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The class of m-EP and m-normal matrices

Saroj B. Malik∗ Laura Rueda† Néstor Thome‡

Abstract

The well-known classes of EP matrices and normal matrices are de-
fined by the matrices that commute with their Moore-Penrose inverse
and with their conjugate transpose, respectively. This paper investi-
gates the class of m-EP matrices and m-normal matrices that provide
a generalization of EP matrices and normal matrices, respectively, and
analyzes both of them for their properties and characterizations.
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1 Introduction and Notation

The symbol C
m×n stands for the set of m×n complex matrices. The symbols

A∗, C(A) and N (A) will denote the conjugate transpose, column space and
null space of a matrix A ∈ C

m×n, respectively. Moreover, In will denote the
identity matrix of order n.

The symbol A† will denote the Moore-Penrose inverse of a matrix A ∈
C

m×n, i.e., the unique matrix A† ∈ C
n×m satisfying the following four Pen-

rose conditions: AA†A = A, A†AA† = A†, AA† = (AA†)∗, A†A = (A†A)∗.
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The orthogonal projectors AA† and A†A will be denoted by the symbols PA

and QA, respectively. For a given matrix A ∈ C
n×n, recall that the smallest

nonnegative integer m such that rank(Am) = rank(Am+1) is called the index
of A and is denoted by ind(A). The Drazin inverse of A ∈ C

n×n is the unique
matrix Ad ∈ C

n×n such that AdAAd = Ad, AAd = AdA, Am+1Ad = Am,
where m = ind(A). Three generalized inverses were recently introduced for
square matrices, namely the core inverse, the DMP inverse and the BT-
inverse, the later two being generalizations of the core inverse to matrices
of index greater than or equal 2. We wish to mention that the BT-inverse
was originally referred as generalized core inverse. Since BT-inverse is not
the only generalization of the core inverse known in the literature, we pre-
fer to credit it to the authors Baksalary and Trenkler and, hence, call this
generalization the BT-inverse. Let A ∈ C

n×n. An n× n matrix X satisfying
AX = PA and C(X) ⊆ C(A) is called the core inverse of A [2] (it exists for in-
dex 1 matrices and it is unique). If A has index m, the only matrix X ∈ C

n×n

that satisfies XAX = X, XA = AdA and AmX = AmA† is called the DMP
inverse and denoted by X = Ad,† [8]. For m = 1, the DMP inverse becomes
the core inverse [2, 13]. The DMP inverse of a matrix A always exists and
satisfies Ad,† = AdAA† [8]. A matrix A� ∈ C

n×n satisfying A� = (APA)† is
called the BT-inverse of A (it always exists and is unique) [3]. We refer the
reader to [2, 3, 4, 5, 12, 15] for properties of these matrices.

We also recall that a square matrix is called normal, EP , partial isometry,
SD, bi-EP , bi-normal or bi-dagger if AA∗ = A∗A, AA† = A†A, A† = A∗,
A∗A† = A†A∗, (AA†)(A†A) = (A†A)(AA†), (AA∗)(A∗A) = (A∗A)(AA∗), or
(A†)2 = (A2)†, respectively [7, 10]. Some applications of EP matrices can be
found for instance in [6, 11].

The main aim of this paper is to investigate the classes of m-EP matri-
ces (square matrices A of index m satisfying AmA† = A†Am) and m-normal
matrices, that provide a generalization of EP matrices and normal matrices.
We remember that the classes of EP matrices and normal matrices are de-
fined by the square matrices that commute with their Moore-Penrose inverse
and with their conjugate transpose, respectively. We note that for a given
matrix A ∈ C

n×n of index m, Tian showed [14] the equivalence between

AmA† = A†Am and rank

[

Am

A∗

]

+ rank
[

Am A∗
]

= 2 rank(A) and the

equivalence between Am is EP and rank
[

Am (Am)∗
]

= rank(Am). In
order to understand more deeply this class of matrices, our task is to provide
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several properties and characterizations. Additionally, we obtain a character-
ization of the Drazin inverse and the DMP inverse of m-EP matrices using
a Hartwig-Spindelböck decomposition.

2 The class of m-EP matrices

We next study the class of matrices A ∈ C
n×n of index m that satisfy the

condition that A† and Am commute.

Definition 2.1. A matrix A ∈ C
n×n is called m-EP if it satisfies

A†Am = AmA†

where m is the index of A.

Notice that for m = 1, the matrices in this class are the class of range
hermitian (or EP ) matrices. If a square matrix A is m-EP then A∗ and
UAU ∗ are also m-EP and ind(U ∗AU) = m for any unitary matrix U ∈ C

n×n.
Clearly, any unitary as also any nonsingular matrix is m-EP for m = 0.
Moreover, any nilpotent matrix is trivially m-EP for m being the nilpotence
index of A. We give below a non-trivial example with m = 2.

