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 

Abstract— In this paper, the theoretical unification of linear 

and nonlinear inter-core crosstalk (IC-XT) in step-index 

single-mode multi-core fiber (MCF) media is reported and 

validated experimentally. In order to estimate the IC-XT when 

operating in linear and nonlinear regimes, the coupled-mode 

theory (CMT) and the coupled-power theory (CPT) have been 

unified in both power regimes. The theoretical analysis of the 

CMT indicates that in coupled MCFs with reduced core-to-core 

distance (core pitch) the nonlinear self-coupling and cross-

coupling effects should be considered when operating with high 

optical powers. However, considering a core pitch value higher 

than three times the core radius only the self-coupling effect 

should be taken into account for estimating the nonlinear IC-XT. 

Considering these results, the CPT is also extended to nonlinear 

regime including the dominant nonlinear coupling effect. Using 

both CMT and CPT, the statistical model of nonlinear IC-XT is 

completed with the closed-form expressions for estimating the 

cumulative distribution function, the probability density function 

and the crosstalk mean and variance as a function of the power 

level launched into a single-core of the MCF. The crosstalk model 

presented is additionally extended when multiple cores are 

simultaneously excited.  Finally, the theoretical model is 

experimentally validated in a homogeneous four-core fiber 

considering different bending radius configurations. 

 
Index Terms— Multi-core fiber, coupled-mode theory, 

coupled-power theory, inter-core crosstalk. 

I. INTRODUCTION 

ULTI-CORE fiber (MCF) and advanced optical 

modulation formats supporting space-division 

multiplexing (SDM) is a major focus of recent investigation in 

optical systems in order to overcome the capacity limit of 

single-core fibers [1]−[6]. The channel capacity growth is 

slowed down as the nonlinear Shannon limit of the single-core 

fiber is rapidly reached [6]. In this scenario, an attractive 

technology to overcome this capacity limit is SDM technology 

using MCF. One of the main physical impairments in SDM 

transmissions using MCF media is the mode coupling among 

cores, referred as the inter-core crosstalk (IC-XT) phenomena, 
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which presents a stochastic nature due to the MCF random 

perturbations and additional birefringence fluctuations 

[7]−[15]. In linear regime, theoretical models using the 

coupled-mode theory (CMT) and the coupled-power theory 

(CPT) have been extensively investigated for estimating the 

crosstalk in coupled and uncoupled MCFs [7]−[12]. In 

nonlinear regime, the Manakov equations have been extended 

to multi-mode and multi-core fiber media modeling intra- and 

inter-core nonlinear effects [13], [14]. In addition, in [15] the 

nonlinear CMT has been recently proposed for uncoupled 

MCFs and the probability density function (pdf) of the 

nonlinear IC-XT has been reported. 

Aimed to unify the crosstalk theoretical models in both 

power regimes for step-index MCFs considering both coupled 

and uncoupled cores, the nonlinear CMT should be revisited 

including additional mode-coupling coefficients (MCCs), the 

CPT should be extended to nonlinear regime from the 

nonlinear CMT and the statistical analysis reported in [15] 

should be completed with the analytical expressions of the 

cumulative distribution function (cdf), mean and variance of 

the nonlinear IC-XT. Furthermore, in bent and twisted MCFs 

the discrete longitudinal evolution of IC-XT can be observed 

at each phase-matching point where the equivalent refractive 

index difference between cores is zero [10], [12]. Therefore, 

the number of phase-matching points of the MCF is an 

additional parameter that can also be investigated in both 

power regimes.  

This paper reports the theoretical estimation of the nonlinear 

IC-XT in MCF media in good agreement with extensive 

experimental measurements. The paper is structured as 

follows. In Section II, the nonlinear CMT is revisited to 

describe mode coupling in coupled and uncoupled step-index 

MCFs considering different core-to-core distances (core pitch) 

and different index mismatching values among cores. In 

Section III, the CPT is extended to nonlinear regime including 

the dominant nonlinear effect of the nonlinear CMT. In 

Section IV, the IC-XT statistical model is completed in 

nonlinear regime with the closed-form expressions of the cdf, 

mean, variance and number of phase-matching points of the 

crosstalk considering single-core excitation. Additionally, the 

IC-XT distribution is also investigated in multi-core excitation 

conditions. The experimental validation of the theoretical 

model is performed in Section V with two different bending 

radius configurations showing good agreement with the herein 

presented nonlinear analysis. Finally, in Section VI the main 

conclusions of this work are highlighted.  
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II. UNIFIED COUPLED-MODE THEORY FOR MCF MEDIA WITH 

STEP-INDEX COUPLED AND UNCOUPLED CORES 

The coupled-mode theory (CMT) was extended to nonlinear 

regime in [15] for uncoupled MCFs neglecting several 

mode-coupling coefficients (MCCs). However, this theoretical 

approximation should be further elaborated considering 

coupled cores, where the mode overlapping between the core 

modes is higher than in uncoupled MCFs [16], [17]. In this 

section, complete expressions of the coupled-mode equations 

are reported including additional MCCs for homogeneous and 

heterogeneous MCFs with coupled and uncoupled cores. The 

dominant MCCs are further investigated as a function of the 

core pitch value and the index mismatching between cores. 

CMT unification for coupled and uncoupled MCFs 

operating in linear and nonlinear regime can be performed 

using a similar derivation as [18], [19] for the Homogeneous 

Nonlinear Directional Coupler (HNLDC). Nevertheless, the 

coupled-mode equations of the HNLDC are found to be 

inaccurate in heterogeneous MCFs with an intrinsic refractive 

index mismatching among cores and random perturbations of 

core modes due to fiber bending and twisting [7].  

