journal of Management Science, 37(2):331–345.

Rahimi-Vahed, A. R., Mirghorbani, S. M., and Rabbani, M. (2007). A new
particle swarm algorithm for a multi-objective mixed-model assembly line
sequencing problem. Soft Computing, 11(10):997–1012.

Rajendran, C. and Chaudhuri, D. (1992). A multistage parallel-processor
flowshop problem with minimum flowtime. European Journal of Operational
Research, 57(1):111–122.

Rajendran, C. and Ziegler, H. (1997). A heuristic for scheduling to minimize
the sum of weighted flowtime of jobs in a flowshop with sequence-dependent
setup times of jobs. Computers & Industrial Engineering, 33(1-2):281–284.

Bibliography 259

Ramachandra, G. and Elmaghraby, S. E. (2006). Sequencing precedence-
related jobs on two machines to minimize the weighted completion time.
International Journal of Production Economics, 100(1):44–58.

Reeves, C. (1995a). Heuristics for scheduling a single-machine subject to
unequal job release times. European Journal of Operational Research,
80(2):397–403.

Reeves, C. R. (1995b). A genetic algorithm for flowshop sequencing. Computers
and Operations Research, 22(1):5–13.

Reisman, A., Kumar, A., and Motwani, J. (1997). Flowshop schedul-
ing/sequencing research: A statistical review of the literature, 1952-1994.
Ieee Transactions on Engineering Management, 44(3):316–329.

Ribas, I., Leisten, R., and Framinan, J. M. (2010). Review and classification
of hybrid flow shop scheduling problems from a production systems and
a solutions procedure perspective. Computers & Operations Research,
37(8):1439–1454.

Rinnooy Kan, A. H. G. (1976). Machine scheduling problems: Clasification,
complexity and computations. Ph.D. Thesis.

Ruiz, R. (2003). Técnicas metaheurísticas para la programación flexible de la
producción. Ph.D. Thesis. In Spanish.

Ruiz, R. and Allahverdi, A. (2007a). No-wait flowshop with separate setup
times to minimize maximum lateness. International Journal of Advanced
Manufacturing Technology, 35(5-6):551–565.

Ruiz, R. and Allahverdi, A. (2007b). Some effective heuristics for no-wait
flowshops with setup times to minimize total completion time. Annals of
Operations Research, 156(1):143–171.

Ruiz, R. and Allahverdi, A. (2009). Minimizing the bicriteria of makespan and
maximum tardiness with an upper bound on maximum tardiness. Computers
& Operations Research, 36(4):1268–1283.

260 BIBLIOGRAPHY

Ruiz, R. and Andrés, C. (2007). Scheduling unrelated parallel machines with
resource-assignable sequence dependent setup times. Technical Report
DEIOAC-2007-01, Universidad Politécnica de Valencia.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of
permutation flowshop heuristics. European Journal of Operational Research,
165(2):479–494.

Ruiz, R. and Maroto, C. (2006). A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility. European Journal
of Operational Research, 169(3):781–800.

Ruiz, R., Maroto, C., and Alcaraz, J. (2005). Solving the flowshop scheduling
problem with sequence dependent setup times using advanced metaheuristics -
discrete optimization. European Journal of Operational Research, 165(1):34–
54.

Ruiz, R., Maroto, C., and Alcaraz, J. (2006). Two new robust genetic algorithms
for the flowshop scheduling problem. Omega-International Journal of
Management Science, 34(5):461–476.

Ruiz, R., Sivrikaya Şerifoğlu, F., and Urlings, T. (2008). Modeling realistic
hybrid flexible flowshop scheduling problems. Computers and Operations
Research, 35(4):1151–1175.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of
Operational Research, 177(3):2033–2049.

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence de-
pendent setup times flowshop problem with makespan and weighted tardiness
objectives. European Journal of Operational Research, 187(3):1143–1159.

Ruiz, R. and Vázquez Rodríguez, J. A. (2010). The hybrid flow shop scheduling
problem. European Journal of Operational Research, 205(1):1–18.

Salveson, M. E. (1952). On a quantitative method in production planning and
scheduling. Econometrica, 20(4):554–590.

Bibliography 261

Santos, D. L., Hunsucker, J. L., and Deal, D. E. (1995). Global lower bounds
for flow shops with multiple processors. European Journal of Operational
Research, 80(1):112–120.

Sawik, T. (2000). Mixed integer programming for scheduling flexible flow lines
with limited intermediate buffers. Mathematical and Computer Modelling,
31(13):39–52.

Schutten, J. M. J. (1998). Practical job shop scheduling. Annals of Operations
Research, 83:161–177.

Segura, B., Vallada, E., Maroto, C., and Ruiz, R. (2004). Operations strategy in
spanish tile industry firms. Boletin de la Sociedad Espanola de Ceramica y
Vidrio, 43(6):929–932. In Spanish.

Sivrikaya Şerifoğlu, F. and Ulusoy, G. (1999). Parallel machine scheduling
with earliness and tardiness penalties. Computers & Operations Research,
26(8):773–787.

Sivrikaya Şerifoğlu, F. and Ulusoy, G. (2004). Multiprocessor task scheduling
in multistage hybrid flow-shops: a genetic algorithm approach. Journal of
the Operational Research Society, 55(5):504–512.

Srivinas, N. K. and Deb, K. (1994). Multiobjective optimization using
non-dominated sorting in genetic algorithms. Evolutionary Computation,
2(1):221–248.

Stafford, E. F. and Tseng, F. T. (2002). Two models for a family of flow-
shop sequencing problems. European Journal of Operational Research,
142(2):282–293.

Stützle, T. (1998). Applying iterated local search to the permutation flow shop
problem. Technical Report AIDA-98-04, FG Intellektik, TU Darmstadt.

Stützle, T. (2006). Iterated local search for the quadratic assignment problem.
European Journal of Operational Research, 174(3):1519–1539.

262 BIBLIOGRAPHY

Taillard, E. (1990). Some efficient heuristic methods for the flow-shop
sequencing problem. European Journal of Operational Research, 47(1):65–
74.

Tanev, I. T., Uozumi, T., and Morotome, Y. (2004). Hybrid evolutionary
algorithm-based real-world flexible job shop scheduling problem: application
service provider approach. Applied Soft Computing, 5(1):87–100.

Tavakkoli-Moghaddam, R., Safaei, N., and Sassani, F. (2009). A memetic
algorithm for the flexible flow line scheduling problem with processor
blocking. Computers & Operations Research, 36(2):402–414.

Torabi, S. A., Ghomi, S. M. T. F., and Karimi, B. (2006). A hybrid genetic
algorithm for the finite horizon economic lot and delivery scheduling in
supply chains. European Journal of Operational Research, 173(1):173–189.

Ullman, J. D. (1975). Np-complete scheduling problems. Journal of Computer
and System Sciences, 10(3):384–393.

Urlings, T. and Ruiz, R. (2007). Local search in complex scheduling problems.
In T. Stützle, M. Birattari, H. H., editor, Engineering Stochastic Local Search
Algorithms. Designing, Implementing and Analyzing Effective Heuristics,
volume 4638 of Lecture Notes in Computer Science, pages 202–206. Springer
Verlag / Heidelberg.

Urlings, T., Ruiz, R., and Sivrikaya Şerifoğlu, F. (2010a). Genetic algorithms
with different representation schemes for complex hybrid flexible flow line
problems. International Journal of Metaheuristics, 1(1):30–54.

Urlings, T., Ruiz, R., and Stützle, T. (2010b). Shifting representation search
for hybrid flexible flowline. European Journal of Operational Research. doi:
10.1016/j.ejor.2010.05.041.

Vallada, E., Maroto, C., Ruiz, R., and Segura, B. (2005). Analysis of production
scheduling in spanish tile industry. Boletin de la Sociedad Espanola de
Ceramica y Vidrio, 44(1):39–44. In Spanish.

http://dx.doi.org/10.1016/j.ejor.2010.05.041
http://dx.doi.org/10.1016/j.ejor.2010.05.041

Bibliography 263

Vallada, E. and Ruiz, R. (2009). Genetic algorithms for the unrelated parallel
machine scheduling problem with sequence dependent setup times. Technical
Report DEIOAC-2009-04, Universidad Politécnica de Valencia.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in
the m-machine flowshop problem: A review and evaluation of heuristics and
metaheuristics. Computers & Operations Research, 35(4):1350–1373.

Vignier, A., Billaut, J. C., and Proust, C. (1999). Hybrid flowshop scheduling
problems: State of the art. Rairo-Recherche Operationnelle-Operations
Research, 33(2):117–183.

Voss, S. (1993). The two-stage hybrid flow shop with sequence-dependent
setup times. In A. Jones, G. Fandel, T. G., editor, Operations Research
in Production Planning and Control, Proceedings of a Joint German/US
Conference, pages 215–220. Springer-Verlag.

Wang, L., Siegel, H. J., Roychowdhury, V. P., and Maciejewski, A. A. (1997).
Task matching and scheduling in heterogeneous computing environments us-
ing a genetic-algorithm-based approach. Journal of Parallel and Distributed
Computing, 47(1):8–22.

Woo, S.-H., Yang, S.-B., Kim, S.-D., and Han, T.-D. (1997). Task scheduling
in distributed computing systems with a genetic algorithm. In HPC-ASIA

’97: Proceedings of the High-Performance Computing on the Information
Superhighway, HPC-Asia ’97, page 301, Washington, DC, USA. IEEE
Computer Society.

Yang, T., Kuo, Y., and Cho, C. (2007). A genetic algorithms simulation
approach for the multi-attribute combinatorial dispatching decision problem.
European Journal of Operational Research, 176(3):1859–1873.

Zitzler, E., Knowles, J., and Thiele, L. (2008). Quality assessment of
pareto set approximations. In Multiobjective Optimization: Interactive and
Evolutionary Approaches, pages 373–404, Berlin, Heidelberg. Springer-
Verlag. doi: 10.1007/978-3-540-88908-3_14.

http://dx.doi.org/10.1007/978-3-540-88908-3_14

264 BIBLIOGRAPHY

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G.
(2003). Performance assessment of multiobjective optimizers: An analysis
and review. IEEE Transactions on Evolutionary Computation, 7(2):117–132.

APPENDIX A
DATA FOR FIGURES

In this appendix, the data is given for many analyses in the text, where
we preferred not to interrupt the reader with means tables. For completeness,
however, we did not want to leave out those data. The tables are given in the
order that the respective analyses appear in this thesis and the different chapters
are indicated between them.

265

266 APPENDIX A. DATA FOR FIGURES

Chapter 4

Assignment rule Count Mean Stnd. Error Lower Limit Upper Limit

1 192 60.3378 0.968766 57.8424 62.8332

2 192 43.3786 0.968766 40.8832 45.874

3 192 35.4981 0.968766 33.0027 37.9935

4 192 32.7386 0.968766 30.2432 35.234

5 192 33.3729 0.968766 30.8776 35.8683

6 192 64.7043 0.968766 62.2089 67.1997

7 192 34.3306 0.968766 31.8353 36.826

8 192 43.3549 0.968766 40.8595 45.8502

9 192 45.6835 0.968766 43.1881 48.1789

All 192 26.9882 0.968766 24.4928 29.4836

Job1 192 34.4807 0.968766 31.9853 36.976

Job3 192 29.8532 0.968766 27.3578 32.3486

Table A.1: NEH heuristic with distinct machine assignment
methods. Table of means and 99% confidence intervals for
the large instances. Deviation from best known solution

value.

Heuristic Count Mean Stnd. Error Lower Limit Upper Limit

LPT 192 222.779 1.72908 218.326 227.233
LWR 192 137.419 1.72908 132.965 141.873
MWR 192 95.568 1.72908 91.1142 100.022

MWRST 192 92.5678 1.72908 88.1139 97.0216
NEH 192 27.7906 1.72908 23.3368 32.2445
SPT 192 225.074 1.72908 220.621 229.528

Table A.2: Comparison of heuristic methods. Table of
means and 99% confidence intervals for the large instances.

Deviation from best known solution value.

267

Heuristic Count Mean Stnd. Error Lower Limit Upper Limit

LPT 4322 33.5335 0.339439 32.6591 34.4078
LWR 4322 35.7746 0.339439 34.9002 36.6489
MWR 4322 25.1718 0.339439 24.2975 26.0461

MWRST 4322 24.7208 0.339439 23.8465 25.5952
NEH 4322 12.5832 0.339439 11.7089 13.4575
SPT 4322 34.5381 0.339439 33.6638 35.4124

Table A.3: Comparison of heuristics. Table of means and
99% confidence intervals for the small instances. Deviation

from the optimum.

