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The class of m-FE P and m-normal matrices

Saroj B. Malik* Laura Ruedal Néstor Thome?

Abstract

The well-known classes of E'P matrices and normal matrices are de-
fined by the matrices that commute with their Moore-Penrose inverse
and with their conjugate transpose, respectively. This paper investi-
gates the class of m-FE P matrices and m-normal matrices that provide
a generalization of £ P matrices and normal matrices, respectively, and
analyzes both of them for their properties and characterizations.
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1 Introduction and Notation

The symbol C"™*™ stands for the set of m x n complex matrices. The symbols
A*, C(A) and N(A) will denote the conjugate transpose, column space and
null space of a matrix A € C™*"™, respectively. Moreover, I,, will denote the
identity matrix of order n.

The symbol A" will denote the Moore-Penrose inverse of a matrix A €
C™*" i.e., the unique matrix AT € C"*™ satisfying the following four Pen-

rose conditions: AATA = A, ATAAT = AT, AAT = (AAT)*, ATA = (ATA)*.
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The orthogonal projectors AAT and ATA will be denoted by the symbols Py
and @ 4, respectively. For a given matrix A € C™*", recall that the smallest
nonnegative integer m such that rank(A™) = rank(A™!) is called the index
of A and is denoted by ind(A). The Drazin inverse of A € C"*" is the unique
matrix A? € C™" such that A4A% = A9 AA? = AdA A™H AL = A™
where m = ind(A). Three generalized inverses were recently introduced for
square matrices, namely the core inverse, the DMP inverse and the BT-
inverse, the later two being generalizations of the core inverse to matrices
of index greater than or equal 2. We wish to mention that the BT-inverse
was originally referred as generalized core inverse. Since BT-inverse is not
the only generalization of the core inverse known in the literature, we pre-
fer to credit it to the authors Baksalary and Trenkler and, hence, call this
generalization the BT-inverse. Let A € C™". An n x n matrix X satisfying
AX = Pyand C(X) C C(A) is called the core inverse of A [2] (it exists for in-
dex 1 matrices and it is unique). If A has index m, the only matrix X € C"*"
that satisfies XAX = X, XA = A%A and A" X = A" A" is called the DMP
inverse and denoted by X = A%T [8]. For m = 1, the DMP inverse becomes
the core inverse [2, 13]. The DMP inverse of a matrix A always exists and
satisfies A4T = ATAAT [8]. A matrix A° € C™™ satisfying A° = (AP4)T is
called the BT-inverse of A (it always exists and is unique) [3]. We refer the
reader to [2, 3, 4, 5, 12, 15] for properties of these matrices.

We also recall that a square matrix is called normal, F P, partial isometry,
SD, bi-EP, bi-normal or bi-dagger if AA* = A*A, AAT = ATA, AT = A*,
A*AT = ATA* (AAT)(ATA) = (ATA)(AAT), (AA*)(A*A) = (A*A)(AAY), or
(A1) = (A?)T respectively [7, 10]. Some applications of EP matrices can be
found for instance in [6, 11].

The main aim of this paper is to investigate the classes of m-E P matri-
ces (square matrices A of index m satisfying A™ AT = ATA™) and m-normal
matrices, that provide a generalization of F P matrices and normal matrices.
We remember that the classes of P matrices and normal matrices are de-
fined by the square matrices that commute with their Moore-Penrose inverse
and with their conjugate transpose, respectively. We note that for a given
matrix A € C™" of index m, Tian showed [14] the equivalence between

AmAY = ATA™ and rank { 1;11* } +rank [ A™ A* ] = 2rank(A) and the

equivalence between A™ is EP and rank [ A™ (A™)* | = rank(A™). In
order to understand more deeply this class of matrices, our task is to provide



several properties and characterizations. Additionally, we obtain a character-
ization of the Drazin inverse and the DMP inverse of m-FE P matrices using
a Hartwig-Spindelbock decomposition.

2 The class of m-E P matrices

We next study the class of matrices A € C™*" of index m that satisfy the
condition that AT and A™ commute.

Definition 2.1. A matrix A € C™*" is called m-EP if it satisfies
ATA™ = A™ AT
where m is the index of A.