In order to propose a unified CMT in multi-core fiber 

media, a weakly guiding step-index two-core fiber (TCF) is 

considered in Fig. 1 for mathematical analysis. The TCF 

comprises two heterogeneous cores n and m assuming low 

nonlinear nature of silica media and monochromatic electric 

fields. In addition, neglecting fiber birefringence effects, a 

scalar approach is valid using the same polarization ̂  in both 

cores considering that the mode coupling takes place between 

nonorthogonal polarizations. Hence, the complex amplitude of 

the global electric field (Eg) can be approximated to [18]−[20]: 
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where An(m) are the complex envelopes, Fn(m) are the transversal 

functions of the LP01 mode in cores and cladding regions given 

by [21], βn(m) are the unperturbed phase constants of LP01 

mode in cores n and m, and ̂  is the unit vector modeling x or 

y polarization axis. From the Maxwell's equations, the 

nonlinear wave equation of the TCF can be expressed as [22]: 
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where αNL is related to the third-order nonlinear susceptibility 

of silica media as αNL = 0.75·χ(3) and εrg is the relative 

electrical permittivity of the TCF, defined as: 
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In addition, note that the transversal functions and 

exponential terms of Eq. (1) should satisfy the Helmholtz 

equation in each core. Thus, from the Helmholtz equation and 

using Eq. (3), the next relation is found in each core: 
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Thus, applying Eqs. (1) and (4) in Eq. (2), assuming the slowly 

varying envelope approximation with An" ≈ Am" ≈ 0 in Δz ≈ λ, 

multiplying the resultant equation by Fn
*(r,φ)·exp(+jβnz) and 

integrating in an infinite cross-sectional area with a similar 

mathematical derivation as in the classical nonlinear CMT 

[18], [19], we obtain: 
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with Δβmn = βm – βn. A similar equation modeling mode 

coupling from core n to core m can be obtained by repeating 

the procedure multiplying by Fm
*(r,φ)·exp(+jβmz). In addition, 

the MCCs of Eq. (5) for the LP01 mode are given by the next 

expressions (derivation detailed in Appendix): 
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Fig. 1. Heterogeneous two-core fiber (TCF) media analyzed. 
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where R0 is the core radius, NAn(m) = [nn(m)
2 − n2]1/2 is the 

numerical aperture of each core, Hn(m) is the modal field radius 

of LP01 mode in cores n and m given by Eq. (2.2.15) of [22], 

and the modal parameters un(m) and wn(m) can be calculated 

from [21]. The MCCs given by Eqs. (6) provide analytic 

expressions to estimate mode coupling between cores with 

different core pitch value and electrical permitivities assuming 

step-index and single-mode cores with identical core radius. 

Nevertheless, considering multi-mode regime or cores with 

different radius, gradual-index or trench assisted MCFs, 

Eqs. (6) should be revisited performing the same 

analytic derivation as detailed in Appendix.  
The nonlinear MCCs can be classified in intramodal and 

intermodal nonlinear coupling effects [13], [14]. The 

intramodal effect is related with the self-coupling effect given 

by q1n coefficient and intermodal effects are related with the 

cross-coupling effect given by q2nm, q3nm and q4nm MCCs. As it 

was pointed out in [15], in uncoupled MCFs with large core 

pitch value, knm and q1n are the dominant linear and nonlinear 

MCCs, respectively; and the additional MCCs can be 

neglected due to the low mode overlapping in these MCFs. 

However, this theoretical approximation should be further 

analyzed when changing the core pitch and the core refractive 

index in coupled and heterogeneous MCFs. Considering a 

TCF with fiber parameters: R0 = 4 μm, nm = 1.45, n = 1.44, 

αNL = 8.13·10−20 and λ =1550 nm; the linear MCCs χnm and cn, 

and the nonlinear MCCs q2nm, q3nm and q4nm are compared with 

the dominant linear and nonlinear MCCs knm and q1n, 

respectively. The ratios χnm/knm, cn/knm, q2nm/q1n, q3nm/q1n and 

q4nm/q1n were calculated using Eqs. (6).  

Fig. 2 shows the behaviour of these MCC ratios with 

different index mismatching values Δnnm = (nn−nm)/nm varying 

nn and with different ratio between the core pitch and the core 

radius dnm/R0. The analysis considering Δnmn = (nm−nn)/nn 

varying nm was not included in Fig. 2 because the conclusions 

in the behaviour of the MCC ratios were found identical.  

It can be noticed from Fig. 2 that χnm, cn, q2nm, q3nm and q4nm 

MCCs can be omitted for any core pitch value in homogeneous 

coupled and uncoupled MCF media. Additionally, in 

heterogeneous MCFs with Δnnm > 0% it can be observed that 

the higher the index mismatching term Δnnm, the lower the 

MCC ratios depicted in Figs. 2(a), (b), (d) and (e). Therefore, 

χnm, cn, q3nm and q4nm MCCs can also be neglected in MCF 

media with heterogeneous coupled and uncoupled cores. 

However, as depicted in Fig. 2(c), the ratio q2nm/q1n increases 

as the index mismatching term Δnnm increases. Hence, in 

coupled heterogeneous MCFs with 2R0 < dnm < 3R0 and large 

index mismatching term (Δnnm > 1 %), q2nm coefficient should 

be maintained in Eq. (5) considering that q2nm >> 0.1·q1n, as 

shown in Fig. 2(c). Consequently, in coupled and 

heterogeneous MCFs with low core pitch value the nonlinear 

MCC q2nm cannot be neglected. 