268 APPENDIX A. DATA FOR FIGURES

Chapter 5

Level Count Mean Stnd. Error Lower Limit Upper Limit

Algorithm
BGA 4320 0.821561 0.0224735 0.763673 0.879449
EGA 4320 2.00096 0.0224735 1.94307 2.05884
SGA 4320 0.702576 0.0224735 0.644688 0.760463
Algorithm by NPj

BGA 0-0 2160 0.55055 0.0317823 0.468685 0.632416
1-3 2160 1.09257 0.0317823 1.01071 1.17444

EGA 0-0 2160 2.17322 0.0317823 2.09136 2.25509
1-3 2160 1.82869 0.0317823 1.74682 1.91056

SGA 0-0 2160 0.353784 0.0317823 0.271918 0.43565
1-3 2160 1.05137 0.0317823 0.969501 1.13323

Algorithm by t
BGA 5 1440 0.94846 0.0389252 0.848195 1.04873

25 1440 0.79214 0.0389252 0.691875 0.892405
125 1440 0.724082 0.0389252 0.623818 0.824347

EGA 5 1440 2.41988 0.0389252 2.31962 2.52015
25 1440 1.86981 0.0389252 1.76955 1.97008

125 1440 1.71317 0.0389252 1.6129 1.81343
SGA 5 1440 0.788726 0.0389252 0.688461 0.888991

25 1440 0.672914 0.0389252 0.572649 0.773179
125 1440 0.646086 0.0389252 0.545821 0.746351

Table A.4: Table of means and 99% Tukey intervals for the
genetic algorithms. Small instances with one machine per

stage.

269

Algorithm Count Mean Stnd. Error Lower Limit Upper Limit

BGA 2070 0.473894 0.0334844 0.387644 0.560144
EGA 2070 0.755312 0.0334844 0.669062 0.841563
SGA 2070 0.466672 0.0334844 0.380422 0.552922

Table A.5: Table of means and 99% Tukey intervals for the
genetic algorithms. Small instances with one machine per

stage for which the optimum is known.

270 APPENDIX A. DATA FOR FIGURES

Level Count Mean Stnd. Error Lower Limit Upper Limit

Algorithm
BGA 4320 3.21587 0.0955778 2.96967 3.46206
EGA 4320 4.92046 0.0955778 4.67427 5.16665
SGA 4320 2.78079 0.0955778 2.53459 3.02698

SGAM 4320 5.41219 0.0955778 5.166 5.65838
SGAR 4320 3.0585 0.0955778 2.81231 3.30469
Algorithm by PEij

BGA 50 2160 2.00547 0.135167 1.6573 2.35364
100 2160 4.42626 0.135167 4.0781 4.77443

EGA 50 2160 2.34242 0.135167 1.99425 2.69059
100 2160 7.4985 0.135167 7.15033 7.84666

SGA 50 2160 1.71887 0.135167 1.3707 2.06704
100 2160 3.8427 0.135167 3.49453 4.19087

SGAM 50 2160 1.89161 0.135167 1.54344 2.23977
100 2160 8.93278 0.135167 8.58461 9.28095

SGAR 50 2160 2.14398 0.135167 1.79581 2.49215
100 2160 3.97301 0.135167 3.62484 4.32118

Algorithm by t
BGA 5 1440 3.57115 0.165546 3.14474 3.99757

25 1440 3.1263 0.165546 2.69988 3.55271
125 1440 2.95015 0.165546 2.52373 3.37657

EGA 5 1440 5.64194 0.165546 5.21552 6.06836
25 1440 4.70846 0.165546 4.28204 5.13488

125 1440 4.41098 0.165546 3.98456 4.8374
SGA 5 1440 2.92176 0.165546 2.49534 3.34817

25 1440 2.74213 0.165546 2.31571 3.16855
125 1440 2.67848 0.165546 2.25206 3.10489

SGAM 5 1440 7.44111 0.165546 7.0147 7.86753
25 1440 5.09536 0.165546 4.66894 5.52178

125 1440 3.7001 0.165546 3.27368 4.12652
SGAR 5 1440 3.10368 0.165546 2.67726 3.5301

25 1440 2.97738 0.165546 2.55096 3.40379
125 1440 3.09444 0.165546 2.66802 3.52086

Table A.6: Table of means and 99% Tukey intervals for the
genetic algorithms. Small instances with three machines

per stage.

271

Algorithm Count Mean Stnd. Error Lower Limit Upper Limit

BGA 2010 0.35934 0.16651 0.31645 0.40223
EGA 2010 0.26741 0.16651 0.22452 0.31030
SGA 2010 0.35115 0.16651 0.30826 0.39404

SGAM 2010 0.36996 0.16651 0.32706 0.41285
SGAR 2010 0.40766 0.16651 0.36477 0.45055

Table A.7: Table of means and 99% Tukey intervals for the
genetic algorithms. Small instances with three machines

per stage for which the optimum solution is known.

272 APPENDIX A. DATA FOR FIGURES

Level Count Mean Stnd. Error Lower Limit Upper Limit

Algorithm
BGA 2880 8.8056 0.08263 8.5927 9.0184
EGA 2880 18.6670 0.08263 18.4542 18.8799
SGA 2880 6.6548 0.08263 6.4420 6.8677

SGAM 2880 13.6697 0.08263 13.4569 13.8825
SGAR 2880 6.9965 0.08263 6.7837 7.2093
Algorithm by NPj

BGA 0 1440 6.4223 0.11686 6.1213 6.7233
U [1, 5] 1440 11.1889 0.11686 10.8879 11.4899

EGA 0 1440 8.7110 0.11686 8.4100 9.0120
U [1, 5] 1440 28.6231 0.11686 28.3221 28.9241

SGA 0 1440 4.8120 0.11686 4.5110 5.1130
U [1, 5] 1440 8.4976 0.11686 8.1966 8.7986

SGAM 0 1440 7.1490 0.11686 6.8480 7.4500
U [1, 5] 1440 20.1904 0.11686 19.8894 20.4914

SGAR 0 1440 4.9821 0.11686 4.6811 5.2831
U [1, 5] 1440 9.0108 0.11686 8.7098 9.3118

Algorithm by t
BGA 5 960 10.6829 0.14312 10.3143 11.0516

25 960 8.3856 0.14312 8.0170 8.7543
125 960 7.3481 0.14312 6.9795 7.7168

EGA 5 960 22.7095 0.14312 22.3408 23.0781
25 960 18.3607 0.14312 17.9921 18.7294
125 960 14.9309 0.14312 14.5622 15.2995

SGA 5 960 9.0301 0.14312 8.6615 9.3988
25 960 5.9149 0.14312 5.5463 6.2835
125 960 5.0194 0.14312 4.6508 5.3880

SGAM 5 960 17.4448 0.14312 17.0762 17.8135
25 960 12.5643 0.14312 12.1957 12.9330
125 960 11.0000 0.14312 10.6313 11.3686

SGAR 5 960 9.4481 0.14312 9.0795 9.8167
25 960 6.3098 0.14312 5.9411 6.6784
125 960 5.2316 0.14312 4.8630 5.6003

Table A.8: Table of means and 99% Tukey intervals for the
genetic algorithms. Large instances

273

Level Count Mean Stnd. Error Lower Limit Upper Limit

BGA 4320 3.0980 0.10566 2.8259 3.3702
EGA 4320 4.7924 0.10566 4.5202 5.0645
LPT 288 33.2207 0.40921 32.1666 34.2748
LWR 288 32.2851 0.40921 31.2310 33.3391
MIP 271 16.5266 0.42593 15.4294 17.6237

MWR 288 25.4196 0.40921 24.3655 26.4736
MWRST 288 25.5293 0.40921 24.4753 26.5834

NEH 288 9.0387 0.40921 7.9846 10.0928
RS 4320 4.1938 0.10566 3.9216 4.4659

SGA 4320 2.6643 0.10566 2.3921 2.9364
SGAM 4320 5.2844 0.10566 5.0123 5.5566
SGAR 4320 2.9422 0.10566 2.6701 3.2144
SPT 288 34.3612 0.40921 33.3071 35.4152

Table A.9: Table of means and 99% Tukey intervals for the
genetic algorithms and the heuristics. Small instances with

three machines per stage.

Level Count Mean Stnd. Error Lower Limit Upper Limit

BGA 4320 0.6738 0.13728 0.3202 1.0274
EGA 4320 1.8488 0.13728 1.4952 2.2024
LPT 288 49.6651 0.53168 48.2956 51.0346
LWR 288 41.2746 0.53168 39.9051 42.6441
MIP 250 8.1803 0.57088 6.7098 9.6507

MWR 288 30.1554 0.53168 28.7859 31.5249
MWRST 288 29.5640 0.53168 28.1945 30.9335

NEH 288 4.5977 0.53168 3.2282 5.9672
RS 4320 1.7264 0.13728 1.3728 2.0800

SGA 4320 0.5552 0.13728 0.2016 0.9088
SPT 288 51.4959 0.53168 50.1264 52.8654

Table A.10: Table of means and 99% Tukey intervals for
the genetic algorithms and the heuristics. Small instances

with one machine per stage.

274 APPENDIX A. DATA FOR FIGURES

Level Count Mean Stnd. Error Lower Limit Upper Limit

BGA 2880 8.8056 0.38343 7.8179 9.7932
EGA 2880 18.6670 0.38343 17.6794 19.6547
LPT 192 225.0500 1.48500 221.2250 228.8750
LWR 192 138.1520 1.48500 134.3270 141.9770
MWR 192 95.7769 1.48500 91.9518 99.6021

MWRST 192 92.7195 1.48500 88.8944 96.5446
NEH 192 25.7333 1.48500 21.9082 29.5585
RS 2880 35.6955 0.38343 34.7079 36.6832

SGA 2880 6.6548 0.38343 5.6672 7.6425
SGAM 2880 13.6697 0.38343 12.6821 14.6573
SGAR 2880 6.9965 0.38343 6.0089 7.9841
SPT 192 227.0340 1.48500 223.2090 230.8600

Table A.11: Table of means and 99% Tukey intervals for
the genetic algorithms and the heuristics. Large instances.

275

Chapter 6

Level Count Mean Stnd. Error Lower Limit Upper Limit

Algorithm
IG 2880 5.9096 0.04983 5.7812 6.0379
ILS 2880 7.1641 0.04983 7.0358 7.2925
MA 2880 6.2947 0.04983 6.1663 6.4231
SGA 2880 6.6548 0.04983 6.5265 6.7832
Algorithm by PEij

IG 50 1440 5.3826 0.07047 5.2011 5.5641
100 1440 6.4366 0.07047 6.2550 6.6181

ILS 50 1440 6.4584 0.07047 6.2769 6.6400
100 1440 7.8699 0.07047 7.6883 8.0514

MA 50 1440 7.2260 0.07047 7.0444 7.4075
100 1440 5.3634 0.07047 5.1819 5.5450

SGA 50 1440 7.4196 0.07047 7.2380 7.6011
100 1440 5.8901 0.07047 5.7085 6.0716

Algorithm by t
IG 5 960 9.0909 0.08631 8.8686 9.3132

25 960 5.4911 0.08631 5.2688 5.7134
125 960 3.1468 0.08631 2.9244 3.3691

ILS 5 960 10.7903 0.08631 10.5679 11.0126
25 960 6.7486 0.08631 6.5263 6.9709

125 960 3.9535 0.08631 3.7312 4.1759
MA 5 960 10.2260 0.08631 10.0036 10.4483

25 960 5.6552 0.08631 5.4329 5.8776
125 960 3.0029 0.08631 2.7806 3.2252

SGA 5 960 9.0301 0.08631 8.8078 9.2525
25 960 5.9149 0.08631 5.6926 6.1372

125 960 5.0194 0.08631 4.7971 5.2417

Table A.12: Comparison of the local search algorithms
with SGA. Table of means and 99% Tukey intervals for the

large instances.

276 APPENDIX A. DATA FOR FIGURES

Algorithm Count Mean Stnd. Error Lower Limit Upper Limit

IG 2880 6.84441 0.0539577 6.70542 6.9834
ILS 2880 8.11402 0.0539577 7.97503 8.253
MA 2880 7.2531 0.0539577 7.11411 7.39208

MGA 2880 9.07505 0.0539577 8.93607 9.21404
SGA 2880 7.61617 0.0539577 7.47718 7.75515
SRS 2880 5.81073 0.0539577 5.67174 5.94971

Table A.13: Comparison of the SRS and the MGA with
earlier presented algorithms. Table of means and 99%

Tukey intervals for the large instances.

Table A.14: Comparison of the SRS and the MGA with
earlier presented algorithms. Table of means and 99%
Tukey intervals for the small instances with three machines

per stage.