Notice that for m = 1, the matrices in this class are the class of range
hermitian (or E£P) matrices. If a square matrix A is m-EP then A* and
UAU* are also m-EP and ind(U*AU) = m for any unitary matrix U € C™*".
Clearly, any unitary as also any nonsingular matrix is m-EP for m = 0.
Moreover, any nilpotent matrix is trivially m-E P for m being the nilpotence
index of A. We give below a non-trivial example with m = 2.

Example 2.2. Let

010
A=10 0 0
0 01

Then AT = A*, A2 = A3 and A%AT = ATA? that is, A is 2-EP. Observe
that A is not diagonalizable.
It is well known that an EP matrix may be or not diagonalizable. How-

ever, the next result states that m-E P matrices with m > 2 are always not
diagonalizable.

Theorem 2.3. If A € C™*" is diagonalizable and m-EP then A is EP.

Proof. Clearly, if A = 0 then A is diagonalizable, 090" = 0707 for any positive
integer ¢ and it is well known that m = ind(A) = 1.
Now, let A # 0 and r = rank(A). Since A is diagonalizable, we can say

that A = Pdiag(dy,...,d,,0,...,0)P~! for some n X n nonsingular matrix
P and non-zero scalars dy, ..., d,. It follows that rank(A?) = rank(A), so
m = ind(A) < 1. Hence A is EP. O



Lemma 2.4. Let A € C"*" be an m-EP matriz. The following statements
hold.

(a) If A is m-dagger (i.e., (A™)T = (A")™) then A™ is EP.
(b) If A is a partial isometry then A™ is normal.

Proof. If A is m-EP then it is easy to see that A™(A")™ = (AT)™A™. Thus,
it immediately follows that A™ is EP. Second item is trivial. O]

We now give a construction that allows us to obtain many more examples
of m-E P matrices. For integer n > 2, let J,,(0) denote the n xn Jordan block
corresponding to the eigenvalue 0 with 1’s in super diagonal. Then .J,,(0) has
index n and (J,,(0))" = (J,(0))* [4, p. 43].

For each fixed m € N, in the following example we construct m-EP
matrices.

Example 2.5. Let m > 2 be an integer and B be a p X p EP matrix. The
matrix

A:Jm(O)GaB:[Jm(O) 0 }

0 B

is of index m by [5, Theorem 7.7.4] and satisfies ATA™ = A™ AT,

Now we give some sufficient conditions for a matrix to be m-EP. Before
that result we present a lemma.

Lemma 2.6. Let A € C™"™ be a matrix of index m and rank r > 0. The
following statements are equivalent:

(a) There exists an EP matriz E € C™™ and a nilpotent matriz M € C"*"
with nilpotence index m such that A= E+ M and EM = ME = 0.

(b) There are matrices C € C>*5, T € C*™* and U € C™™ such that A =
U(C & T)U* where s +t = n, C is nonsingular, T is nilpotent with
nilpotence index m, and U s unitary.

Proof. (a) = (b) Assume that A = E + M, with F an EFP matrix, M an
m-nilpotent matrix and EM = ME = 0. The EPness of FE assures that [5]
there exist a unitary matrix U € C"*" and a nonsingular matrix C' € C***



such that £ = U(C & 0)U*. Partitioning A conformable to the partition of
E we have that

A A T

A:U{X}qU* and M:A—E:U[X_quUf
From MFE = 0 and the non-singularity of C' we get X = C' and Z = 0.
Similarly, from EM = 0 we arrive at Y = 0. Thus, M = U0 @ T)U*.
Since M is m-nilpotent, T™ = 0 # T™~!, that is, T is m-nilpotent. Finally,
A=U(CeaTU"

(b) = (a) This implication is evident to be checked by writing A =
UC@®0)U*+U((0® T)U* and calling E the first term and M the second
one. O

Theorem 2.7. Let A € C™*™ be a matrixz of index m and rank r > 0. The
following conditions are equivalent.