Moreover, an additional consideration should be pointed out 

for the linear knm mode-coupling coefficient. In [23] and [24] 
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Fig. 2. Comparison of the linear mode-coupling coefficients (MCCs) χnm and 

cn and the nonlinear MCCs q2nm, q3nm and q4nm with the dominant linear and 

nonlinear MCCs knm and q1n for different core pitch ratio dnm/R0 and index 

mismatching values Δnnm = (nn−nm)/nm between cores n and m. MCC ratios: 

(a) χnm/knm, (b) cn/knm, (c) q2nm/q1n, (d) q3nm/q1n, and (e) q4nm/q1n. 
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Snyder and Okamoto reported an analogous closed-form 

expression for the linear knm coefficient considering identical 

modal parameters un = um and wn = wm in each core. This 

approximation can be applied to homogeneous MCFs. 

Nevertheless, the closed-form expression depicted in Eq. (6c) 

for knm coefficient improves the accuracy of these references in 

heterogeneous cores with un ≠ um and wn ≠ wm. 

In order to complete the theoretical CMT unification in 

MCF, macrobends and structural fluctuations of the media 

inducing random perturbations in the phase constants of core 

modes should be included in Eq. (5). In coherence with [12] 

the exponential terms can be rewritten as: 
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where Δβeq,mn includes phase-mismatching effect due to bends 

and structural fluctuations inducing perturbations in the phase 

constants βn and βm. Considering constant bending radius (Rb) 

and random twist rate along the MCF length, the 

phase-mismatching term Δϕmn(z) can be expressed as [25]: 
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where dnm is the core pitch between cores n and m, and θnm is 

the random twist angle described by a real spatial random 

process. Finally, the unified coupled-mode equation for 

heterogeneous and homogenous, coupled and uncoupled 

N-core MCF with dnm > 2R0 operating in linear and nonlinear 

regime is reduced to: 
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The behaviour of the linear and nonlinear crosstalk was 

compared performing a numerical simulation of the crosstalk 

from core m to core n defined as 10·log(|An|2/|Am|2) using 

Eqs. (8) and (9). Two different core pitch values were 

considered in the simulations with dnm = 10R0 and dnm = 2.5R0 

in order to analyze both uncoupled and coupled cores, 

respectively.  The numerical results of each case are depicted 

in Figs. 3(a) and (b). It was assumed a heterogeneous TCF 

with constant bending radius Rb = 50 cm, R0 = 4 μm, n = 1.44, 

nm = 1.45, nn = 1.46, λ = 1550 nm, αNL = 8.13·10−20 m2/W and 

Gaussian random fiber twisting in θnm(z) in Eq. (8). The linear 

and nonlinear inter-core crosstalk were simulated considering 

as initial conditions an optical power launch level of 

PL = |Am(z=0)|2(dBm) = 0 dBm and 25 dBm, respectively. The 

green line describes the longitudinal evolution of the linear 

crosstalk, the black line depicts the longitudinal evolution of 

the nonlinear crosstalk considering only the q1n nonlinear 

MCC in Eq. (9) and the red line describes the same result 

considering both q1n and q2nm nonlinear MCCs in Eq. (9). 

As depicted in Figs. 3(a) and (b), the linear and nonlinear 

crosstalk present a random evolution along the MCF length. 

However, in nonlinear regime (red and black lines) the 

crosstalk is reduced due to the additional phase mismatching 

induced in core m by the stimulation of the Kerr effect. 

Furthermore, it should be noticed that in Fig. 3(a) we cannot 

observe any difference in the solution of Eq. (9) when q2nm is 

neglected or maintained. In contrast, in coupled heterogeneous 

MCFs with a reduced core pitch (dnm < 3R0) the nonlinear 

MCC q2nm should be retained as indicated in Fig. 2(c) and 

confirmed in Fig. 3(b). The numerical solution shows that in a 

heterogeneous coupled MCF, when the mode overlapping 

between cores is high, the cross-coupling effect increases the 

nonlinear crosstalk and, therefore, it should be included in the 

nonlinear coupled-mode equation Eq. (9). 

The unified coupled-mode theory permits to estimate the 

average value of the linear and nonlinear crosstalk in MCF 

media performing a Monte Carlo simulation using Eq. (9). 

However, the exponential terms including phase information 

increase the computational complexity of the numerical 

simulations. In order to investigate in the next sections a 

closed form expression for estimating the average value of the 

nonlinear crosstalk without using numerical simulations, the 

coupled-power theory [9] should be previously revisited in 

nonlinear regime.  

III. NONLINEAR COUPLED-POWER THEORY 

Coupled-power theory (CPT) proposed by Dietrich Marcuse 

for multi-mode fibers [26] has been revisited by Koshiba for 

MCFs when operating in linear regime [9]. In order to propose 

in Section IV the closed-form expressions to estimate the mean 

and variance of the nonlinear crosstalk, the CPT is extended to 

nonlinear regime in this section. From now on, we consider in 

the theoretical analysis the prevailing fiber design criteria 

dnm > 4R0 in high-capacity SDM transmissions using MCF 

media [16], [17], [27]. 