Level Count Mean Stnd. Error Lower Limit Upper Limit

Algorithm
BGA 4320 3.21 0.081 3.00 3.42
EGA 4320 4.92 0.081 4.71 5.12

IG 4320 3.46 0.081 3.25 3.66
MGA 4320 2.45 0.081 2.24 2.66
SGA 4320 2.78 0.081 2.57 2.99

SGAM 4320 5.41 0.081 5.20 5.62
SGAR 4320 3.05 0.081 2.85 3.26
SRS 4320 0.60 0.081 0.39 0.81
t

5 11520 3.74 0.050 3.61 3.87
25 11520 3.12 0.050 2.99 3.24

125 11520 2.84 0.050 2.72 2.97
n

5 5760 2.26 0.070 2.08 2.44
7 5760 2.87 0.070 2.69 3.05
9 5760 2.94 0.070 2.76 3.12
11 5760 3.53 0.070 3.35 3.71
13 5760 3.53 0.070 3.35 3.71
15 5760 4.28 0.070 4.10 4.46

277

m

2 17280 2.90 0.040 2.79 3.00
3 17280 3.57 0.040 3.47 3.68

F

0 17280 4.57 0.040 4.47 4.68
50 17280 1.89 0.040 1.79 2.00

E

50 17280 1.80 0.040 1.70 1.91
100 17280 4.67 0.040 4.56 4.77

P

0-0 17280 2.25 0.040 2.15 2.36
1-5 17280 4.21 0.040 4.11 4.32

Replicate
1 11520 3.51 0.050 3.39 3.64
2 11520 3.08 0.050 2.96 3.21
3 11520 3.10 0.050 2.98 3.23

Algorithm by t
BGA 5 1440 3.57 0.140 3.21 3.93
BGA 25 1440 3.12 0.140 2.76 3.48
BGA 125 1440 2.95 0.140 2.59 3.31
EGA 5 1440 5.64 0.140 5.28 6.00
EGA 25 1440 4.70 0.140 4.34 5.07
EGA 125 1440 4.41 0.140 4.05 4.77

IG 5 1440 3.54 0.140 3.18 3.90
IG 25 1440 3.43 0.140 3.07 3.80
IG 125 1440 3.39 0.140 3.03 3.75

MGA 5 1440 2.79 0.140 2.43 3.15
MGA 25 1440 2.32 0.140 1.96 2.68
MGA 125 1440 2.24 0.140 1.87 2.60
SGA 5 1440 2.92 0.140 2.56 3.28
SGA 25 1440 2.74 0.140 2.38 3.10
SGA 125 1440 2.67 0.140 2.31 3.04

SGAM 5 1440 7.44 0.140 7.08 7.80
SGAM 25 1440 5.09 0.140 4.73 5.45
SGAM 125 1440 3.70 0.140 3.34 4.06
SGAR 5 1440 3.10 0.140 2.74 3.46
SGAR 25 1440 2.97 0.140 2.61 3.33
SGAR 125 1440 3.09 0.140 2.73 3.45
SRS 5 1440 0.93 0.140 0.57 1.29
SRS 25 1440 0.55 0.140 0.19 0.91
SRS 125 1440 0.32 0.140 -0.04 0.68

278 APPENDIX A. DATA FOR FIGURES

Algorithm by n
BGA 5 720 2.86 0.198 2.35 3.37
BGA 7 720 2.87 0.198 2.36 3.38
BGA 9 720 3.23 0.198 2.72 3.74
BGA 11 720 3.16 0.198 2.65 3.67
BGA 13 720 3.13 0.198 2.62 3.65
BGA 15 720 4.02 0.198 3.51 4.53
EGA 5 720 1.13 0.198 0.62 1.64
EGA 7 720 3.05 0.198 2.54 3.56
EGA 9 720 3.68 0.198 3.17 4.20
EGA 11 720 5.69 0.198 5.18 6.21
EGA 13 720 7.14 0.198 6.63 7.65
EGA 15 720 8.80 0.198 8.29 9.32

IG 5 720 3.22 0.198 2.71 3.73
IG 7 720 4.54 0.198 4.03 5.05
IG 9 720 4.01 0.198 3.50 4.52
IG 11 720 3.73 0.198 3.22 4.24
IG 13 720 2.80 0.198 2.28 3.31
IG 15 720 2.44 0.198 1.93 2.95

MGA 5 720 2.34 0.198 1.83 2.85
MGA 7 720 2.19 0.198 1.68 2.70
MGA 9 720 2.11 0.198 1.60 2.62
MGA 11 720 2.38 0.198 1.87 2.89
MGA 13 720 2.43 0.198 1.92 2.94
MGA 15 720 3.25 0.198 2.74 3.76
SGA 5 720 2.86 0.198 2.35 3.37
SGA 7 720 2.79 0.198 2.28 3.30
SGA 9 720 2.81 0.198 2.30 3.32
SGA 11 720 2.59 0.198 2.08 3.10
SGA 13 720 2.42 0.198 1.91 2.93
SGA 15 720 3.18 0.198 2.67 3.69

SGAM 5 720 2.38 0.198 1.87 2.89
SGAM 7 720 3.35 0.198 2.84 3.86
SGAM 9 720 4.54 0.198 4.03 5.05
SGAM 11 720 7.30 0.198 6.79 7.81
SGAM 13 720 6.85 0.198 6.34 7.36
SGAM 15 720 8.03 0.198 7.52 8.54
SGAR 5 720 3.15 0.198 2.64 3.66
SGAR 7 720 3.78 0.198 3.27 4.29
SGAR 9 720 2.78 0.198 2.27 3.29
SGAR 11 720 2.62 0.198 2.11 3.13

279

SGAR 13 720 2.68 0.198 2.17 3.19
SGAR 15 720 3.31 0.198 2.80 3.82
SRS 5 720 0.15 0.198 -0.36 0.66
SRS 7 720 0.36 0.198 -0.15 0.87
SRS 9 720 0.36 0.198 -0.15 0.87
SRS 11 720 0.75 0.198 0.24 1.26
SRS 13 720 0.80 0.198 0.29 1.31
SRS 15 720 1.19 0.198 0.68 1.70

Algorithm by m
BGA 2 2160 2.75 0.114 2.46 3.05
BGA 3 2160 3.67 0.114 3.38 3.97
EGA 2 2160 4.28 0.114 3.99 4.58
EGA 3 2160 5.55 0.114 5.26 5.85

IG 2 2160 3.24 0.114 2.95 3.53
IG 3 2160 3.67 0.114 3.38 3.97

MGA 2 2160 2.19 0.114 1.89 2.48
MGA 3 2160 2.71 0.114 2.42 3.01
SGA 2 2160 2.44 0.114 2.14 2.73
SGA 3 2160 3.12 0.114 2.82 3.41

SGAM 2 2160 4.85 0.114 4.55 5.14
SGAM 3 2160 5.97 0.114 5.67 6.26
SGAR 2 2160 2.98 0.114 2.68 3.27
SGAR 3 2160 3.13 0.114 2.84 3.43
SRS 2 2160 0.46 0.114 0.16 0.75
SRS 3 2160 0.74 0.114 0.45 1.04

Algorithm by F
BGA 0 2160 4.71 0.114 4.42 5.01
BGA 50 2160 1.71 0.114 1.42 2.01
EGA 0 2160 7.40 0.114 7.10 7.69
EGA 50 2160 2.43 0.114 2.14 2.73

IG 0 2160 4.42 0.114 4.13 4.72
IG 50 2160 2.49 0.114 2.19 2.78

MGA 0 2160 3.68 0.114 3.38 3.97
MGA 50 2160 1.22 0.114 0.93 1.52
SGA 0 2160 4.01 0.114 3.72 4.31
SGA 50 2160 1.54 0.114 1.25 1.84

SGAM 0 2160 7.21 0.114 6.91 7.50
SGAM 50 2160 3.61 0.114 3.31 3.90
SGAR 0 2160 4.14 0.114 3.85 4.44
SGAR 50 2160 1.97 0.114 1.67 2.26
SRS 0 2160 1.02 0.114 0.73 1.32

280 APPENDIX A. DATA FOR FIGURES

SRS 50 2160 0.18 0.114 -0.12 0.47
Algorithm by E
BGA 50 2160 2.00 0.114 1.71 2.30
BGA 100 2160 4.42 0.114 4.13 4.71
EGA 50 2160 2.34 0.114 2.05 2.64
EGA 100 2160 7.49 0.114 7.20 7.79

IG 50 2160 2.71 0.114 2.41 3.00
IG 100 2160 4.20 0.114 3.91 4.50

MGA 50 2160 1.36 0.114 1.07 1.66
MGA 100 2160 3.54 0.114 3.24 3.83
SGA 50 2160 1.72 0.114 1.42 2.01
SGA 100 2160 3.84 0.114 3.54 4.13

SGAM 50 2160 1.89 0.114 1.60 2.18
SGAM 100 2160 8.92 0.114 8.63 9.22
SGAR 50 2160 2.14 0.114 1.85 2.44
SGAR 100 2160 3.97 0.114 3.67 4.26
SRS 50 2160 0.26 0.114 -0.04 0.55
SRS 100 2160 0.94 0.114 0.65 1.24

Algorithm by P
BGA 0-0 2160 1.86 0.114 1.57 2.16
BGA 1-5 2160 4.56 0.114 4.26 4.85
EGA 0-0 2160 5.05 0.114 4.76 5.35
EGA 1-5 2160 4.78 0.114 4.49 5.07

IG 0-0 2160 0.90 0.114 0.61 1.20
IG 1-5 2160 6.01 0.114 5.71 6.30

MGA 0-0 2160 1.48 0.114 1.18 1.77
MGA 1-5 2160 3.42 0.114 3.13 3.72
SGA 0-0 2160 1.32 0.114 1.02 1.61
SGA 1-5 2160 4.24 0.114 3.94 4.53

SGAM 0-0 2160 5.50 0.114 5.21 5.80
SGAM 1-5 2160 5.31 0.114 5.02 5.61
SGAR 0-0 2160 1.36 0.114 1.07 1.66
SGAR 1-5 2160 4.74 0.114 4.45 5.04
SRS 0-0 2160 0.55 0.114 0.25 0.84
SRS 1-5 2160 0.65 0.114 0.35 0.94

281

Chapter 8

Table A.15: Epsilon indicator means and 99% Tukey
intervals - comparison of NSGA-II and RIPG for the set of

large instances.

Level Count Mean Stnd. Lower Upper
Error Limit Limit

Grand mean 5760 1.43514

n

50 2880 1.42282 0.00457497 1.41103 1.4346

100 2880 1.44747 0.00457497 1.43568 1.45925

m

4 2880 1.43921 0.00457497 1.42742 1.45099

8 2880 1.43108 0.00457497 1.4193 1.44286

mi

2 2880 1.45455 0.00457497 1.44276 1.46633

4 2880 1.41574 0.00457497 1.40395 1.42752

T

0.2 1920 1.43851 0.00560317 1.42408 1.45294

0.4 1920 1.42548 0.00560317 1.41104 1.43991

0.6 1920 1.44144 0.00560317 1.42701 1.45587

R

0.2 1920 1.43949 0.00560317 1.42506 1.45392

0.6 1920 1.42734 0.00560317 1.4129 1.44177

1 1920 1.4386 0.00560317 1.42417 1.45304

Method
NSGA-II 2880 1.3736 0.00457497 1.36181 1.38538

RIPG 2880 1.49669 0.00457497 1.4849 1.50847

n by Method
50 NSGA-II 1440 1.34026 0.00646999 1.3236 1.35693

50 RIPG 1440 1.50538 0.00646999 1.48871 1.52204

100 NSGA-II 1440 1.40693 0.00646999 1.39027 1.4236

100 RIPG 1440 1.488 0.00646999 1.47133 1.50467

m by Method
4 NSGA-II 1440 1.35907 0.00646999 1.3424 1.37573

4 RIPG 1440 1.51934 0.00646999 1.50268 1.53601

8 NSGA-II 1440 1.38813 0.00646999 1.37146 1.40479

8 RIPG 1440 1.47403 0.00646999 1.45737 1.4907

mi by Method

282 APPENDIX A. DATA FOR FIGURES

2 NSGA-II 1440 1.35705 0.00646999 1.34038 1.37372

2 RIPG 1440 1.55205 0.00646999 1.53538 1.56871

4 NSGA-II 1440 1.39014 0.00646999 1.37348 1.40681

4 RIPG 1440 1.44133 0.00646999 1.42466 1.458

T by Method
0.2 NSGA-II 960 1.37891 0.00792408 1.3585 1.39932

0.2 RIPG 960 1.49811 0.00792408 1.4777 1.51853

0.4 NSGA-II 960 1.36678 0.00792408 1.34636 1.38719

0.4 RIPG 960 1.48418 0.00792408 1.46377 1.50459

0.6 NSGA-II 960 1.37511 0.00792408 1.3547 1.39552

0.6 RIPG 960 1.50777 0.00792408 1.48736 1.52819

R by Method
0.2 NSGA-II 960 1.38565 0.00792408 1.36524 1.40606

0.2 RIPG 960 1.49333 0.00792408 1.47292 1.51374

0.6 NSGA-II 960 1.36292 0.00792408 1.34251 1.38333

0.6 RIPG 960 1.49175 0.00792408 1.47134 1.51216

1 NSGA-II 960 1.37222 0.00792408 1.35181 1.39264

1 RIPG 960 1.50498 0.00792408 1.48457 1.52539

APPENDIX B
ANOVA TABLES

In this appendix, the Analysis of Variance tables are given, in the cases
that they were not considered necessary or desirable in the text. The tables are
sorted by chapter and given in the order of appearance of the analyses in the
text.