(a) The matriz A satisfies any of both equivalent conditions in Lemma 2.0.
(b) Ais m-EP and A™ is EP.
Proof. (a) = (b) Assume that A = U(C' @ T)U* where matrices U, C,

and T satisfy the conditions indicated in Lemma 2.6. It is easy to see that
Am = U(C™ @ 0)U* and so, A™ is EP, and moreover AT = U(C~t & TTU*.
Hence, we arrive at ATA™ = A™ A from which A is m-EP.

(b) = (a) Suppose that A™ is EP. Then

A™ = U(B&®0)U* (1)

for some nonsingular B € C*** and some unitary U € C"*". Assuming also
that A is m-E P and partitioning

X Y
T *
PEEAF

according to the partition of A™, we obtain Y =0, Z =0 and XB = BX
since A™AT = ATA™. Using that (AT)T = A we get A = U(XT@ VU*. If we
now compute A™ and compare to (1), it is easy to see that B = (XT)™ and
(V1™ = 0. That is, X' is nonsingular and V7 is nilpotent as desired. [



Theorem 2.7 extends the useful characterization for FP matrices given
in [5, Theorem 4.3.1, p. 74]).

We now remind a canonical form for the class of m-E P matrices using
the Hartwig-Spindelbock decomposition [7, 1]. For any matrix A € C™*" of
rank r» > 0 this decomposition is given by

YK YL .
A=U { 0 0 } U-, (2)
where U € C™*" is unitary, X = diag (01],,1, e atlrt) is a diagonal ma-

trix, the diagonal entries o; being singular values of A, 01 > 09 > ... > 0, >
0,"14+7rs4+...+r=rand K € C", L € C"*(7) satisfy KK*+ LL* = I,.

Theorem 2.8. Let A € C"™™ be written as in (2). Then A is m-EP if and
only if the following conditions hold:

(a) K*K(SK)™ ! = (BK)™ !,

(b) L*S"YEK)™ 1 =0 (or equivalently L* K (X K)™ 2 =0),
(c) (EK)"'SL =0, and

(d) ind(XK) =m — 1.

Proof. Suppose that A is written as in (2). Then

(3)

WU l (Eéf)j (M){J)‘*ZL ] -

for all integer j > 1.
(=) Assume that A is m-EP. Condition (d) follows directly from |8,
Lemma 2.8]. It is well-known that A" has the form [2, Formula (1.13)]

ATZU[

K*sto],.,
Lyt O}U'

By setting j = m in (3), condition A™ A" = ATA™ is equivalent to

K'Y (EK)™ = (SK)"K*S™ + (SK)™ 'SLL*Y ™ = (BK)™ !
K'Y Y(SK)"'SL =0,

LYY (BK)™ =0,
LS Y (SK)"'SL = 0.



Clearly, the first condition can be rewritten as in (a). Since ¥ K has index
m — 1, post-multiplying third equality by the Drazin inverse of XK we get
condition L*¥ "X K)™ ! = 0 which gives (b). Pre-multiplying the second
equation by K, the fourth equation by L and adding them, condition (c) is
obtained.

(<) Assume that conditions (a)-(d) are satisfied. From (3), we can
write

. LK) 0 YK YL

i—yl ! '

AT=U { 0 0 ] { Y Z 1 u 4)
for all j > 1 and for some appropriate matrices Y and Z such that Z}f( EZL }

is nonsingular. Notice that both matrices Y and Z exist because the ma-
trix [ XK XL | has full row rank. Equality (4) implies that rank(A’) =
rank(XK)~! for all j > 1. Now, from ind(XK) = m—1 we get ind(A) = m.
It remains to show ATA™ = A™AT. Under conditions (a)-(c), it can be veri-
fied by actual computations. O]

The next aim is to show that m-E Pness and the fact that A™ is EP are
essentially different notions.

Theorem 2.9. Let A be an m-EP matriz written as in (2). Then
A™ s EP = (XK)™ is EP.
Proof. If we write matrix A as in (2) then

A { (Efof)’" (EK)’;‘TL 1 — [ (zzoom 8 ] -

(because when A is m-EP we can derive that (XK)™ 'YL = 0 holds) and

oy [T 0

Now, N(A™) = N((A™)*) if and only if N ((XK)™) = N(((XK)™)*). O

In order to obtain the Drazin inverse of m-E P matrices we need the
following properties.