In linear regime, the crosstalk in a N-core MCF can be 

written as a function of the power exchange among cores as 

[7], [9]: 
 

(a)                                                 (b)
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Fig. 3. Simulation results of the crosstalk longitudinal evolution using Eq. (9) 

in a heterogeneous two-core fiber for different power launch levels (PL) and 

different core pitch values (dnm) considering: (a) dnm=10·R0 and 

(b) dnm=2.5·R0. Green line: linear crosstalk with PL=0dBm, Red line: 

nonlinear crosstalk with PL=25dBm including q2nm in Eq. (9), Black line: 

nonlinear crosstalk with PL=25dBm neglecting q2nm in Eq. (9). 
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where αatt is the power attenuation coefficient of the MCF and 

hnm is the power coupling coefficient describing linear 

crosstalk from core m to core n. The power coupling 

coefficient hnm takes into account the random perturbations of 

the MCF, as detailed in [7] and [9]. However, in nonlinear 

regime the Kerr effect reducing the mode coupling among 

cores should be included in Eq. (10). As we have previously 

demonstrated in Section II, the dominant nonlinear effect in 

coupled and uncoupled MCFs with the core pitch higher than 

three times the core radius is the self-coupling effect given by 

q1n coefficient. Hence, in order to estimate the nonlinear 

crosstalk using a first-order solution of the nonlinear CMT, 

additional nonlinear effects given by q2nm, q3nm and q4nm 

coefficients can be neglected considering MCF media with 

dnm > 3R0. Consequently, the corresponding self-coupling 

power coefficient hn can be investigated reducing Eq. (9) to: 
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d

d
z j z z

z
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with the M matrix defined as: 
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(11b)
 

 

where q = diag(q11,…,q1N) is the NxN diagonal matrix of 

self-modulation coupling coefficients; A(z) = [A1(z),…,AN(z)]T 

is the vector of the complex envelopes; βeq is the NxN diagonal 

matrix with the equivalent phase constants; Pe = diag(P1,…,PN) 

is the NxN diagonal matrix including the complex envelope 

power; and k is the NxN matrix with the mode-coupling 

coefficients knm. Based on the perturbation theory [26] and 

assuming low crosstalk conditions with the coupled power of 

the complex envelope approximately constant when operating 

in nonlinear regime, Eq. (11a) admits a first-order solution of 

the form: 
 

     
0

d 0

z

z j z z
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where I is the identity matrix. Thus, analyzing a MCF section 

with N cores between z1 and z2 with |z2−z1| larger than the 

correlation length of the crosstalk, the evolution of the 

complex envelopes along the MCF can be written as 

A(z2) = T·A(z1), where T is the NxN transfer matrix of the 

complex envelopes in the MCF section. This matrix is given 

by: 
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2

  d

z

z

j z z   T MI                        (13) 

 

Therefore, the evolution of the complex envelope from core m 

to core n is described by the Tnm coefficient: 
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It can be noticed in Eq. (14) that Tnm coefficient describes 

the linear crosstalk when n ≠ m. As it has been demonstrated in 

[7], [9], the power coupling coefficient hnm describing linear 

mode coupling from core m to core n in Eq. (10) can be 

derived from Tnm coefficient as: 
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           (15) 

 

where  is the ensemble average operator; Sf is the power 

spectral density (PSD) function of the f(z) random process 

modeling macrobends and structural fluctuations of the MCF 

media [7], [9]; and υ is the spatial frequency. On the other 

hand, with n = m in Eq. (14), Tnn coefficient involves the linear 

propagation of the LP01 mode and the self-coupling effect: 
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Therefore, the self-coupling power coefficient hn can be 

written in the MCF section as: 
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(17) 

 

where Rpn(z′−z) is the autocorrelation function (ACF) of the 

coupled power Pn. Performing the dummy variable 

transformation τ = z′−z and considering the correlation length 

of Rpn(τ) shorter than the MCF section length |z2−z1|, the 

integral in τ can be approximated to the Spatial Fourier 

Transform. From the Wiener-Khinchin theorem, the PSD 

function of Rpn(τ) can be defined as [28]: 
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and finally, the self-coupling power coefficient can be written 

as: 
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Considering that the self-coupling effect reduces the power 

coupling between cores, as it is experimentally verified in 

Section V, the power coupling coefficient hnm is modified as: 
 

   2 2

, 12   0nm eq nm n nm f mn n pnh h h k S q S         (20a) 

 

Therefore, the coupled-power equation Eq. (10) is rewritten in 

nonlinear regime considering a N-core MCF as: 
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In order to complete the statistical model of the crosstalk in 

MCF, Eqs. (20) can be used to estimate theoretically the mean 

and variance of the crosstalk in nonlinear regime, as detailed in 

Section IV and validated experimentally in Section V. 

IV. STATISTICAL MODEL AND THEORETICAL ESTIMATION OF 

NONLINEAR CROSSTALK 

Aimed to unify the IC-XT statistical models reported in [12] 

and [15], the closed-form expressions for estimating the 

cumulative distribution function (cdf), and the mean and 

variance of the linear and nonlinear crosstalk are derived in 

this section. From [15], the probability density function (pdf) 

of the nonlinear crosstalk in MCF media can be expressed as: 
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where NNL is the N-th phase-matching points between cores n 

and m in nonlinear regime, L is the MCF length, PL is the 

optical power launch level, Knm is the linear coupling 

coefficient for the discrete changes [12], XNL is the nonlinear 

crosstalk random variable (r.v.) and u(x) is the unit step 

function. Moreover, the cdf, mean and variance of the 

nonlinear crosstalk can be calculated considering [12], [15]: 

(i) the cdf of the linear crosstalk; (ii) the cubic relation between 

the linear crosstalk (xL) and the nonlinear crosstalk (xNL) given 

by xL = h(xNL) = L2q1n
2PL

2xNL
3+xNL, where h is a bijective and 

positive-real function in the domain xNL ≥ 0; and (iii) the 

relation of the nonlinear crosstalk r.v. with the standard 

chi-squared distribution (χ4
2) with 4 degrees of freedom (d.f.) 

given by the expression Xnm
NL ≈ (NNL·Knm/4)·χ4

2. Thus: 
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It can be noticed that the mean and variance of the nonlinear 

crosstalk cannot be estimated using Eqs. (23) and (24) because 

the number of phase-matching points NNL is unknown. 