Chapter 5

Table B.1: Analysis of Variance for the SGA calibration.
Large instances.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:Assignment 3202.54 1 3202.54 274.24 0.0000

B:Pc 1825.42 1 1825.42 156.32 0.0000

C:Pmut 23932.9 1 23932.9 2049.44 0.0000

D:Population 26273.7 2 13136.8 1124.95 0.0000

E:Selection 14567.4 2 7283.69 623.72 0.0000

F:n 901.162 1 901.162 77.17 0.0000

283

284 APPENDIX B. ANOVA TABLES

G:m 181249.0 1 181249.0 15520.83 0.0000

H:mi 193016.0 1 193016.0 16528.46 0.0000

I:F 208451.0 1 208451.0 17850.25 0.0000

J:E 49425.7 1 49425.7 4232.46 0.0000

K:P 1.36245E6 1 1.36245E6 116670.74 0.0000

L:Replicate 269.495 2 134.748 11.54 0.0000

M:t 278029.0 1 278029.0 23808.42 0.0000

Interactions
AB 2817.27 1 2817.27 241.25 0.0000

AC 301.84 1 301.84 25.85 0.0000

AD 1805.23 2 902.616 77.29 0.0000

AE 1194.27 2 597.135 51.13 0.0000

AF 19.2478 1 19.2478 1.65 0.1992

AG 78.127 1 78.127 6.69 0.0097

AH 129.863 1 129.863 11.12 0.0009

AI 26.1865 1 26.1865 2.24 0.1343

AJ 40.2896 1 40.2896 3.45 0.0632

AK 365.448 1 365.448 31.29 0.0000

AL 5.15415 2 2.57707 0.22 0.8020

AM 2299.89 1 2299.89 196.95 0.0000

BC 5.36951 1 5.36951 0.46 0.4977

BD 1107.01 2 553.505 47.40 0.0000

BE 996.562 2 498.281 42.67 0.0000

BF 295.456 1 295.456 25.30 0.0000

BG 71.6749 1 71.6749 6.14 0.0132

BH 233.779 1 233.779 20.02 0.0000

BI 20.5118 1 20.5118 1.76 0.1851

BJ 291.252 1 291.252 24.94 0.0000

BK 512.919 1 512.919 43.92 0.0000

BL 28.8749 2 14.4375 1.24 0.2905

BM 2144.72 1 2144.72 183.66 0.0000

CD 1563.95 2 781.977 66.96 0.0000

CE 872.673 2 436.337 37.36 0.0000

CF 54.5925 1 54.5925 4.67 0.0306

CG 322.007 1 322.007 27.57 0.0000

CH 3951.33 1 3951.33 338.36 0.0000

CI 1227.89 1 1227.89 105.15 0.0000

CJ 3.40819 1 3.40819 0.29 0.5890

CK 8914.45 1 8914.45 763.37 0.0000

CL 19.1024 2 9.55121 0.82 0.4414

CM 2494.65 1 2494.65 213.62 0.0000

285

DE 8788.45 4 2197.11 188.14 0.0000

DF 1159.29 2 579.647 49.64 0.0000

DG 796.155 2 398.077 34.09 0.0000

DH 13543.5 2 6771.73 579.88 0.0000

DI 2291.99 2 1146.0 98.13 0.0000

DJ 1324.27 2 662.135 56.70 0.0000

DK 15749.8 2 7874.92 674.35 0.0000

DL 277.839 4 69.4596 5.95 0.0001

DM 13377.1 2 6688.57 572.76 0.0000

EF 910.075 2 455.037 38.97 0.0000

EG 736.615 2 368.307 31.54 0.0000

EH 10127.7 2 5063.87 433.63 0.0000

EI 919.05 2 459.525 39.35 0.0000

EJ 1188.3 2 594.152 50.88 0.0000

EK 11816.9 2 5908.45 505.96 0.0000

EL 275.754 4 68.9385 5.90 0.0001

EM 11966.5 2 5983.27 512.36 0.0000

FG 27289.2 1 27289.2 2336.85 0.0000

FH 96.4808 1 96.4808 8.26 0.0040

FI 30.9012 1 30.9012 2.65 0.1038

FJ 29653.4 1 29653.4 2539.30 0.0000

FK 36108.0 1 36108.0 3092.03 0.0000

FL 4158.37 2 2079.19 178.05 0.0000

FM 7927.56 1 7927.56 678.86 0.0000

GH 4759.13 1 4759.13 407.54 0.0000

GI 38659.2 1 38659.2 3310.50 0.0000

GJ 7432.89 1 7432.89 636.50 0.0000

GK 89281.6 1 89281.6 7645.43 0.0000

GL 1677.72 2 838.862 71.83 0.0000

GM 5085.24 1 5085.24 435.46 0.0000

HI 1069.04 1 1069.04 91.54 0.0000

HJ 10549.1 1 10549.1 903.35 0.0000

HK 1794.94 1 1794.94 153.71 0.0000

HL 5574.66 2 2787.33 238.69 0.0000

HM 0.560325 1 0.560325 0.05 0.8266

IJ 23865.9 1 23865.9 2043.70 0.0000

IK 7324.13 1 7324.13 627.19 0.0000

IL 4065.43 2 2032.71 174.07 0.0000

IM 7.41688 1 7.41688 0.64 0.4255

JK 46955.6 1 46955.6 4020.94 0.0000

JL 12975.7 2 6487.85 555.57 0.0000

286 APPENDIX B. ANOVA TABLES

JM 1666.94 1 1666.94 142.74 0.0000

KL 131.514 2 65.7568 5.63 0.0036

KM 31560.5 1 31560.5 2702.62 0.0000

LM 587.914 2 293.957 25.17 0.0000

Residual 1.61277E6 138106 11.6778

Total (corrected) 4.48612E6 138239

287

Table B.2: Analysis of Variance for the SGA calibration,
Pmut fixed at 2%. Large instances.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:Assignment 769.006 1 769.006 71.99 0.0000

B:Pc 816.389 1 816.389 76.43 0.0000

C:Population 12297.5 2 6148.75 575.61 0.0000

D:Selection 4600.48 2 2300.24 215.34 0.0000

E:n 256.074 1 256.074 23.97 0.0000

F:m 83145.7 1 83145.7 7783.67 0.0000

G:mi 70867.0 1 70867.0 6634.20 0.0000

H:F 88840.9 1 88840.9 8316.82 0.0000

I:E 25125.0 1 25125.0 2352.07 0.0000

J:P 575477.0 1 575477.0 53873.18 0.0000

K:Replicate 72.6041 2 36.3021 3.40 0.0334

L:t 166598.0 1 166598.0 15596.03 0.0000

Interactions
AB 687.98 1 687.98 64.41 0.0000

AC 1240.91 2 620.457 58.08 0.0000

AD 183.993 2 91.9966 8.61 0.0002

AE 11.3374 1 11.3374 1.06 0.3029

AF 40.7426 1 40.7426 3.81 0.0508

AG 38.9567 1 38.9567 3.65 0.0562

AH 24.6893 1 24.6893 2.31 0.1284

AI 10.694 1 10.694 1.00 0.3170

AJ 87.7902 1 87.7902 8.22 0.0041

AK 7.11336 2 3.55668 0.33 0.7168

AL 613.332 1 613.332 57.42 0.0000

BC 1044.33 2 522.165 48.88 0.0000

BD 93.3222 2 46.6611 4.37 0.0127

BE 236.031 1 236.031 22.10 0.0000

BF 22.1743 1 22.1743 2.08 0.1496

BG 53.2414 1 53.2414 4.98 0.0256

BH 25.5196 1 25.5196 2.39 0.1222

BI 73.54 1 73.54 6.88 0.0087

BJ 364.02 1 364.02 34.08 0.0000

BK 4.08121 2 2.0406 0.19 0.8261

BL 424.465 1 424.465 39.74 0.0000

CD 4152.77 4 1038.19 97.19 0.0000

288 APPENDIX B. ANOVA TABLES

CE 950.43 2 475.215 44.49 0.0000

CF 498.939 2 249.469 23.35 0.0000

CG 6387.79 2 3193.89 299.00 0.0000

CH 1264.74 2 632.371 59.20 0.0000

CI 594.965 2 297.483 27.85 0.0000

CJ 5826.52 2 2913.26 272.72 0.0000

CK 168.496 4 42.124 3.94 0.0033

CL 7556.81 2 3778.41 353.71 0.0000

DE 712.836 2 356.418 33.37 0.0000

DF 303.413 2 151.707 14.20 0.0000

DG 4513.25 2 2256.63 211.25 0.0000

DH 620.692 2 310.346 29.05 0.0000

DI 569.399 2 284.7 26.65 0.0000

DJ 3978.3 2 1989.15 186.21 0.0000

DK 182.409 4 45.6021 4.27 0.0019

DL 5757.1 2 2878.55 269.47 0.0000

EF 10660.2 1 10660.2 997.96 0.0000

EG 167.267 1 167.267 15.66 0.0001

EH 8.5715 1 8.5715 0.80 0.3704

EI 16893.9 1 16893.9 1581.52 0.0000

EJ 12814.6 1 12814.6 1199.64 0.0000

EK 2157.44 2 1078.72 100.98 0.0000

EL 6129.91 1 6129.91 573.85 0.0000

FG 1483.81 1 1483.81 138.91 0.0000

FH 16854.6 1 16854.6 1577.84 0.0000

FI 4241.45 1 4241.45 397.06 0.0000

FJ 39025.4 1 39025.4 3653.36 0.0000

FK 677.805 2 338.903 31.73 0.0000

FL 2994.12 1 2994.12 280.29 0.0000

GH 914.144 1 914.144 85.58 0.0000

GI 2904.91 1 2904.91 271.94 0.0000

GJ 63.5549 1 63.5549 5.95 0.0147

GK 2894.09 2 1447.04 135.46 0.0000

GL 6.03509 1 6.03509 0.56 0.4523

HI 10495.7 1 10495.7 982.55 0.0000

HJ 2939.89 1 2939.89 275.22 0.0000

HK 1616.67 2 808.336 75.67 0.0000

HL 4.31842 1 4.31842 0.40 0.5249

IJ 21720.1 1 21720.1 2033.32 0.0000

IK 5561.11 2 2780.55 260.30 0.0000

IL 928.785 1 928.785 86.95 0.0000

289

JK 124.529 2 62.2643 5.83 0.0029

JL 17385.2 1 17385.2 1627.51 0.0000

KL 276.904 2 138.452 12.96 0.0000

Residual 737085.0 69002 10.6821

Total (corrected) 1.99722E6 69119

290 APPENDIX B. ANOVA TABLES

Table B.3: Analysis of Variance for the comparison of the
genetic algorithms. Small instances with one machine per

stage.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:Algorithm 4428.78 2 2214.39 1207.06 0.0000

B:n 1651.37 5 330.273 180.03 0.0000

C:m 367.355 1 367.355 200.24 0.0000

D:F 1447.87 1 1447.87 789.23 0.0000

E:E 4.3657 1 4.3657 2.38 0.1229

F:P 201.796 1 201.796 110.00 0.0000

G:repli 236.312 2 118.156 64.41 0.0000

H:t 294.34 2 147.17 80.22 0.0000

I:Repetition 0.665597 4 0.166399 0.09 0.9854

Interactions
AB 2478.81 10 247.881 135.12 0.0000

AC 116.096 2 58.048 31.64 0.0000

AD 657.427 2 328.714 179.18 0.0000

AE 3.62605 2 1.81303 0.99 0.3722

AF 681.836 2 340.918 185.83 0.0000

AG 37.6089 4 9.40222 5.13 0.0004

AH 141.601 4 35.4001 19.30 0.0000

AI 1.07317 8 0.134146 0.07 0.9998

BC 66.025 5 13.205 7.20 0.0000

BD 49.9946 5 9.99892 5.45 0.0001

BE 130.779 5 26.1559 14.26 0.0000

BF 128.994 5 25.7988 14.06 0.0000

BG 387.639 10 38.7639 21.13 0.0000

BH 236.252 10 23.6252 12.88 0.0000

BI 5.35827 20 0.267914 0.15 1.0000

CD 2.30961 1 2.30961 1.26 0.2618

CE 116.164 1 116.164 63.32 0.0000

CF 29.7595 1 29.7595 16.22 0.0001

CG 41.9259 2 20.963 11.43 0.0000

CH 9.7273 2 4.86365 2.65 0.0706

CI 0.212923 4 0.0532307 0.03 0.9984

DE 27.2637 1 27.2637 14.86 0.0001

DF 824.798 1 824.798 449.59 0.0000

DG 360.635 2 180.318 98.29 0.0000

291

DH 24.5259 2 12.263 6.68 0.0013

DI 0.1055 4 0.0263749 0.01 0.9996

EF 1.57732 1 1.57732 0.86 0.3538

EG 80.0993 2 40.0496 21.83 0.0000

EH 0.660186 2 0.330093 0.18 0.8353

EI 0.181586 4 0.0453965 0.02 0.9988

FG 17.2451 2 8.62254 4.70 0.0091

FH 8.99881 2 4.4994 2.45 0.0861

FI 2.10122 4 0.525305 0.29 0.8870

GH 4.84247 4 1.21062 0.66 0.6198

GI 1.62405 8 0.203007 0.11 0.9989

HI 3.2787 8 0.409837 0.22 0.9868

Residual 23460.1 12788 1.83454

Total (corrected) 38774.1 12959

292 APPENDIX B. ANOVA TABLES

Chapter 7

Table B.4: Analysis of Variance for the Average deviation -
comparison of the SRS and the MGA with earlier presented
algorithms. Small instances with three machines per stage.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:Algorithm 66533.8 7 9504.83 336.22 0.0000