Example 2.2. Let

A =





0 1 0
0 0 0
0 0 1



 .

Then A† = A∗, A2 = A3 and A2A† = A†A2, that is, A is 2-EP . Observe
that A is not diagonalizable.

It is well known that an EP matrix may be or not diagonalizable. How-
ever, the next result states that m-EP matrices with m ≥ 2 are always not
diagonalizable.

Theorem 2.3. If A ∈ C
n×n is diagonalizable and m-EP then A is EP .

Proof. Clearly, if A = 0 then A is diagonalizable, 0q0† = 0†0q for any positive
integer q and it is well known that m = ind(A) = 1.

Now, let A 6= 0 and r = rank(A). Since A is diagonalizable, we can say
that A = Pdiag(d1, . . . , dr, 0, . . . , 0)P

−1 for some n × n nonsingular matrix
P and non-zero scalars d1, . . . , dr. It follows that rank(A2) = rank(A), so
m = ind(A) ≤ 1. Hence A is EP .
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Lemma 2.4. Let A ∈ C
n×n be an m-EP matrix. The following statements

hold.

(a) If A is m-dagger (i.e., (Am)† = (A†)m) then Am is EP .

(b) If A is a partial isometry then Am is normal.

Proof. If A is m-EP then it is easy to see that Am(A†)m = (A†)mAm. Thus,
it immediately follows that Am is EP . Second item is trivial.

We now give a construction that allows us to obtain many more examples
of m-EP matrices. For integer n ≥ 2, let Jn(0) denote the n×n Jordan block
corresponding to the eigenvalue 0 with 1’s in super diagonal. Then Jn(0) has
index n and (Jn(0))† = (Jn(0))∗ [4, p. 43].

For each fixed m ∈ N, in the following example we construct m-EP
matrices.

Example 2.5. Let m ≥ 2 be an integer and B be a p × p EP matrix. The
matrix

A = Jm(0) ⊕ B =

[

Jm(0) 0
0 B

]

is of index m by [5, Theorem 7.7.4] and satisfies A†Am = AmA†.

Now we give some sufficient conditions for a matrix to be m-EP . Before
that result we present a lemma.

Lemma 2.6. Let A ∈ C
n×n be a matrix of index m and rank r > 0. The

following statements are equivalent:

(a) There exists an EP matrix E ∈ C
n×n and a nilpotent matrix M ∈ C

n×n

with nilpotence index m such that A = E + M and EM = ME = 0.

(b) There are matrices C ∈ C
s×s, T ∈ C

t×t, and U ∈ C
n×n such that A =

U(C ⊕ T )U ∗ where s + t = n, C is nonsingular, T is nilpotent with
nilpotence index m, and U is unitary.

Proof. (a) =⇒ (b) Assume that A = E + M , with E an EP matrix, M an
m-nilpotent matrix and EM = ME = 0. The EPness of E assures that [5]
there exist a unitary matrix U ∈ C

n×n and a nonsingular matrix C ∈ C
s×s
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such that E = U(C ⊕ 0)U ∗. Partitioning A conformable to the partition of
E we have that

A = U

[

X Y
Z T

]

U∗ and M = A − E = U

[

X − C Y
Z T

]

U∗.

From ME = 0 and the non-singularity of C we get X = C and Z = 0.
Similarly, from EM = 0 we arrive at Y = 0. Thus, M = U(0 ⊕ T )U ∗.
Since M is m-nilpotent, T m = 0 6= T m−1, that is, T is m-nilpotent. Finally,
A = U(C ⊕ T )U ∗.

(b) =⇒ (a) This implication is evident to be checked by writing A =
U(C ⊕ 0)U ∗ + U(0 ⊕ T )U ∗ and calling E the first term and M the second
one.

Theorem 2.7. Let A ∈ C
n×n be a matrix of index m and rank r > 0. The

following conditions are equivalent.

(a) The matrix A satisfies any of both equivalent conditions in Lemma 2.6.

(b) A is m-EP and Am is EP .

Proof. (a) =⇒ (b) Assume that A = U(C ⊕ T )U ∗ where matrices U , C,
and T satisfy the conditions indicated in Lemma 2.6. It is easy to see that
Am = U(Cm ⊕ 0)U ∗ and so, Am is EP , and moreover A† = U(C−1 ⊕ T †)U ∗.
Hence, we arrive at A†Am = AmA† from which A is m-EP .