Nevertheless, in order to estimate these statistical parameters, 

their closed-form expressions can be additionally derived from 

the nonlinear coupled-power equation Eq. (20b). Assuming a 

TCF with αatt ≈ 0 where only the core m is excited and using 

Eq. (20b), we can write: 
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Therefore, using Eq. (20a) and considering low crosstalk and 

short fiber lengths where the Kerr effect is stimulated, the 

optical attenuation can be neglected and we can approximate 

m m m LnP P P P P    in any z point, where the overbar 

represents the average value. Hence, the nonlinear mean 

defined as μNL,nm := E[Pn(L)/Pm(L)] can be approximated to: 
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(26) 

 

where E[·] is the expectation operator. Note that Pn(z) is an 

ergodic process, where the spatial averages of sample 

functions of the process are equal to the corresponding 

statistical averages. Consequently, Eq. (26) can be written as: 
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The last identity in the right-hand side (RHS) of Eq. (27) is 

performed considering the linear property of the expectation 

operator. Furthermore, as it is experimentally demonstrated in 

Section V, the variance of the crosstalk decreases in nonlinear 

regime. The random fluctuations of the coupled power Pn(z) 

are minimized and, therefore, we can approximated 

  ,n m NL nmP z P  . As a result: 
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where the dummy variable change z′ = z+τ is performed in the 

RHS of Eq. (28) and  0n
 is the average value of the Fourier 

Transform of Pn(z′) in υ = 0. In general, the product  2

1 0n nq  

depends on additional parameters as the power launch value. 

Nevertheless, as it is verified experimentally in Section V, 

 2

1 0n nq  can be approximated by a positive-real constant b 

assuming a slowly varying evolution with the power launch 

level. In addition, taking into account that 
nmLh  is the mean of 

the linear crosstalk μL,nm [7], Eq. (28) can be reduced to: 
 

, , ,NL nm L nm L NL nmbLP                     (29) 

 

The mean and variance of the linear crosstalk can be written 

as a function of the number of phase-matching points NL as 

μL,nm = NL·|Knm|2 and σ2
L,nm = NL

2·|Knm|4/2 [10]. Thus, it can be 

noted that the variance of the linear crosstalk is half of the 

crosstalk mean squared. Consequently, using Eqs. (23), (24) 

and (29), the closed-form expressions for estimating the 

crosstalk mean (μNL,nm), variance (σ2
NL,nm) and the number of 

phase-matching points (NNL) in nonlinear regime are found as: 
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with PL ≥ Pc, where Pc ≈ 2 dBm is the critical optical power in 

silica MCF media [15]. The statistical parameters of linear 

crosstalk μL,nm, σ2
L,nm and NL can be estimated as a function of 

the fiber parameters from [10], [11]. The expressions given by 

Eqs. (21)-(32) unify the theoretical analysis of linear and 

nonlinear crosstalk in MCF media assuming single-core 

excitation condition. 

However, considering multi-core excitation, the previous 

analysis can also be used to analyze the crosstalk distribution. 

If we assume that N cores are illuminated in a MCF, the mode 

coupling from the non-adjacent cores to an unexcited core i 

can be neglected, as depicted in Fig. 4. Consequently, 

assuming that the crosstalk is only increased by M adjacent 

cores (with M < N), the crosstalk in core i is modeled by the Y 

random variable, defined as: 
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where Pi(z = L) is the total output power in core i, pj(z = L) is 

the output power in the excited core j and pij(z = L) is the 

coupled power from core j to core i at the fiber output. 

Assuming adjacent cores with the same core pitch to core i, we 

can approximate Pi(z = L) ≈ M·pij(z = L). In addition, IC-XT 

from core j to core i is given by Xij = pij(z = L)/pj(z = L). Thus, 

Y and Xij random variables can be related as: 
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From Eq. (34) and assuming independent Xij r.v.s. considering 

low mode coupling among cores, the crosstalk distribution of 

core i can be found performing the following derivation. The 

pdf of the Zij = 1/Xij with Xij ≥ 0 can be written as: 
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In addition, defining a new random variable W = ∑ Zij, the pdf 

fW(w) is given by [28]: 
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where * is the convolution operation. From Eq. (36) we can 

found the pdf of the random variable U = 1/W as: 
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where fXij(u) is given by Eq. (21). Finally, the pdf of the 

random variable Y = M·U is derived from Eq. (37): 
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As detailed in Eq. (38), the crosstalk distribution when 

operating with multi-core excitation condition can be 

estimated from the IC-XT model depicted in Eqs. (21)-(32). 