B:t 4865.41 2 2432.71 86.05 0.0000

C:n 13993.1 5 2798.63 99.00 0.0000

D:m 3928.37 1 3928.37 138.96 0.0000

E:F 62090.0 1 62090.0 2196.36 0.0000

F:E 70784.1 1 70784.1 2503.90 0.0000

G:P 33224.0 1 33224.0 1175.26 0.0000

H:Replicate 1357.71 2 678.854 24.01 0.0000

Interactions
AB 7527.61 14 537.686 19.02 0.0000

AC 39025.5 35 1115.01 39.44 0.0000

AD 1215.29 7 173.614 6.14 0.0000

AE 11275.7 7 1610.81 56.98 0.0000

AF 34077.2 7 4868.17 172.21 0.0000

AG 28555.8 7 4079.4 144.30 0.0000

AH 1515.91 14 108.28 3.83 0.0000

BC 860.929 10 86.0929 3.05 0.0007

BD 47.1528 2 23.5764 0.83 0.4343

BE 477.387 2 238.693 8.44 0.0002

BF 2289.09 2 1144.55 40.49 0.0000

BG 149.693 2 74.8466 2.65 0.0708

BH 117.587 4 29.3967 1.04 0.3849

CD 3047.53 5 609.507 21.56 0.0000

CE 1633.52 5 326.705 11.56 0.0000

CF 2149.74 5 429.948 15.21 0.0000

CG 3828.7 5 765.741 27.09 0.0000

CH 9494.62 10 949.462 33.59 0.0000

DE 3937.01 1 3937.01 139.27 0.0000

DF 28.3789 1 28.3789 1.00 0.3164

DG 107.043 1 107.043 3.79 0.0517

DH 136.433 2 68.2165 2.41 0.0896

293

EF 9880.97 1 9880.97 349.53 0.0000

EG 439.12 1 439.12 15.53 0.0001

EH 1212.27 2 606.136 21.44 0.0000

FG 3219.84 1 3219.84 113.90 0.0000

FH 1385.69 2 692.843 24.51 0.0000

GH 127.625 2 63.8124 2.26 0.1046

Residual 971961.0 34382 28.2695

Total (corrected) 1.3965E6 34559

294 APPENDIX B. ANOVA TABLES

Chapter 8

Table B.5: Analysis of Variance for the Hypervolume -
Calibration of NSGA-II, mutation probability fixed.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 0.893666 1 0.893666 30.30 0.0000

B:m 0.290182 1 0.290182 9.84 0.0017

C:mi 47.1426 1 47.1426 1598.48 0.0000

D:T 0.169023 2 0.0845113 2.87 0.0570

E:R 0.214626 2 0.107313 3.64 0.0263

F:Pop 16.8469 2 8.42346 285.62 0.0000

G:Cross 1.53251 2 0.766257 25.98 0.0000

H:Rep 0.621627 4 0.155407 5.27 0.0003

Interactions
AB 0.331328 1 0.331328 11.23 0.0008

AC 2.4817 1 2.4817 84.15 0.0000

AD 0.532526 2 0.266263 9.03 0.0001

AE 0.0494439 2 0.0247219 0.84 0.4325

AF 0.95501 2 0.477505 16.19 0.0000

AG 0.360581 2 0.18029 6.11 0.0022

AH 0.190608 4 0.047652 1.62 0.1673

BC 2.20963 1 2.20963 74.92 0.0000

BD 0.197266 2 0.0986332 3.34 0.0353

BE 0.084421 2 0.0422105 1.43 0.2391

BF 0.018136 2 0.00906801 0.31 0.7353

BG 0.107415 2 0.0537076 1.82 0.1619

BH 0.125949 4 0.0314873 1.07 0.3707

CD 1.70039 2 0.850193 28.83 0.0000

CE 0.310947 2 0.155474 5.27 0.0052

CF 0.0331317 2 0.0165658 0.56 0.5703

CG 0.370769 2 0.185384 6.29 0.0019

CH 0.10225 4 0.0255625 0.87 0.4830

DE 3.48334 4 0.870836 29.53 0.0000

DF 0.121684 4 0.0304211 1.03 0.3893

DG 0.0988174 4 0.0247044 0.84 0.5010

DH 0.335035 8 0.0418794 1.42 0.1824

EF 0.0423573 4 0.0105893 0.36 0.8379

295

EG 0.0419791 4 0.0104948 0.36 0.8401

EH 0.250832 8 0.031354 1.06 0.3859

FG 0.18878 4 0.047195 1.60 0.1713

FH 0.183777 8 0.0229721 0.78 0.6213

GH 0.222267 8 0.0277834 0.94 0.4801

Residual 187.364 6353 0.0294922

Total (corrected) 272.269 6479

296 APPENDIX B. ANOVA TABLES

Table B.6: Analysis of Variance for the Hypervolume - Cal-
ibration of NSGA-II, mutation probability and population

size fixed.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 0.0096754 1 0.0096754 0.39 0.5334

B:m 0.0883773 1 0.0883773 3.54 0.0598

C:mi 14.6164 1 14.6164 586.05 0.0000

D:T 0.146424 2 0.0732122 2.94 0.0533

E:R 0.032214 2 0.016107 0.65 0.5243

F:Cross 0.534246 2 0.267123 10.71 0.0000

G:Rep 0.230427 4 0.0576067 2.31 0.0558

Interactions
AB 0.059378 1 0.059378 2.38 0.1228

AC 0.781786 1 0.781786 31.35 0.0000

AD 0.809964 2 0.404982 16.24 0.0000

AE 0.177993 2 0.0889967 3.57 0.0284

AF 0.300177 2 0.150088 6.02 0.0025

AG 0.483891 4 0.120973 4.85 0.0007

BC 0.532596 1 0.532596 21.35 0.0000

BD 0.0299214 2 0.0149607 0.60 0.5490

BE 0.0289296 2 0.0144648 0.58 0.5600

BF 0.138773 2 0.0693863 2.78 0.0621

BG 0.0862298 4 0.0215575 0.86 0.4846

CD 0.343405 2 0.171702 6.88 0.0010

CE 0.258943 2 0.129472 5.19 0.0056

CF 0.234615 2 0.117308 4.70 0.0092

CG 0.118569 4 0.0296422 1.19 0.3138

DE 0.997242 4 0.24931 10.00 0.0000

DF 0.0133065 4 0.00332662 0.13 0.9701

DG 0.25203 8 0.0315038 1.26 0.2584

EF 0.102117 4 0.0255293 1.02 0.3936

EG 0.0822061 8 0.0102758 0.41 0.9143

FG 0.144391 8 0.0180489 0.72 0.6708

Residual 51.452 2063 0.0249404

Total (corrected) 74.0182 2159

297

Table B.7: Analysis of Variance for the Hypervolume -
Calibration of RIPG, restart fixed.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 16.7304 1 16.7304 730.54 0.0000

B:m 0.982761 1 0.982761 42.91 0.0000

C:mi 3.34221 1 3.34221 145.94 0.0000

D:T 0.4964 2 0.2482 10.84 0.0000

E:R 0.088878 2 0.044439 1.94 0.1437

F:Greedy 6.82459 2 3.41229 149.00 0.0000

G:LocalSearch 0.105901 2 0.0529505 2.31 0.0991

H:Rep 0.118847 4 0.0297117 1.30 0.2685

Interactions
AB 3.80268 1 3.80268 166.05 0.0000

AC 2.07028 1 2.07028 90.40 0.0000

AE 2.30637 2 1.15319 50.35 0.0000

AE 0.699258 2 0.349629 15.27 0.0000

AF 18.4145 2 9.20723 402.04 0.0000

AG 2.81392 2 1.40696 61.44 0.0000

AH 0.0118271 4 0.00295678 0.13 0.9719

BC 1.47263 1 1.47263 64.30 0.0000

BD 0.386614 2 0.193307 8.44 0.0002

BE 1.59288 2 0.79644 34.78 0.0000

BF 0.523508 2 0.261754 11.43 0.0000

BG 0.00538029 2 0.00269015 0.12 0.8892

BH 0.0123125 4 0.00307812 0.13 0.9697

CD 0.240253 2 0.120126 5.25 0.0053

CE 0.00484679 2 0.0024234 0.11 0.8996

CF 24.8026 2 12.4013 541.51 0.0000

CG 0.649803 2 0.324902 14.19 0.0000

CH 0.132695 4 0.0331739 1.45 0.2152

DE 0.9847 4 0.246175 10.75 0.0000

DF 0.468092 4 0.117023 5.11 0.0004

DG 0.391536 4 0.097884 4.27 0.0019

DH 0.143224 8 0.017903 0.78 0.6188

EF 0.0288057 4 0.00720143 0.31 0.8685

EG 0.199771 4 0.0499427 2.18 0.0685

EH 0.0887463 8 0.0110933 0.48 0.8682

FG 6.8889 4 1.72222 75.20 0.0000

298 APPENDIX B. ANOVA TABLES

FH 0.1302 8 0.0162749 0.71 0.6824

GH 0.11167 8 0.0139588 0.61 0.7707

Residual 145.493 6353 0.0229014

Total (corrected) 249.298 6479

299

Table B.8: Analysis of Variance for the Hypervolume -
Calibration of RIPG, restart and greedy phase fixed.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 5.91195 1 5.91195 297.93 0.0000

B:m 0.307871 1 0.307871 15.51 0.0001

C:mi 1.75754 1 1.75754 88.57 0.0000

D:T 0.117775 2 0.0588877 2.97 0.0516

E:R 0.0900006 2 0.0450003 2.27 0.1038

F:LocalSearch 0.00806631 2 0.00403316 0.20 0.8161

G:Rep 0.0755584 4 0.0188896 0.95 0.4329

Interactions
AB 1.22219 1 1.22219 61.59 0.0000

AC 0.485919 1 0.485919 24.49 0.0000

AD 0.554101 2 0.277051 13.96 0.0000

AE 0.237388 2 0.118694 5.98 0.0026

AF 0.749387 2 0.374694 18.88 0.0000

AG 0.0746342 4 0.0186585 0.94 0.4395

BC 0.276526 1 0.276526 13.94 0.0002

BD 0.0696755 2 0.0348377 1.76 0.1731

BE 0.504069 2 0.252035 12.70 0.0000

BF 0.0000573752 2 0.0000286876 0.00 0.9986

BG 0.0469969 4 0.0117492 0.59 0.6684

CD 0.0301489 2 0.0150745 0.76 0.4680

CE 0.033463 2 0.0167315 0.84 0.4305

CF 0.575934 2 0.287967 14.51 0.0000

CG 0.102802 4 0.0257005 1.30 0.2696

DE 0.264315 4 0.0660786 3.33 0.0100

DF 0.240037 4 0.0600093 3.02 0.0169

DG 0.128494 8 0.0160617 0.81 0.5942

EF 0.230393 4 0.0575983 2.90 0.0207

EG 0.332956 8 0.0416196 2.10 0.0330

FG 0.126467 8 0.0158084 0.80 0.6056

Residual 40.9372 2063 0.0198435

Total (corrected) 57.5954 2159

300 APPENDIX B. ANOVA TABLES

Table B.9: Analysis of Variance for the Epsilon indicator
- comparison of NSGA-II and RIPG for the set of large

instances.

Source Sum of Degrees Mean F-Ratio P-Value
Squares of freedom Square

Main effects
A:n 0.874859 1 0.874859 14.51 0.0001

B:m 0.0950898 1 0.0950898 1.58 0.2091

C:mi 2.16909 1 2.16909 35.98 0.0000

D:T 0.27736 2 0.13868 2.30 0.1003

E:R 0.176332 2 0.0881659 1.46 0.2317

F:Method 21.818 1 21.818 361.95 0.0000

G:Rep 0.377536 9 0.0419484 0.70 0.7133

Interactions
AB 0.0644992 1 0.0644992 1.07 0.3009

AC 0.282509 1 0.282509 4.69 0.0304

AD 1.38941 2 0.694703 11.52 0.0000

AE 0.154565 2 0.0772824 1.28 0.2775

AF 2.54314 1 2.54314 42.19 0.0000

AG 0.504928 9 0.0561031 0.93 0.4968

BC 0.299689 1 0.299689 4.97 0.0258

BD 0.260065 2 0.130033 2.16 0.1157

BE 0.283723 2 0.141861 2.35 0.0951

BF 1.99124 1 1.99124 33.03 0.0000

BG 0.183932 9 0.0204368 0.34 0.9622

CD 0.403629 2 0.201814 3.35 0.0352

CE 1.00438 2 0.502188 8.33 0.0002

CF 7.44538 1 7.44538 123.51 0.0000

CG 0.267436 9 0.0297151 0.49 0.8803

DE 1.03797 4 0.259491 4.30 0.0018

DF 0.0667931 2 0.0333965 0.55 0.5747

DG 0.897753 18 0.0498752 0.83 0.6692

EF 0.174688 2 0.087344 1.45 0.2349

EG 0.368888 18 0.0204938 0.34 0.9957

FG 0.478319 9 0.0531466 0.88 0.5408

Residual 340.217 5644 0.0602795

Total (corrected) 386.109 5759

APPENDIX C
BEST SOLUTION VALUES

The data in the following tables give the best known solution value for each
of the problem instances. The instances are numbered and the parameters used
to generate the instances are given. For the small instances, the last column
indicates if the solution value has been proven to be the optimum or not. Not
that even if no proof has been found that the solution value is the optimal value,
it might still be the optimum.