(b) =⇒ (a) Suppose that Am is EP . Then

Am = U(B ⊕ 0)U ∗ (1)

for some nonsingular B ∈ C
s×s and some unitary U ∈ C

n×n. Assuming also
that A is m-EP and partitioning

A† = U

[

X Y
Z V

]

U∗

according to the partition of Am, we obtain Y = 0, Z = 0 and XB = BX
since AmA† = A†Am. Using that (A†)† = A we get A = U(X†⊕V †)U ∗. If we
now compute Am and compare to (1), it is easy to see that B = (X †)m and
(V †)m = 0. That is, X† is nonsingular and V † is nilpotent as desired.
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Theorem 2.7 extends the useful characterization for EP matrices given
in [5, Theorem 4.3.1, p. 74]).

We now remind a canonical form for the class of m-EP matrices using
the Hartwig-Spindelböck decomposition [7, 1]. For any matrix A ∈ C

n×n of
rank r > 0 this decomposition is given by

A = U

[

ΣK ΣL
0 0

]

U∗, (2)

where U ∈ C
n×n is unitary, Σ = diag

(

σ1Ir1
, . . . , σtIrt

)

is a diagonal ma-
trix, the diagonal entries σi being singular values of A, σ1 > σ2 > . . . > σt >
0, r1 +r2 + . . .+rt = r and K ∈ C

r×r, L ∈ C
r×(n−r) satisfy KK∗ +LL∗ = Ir.

Theorem 2.8. Let A ∈ C
n×n be written as in (2). Then A is m-EP if and

only if the following conditions hold:

(a) K∗K(ΣK)m−1 = (ΣK)m−1,

(b) L∗Σ−1(ΣK)m−1 = 0 (or equivalently L∗K(ΣK)m−2 = 0),

(c) (ΣK)m−1ΣL = 0, and

(d) ind(ΣK) = m − 1.

Proof. Suppose that A is written as in (2). Then

Aj = U

[

(ΣK)j (ΣK)j−1ΣL
0 0

]

U∗ (3)

for all integer j ≥ 1.
(=⇒) Assume that A is m-EP . Condition (d) follows directly from [8,

Lemma 2.8]. It is well-known that A† has the form [2, Formula (1.13)]

A† = U

[

K∗Σ−1 0
L∗Σ−1 0

]

U∗.

By setting j = m in (3), condition AmA† = A†Am is equivalent to

K∗Σ−1(ΣK)m = (ΣK)mK∗Σ−1 + (ΣK)m−1ΣLL∗Σ−1 = (ΣK)m−1

K∗Σ−1(ΣK)m−1ΣL = 0,

L∗Σ−1(ΣK)m = 0,

L∗Σ−1(ΣK)m−1ΣL = 0.
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Clearly, the first condition can be rewritten as in (a). Since ΣK has index
m − 1, post-multiplying third equality by the Drazin inverse of ΣK we get
condition L∗Σ−1(ΣK)m−1 = 0 which gives (b). Pre-multiplying the second
equation by K, the fourth equation by L and adding them, condition (c) is
obtained.

(⇐=) Assume that conditions (a)-(d) are satisfied. From (3), we can
write

Aj = U

[

(ΣK)j−1 0
0 0

] [

ΣK ΣL
Y Z

]

U∗ (4)

for all j ≥ 1 and for some appropriate matrices Y and Z such that

[

ΣK ΣL
Y Z

]

is nonsingular. Notice that both matrices Y and Z exist because the ma-
trix

[

ΣK ΣL
]

has full row rank. Equality (4) implies that rank(Aj) =
rank(ΣK)j−1 for all j ≥ 1. Now, from ind(ΣK) = m−1 we get ind(A) = m.
It remains to show A†Am = AmA†. Under conditions (a)-(c), it can be veri-
fied by actual computations.

The next aim is to show that m-EPness and the fact that Am is EP are
essentially different notions.

Theorem 2.9. Let A be an m-EP matrix written as in (2). Then

Am is EP ⇐⇒ (ΣK)m is EP.

Proof. If we write matrix A as in (2) then

Am = U

[

(ΣK)m (ΣK)m−1ΣL
0 0

]

U∗ = U

[

(ΣK)m 0
0 0

]

U∗

(because when A is m-EP we can derive that (ΣK)m−1ΣL = 0 holds) and

(Am)∗ = U

[

((ΣK)m)∗ 0
0 0

]

U∗.

Now, N (Am) = N ((Am)∗) if and only if N ((ΣK)m) = N (((ΣK)m)∗).

In order to obtain the Drazin inverse of m-EP matrices we need the
following properties.
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Proposition 2.10. Let A ∈ C
n×n be written as in (2). If A is m-EP then

the following properties hold:

(a) (ΣK)m(K∗Σ−1) = (ΣK)m−1.

(b) (K∗Σ−1)(ΣK)m = (ΣK)m−1.