As it is experimentally verified in Section V, the pdf of the 

crosstalk given by Eq. (38) can also be identified as a 

chi-squared distribution. However, the degrees of freedom of 

the crosstalk distribution can be increased more than 4 degrees 

MCF

Core i

dij

 
Fig. 4. Multi-core excitation in MCF media. The crosstalk in core i is 

increased by adjacent cores. 
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due to the M−1 convolution operations. The mathematical 

interpretation is found in the increment of the crosstalk 

variance due to the convolution operation. Moreover, the 

physical interpretation is related to the increment of the 

number of phase-matching points in core i due to the excitation 

of the adjacent cores. 

V. EXPERIMENTAL VALIDATION 

In order to validate the theoretical analysis reported in 

previous sections, experimental measurements are performed 

on homogeneous MCF with 4 cores analyzing the crosstalk 

statistics in linear and nonlinear regimes when considering 

both single-core and multi-core excitation. 

The statistical analysis of the crosstalk in single-core 

excitation condition is experimentally evaluated on 150 m of 

4CF with a constant twist rate of 4 turns/m and two different 

bending radius (Rb) configurations of 67 and 100 cm, as shown 

in Fig. 5. A tunable external cavity laser (ECL) at 1550 nm 

with a linewidth of 50 kHz was used with optical amplification 

performed with an erbium doped fiber amplifier (EDFA). The 

EDFA gain is maximized in order to minimize the noise factor 

to reduce the crosstalk averaging due to amplified spontaneous 

emission (ASE) noise [15]. A variable optical attenuator 

(VOA) was employed to modify the optical power level 

launched into the fiber ranging from −3 dBm to 18 dBm taking 

into account the insertion loss of the 3D fan-in device 

measured in 2.2 dB. As depicted in Fig. 5, the optical power 

was injected into core 3 and measured in core 1 with an optical 

power meter (Newport 1931-C). In addition, it should be 

noticed that the stimulated Brillouin scattering (SBS) does not 

reflect any portion of the power injected in the 150 m of 4CF 

when operating with a power launch level lower than 20 dBm 

considering that the SBS threshold power is estimated in 

23.5 dBm in our 150 m of 4CF. The cdf, pdf, mean and 

variance of the linear and nonlinear crosstalk were estimated 

from more than 6000 samples of crosstalk for each power 

launch value using the wavelength sweeping method [29] from 

1550 to 1580 nm with 5 pm step. 

Fig. 6 shows the experimental evaluation considering 

single-core excitation of the IC-XT mean, variance and the 

number of phase-matching points as a function of the optical 

power launched into core 3. In linear regime, the crosstalk 

statistical parameters are constant with the optical power 

launch level. However, in nonlinear regime Kerr effect detunes 

the phase constant of core modes as the power launch level is 

increased in a single core and, therefore, the homogeneous 

4CF becomes heterogeneous. As a result, the mean, variance 

and the number of phase-matching points of the crosstalk is 

reduced in nonlinear regime, as confirmed in Figs. 6(a), (b) 

and (c), respectively.  

Due to the reduction of the number of phase-matching 

points (NNL) when the optical power launch level increases, the 

crosstalk mean also decreases in presence of fiber Kerr 

nonlinearities. This is confirmed in Fig. 6(a) with a reduction 

of the crosstalk mean between both power regimes from 

−43 dB to −50 dB with Rb = 67 cm, and from −41 dB to 

−49 dB with Rb = 100 cm. The variance of the crosstalk 

distribution is also reduced in nonlinear regime, as it can be 
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Fig. 5. Experimental set-up employed for linear and nonlinear crosstalk 

evaluation in single-core excitation condition. 
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Fig. 6. Statistical analysis of inter-core crosstalk mean, variance and number 

of phase-matching points as function of the power launch level for two 

different bending radius (Rb). Circles: measured data for Rb = 100 cm. 

Triangles: measured data for Rb = 67 cm. 
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observed in Fig. 6(b). The variance decreases for power launch 

levels higher than 2 dBm and it stabilizes at around 15 dBm 

for the two bending radius configurations evaluated. 

Consequently, the crosstalk cannot be considered as a 

strict-sense stationary random process in nonlinear regime if 

the power launch conditions are temporally modified. 

The statistical parameters of the crosstalk can be estimated 

in both linear and nonlinear power regimes using two different 

strategies: (i) performing a Monte Carlo simulation using the 

CMT reported in Section II and, (ii) using the closed-form 

expressions derived in Section IV. The two proposed strategies 

for estimating the crosstalk statistical parameters in both power 

regimes were validated with the experimental results.  

A Monte Carlo simulation was performed using Eq. (9) over 

500 iterations for each power launch level considering 

longitudinal Gaussian random fluctuations in the average value 

of the core radius (R0), fiber bending radius (Rb) and twist rate 

around ~0.1 μm, ~1 m and ~0.2 turns/m, respectively. The 

random fluctuations of these fiber parameters induce stochastic 

variations in the equivalent refractive index of each core 

around ~10−5. The power launch level was modified in the 

simulation from −3 dBm to 18 dBm with 0.5 dB step. The 

comparison between the measured and the simulated results is 

depicted in Fig. 6. It can be noticed that the Monte Carlo 

simulation fits correctly with the experimental measurements 

for each bending radius configuration validating the 

coupled-mode equation Eq. (9) reported in Section II. 

In addition, it should be remarked that the fluctuation of the 

Monte Carlo simulation results can be reduced increasing the 

number of iterations. 

Moreover, the crosstalk statistical parameters can also be 

estimated in linear regime from [7], [11] and in nonlinear 

regime using Eqs. (30)-(32) of Section IV, as was pointed out 

previously. In order to perform the estimation of these 

statistical parameters in both power regimes, the coupling 

coefficients knm and Knm should be previously calculated. 