301

302 APPENDIX C. BEST SOLUTION VALUES

Table C.1: Best found solution values for the small in-
stances with one machine per stage. Optimum indicates if

the optimum is guaranteed by the MIP model.

n m mi rel F E S A lag P rep Value Optimum

1 11 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1626 No
2 11 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1537 No
3 11 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1631 No
4 11 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1789 No
5 11 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 1839 No
6 11 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 1805 No
7 11 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1656 No
8 11 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1534 No
9 11 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1586 No
10 11 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1789 No
11 11 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 1832 No
12 11 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1742 No
13 11 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 1044 Yes
14 11 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 1281 No
15 11 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 900 Yes
16 11 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1272 Yes
17 11 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1234 Yes
18 11 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1078 Yes
19 11 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 1128 Yes
20 11 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 1127 No
21 11 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 958 Yes
22 11 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1184 Yes
23 11 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1522 Yes
24 11 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1208 Yes
25 11 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1833 No
26 11 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1895 No
27 11 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1863 No
28 11 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 2238 No
29 11 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2055 No
30 11 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 2135 No
31 11 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1640 No
32 11 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1739 No
33 11 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1759 No
34 11 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 2039 No
35 11 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 1866 No
36 11 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1988 No
37 11 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 938 No
38 11 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 919 Yes
39 11 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 793 Yes
40 11 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1291 Yes
41 11 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1585 Yes
42 11 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1502 Yes
43 11 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 818 Yes
44 11 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 886 Yes
45 11 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 1119 No
46 11 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1180 Yes
47 11 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1592 No
48 11 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1407 Yes
49 13 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1713 No
50 13 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 2006 No
51 13 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1728 No
52 13 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 2096 No
53 13 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2172 No
54 13 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 2156 No
55 13 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1718 No
56 13 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1982 No

303

57 13 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1841 No
58 13 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1796 No
59 13 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 2355 No
60 13 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 2153 No
61 13 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 1190 No
62 13 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 1327 No
63 13 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 1303 No
64 13 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1431 No
65 13 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1701 No
66 13 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1057 Yes
67 13 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 1006 Yes
68 13 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 1273 Yes
69 13 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 1051 No
70 13 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1274 No
71 13 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1333 No
72 13 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1447 No
73 13 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1977 No
74 13 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1946 No
75 13 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 2029 No
76 13 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 2471 No
77 13 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2465 No
78 13 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 2469 No
79 13 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 2112 No
80 13 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 2033 No
81 13 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 2020 No
82 13 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 2786 No
83 13 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 2379 No
84 13 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 2305 No
85 13 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 1271 No
86 13 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 1075 No
87 13 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 1155 No
88 13 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 928 Yes
89 13 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1254 Yes
90 13 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1388 No
91 13 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 1352 No
92 13 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 1055 No
93 13 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 977 Yes
94 13 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1553 No
95 13 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1577 No
96 13 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1588 No
97 15 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 2160 No
98 15 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1894 No
99 15 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 2206 No

100 15 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 2265 No
101 15 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2333 No
102 15 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 2404 No
103 15 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 2137 No
104 15 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 2194 No
105 15 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 2024 No
106 15 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 2339 No
107 15 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 2473 No
108 15 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 2362 No
109 15 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 1367 No
110 15 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 1293 No
111 15 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 1446 No
112 15 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1579 No
113 15 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1226 No
114 15 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1894 No
115 15 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 1359 Yes
116 15 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 1530 No
117 15 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 1207 No
118 15 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1398 No
119 15 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1605 No
120 15 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1497 No

304 APPENDIX C. BEST SOLUTION VALUES

121 15 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 2235 No
122 15 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 2295 No
123 15 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 2504 No
124 15 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 2739 No
125 15 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2555 No
126 15 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 2752 No
127 15 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 2203 No
128 15 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 2192 No
129 15 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 2469 No
130 15 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 2578 No
131 15 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 2741 No
132 15 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 2590 No
133 15 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 1119 No
134 15 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 1361 No
135 15 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 1621 No
136 15 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1721 No
137 15 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1480 No
138 15 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1512 No
139 15 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 1388 No
140 15 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 1065 Yes
141 15 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 1519 No
142 15 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1661 No
143 15 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1248 No
144 15 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1426 No
145 5 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 802 Yes
146 5 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 903 Yes
147 5 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 783 Yes
148 5 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1142 Yes
149 5 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 1297 Yes
150 5 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 1292 Yes
151 5 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 830 Yes
152 5 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 716 Yes
153 5 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 874 Yes
154 5 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1172 Yes
155 5 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 1024 Yes
156 5 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1330 Yes
157 5 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 392 Yes
158 5 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 422 Yes
159 5 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 544 Yes
160 5 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 774 Yes
161 5 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 688 Yes
162 5 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 771 Yes
163 5 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 494 Yes
164 5 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 517 Yes
165 5 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 593 Yes
166 5 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 713 Yes
167 5 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 856 Yes
168 5 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1050 Yes
169 5 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1058 Yes
170 5 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1010 Yes
171 5 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1077 Yes
172 5 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1903 Yes
173 5 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 1324 Yes
174 5 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 2079 Yes
175 5 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 918 Yes
176 5 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1028 Yes
177 5 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1124 Yes
178 5 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1330 Yes
179 5 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 1654 Yes
180 5 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1572 Yes
181 5 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 557 Yes
182 5 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 456 Yes
183 5 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 545 Yes
184 5 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 790 Yes

305

185 5 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1052 Yes
186 5 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 589 Yes
187 5 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 515 Yes
188 5 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 564 Yes
189 5 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 404 Yes
190 5 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 786 Yes
191 5 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 984 Yes
192 5 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 859 Yes
193 7 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1062 No
194 7 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1200 No
195 7 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1221 No
196 7 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1447 Yes
197 7 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 1260 Yes
198 7 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 1396 Yes
199 7 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1011 No
200 7 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 975 No
201 7 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1015 No
202 7 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1409 Yes
203 7 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 1527 Yes
204 7 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1585 Yes
205 7 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 562 Yes
206 7 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 765 Yes
207 7 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 769 Yes
208 7 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 928 Yes
209 7 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 897 Yes
210 7 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1059 Yes
211 7 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 678 Yes
212 7 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 769 Yes
213 7 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 574 Yes
214 7 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 941 Yes
215 7 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 1028 Yes
216 7 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 967 Yes
217 7 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1245 No
218 7 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1062 No
219 7 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1174 No
220 7 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1340 Yes
221 7 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2024 Yes
222 7 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 1710 Yes
223 7 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1303 No
224 7 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1373 No
225 7 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1258 No
226 7 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1613 Yes
227 7 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 2079 Yes
228 7 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1691 Yes
229 7 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 537 Yes
230 7 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 535 Yes
231 7 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 606 Yes
232 7 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1111 Yes
233 7 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 808 Yes
234 7 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1248 Yes
235 7 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 750 Yes
236 7 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 831 Yes
237 7 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 595 Yes
238 7 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1136 Yes
239 7 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 701 Yes
240 7 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 1214 Yes
241 9 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1396 No
242 9 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1390 No
243 9 2 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1528 No
244 9 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1506 No
245 9 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 1694 No
246 9 2 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 1569 Yes
247 9 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1328 No
248 9 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1314 No

306 APPENDIX C. BEST SOLUTION VALUES

249 9 2 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1288 No
250 9 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 1407 Yes
251 9 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 1710 Yes
252 9 2 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 1616 No
253 9 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 893 Yes
254 9 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 685 Yes
255 9 2 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 1051 Yes
256 9 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1302 Yes
257 9 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1280 Yes
258 9 2 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 955 Yes
259 9 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 774 Yes
260 9 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 925 Yes
261 9 2 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 994 Yes
262 9 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1068 Yes
263 9 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 932 Yes
264 9 2 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 945 Yes
265 9 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 1 1402 No
266 9 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 2 1484 No
267 9 3 1 1-200 0 100 75-125 50-100 -99-99 0-0 3 1553 No
268 9 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 1 1845 No
269 9 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 2 2077 No
270 9 3 1 1-200 0 100 75-125 50-100 -99-99 1-3 3 1883 No
271 9 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 1 1410 No
272 9 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 2 1422 No
273 9 3 1 1-200 0 50 75-125 50-100 -99-99 0-0 3 1479 No
274 9 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 1 2000 No
275 9 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 2 2188 Yes
276 9 3 1 1-200 0 50 75-125 50-100 -99-99 1-3 3 2090 No
277 9 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 1 1092 Yes
278 9 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 2 1210 Yes
279 9 3 1 1-200 50 100 75-125 50-100 -99-99 0-0 3 903 Yes
280 9 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 1 1146 Yes
281 9 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 2 1054 Yes
282 9 3 1 1-200 50 100 75-125 50-100 -99-99 1-3 3 1146 Yes
283 9 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 1 1075 No
284 9 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 2 771 Yes
285 9 3 1 1-200 50 50 75-125 50-100 -99-99 0-0 3 768 Yes
286 9 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 1 1132 Yes
287 9 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 2 812 Yes
288 9 3 1 1-200 50 50 75-125 50-100 -99-99 1-3 3 911 Yes

307

Table C.2: Best found solution values for the small in-
stances with three machines per stage. Optimum indicates

if the optimum is guaranteed by the MIP model.

n m mi rel F E S A lag P rep Value Optimum

289 11 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 501 No
290 11 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 471 No
291 11 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 489 No
292 11 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 730 No
293 11 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 641 No
294 11 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 712 No
295 11 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 557 No
296 11 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 695 No
297 11 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 924 No
298 11 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 978 No
299 11 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 991 No
300 11 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 977 No
301 11 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 321 No
302 11 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 478 No
303 11 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 388 No
304 11 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 391 Yes
305 11 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 483 No
306 11 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 429 No
307 11 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 465 Yes
308 11 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 496 Yes
309 11 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 405 Yes
310 11 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 408 Yes
311 11 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 575 Yes
312 11 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 762 Yes
313 11 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 598 No
314 11 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 568 No
315 11 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 674 No
316 11 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 948 No
317 11 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 786 No
318 11 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 933 No
319 11 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 822 No
320 11 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 735 No
321 11 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 752 No
322 11 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1372 No
323 11 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1610 No
324 11 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1305 No
325 11 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 320 No
326 11 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 293 Yes
327 11 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 327 No
328 11 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 350 No
329 11 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 393 No
330 11 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 692 No
331 11 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 551 No
332 11 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 542 Yes
333 11 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 383 Yes
334 11 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 869 Yes
335 11 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 722 Yes
336 11 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 745 Yes
337 13 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 610 No
338 13 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 606 No
339 13 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 577 No
340 13 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 657 No
341 13 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 871 No
342 13 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 683 No
343 13 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 683 No
344 13 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 846 No

308 APPENDIX C. BEST SOLUTION VALUES

345 13 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 840 No
346 13 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1061 No
347 13 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 950 No
348 13 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1225 No
349 13 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 497 No
350 13 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 314 Yes
351 13 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 379 No
352 13 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 550 No
353 13 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 531 No
354 13 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 450 No
355 13 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 698 Yes
356 13 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 575 Yes
357 13 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 455 Yes
358 13 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 793 Yes
359 13 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 683 Yes
360 13 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 976 Yes
361 13 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 708 No
362 13 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 642 No
363 13 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 641 No
364 13 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 842 No
365 13 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 903 No
366 13 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 835 No
367 13 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 942 No
368 13 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 941 No
369 13 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 873 No
370 13 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1455 No
371 13 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1184 No
372 13 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1164 No
373 13 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 455 No
374 13 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 415 No
375 13 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 432 No
376 13 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 536 No
377 13 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 461 No
378 13 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 617 No
379 13 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 545 No
380 13 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 465 Yes
381 13 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 377 Yes
382 13 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 1191 No
383 13 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 995 Yes
384 13 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 736 Yes
385 15 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 637 No
386 15 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 688 No
387 15 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 712 No
388 15 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 784 No
389 15 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 765 No
390 15 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 730 No
391 15 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 787 No
392 15 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 787 No
393 15 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 738 No
394 15 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1304 No
395 15 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1170 No
396 15 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 968 No
397 15 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 480 No
398 15 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 448 No
399 15 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 438 No
400 15 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 541 No
401 15 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 507 No
402 15 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 554 No
403 15 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 579 No
404 15 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 579 Yes
405 15 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 552 Yes
406 15 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 786 No
407 15 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 583 Yes
408 15 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 866 No