(c) (ΣK)m−1+q(K∗Σ−1)q = (K∗Σ−1)q(ΣK)m−1+q = (ΣK)m−1 for all integer
q ≥ 1.

Proof. (a) By Theorem 2.8 (c), (ΣK)m(K∗Σ−1) = (ΣK)m−1(ΣK)(K∗Σ−1) =
(ΣK)m−1Σ(Ir − LL∗)Σ−1 = (ΣK)m−1.

(b) By Theorem 2.8 (a), (K∗Σ−1)(ΣK)m = K∗K(ΣK)m−1 = (ΣK)m−1.

(c) It follows by induction on q using (a) and (b).

Theorem 2.11. Let A ∈ C
n×n be an m-EP matrix written as in (2). Then

Ad = U

[

(ΣK)m−1(K∗Σ−1)m 0
0 0

]

U∗ = U

[

(K∗Σ−1)m(ΣK)m−1 0
0 0

]

U∗

Proof. By Proposition 2.10 (a) and (b), (ΣK)m and K∗Σ−1 commute. So,

(ΣK)m−1(K∗Σ−1)m(ΣK)m(K∗Σ−1)m = (ΣK)m−1+m(K∗Σ−1)m+m,

and using Proposition 2.10 (c), we get (ΣK)m−1+m(K∗Σ−1)m(K∗Σ−1)m =
(ΣK)m−1(K∗Σ−1)m. Hence, AdAAd = Ad. Similarly, we obtain AdA = AAd

and Am+1Ad = Am.

Now, expressions for Ad and A† of an m-EP matrix allow us to ensure
the equality between the DMP inverse and the Drazin inverse of A.

Corollary 2.12. Let A ∈ C
n×n be an m-EP matrix written as in (2). Then

Ad,† = Ad.

Next result shows that condition “(ΣK)2 is EP” fulfils vacuously in The-
orem 2.9 for m = 2.

Proposition 2.13. Let A ∈ C
n×n be a 2-EP matrix. Then A2 is an EP

matrix and A is bi-dagger.

8



Proof. Assume that A is a 2-EP matrix written as in (2). By Theorem 2.8
we get: (1) K∗KΣK = ΣK, (2) L∗K = 0, (3) KΣL = 0. In addition, by
L∗K = 0 we have that: (4) K is a partial isometry since K = (KK∗ +
LL∗)K = KK∗K.

On the other hand, A2 = U

[

(ΣK)2 ΣKΣL
0 0

]

U∗ = U

[

(ΣK)2 0
0 0

]

U∗.

We claim that

(A2)† = U

[

(K∗Σ−1)2 0
0 0

]

U∗, (5)

or equivalently ((ΣK)2)† = (K∗Σ−1)2. In fact, we will demonstrate the four
Penrose equations:

(i) By (1) we have (ΣK)2(K∗Σ−1)2(ΣK)2 = (ΣK)2K∗Σ−1(K∗KΣK) =
(ΣK)2K∗Σ−1(ΣK) = ΣKΣ(KK∗K) = (ΣK)2 since K is a partial
isometry.

(ii) By (1) we have (K∗Σ−1)2(ΣK)2(K∗Σ−1)2 = K∗Σ−1(K∗KΣK)(K∗Σ−1)2 =
K∗Σ−1(ΣK)(K∗Σ−1)2 = (K∗KK∗)Σ−1K∗Σ−1 = (K∗Σ−1)2 since K is
a partial isometry.

(iii) By using (3) and (1) we have (ΣK)2(K∗Σ−1)2 = ΣKΣ(KK∗)Σ−1K∗Σ−1

= ΣKΣ(Ir − LL∗)Σ−1K∗Σ−1 = ΣKK∗Σ−1 − Σ(KΣL)L∗Σ−1K∗Σ−1

= (ΣK)K∗Σ−1 = (K∗KΣK)K∗Σ−1 = K∗KΣ(KK∗)Σ−1 = K∗KΣ(Ir−
LL∗)Σ−1 = K∗K − K∗(KΣL)L∗Σ−1 = K∗K.

(iv) By (1) we have (K∗Σ−1)2(ΣK)2 = K∗Σ−1(K∗KΣK) = K∗Σ−1(ΣK) =
K∗K.