Using the fiber twisting rate fT = 4 turns/m from the laboratory 

set-up and the fiber parameters of the multi-core fiber 

Fibercore SM-4C1500(8.0/125) with nn ≈ 1.452, R0 ≈ 4 μm, 

λ = 1550 nm and dnm ≈ 35 µm; knm = 0.0072 m−1 is obtained 

using Eq. 6(c) and Knm is calculated from [12] for each 

bending radius as Knm = 5.13·10−4 with Rb = 67 cm and 

Knm = 6.27·10−4 with Rb = 100 cm.  

As can be noted from Fig. 6, the theoretical estimations of 

the crosstalk statistical parameters fit correctly to the 

experimental measurements in linear and nonlinear regimes. 

The crosstalk mean in linear regime was estimated using 

Eq. (27) of [7] for Rb = 67 cm and Eq. (20) of [11] for 

Rb = 100 cm assuming a correlation length of the MCF 

structural fluctuations of lc ≈ 4.9 mm. As it was reported in 

[11], considering large bending radius (Rb = 100 cm), the 

linear crosstalk is induced by the structural fluctuations of the 

MCF as the major perturbation of core modes. In addition, the 

variance of the crosstalk and the number of phase-matching 

points in linear regime were estimated considering that both 

parameters should satisfy the condition σ2
L,nm = (μL,nm)2/2 = 

= NL
2·|Knm|4/2, as was pointed out in Section IV.  In nonlinear 

regime with PL ≥ Pc, the crosstalk mean (μNL,nm), variance 

(σ2
NL,nm) and the number of phase-matching points (NNL) are in 

line with Eqs. (30)-(32) using b = 1/2, as confirmed in Fig. 6. 

Furthermore, it should be noted that the critical power Pc 

remains unchanged when varying the fiber bending radius. 

The random nature of linear and nonlinear crosstalk was 

additionally investigated with the distribution functions given 

by Eqs. (21) and (22). Fig. 7 shows the measured evolution of 

the cdf and pdf of the crosstalk considering three different 

power launch levels PL = 0, 9 and 15 dBm for a bending radius 

configuration of Rb = 100 cm. As verified in Fig. 7(a), the 

measured IC-XT cumulative distribution function satisfies the 

closed-form expression given by Eq. (22) for each power 

launch level. In addition, Fig. 7(b) shows the pdf evolution of 

the crosstalk with the power launch level injected into core 3 

when using the same bending radius configuration. As we can 

notice, the measured IC-XT probability density function fits 

correctly to the chi-squared distribution with 4 d.f. given by 

Eq. (21). Due to the crosstalk mean and variance reduction in 

nonlinear regime, the higher the power launch level, the higher 

is the similitude of the cdf with the unit step function and the 

pdf with the Dirac delta function, as confirmed in Figs. 7(a) 

and (b) with PL = 15 dBm. 

On the other hand, the crosstalk distribution in multi-core 

excitation condition was experimentally evaluated injecting 

0 dBm of optical power in three different cores using the 

laboratory set-up depicted in Fig. 8 with a bending radius 

configuration of Rb = 100 cm. The same ECL and EDFA of 

Fig. 5 were employed followed by three different 50/50 optical 

splitters with three VOAs to balance the optical power injected 
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Fig. 7. Experimental results measured with Rb =100 cm for different optical 

power levels launched into core 3: (a) cumulative distribution function (cdf), 

and (b) probability density function (pdf). Circles: measured data for a power 

launch level of 15 dBm. Triangles: measured data for a power launch level of 

9 dBm. Diamonds: measured data for a power launch level of 0 dBm. 
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into cores 2, 3 and 4. The crosstalk pdf was measured in core 1 

using the same method as in the single-core excitation. We 

previously verified that the splitting ratio of the optical 

splitters remained unchanged when sweeping the laser 

wavelength between 1550-1580 nm.  

The crosstalk analysis in multi-core excitation condition 

should be performed considering only the excited adjacent 

cores. Therefore, stimulating cores 2, 3 and 4, the crosstalk in 

core 1 should be analyzed considering exclusively the mode 

coupling from cores 2 and 3. It can be noticed from Fig. 9 that 

the measured pdf of the crosstalk in core 1 fits correctly to 

Eq. (38) when using Eq. (21) to estimate the individual 

distributions fX12(y) and fX13(y) with NL = 136 and 206, 

respectively. The crosstalk distribution fX12(y) was estimated 

from Eq. (21) with a lower number of phase-matching points 

than fX13(y) due to a slight difference in the crosstalk mean 

between these random process. Additionally, as it was pointed 

out in Section IV, the pdf of the crosstalk in multi-core 

excitation is identified with a chi-squared distribution higher 

than 4 d.f. due to the increment of the crosstalk variance 

induced by the convolution operation. A chi-squared 

distribution with 4 d.f. is inset in Fig. 9 for comparison. The 

crosstalk variance in core 1 is increased from 3.1·10−9 to 

5.7·10−9 when cores 2, 3 and 4 are simultaneously excited.  

Further investigation of the crosstalk in multi-core 

excitation will be evaluated in future works when all cores of 

the MCF are excited in nonlinear regime with the same optical 

power launch level. In this situation, it is expected that the 

Kerr effect will increase the refractive index of each core with 

the same value reducing the mismatching effect observed 

between the core modes. 