309

409 15 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 813 No
410 15 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 770 No
411 15 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 739 No
412 15 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 977 No
413 15 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 835 No
414 15 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 885 No
415 15 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 977 No
416 15 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 1021 No
417 15 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 1010 No
418 15 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1523 No
419 15 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1466 No
420 15 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1343 No
421 15 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 424 No
422 15 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 499 No
423 15 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 434 No
424 15 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 481 No
425 15 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 441 No
426 15 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 610 No
427 15 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 654 No
428 15 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 504 No
429 15 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 480 Yes
430 15 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 1079 No
431 15 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 1023 No
432 15 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 898 No
433 5 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 284 Yes
434 5 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 295 Yes
435 5 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 244 Yes
436 5 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 366 Yes
437 5 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 394 Yes
438 5 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 625 Yes
439 5 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 449 Yes
440 5 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 407 Yes
441 5 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 439 Yes
442 5 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 773 Yes
443 5 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1103 Yes
444 5 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 508 Yes
445 5 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 216 Yes
446 5 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 146 Yes
447 5 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 193 Yes
448 5 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 456 Yes
449 5 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 236 Yes
450 5 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 428 Yes
451 5 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 293 Yes
452 5 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 413 Yes
453 5 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 343 Yes
454 5 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 382 Yes
455 5 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 354 Yes
456 5 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 305 Yes
457 5 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 317 Yes
458 5 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 345 Yes
459 5 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 285 Yes
460 5 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 839 No
461 5 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 732 No
462 5 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 557 Yes
463 5 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 387 Yes
464 5 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 597 Yes
465 5 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 554 Yes
466 5 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1098 Yes
467 5 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1069 Yes
468 5 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1281 Yes
469 5 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 193 Yes
470 5 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 260 Yes
471 5 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 255 Yes
472 5 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 364 Yes

310 APPENDIX C. BEST SOLUTION VALUES

473 5 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 375 Yes
474 5 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 437 Yes
475 5 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 324 Yes
476 5 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 489 Yes
477 5 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 235 Yes
478 5 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 465 Yes
479 5 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 489 Yes
480 5 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 294 Yes
481 7 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 433 No
482 7 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 406 No
483 7 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 353 No
484 7 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 504 Yes
485 7 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 638 No
486 7 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 623 No
487 7 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 591 Yes
488 7 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 521 Yes
489 7 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 510 Yes
490 7 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 808 Yes
491 7 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 889 Yes
492 7 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1295 Yes
493 7 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 164 Yes
494 7 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 184 Yes
495 7 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 266 Yes
496 7 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 352 Yes
497 7 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 308 Yes
498 7 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 443 Yes
499 7 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 311 Yes
500 7 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 361 Yes
501 7 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 342 Yes
502 7 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 602 Yes
503 7 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 538 Yes
504 7 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 526 Yes
505 7 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 447 No
506 7 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 407 No
507 7 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 440 No
508 7 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 853 No
509 7 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 696 No
510 7 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 898 No
511 7 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 635 Yes
512 7 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 509 No
513 7 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 583 No
514 7 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1525 Yes
515 7 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1474 Yes
516 7 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1370 Yes
517 7 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 303 Yes
518 7 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 258 Yes
519 7 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 284 Yes
520 7 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 335 Yes
521 7 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 377 Yes
522 7 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 453 Yes
523 7 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 339 Yes
524 7 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 305 Yes
525 7 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 403 Yes
526 7 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 681 Yes
527 7 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 709 Yes
528 7 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 542 Yes
529 9 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 425 No
530 9 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 429 No
531 9 2 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 471 No
532 9 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 605 No
533 9 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 773 No
534 9 2 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 590 No
535 9 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 526 No
536 9 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 566 No

311

537 9 2 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 668 No
538 9 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 782 Yes
539 9 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1007 Yes
540 9 2 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1189 Yes
541 9 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 267 Yes
542 9 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 296 Yes
543 9 2 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 399 Yes
544 9 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 418 Yes
545 9 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 624 No
546 9 2 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 422 Yes
547 9 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 326 Yes
548 9 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 438 Yes
549 9 2 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 374 Yes
550 9 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 614 Yes
551 9 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 634 Yes
552 9 2 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 623 Yes
553 9 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 1 476 No
554 9 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 2 508 No
555 9 3 3 1-200 0 100 75-125 50-100 -99-99 0-0 3 599 No
556 9 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 1 746 No
557 9 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 2 728 No
558 9 3 3 1-200 0 100 75-125 50-100 -99-99 1-3 3 757 No
559 9 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 1 615 No
560 9 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 2 761 No
561 9 3 3 1-200 0 50 75-125 50-100 -99-99 0-0 3 658 No
562 9 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 1 1008 No
563 9 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 2 1431 No
564 9 3 3 1-200 0 50 75-125 50-100 -99-99 1-3 3 1342 No
565 9 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 1 213 Yes
566 9 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 2 323 Yes
567 9 3 3 1-200 50 100 75-125 50-100 -99-99 0-0 3 382 No
568 9 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 1 392 Yes
569 9 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 2 483 Yes
570 9 3 3 1-200 50 100 75-125 50-100 -99-99 1-3 3 469 Yes
571 9 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 1 368 Yes
572 9 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 2 427 Yes
573 9 3 3 1-200 50 50 75-125 50-100 -99-99 0-0 3 376 Yes
574 9 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 1 923 Yes
575 9 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 2 837 Yes
576 9 3 3 1-200 50 50 75-125 50-100 -99-99 1-3 3 974 Yes

312 APPENDIX C. BEST SOLUTION VALUES

Table C.3: Best found solution values for the large in-
stances.

n m mi rel F E S A lag P rep Value

577 100 4 2 1-200 0 100 75-125 50-100 -99-99 0-0 1 6728
578 100 4 2 1-200 0 100 75-125 50-100 -99-99 0-0 2 6736
579 100 4 2 1-200 0 100 75-125 50-100 -99-99 0-0 3 6882
580 100 4 2 1-200 0 100 75-125 50-100 -99-99 1-5 1 7140
581 100 4 2 1-200 0 100 75-125 50-100 -99-99 1-5 2 7105
582 100 4 2 1-200 0 100 75-125 50-100 -99-99 1-5 3 7274
583 100 4 2 1-200 0 50 75-125 50-100 -99-99 0-0 1 7480
584 100 4 2 1-200 0 50 75-125 50-100 -99-99 0-0 2 7154
585 100 4 2 1-200 0 50 75-125 50-100 -99-99 0-0 3 7358
586 100 4 2 1-200 0 50 75-125 50-100 -99-99 1-5 1 8047
587 100 4 2 1-200 0 50 75-125 50-100 -99-99 1-5 2 7778
588 100 4 2 1-200 0 50 75-125 50-100 -99-99 1-5 3 7569
589 100 4 2 1-200 50 100 75-125 50-100 -99-99 0-0 1 3657
590 100 4 2 1-200 50 100 75-125 50-100 -99-99 0-0 2 3261
591 100 4 2 1-200 50 100 75-125 50-100 -99-99 0-0 3 3489
592 100 4 2 1-200 50 100 75-125 50-100 -99-99 1-5 1 3506
593 100 4 2 1-200 50 100 75-125 50-100 -99-99 1-5 2 3838
594 100 4 2 1-200 50 100 75-125 50-100 -99-99 1-5 3 3714
595 100 4 2 1-200 50 50 75-125 50-100 -99-99 0-0 1 3924
596 100 4 2 1-200 50 50 75-125 50-100 -99-99 0-0 2 3530
597 100 4 2 1-200 50 50 75-125 50-100 -99-99 0-0 3 3924
598 100 4 2 1-200 50 50 75-125 50-100 -99-99 1-5 1 3982
599 100 4 2 1-200 50 50 75-125 50-100 -99-99 1-5 2 3843
600 100 4 2 1-200 50 50 75-125 50-100 -99-99 1-5 3 3704
601 100 4 4 1-200 0 100 75-125 50-100 -99-99 0-0 1 3452
602 100 4 4 1-200 0 100 75-125 50-100 -99-99 0-0 2 3450
603 100 4 4 1-200 0 100 75-125 50-100 -99-99 0-0 3 3394
604 100 4 4 1-200 0 100 75-125 50-100 -99-99 1-5 1 3601
605 100 4 4 1-200 0 100 75-125 50-100 -99-99 1-5 2 3616
606 100 4 4 1-200 0 100 75-125 50-100 -99-99 1-5 3 3664
607 100 4 4 1-200 0 50 75-125 50-100 -99-99 0-0 1 3828
608 100 4 4 1-200 0 50 75-125 50-100 -99-99 0-0 2 3944
609 100 4 4 1-200 0 50 75-125 50-100 -99-99 0-0 3 3871
610 100 4 4 1-200 0 50 75-125 50-100 -99-99 1-5 1 4330
611 100 4 4 1-200 0 50 75-125 50-100 -99-99 1-5 2 4323
612 100 4 4 1-200 0 50 75-125 50-100 -99-99 1-5 3 4450
613 100 4 4 1-200 50 100 75-125 50-100 -99-99 0-0 1 1695
614 100 4 4 1-200 50 100 75-125 50-100 -99-99 0-0 2 1545
615 100 4 4 1-200 50 100 75-125 50-100 -99-99 0-0 3 1599
616 100 4 4 1-200 50 100 75-125 50-100 -99-99 1-5 1 1786
617 100 4 4 1-200 50 100 75-125 50-100 -99-99 1-5 2 1763
618 100 4 4 1-200 50 100 75-125 50-100 -99-99 1-5 3 1918
619 100 4 4 1-200 50 50 75-125 50-100 -99-99 0-0 1 1991
620 100 4 4 1-200 50 50 75-125 50-100 -99-99 0-0 2 1844
621 100 4 4 1-200 50 50 75-125 50-100 -99-99 0-0 3 1917
622 100 4 4 1-200 50 50 75-125 50-100 -99-99 1-5 1 2158
623 100 4 4 1-200 50 50 75-125 50-100 -99-99 1-5 2 2173
624 100 4 4 1-200 50 50 75-125 50-100 -99-99 1-5 3 2122
625 100 8 2 1-200 0 100 75-125 50-100 -99-99 0-0 1 7697
626 100 8 2 1-200 0 100 75-125 50-100 -99-99 0-0 2 7803
627 100 8 2 1-200 0 100 75-125 50-100 -99-99 0-0 3 7785
628 100 8 2 1-200 0 100 75-125 50-100 -99-99 1-5 1 8881
629 100 8 2 1-200 0 100 75-125 50-100 -99-99 1-5 2 8667
630 100 8 2 1-200 0 100 75-125 50-100 -99-99 1-5 3 8869
631 100 8 2 1-200 0 50 75-125 50-100 -99-99 0-0 1 8631
632 100 8 2 1-200 0 50 75-125 50-100 -99-99 0-0 2 8427
633 100 8 2 1-200 0 50 75-125 50-100 -99-99 0-0 3 8544