Hence, A2(A2)† = (A2)†A2, that is A2 is EP . Even more, it can be also
proved that A is bi-dagger. By the expression of the Moore-Penrose inverse
[2] it then follows

(A†)2 = U

[

(K∗Σ−1)2 0
L∗Σ−1K∗Σ−1 0

]

U∗,

and we can show that L∗Σ−1K∗ = 0. In fact, pre-multiplying Σ−1K∗KΣK =
K by L∗ and post-multiplying it by K∗, we get (i) L∗Σ−1K∗KΣKK∗ =
L∗KK∗ = 0. Now, pre-multiplying and post-multiplying (3) by L∗Σ−1K∗

and L∗, respectively, we have (ii) L∗Σ−1K∗KΣLL∗ = 0. Adding (i) and (ii)
we get L∗Σ−1K∗K = 0 and finally using (4) we arrive at L∗Σ−1K∗ = 0. It
follows that (A2)† = (A†)2.
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Notice that if we first establish that A is bi-dagger in Proposition 2.13,
it then follows that A2 is EP from Lemma 2.4.

Proposition 2.14. Let A ∈ C
n×n be a 2-EP matrix. Then A is bi-EP .

Proof. Let A be a 2-EP matrix. By Proposition 2.13, A is bi-dagger. It then
implies that (A†)2 = (A†)2((A†)2)†(A†)2 = (A†)2A2(A†)2. Thus, A(A†)2A =
A(A†)2A2(A†)2A = AA†(A†A2)(A†)2A = AA†(A2A†)(A†)2A. Using the defi-
nition of the Moore-Penrose inverse, AA†(A2A†)(A†)2A = (AA†A)AA†(A†)2A =
A2A†(A†)2A = A†(A2A†)A†A = A†A†A(AA†A) = A†(A†A2) = A†A2A†.

Related to a generalization of core inverse introduced by Baksalary and
Trenkler in [3] we have the following result that can be easily shown.

Proposition 2.15. Let A ∈ C
n×n. Then the following statements hold:

(a) A is 2-EP if and only if A� = (QAA)†.

(b) If A is 2-EP then (A�)† and A† commute.

It is remarkable that a formula similar to (5) can be established in general
for a m-EP matrix A when m > 2. It reads like

(Am)† = U

[

((ΣK)m)† 0
0 0

]

U∗ (6)

and can be obtained computing Am and using Theorem 2.8 (c). However,
using the expression for A† given in [2], the formula for (A†)m now adds a
not necessarily zero block in position (2, 1) as follows:

(A†)m = U

[

(K∗Σ−1)m 0
L∗Σ−1(K∗Σ−1)m−1 0

]

U∗. (7)

Proposition 2.16. Let A ∈ C
n×n be a SD and m-EP matrix. Then the

following statements hold:

(a) A is m-dagger if and only if ((ΣK)m)† = (K∗Σ−1)m. In this case, Km

is a partial isometry.

(b) Am is a partial isometry if and only if (ΣK)m is a partial isometry.
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Proof. Let A be a SD and m-EP matrix written as in (2). Since A is m-EP ,
Theorem 2.8 implies that K∗K(ΣK)m−1 = (ΣK)m−1, L∗Σ−1(ΣK)m−1 = 0,
(ΣK)m−1ΣL = 0, and ind(ΣK) = m−1. By Corollary 6 in [7], it follows that
Σ and K commute and, moreover, Σ−1 and K commute and also Σ−1 and K∗

commute. Now, the above conditions can be re-written as K∗Km = Km−1,
L∗Km−1 = 0, Km−1L = 0. Substituting L∗(K∗)m−1 = 0 in (7) we get

(A†)m = U

[

(K∗Σ−1)m 0
0 0

]

U∗.

(a) By using (6), we can establish that A is m-dagger if and only if ((ΣK)m)† =
(K∗Σ−1)m. Now, pre- and post-multiplying both sides by ΣmKm and using
the non-singularity of Σ we have Km = Km(K∗)mKm, hance Km is a partial
isometry.
(b) It follows from comparing expressions for (Am)† and (Am)∗.

We now give an example of a matrix that shows that the concepts ‘A is
m-EP ’ and ‘Am is EP ’ are really different for m ≥ 3 (and also different from
that of m-dagger one).

Example 2.17. Consider the matrix

A =

















−1 1 0 0 1 0
1 −1 0 0 −1 0
0 0 0 1 −1 1

−1 −1 0 0 1 −1
1 −1 0 0 1 −1
1 −1 0 0 0 0

















of index 3. In this case, it can be checked that

A† =

















0 0 0 −1/2 1/2 0
0 0 0 −1/2 1/2 −1
0 0 0 0 0 0
0 0 1 0 1 −1

1/2 −1/2 0 0 0 1
1/2 −1/2 0 0 −1 2

















,
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and A3A† = A†A3, so A is 3-EP . However, using that

A3 =

















−8 8 0 0 5 1
8 −8 0 0 −5 −1
0 0 0 0 0 0
0 0 0 0 1 −1
6 −6 0 0 −1 −3
6 −6 0 0 −2 −2

















and

(A3)† =

















1/4 −1/4 0 −11/12 −1/12 5/6
−1/4 1/4 0 11/12 1/12 −5/6

0 0 0 0 0 0
0 0 0 0 0 0

3/4 −3/4 0 −7/3 −1/6 13/6
3/4 −3/4 0 −3 −1/2 5/2

















,

a simple computation shows that the equality A3(A3)† = (A3)†A3 does not
hold, so A3 is not EP .