VI. CONCLUSION 

This paper reports the theoretical unification of linear and 

nonlinear inter-core crosstalk models in MCF media 

considering single-core and multi-core excitation. In order to 

estimate the crosstalk when a MCF is excited with high optical 

power levels, the coupled-mode and coupled-power theories 

were previously extended to nonlinear regime. The nonlinear 

coupled-mode theory was derived for both coupled and 

uncoupled MCF media. New mode-coupling coefficients were 

found and their closed-form expressions were proposed and 

analyzed for step-index single-mode MCFs varying the core 

pitch value and the index mismatching between cores. We 

verified that the dominant mode-coupling coefficients in linear 

and nonlinear regimes are knm and q1n, respectively. However, 

the nonlinear cross-coupling effect given by q2nm cannot be 

neglected in heterogeneous coupled MCFs with large index 

mismatching value Δnnm and the core pitch lower than three 

times the core radius (dnm < 3R0). Considering these results, 

the coupled-power theory was also extended to nonlinear 

regime including the self-coupling power effect as the 

dominant nonlinear effect reducing the value of the equivalent 

power coupling coefficient hnm,eq. Finally, the statistical model 

of the IC-XT was completed considering single-core and 

multi-core excitation. The closed-form expressions of the 

number of phase-matching points and the cumulative 

distribution function, probability density function, mean and 

variance of the nonlinear crosstalk were reported in single-core 

excitation conditions. In multi-core excitation, the crosstalk 

random process was identified as a chi-squared distribution 

with more than 4 degrees of freedom due to the convolution 

operation of the individual crosstalk distributions. The unified 

model was experimentally validated using a homogeneous 4CF 

with two different bending radius configurations confirming 

the suitability of the herein presented nonlinear analysis. 

VII. APPENDIX                                                                    

DERIVATION OF MODE-COUPLING COEFFICIENTS 

The closed-form expressions of the mode-coupling 

coefficients (MCCs) given by Eqs. (6) are derived assuming 

step-index and single-mode cores with identical radius R0, as 

was pointed out in Section II. It can be noticed from Eqs. (6) 

that the MCCs depend on the general term ∫∫Fm
kFn

sdS∞, where 

(k,s) ϵ {0,1,2,3,4}2. Using the analytic expression of [21] for 

the LP01 mode, the integral can be written in the cores and the 

cladding as follows: 
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where Icl
(k,s) describes the mode overlapping in the cladding.  
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Fig. 8. Experimental set-up employed for crosstalk evaluation in multi-core 

excitation. 
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Fig. 9. Inter-core crosstalk (IC-XT) probability density function (pdf) analysis 

with multi-core excitation condition and Rb = 100 cm. IC-XT pdf measured 

from cores 2, 3 and 4 to core 1. 
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Fig. 10 depicts the spatial distribution of the transversal 

function of the LP01 mode in the cross-sectional area of the 

TCF media. Note that the overlapping between the Bessel 

functions does not depend on the selected reference system 

satisfying the principle of general covariance. Therefore, the 

second term in the RHS of Eq. (39) can be calculated moving 

the reference system from core n with (r, ϕ, z) to core m with 

(r', ϕ', z'), as detailed in Fig. 10: 
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Thus, assuming cores with identical radius R0, Eq. (39) 

becomes: 
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Similar to [23], the modified Bessel function of second kind 

K0 has been approximated to its value in the center of the 

adjacent core due to the low slope of this function with 

r, r' > R0. In addition, we can notice that the integrals in the 

RHS of Eq. (41) can be directly solved with k,s ≤ 2 using [30]. 

Furthermore, with k,s > 2 the Gaussian approximation of J0 

function is employed with r, r' < R0 [22] assuming an error 

lower than 1.5 % with J0 function as reference: 
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where Hn(m) is given by Eq. (2.2.15) of [22]. Moreover, the 

denominator of Eqs. (6) is reduced to: 
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(43)

 

where the approximation of Eq. (43) was performed 

considering the power of core n much higher than in the 

cladding with ∫∫Fn
2dSn >> ∫∫Fn

2dSclad. 

From Eq. (21) of ref. [15], we found that the critical power 

of silica fibers required to stimulate the nonlinear polarization 

in the cores is around ~2dBm assuming an effective area of 

80 μm2. However, the power launch level required to stimulate 

the Kerr effect in the cladding should be increased around 

~30 dBm assuming that the LP01 mode is highly confined in 

the cores [31]. Therefore, considering optical power launch 

levels lower than 30 dBm, we can assume that the third-order 

nonlinear polarization is not stimulated in the cladding. Thus, 

a silica MCF is equivalent to a MCF where the nonlinear 

nature is only restricted to the cores, with αNL(r) coefficient 

null in the cladding. As a result, we can assume Icl
(k,s) ≈ 0 in the 

nonlinear mode-coupling coefficients q1n, q2nm, q3nm and q4nm, 

given by Eqs. (6d)-(6g). In addition, the Bessel function K0
4 is 

neglected in q1n coefficient Eq. (6d) considering that 

∫∫Fn
4dSn >> ∫∫Fn

4dSm. On the other hand, taking into account 

that Δεrm(r) and Δεrn(r) are null in the cladding and in adjacent 

cores, as depicted in Fig. 1, the integrals in dS∞ are restricted 

to dSm and dSn in cn and knm coefficients, respectively. Finally, 

assuming weakly guiding approximation with βn ≈ k0·nn and 

using Eqs. (41)-(43), the closed-form expressions of the linear 

and nonlinear MCCs Eqs. (6) are directly derived. 
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