313

634 100 8 2 1-200 0 50 75-125 50-100 -99-99 1-5 1 10265
635 100 8 2 1-200 0 50 75-125 50-100 -99-99 1-5 2 10852
636 100 8 2 1-200 0 50 75-125 50-100 -99-99 1-5 3 9904
637 100 8 2 1-200 50 100 75-125 50-100 -99-99 0-0 1 3582
638 100 8 2 1-200 50 100 75-125 50-100 -99-99 0-0 2 3649
639 100 8 2 1-200 50 100 75-125 50-100 -99-99 0-0 3 3662
640 100 8 2 1-200 50 100 75-125 50-100 -99-99 1-5 1 4234
641 100 8 2 1-200 50 100 75-125 50-100 -99-99 1-5 2 4263
642 100 8 2 1-200 50 100 75-125 50-100 -99-99 1-5 3 4234
643 100 8 2 1-200 50 50 75-125 50-100 -99-99 0-0 1 3993
644 100 8 2 1-200 50 50 75-125 50-100 -99-99 0-0 2 4021
645 100 8 2 1-200 50 50 75-125 50-100 -99-99 0-0 3 3860
646 100 8 2 1-200 50 50 75-125 50-100 -99-99 1-5 1 4867
647 100 8 2 1-200 50 50 75-125 50-100 -99-99 1-5 2 4633
648 100 8 2 1-200 50 50 75-125 50-100 -99-99 1-5 3 4982
649 100 8 4 1-200 0 100 75-125 50-100 -99-99 0-0 1 4051
650 100 8 4 1-200 0 100 75-125 50-100 -99-99 0-0 2 4032
651 100 8 4 1-200 0 100 75-125 50-100 -99-99 0-0 3 4089
652 100 8 4 1-200 0 100 75-125 50-100 -99-99 1-5 1 4537
653 100 8 4 1-200 0 100 75-125 50-100 -99-99 1-5 2 4490
654 100 8 4 1-200 0 100 75-125 50-100 -99-99 1-5 3 4692
655 100 8 4 1-200 0 50 75-125 50-100 -99-99 0-0 1 4830
656 100 8 4 1-200 0 50 75-125 50-100 -99-99 0-0 2 4757
657 100 8 4 1-200 0 50 75-125 50-100 -99-99 0-0 3 4767
658 100 8 4 1-200 0 50 75-125 50-100 -99-99 1-5 1 5868
659 100 8 4 1-200 0 50 75-125 50-100 -99-99 1-5 2 6560
660 100 8 4 1-200 0 50 75-125 50-100 -99-99 1-5 3 6159
661 100 8 4 1-200 50 100 75-125 50-100 -99-99 0-0 1 1680
662 100 8 4 1-200 50 100 75-125 50-100 -99-99 0-0 2 1921
663 100 8 4 1-200 50 100 75-125 50-100 -99-99 0-0 3 1885
664 100 8 4 1-200 50 100 75-125 50-100 -99-99 1-5 1 2223
665 100 8 4 1-200 50 100 75-125 50-100 -99-99 1-5 2 2242
666 100 8 4 1-200 50 100 75-125 50-100 -99-99 1-5 3 2419
667 100 8 4 1-200 50 50 75-125 50-100 -99-99 0-0 1 2187
668 100 8 4 1-200 50 50 75-125 50-100 -99-99 0-0 2 2110
669 100 8 4 1-200 50 50 75-125 50-100 -99-99 0-0 3 2094
670 100 8 4 1-200 50 50 75-125 50-100 -99-99 1-5 1 3509
671 100 8 4 1-200 50 50 75-125 50-100 -99-99 1-5 2 2834
672 100 8 4 1-200 50 50 75-125 50-100 -99-99 1-5 3 2952
673 50 4 2 1-200 0 100 75-125 50-100 -99-99 0-0 1 3520
674 50 4 2 1-200 0 100 75-125 50-100 -99-99 0-0 2 3468
675 50 4 2 1-200 0 100 75-125 50-100 -99-99 0-0 3 3505
676 50 4 2 1-200 0 100 75-125 50-100 -99-99 1-5 1 3975
677 50 4 2 1-200 0 100 75-125 50-100 -99-99 1-5 2 3718
678 50 4 2 1-200 0 100 75-125 50-100 -99-99 1-5 3 3861
679 50 4 2 1-200 0 50 75-125 50-100 -99-99 0-0 1 3859
680 50 4 2 1-200 0 50 75-125 50-100 -99-99 0-0 2 3835
681 50 4 2 1-200 0 50 75-125 50-100 -99-99 0-0 3 3862
682 50 4 2 1-200 0 50 75-125 50-100 -99-99 1-5 1 4136
683 50 4 2 1-200 0 50 75-125 50-100 -99-99 1-5 2 4067
684 50 4 2 1-200 0 50 75-125 50-100 -99-99 1-5 3 4496
685 50 4 2 1-200 50 100 75-125 50-100 -99-99 0-0 1 1790
686 50 4 2 1-200 50 100 75-125 50-100 -99-99 0-0 2 1782
687 50 4 2 1-200 50 100 75-125 50-100 -99-99 0-0 3 1935
688 50 4 2 1-200 50 100 75-125 50-100 -99-99 1-5 1 2178
689 50 4 2 1-200 50 100 75-125 50-100 -99-99 1-5 2 1721
690 50 4 2 1-200 50 100 75-125 50-100 -99-99 1-5 3 1646
691 50 4 2 1-200 50 50 75-125 50-100 -99-99 0-0 1 2094
692 50 4 2 1-200 50 50 75-125 50-100 -99-99 0-0 2 1720
693 50 4 2 1-200 50 50 75-125 50-100 -99-99 0-0 3 2085
694 50 4 2 1-200 50 50 75-125 50-100 -99-99 1-5 1 2163
695 50 4 2 1-200 50 50 75-125 50-100 -99-99 1-5 2 2416
696 50 4 2 1-200 50 50 75-125 50-100 -99-99 1-5 3 2258
697 50 4 4 1-200 0 100 75-125 50-100 -99-99 0-0 1 1828

314 APPENDIX C. BEST SOLUTION VALUES

698 50 4 4 1-200 0 100 75-125 50-100 -99-99 0-0 2 1875
699 50 4 4 1-200 0 100 75-125 50-100 -99-99 0-0 3 1891
700 50 4 4 1-200 0 100 75-125 50-100 -99-99 1-5 1 2073
701 50 4 4 1-200 0 100 75-125 50-100 -99-99 1-5 2 2030
702 50 4 4 1-200 0 100 75-125 50-100 -99-99 1-5 3 2022
703 50 4 4 1-200 0 50 75-125 50-100 -99-99 0-0 1 2133
704 50 4 4 1-200 0 50 75-125 50-100 -99-99 0-0 2 2209
705 50 4 4 1-200 0 50 75-125 50-100 -99-99 0-0 3 2015
706 50 4 4 1-200 0 50 75-125 50-100 -99-99 1-5 1 2439
707 50 4 4 1-200 0 50 75-125 50-100 -99-99 1-5 2 2620
708 50 4 4 1-200 0 50 75-125 50-100 -99-99 1-5 3 2458
709 50 4 4 1-200 50 100 75-125 50-100 -99-99 0-0 1 900
710 50 4 4 1-200 50 100 75-125 50-100 -99-99 0-0 2 906
711 50 4 4 1-200 50 100 75-125 50-100 -99-99 0-0 3 838
712 50 4 4 1-200 50 100 75-125 50-100 -99-99 1-5 1 1079
713 50 4 4 1-200 50 100 75-125 50-100 -99-99 1-5 2 1023
714 50 4 4 1-200 50 100 75-125 50-100 -99-99 1-5 3 1047
715 50 4 4 1-200 50 50 75-125 50-100 -99-99 0-0 1 955
716 50 4 4 1-200 50 50 75-125 50-100 -99-99 0-0 2 851
717 50 4 4 1-200 50 50 75-125 50-100 -99-99 0-0 3 1041
718 50 4 4 1-200 50 50 75-125 50-100 -99-99 1-5 1 1266
719 50 4 4 1-200 50 50 75-125 50-100 -99-99 1-5 2 1615
720 50 4 4 1-200 50 50 75-125 50-100 -99-99 1-5 3 1132
721 50 8 2 1-200 0 100 75-125 50-100 -99-99 0-0 1 4349
722 50 8 2 1-200 0 100 75-125 50-100 -99-99 0-0 2 4132
723 50 8 2 1-200 0 100 75-125 50-100 -99-99 0-0 3 4257
724 50 8 2 1-200 0 100 75-125 50-100 -99-99 1-5 1 4988
725 50 8 2 1-200 0 100 75-125 50-100 -99-99 1-5 2 4945
726 50 8 2 1-200 0 100 75-125 50-100 -99-99 1-5 3 5168
727 50 8 2 1-200 0 50 75-125 50-100 -99-99 0-0 1 4824
728 50 8 2 1-200 0 50 75-125 50-100 -99-99 0-0 2 4895
729 50 8 2 1-200 0 50 75-125 50-100 -99-99 0-0 3 4779
730 50 8 2 1-200 0 50 75-125 50-100 -99-99 1-5 1 6305
731 50 8 2 1-200 0 50 75-125 50-100 -99-99 1-5 2 6450
732 50 8 2 1-200 0 50 75-125 50-100 -99-99 1-5 3 6267
733 50 8 2 1-200 50 100 75-125 50-100 -99-99 0-0 1 1796
734 50 8 2 1-200 50 100 75-125 50-100 -99-99 0-0 2 1981
735 50 8 2 1-200 50 100 75-125 50-100 -99-99 0-0 3 2241
736 50 8 2 1-200 50 100 75-125 50-100 -99-99 1-5 1 2657
737 50 8 2 1-200 50 100 75-125 50-100 -99-99 1-5 2 2460
738 50 8 2 1-200 50 100 75-125 50-100 -99-99 1-5 3 2479
739 50 8 2 1-200 50 50 75-125 50-100 -99-99 0-0 1 2135
740 50 8 2 1-200 50 50 75-125 50-100 -99-99 0-0 2 2302
741 50 8 2 1-200 50 50 75-125 50-100 -99-99 0-0 3 2229
742 50 8 2 1-200 50 50 75-125 50-100 -99-99 1-5 1 3283
743 50 8 2 1-200 50 50 75-125 50-100 -99-99 1-5 2 3268
744 50 8 2 1-200 50 50 75-125 50-100 -99-99 1-5 3 3728
745 50 8 4 1-200 0 100 75-125 50-100 -99-99 0-0 1 2298
746 50 8 4 1-200 0 100 75-125 50-100 -99-99 0-0 2 2340
747 50 8 4 1-200 0 100 75-125 50-100 -99-99 0-0 3 2276
748 50 8 4 1-200 0 100 75-125 50-100 -99-99 1-5 1 3216
749 50 8 4 1-200 0 100 75-125 50-100 -99-99 1-5 2 3246
750 50 8 4 1-200 0 100 75-125 50-100 -99-99 1-5 3 2844
751 50 8 4 1-200 0 50 75-125 50-100 -99-99 0-0 1 2784
752 50 8 4 1-200 0 50 75-125 50-100 -99-99 0-0 2 2752
753 50 8 4 1-200 0 50 75-125 50-100 -99-99 0-0 3 2800
754 50 8 4 1-200 0 50 75-125 50-100 -99-99 1-5 1 4596
755 50 8 4 1-200 0 50 75-125 50-100 -99-99 1-5 2 5764
756 50 8 4 1-200 0 50 75-125 50-100 -99-99 1-5 3 5040
757 50 8 4 1-200 50 100 75-125 50-100 -99-99 0-0 1 1130
758 50 8 4 1-200 50 100 75-125 50-100 -99-99 0-0 2 1055
759 50 8 4 1-200 50 100 75-125 50-100 -99-99 0-0 3 983
760 50 8 4 1-200 50 100 75-125 50-100 -99-99 1-5 1 1479
761 50 8 4 1-200 50 100 75-125 50-100 -99-99 1-5 2 1499

315

762 50 8 4 1-200 50 100 75-125 50-100 -99-99 1-5 3 1290
763 50 8 4 1-200 50 50 75-125 50-100 -99-99 0-0 1 1159
764 50 8 4 1-200 50 50 75-125 50-100 -99-99 0-0 2 1302
765 50 8 4 1-200 50 50 75-125 50-100 -99-99 0-0 3 1064
766 50 8 4 1-200 50 50 75-125 50-100 -99-99 1-5 1 1983
767 50 8 4 1-200 50 50 75-125 50-100 -99-99 1-5 2 1770
768 50 8 4 1-200 50 50 75-125 50-100 -99-99 1-5 3 2054

	1 Introduction and objectives
	1.1 Motivation
	1.2 Classification of scheduling problems
	1.3 Objectives

	2 The hybrid flexible flow line problem
	2.1 Example instance
	2.2 Literature review
	2.2.1 Genetic algorithm applications in realistic scheduling
	2.2.2 Genetic algorithms for hybrid flowshop problems
	2.2.3 Representation schemes for GA applications

	3 Mathematical model
	3.1 Introduction
	3.2 The MIP model formulation
	3.3 Computational Evaluation
	3.3.1 MIP model evaluation
	3.3.2 MIP model statistical analysis

	3.4 Conclusions

	4 Heuristics
	4.1 Introduction
	4.2 Machine assignment rules
	4.2.1 Rules based on current job, current stage
	4.2.2 Look-ahead rules

	4.3 Solution representations
	4.3.1 Permutation with a single rule for machine assignment
	4.3.2 Permutation with an assignment rule for each job
	4.3.3 Permutation with the machine assignments for each job
	4.3.4 Ordered list of tasks for each machine

	4.4 Dispatching rules
	4.5 NEH heuristic
	4.6 Conclusions

	5 Genetic Algorithms
	5.1 BGA
	5.2 SGA
	5.3 SGAR
	5.4 SGAM
	5.5 EGA
	5.5.1 Specific crossover operators
	5.5.2 Specific mutation operators

	5.6 Computational Evaluation
	5.6.1 Calibrations
	5.6.2 Comparison among genetic algorithms
	5.6.3 Comparison with other methods

	5.7 Conclusions

	6 Local Search Algorithms
	6.1 Introduction
	6.2 Memetic Algorithm
	6.3 Iterated Local Search
	6.4 Iterated Greedy
	6.5 Computational Evaluation
	6.6 Conclusions

	7 Shifting representation algorithms
	7.1 Mixed Genetic Algorithm
	7.2 Shifting Representation Search
	7.3 Computational Evaluation
	7.4 Conclusions

	8 Multi-objective scheduling
	8.1 Introduction
	8.1.1 Weighted objectives
	8.1.2 Lexicographical approaches
	8.1.3 Pareto optimisation

	8.2 Multi-objective quality measures
	8.2.1 Quality indicators
	8.2.2 Empirical attainment functions

	8.3 Problem description
	8.4 Proposed Algorithms
	8.4.1 NSGA-II
	8.4.2 RIPG

	8.5 Computational Evaluation
	8.5.1 Calibrations
	8.5.2 Comparison among multi-objective algorithms

	8.6 Conclusions

	9 Conclusions and future research
	9.1 Scheduling software
	9.2 Future research
	9.3 Publications

	Bibliography
	A Data for figures
	B ANOVA tables
	C Best solution values