More generally, for m > 3 the matrix B = A⊕ Jm(0) of index m satisfies
that A is m-EP but Am is not EP . In addition, it can be checked that
neither A is 3-dagger nor B is m-dagger for m > 3 (see Lemma 2.4).

Remark 2.18. For m ≥ 3, it is not possible to deduce (ii)-(iv) from Propo-
sition 2.13 assuming that A is m-EP . A similar proof allows us to prove only
the following statements: (ΣK)m(K∗Σ−1)m(ΣK)m = (ΣK)m, (ΣK)m(K∗Σ−1)m =
(ΣK)m−1(K∗Σ−1)m−1 and (K∗Σ−1)m(ΣK)m = (K∗Σ−1)m−1(ΣK)m−1.

Proposition 2.19. If A is m-EP with the decomposition as in (2) then
K is a partial isometry of C((ΣK)m−2) into C

r, that is KK∗K(ΣK)m−2 =
K(ΣK)m−2.

Proof. It follows pre-multiplying expression in Theorem 2.8 (b) by L and
using that LL∗ = I − KK∗.

We close this section with the following remark. In [8], the authors proved
that if A is m-EP then ind(ΣK) = m− 1. Can we assure that ΣK is always
an (m − 1)-EP matrix? Example 2.17 illustrates that this is not the case.
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3 More properties of m-EP matrices

Next, we state some links between m-EP matrices, Moore-Penrose inverses,
Drazin inverses, and DMP inverses.

Theorem 3.1. Let A ∈ C
n×n be a matrix of index m. Then A is m-EP if

and only if A†Am+1 = Am+1A† = Am.

Proof. ‘Only if’ part is easy. ‘If’ part. Let A†Am+1 = Am+1A† = Am.
Consider Am+1A† = Am. Pre-multiplying by Ad gives AmA† = AdAm. Post-
multiplying A†Am+1 = Am by Ad gives A†Am = AmAd. But AdAm = AmAd.
Hence A†Am = AmA†.

Corollary 3.2. If A ∈ C
n×n is an m-EP matrix then Ad = Am(A†)m+1 =

(A†)m+1Am.

Proof. Firstly we define X = Am(A†)m+1. Taking into account the definition
of m-EP matrix and applying repeatedly Theorem 3.1 we have

(a) XAX = Am(A†)m+1AAm(A†)m+1 = A2m(A†)m+1A(A†)m+1 = AmA†AA†(A†)m =
AmA†(A†)m = Am(A†)m+1 = X.

(b) Am+1X = Am+1Am(A†)m+1 = Am.

(c) AX = AAm(A†)m+1 = Am(A†)m = (A†)mAm = (A†)mA†Am+1 = (A†)m+1AmA =
Am(A†)m+1A = XA.

By the uniqueness of the Drazin inverse, X = Ad. Now, by using the defini-
tion of m-EP matrix we arrive at Am(A†)m+1 = (A†)m+1Am.

We can conclude that when A is m-EP then the (two unknowns) equation
AmX = Y Am holds for any pair of X,Y ∈ {A†, Ad, Ad,†}.
Theorem 3.3. Let A ∈ C

n×n be a matrix of index m. Then A is m-EP if
and only if Ad,†Am = AmAd,† = AdAm = AmAd = A†Am = AmA†.

Proof. (=⇒) We first prove that if A is m-EP then Ad,†Am = AmAd,† and
AmA† = AdAm. In fact, pre-multiplying A†Am = AmA† by AdA, we have
Ad,†Am = AmAd,†. Since AmAd,† = AmA†, the other half of the statement
follows. Now, premultiplying A†Am = AmA† by AdA we get Ad,†Am =
AdAA†Am = AdAAmA† = AdAm+1A† = AmA†. Now, the result follows by
Theorem 3.1.

(⇐=) is trivial.
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Proposition 3.4. Let A ∈ C
n×n be m-EP and a partial isometry with m ≥

2. Then (a) (A†)mA = A(A†)m and (b) (A†)m+qA = A(A†)m+q = (A†)m+q−1

for all integer q ≥ 1.

Proof. (a) We have (A†)mA = (A∗)mA = (A∗Am)∗ = (A†Am)∗ = (AmA†)∗ =
(Am−1AA†)∗ = AA†(Am−1)∗ = AA†(A∗)m−1 = AA†(A†)m−1 = A(A†)m.

(b) It can be proved by induction on q using (a).

Proposition 3.5. Let A ∈ C
n×n be m-EP and a partial isometry. Then

(Am+q)† = A†(Am+q−1)† for any integer q ≥ 1.

Proof. In order to demonstrate that the reverse order law (Am+1)† = A†(Am)†

holds we have to show: C(AA∗(Am)∗) ⊆ C((Am)∗) and C((Am)∗AmA) ⊆ C(A)
(see [5], Theorem 1.4.2, Page 23). To prove the first inclusion, we apply
Proposition 3.4 (a) obtaining C(A(A∗)m+1) = C(A(A†)m+1) = C(A(A†)mA†) =
C((A†)mAA†) = C((A†)m) = C((A∗)m). So, C(AA∗(Am)∗) ⊆ C((Am)∗).

We now observe that if A is m-EP then it is easy to see that Am(A†)m =
(A†)mAm. Then, second inclusion follows as C((Am)∗AmA) = C((A†)mAmA) =
C(Am(A†)mA) ⊆ C(A). Thus, the assertion has been proved for q = 1. Ap-
plying Proposition 3.4 (b), the equality for the remaining cases follow by
induction.

It is well known that (A†)2 = (A2)† does not hold in general. In [7],
Hartwig and Spindelböck studied some conditions for a square matrix A to
be bi-dagger. We show that this equality holds for m-EP partial isometries
and that all properties indicated in their paper are valid for this class of
matrices. Note that, when A is a 2-EP matrix, A is not a q-EP matrix for
any integer q ≥ 3. Despite this, we can show the following.

Theorem 3.6. Let A ∈ C
n×n be a m-EP matrix. The following hold:

(i) A†Am+q = Am+qA† = Am+q−1 for all integer q ≥ 1.

(ii) A†Am+1A† = A†Am and A†Am+qA† = Am+q−2 for all integer q ≥ 2.

(iii) If A is a partial isometry then (Am+q)† = (A†)m+q for all integer q ≥ 0,
so Am+q is partial isometry for each integer q ≥ 0.

Proof. (i) It follows by induction on q using Theorem 3.1.
(ii) Notice that A†Am+1A† = A†Am, since A†Am+1A† = (A†Am)AA† =

AmA†AA† = A†Am. Now, using (i) twice we have A†Am+qA† = Am+q−1A† =
Am+q−2.
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(iii) Firstly we prove the assertion for q = 0. From the condition A†Am =
AmA†, it is easy to see (A†)mAm = Am(A†)m. Premultiplying (A†)mAm =
Am(A†)m by Am, and using Theorem 3.1 repeatedly we have the following
Am(A†)mAm = AmAm(A†)m = Am−1(Am+1A†)(A†)m−1 = Am−1Am(A†)m−1 =
Am−2(Am+1A†)(A†)m−2 = Am−2Am(A†)m−2 = · · · = Am+1A† = Am.

Further, as before, from (A†)mAm = Am(A†)m we have (A†)mAm(A†)m =
Am(A†)m+m. Now, using Proposition 3.4 repeatedly, we get the following
Am(A†)m+m = Am−1(A(A†)m+m) = Am−1(A†)m+m−1 = Am−2(A(A†)m+m−1) =
Am−2(A†)m+m−2 = · · · = (A†)m. Thus, (A†)mAm(A†)m = (A†)m.

Finally, we show that Am(A†)m and (A†)mAm are hermitian. Since A† =
A∗, we have Am(A†)m = Am(A∗)m = Am(Am)∗, which is hermitian. Similarly,
(A†)mAm is hermitian. Hence, (Am)† = (A†)m.

The remaining cases can be showed by induction using Proposition 3.5.

Finally, some geometrical facts can be deduced for m-EP matrices. Recall
the Sylvester rank formula for M,N ∈ C

n×n [9]:

rank(MN) = rank(N) − dim(N (M) ∩ C(N)).

Proposition 3.7. Suppose that A is m-EP . Then the following facts hold:

(a) C(AmA†) = C(Am) = C(AmA∗) = C(A†Am). Consequently, rank(AmA†) =
rank(Am) = rank(AmA∗) = rank(A†Am) = rank(Am)∗.

(b) N (A∗) ∩ C(Am) = {0}.

(c) N (A) ∩ C(A∗Am) = {0}.

(d) N (AmA∗) ∩ C(A) 6= {0}.

(e) C(Am) ⊆ C(A∗) ∩ C(A).

Proof. (a) On one hand C(AmA†) ⊆ C(Am) = C(Am−1A) = C(Am−1AA†A) ⊆
C(AmA†), and on the other hand C(AmA†) = C(AmA∗) since A† =
A∗(AA∗)† and A∗ = A†AA∗. The last equality follows by definition.

(b) Using (a) and the Sylvester rank formula we have rank(Am) = rank(A†Am) =
rank(Am) − dim(N (A†) ∩ C(Am)). Then, dim(N (A†) ∩ C(Am)) = 0 and
thus N (A∗) ∩ C(Am) = N (A†) ∩ C(Am) = {0}.
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(c) Using that A† = (A∗A)†A∗, we have A†Am = [(A∗A)†][A∗Am]. The
Sylvester formula and item (a) give N (A∗A)† ∩ C(A∗Am) = {0}. Since
N (A∗A)† = N (A∗A)∗ = N (A∗A) = N (A) we arrive at N (A)∩C(A∗Am) =
{0}.

(d) Using that A† = A∗(AA∗)† we have AmA† = [AmA∗][(AA∗)†]. The
Sylvester formula gives rank(Am) = rank(A) − dim[N (AmA∗) ∩ C(A)]
where we have used that C(B†) = C(B∗). Since rank(Am+1) = rank(Am) <
· · · < rank(A2) < rank(A) we get dim[N (AmA∗) ∩ C(A)] 6= 0.

(e) The orthogonal spaces to C(Am) = C(A†Am) yield the following N ((Am)∗) =
N ((Am−1)∗A†A) ⊇ N (A), and computing again the orthogonal spaces
we arrive at the result.

4 The m-normal class of matrices

In this section we study an interesting particular case of m-EP matrices.
The class of square matrices A of index m satisfying A∗Am = AmA∗ will be
called m-normal matrices. We observe that:

(1) If N is any p × p normal matrix then

[

Jm(0) 0
0 N

]

(8)

is m-normal.

(2) A matrix can be m-normal without being a partial isometry, e.g., A =
[

−a a
−a a

]

, where a ∈ R, a 6= 0, 1.

For some related results on m-normal matrices we refer the reader to [11]
where some characterizations are given in the setting of rings. However, we
point out that in [11] m does not correspond necessarily to the index.

In order to obtain a characterization for m-normal matrices, we take a
matrix A ∈ C

n×n of rank r > 0 in the Hartwig-Spindelböck decomposition,
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i.e.,

A = U

[

ΣK ΣL
0 0

]

U∗, (9)

as in (2). Then A is m-normal if and only if

(a) (ΣL)∗(ΣK)m−1 = 0

(b) (ΣK)m−1(ΣL) = 0

(c) (ΣK)m−1Σ2 = (ΣK)∗(ΣK)m

(d) ind(ΣK) = m − 1.

This last result can be proved as the previous one for m-EP matrices and
its proof is omitted.

Consider the following matrix A decomposed in its Jordan canonical form:

A =

[

−a a
−a a

]

=

[

−a 1
−a 0

] [

0 1
0 0

] [

0 −1/a
1 −1

]

a ∈ R, a 6= 0.

It can be seen that m = 2, A∗A2 = A2A∗ and A†A2 = A†A2 using that

A† =
1

4a2

[

−a −a
a a

]

.

Indeed, every Jordan block Jm(0) is m-normal and m-EP .
However, the matrix

A =









√
2/2

√
2/2 0 0

−
√

2
√

2 0 0
0 0 0 1
0 0 0 0









is 2-EP (to compute A† observe that the 2×2 sub-matrix in the N-W corner
is nonsingular and the 2 × 2 sub-matrix in the S-E is J2(0)) but A is not
2-normal.

Since a normal matrix is EP , our next result is not unexpected. It follows
that the class of m-normal matrices is a subclass of class of m-EP matrices.

Theorem 4.1. If A ∈ C
n×n is a m-normal matrix then A is a m-EP matrix.

17



Proof. Let A be m-normal. So, A∗Am = AmA∗. Post-multiplying both sides
by AA† we have A∗AmAA† = AmA∗AA†, that is, A∗Am+1A† = AmA∗(AA†)∗

or equivalently A∗Am+1A† = AmA∗. Pre-multiplying both sides by (A†)∗ we
get (AA†)∗Am+1A† = (A†)∗A∗Am, that is, AA†Am+1A† = AA†Am or equiv-
alently Am+1A† = Am. Similarly by pre-multiplying both sides of A∗Am =
AmA∗ by A†A and then post-multiplying by (A†)∗ and using AmA∗ = A∗Am,
we have A†Am+1 = Am. Thus m-normality implies m-EPness.

We close this paper noticing that a partial isometry is m-EP if and only
if it is m-normal.
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[6] N. Castro González, J.J. Koliha, Y. Wei, Perturbation of the Drazin
inverse for matrices with equal eigenprojections at zero. Linear Algebra
and its Applications, 312, 181–189, 2000.
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