Proposition 2.10. Let A € C*™ be written as in (2). If A is m-EP then
the following properties hold:

(a) (SK)"(K'S™) = (SK)™ .
(b) (K*S)(SK)™ = (SK)™1.

(c) (EK)™ 1(K*Y 1 = (K*S " H4(SK)™ 1 = (SK)™ ! for all integer
qg=1

Proof. (a) By Theorem 2.8 (c), (SK)™(K*$71) = (SK)™Y(SK)(K*$71) =
(SK)"1S(I, — LLY)S~! = (SK)™ L.
(b) By Theorem 2.8 (a), (K*S™1)(SK)™ = K*K(SK)™! = (SK)™ 1.

(c) It follows by induction on ¢ using (a) and (b).
[l

Theorem 2.11. Let A € C™" be an m-EP matriz written as in (2). Then

At=U U*

(SK)" Y Ks Ym0, ., [ (K'SHm(SK)™ ! 0
0 0 } U= U{ 0 0

Proof. By Proposition 2.10 (a) and (b), (XK)™ and K*¥~! commute. So,

(SR)™ S SR (S = (SR s e

)

and using Proposition 2.10 (c), we get (LZK)™ " (K*S-H)m(K*S—1)m™ =
(SK)™ Y K*S71)™. Hence, AAA? = A%, Similarly, we obtain A?A = AA4
and AMT1AY = A™, O

Now, expressions for A% and A" of an m-EP matrix allow us to ensure
the equality between the DMP inverse and the Drazin inverse of A.

Corollary 2.12. Let A € C"*™ be an m-EP matriz written as in (2). Then
AdT = A,

Next result shows that condition “(XK)? is EP” fulfils vacuously in The-
orem 2.9 for m = 2.

Proposition 2.13. Let A € C™" be a 2-EP matriz. Then A% is an EP
matrixz and A is bi-dagger.



Proof. Assume that A is a 2-E'P matrix written as in (2). By Theorem 2.8
we get: (1) K*KSK = YK, (2) LK = 0, (3) KXL = 0. In addition, by
L*K = 0 we have that: (4) K is a partial isometry since K = (KK* +
LINK = KK*K.

2 2
On the other hand, A? = U { (XK)* EKXL } U —=U { (XK)* 0 1 U

0 0 0 0
We claim that

2\T __ (K*271)2 O *
O R 5)
or equivalently ((XK)?)T = (K*X71)2. In fact, we will demonstrate the four
Penrose equations:

(i) By (1) we have (SK2(K*S"12(SK)? = (SK)?K*S{(K*KYK) =
(CK)?’K*YS1(XK) = SKX(KK*K) = (ZK)? since K is a partial
isometry.

(i) By (1) we have (K*Y 1) (BK)?(K*Y71)?2 = K*S Y K*KXK)(K*X1)?
KXW ER)(K*2)? = (K*KKS)Y T K*S ! = (K212 since K is
a partial isometry.

(iii) By using (3) and (1) we have (ZK)*(K*X 1) = Y KS(KK* )X T K2t
— KX, — LIS 'K*S ! = SKK*S — S(KSL)LE K s
— (CK)K*S ™ = (K*KSK)K*S = K*KS(KK*)S ! = K*KS (1, —
LIS = K*K — K*(KSL)L'S = K*K.

(iv) By (1) we have (K*Y1)}(Z2K)? = K*S Y K*KYK) = K*Y7YZK) =
K*'K.

Hence, A%(A?)T = (A%)TA? that is A% is EP. Even more, it can be also
proved that A is bi-dagger. By the expression of the Moore-Penrose inverse
2] it then follows

(K* 271)2 O
L*SLK*yt 0
and we can show that L*>"'K* = 0. In fact, pre-multiplying Y 'K* KX K =
K by L* and post-multiplying it by K*, we get (i) L*S'K*KYXKK* =
L*KK* = 0. Now, pre-multiplying and post-multiplying (3) by L*>"1K*
and L*, respectively, we have (ii) L*S'K*KYLL* = 0. Adding (i) and (ii)
we get L*S'K*K = 0 and finally using (4) we arrive at L*S'K* = 0. It
follows that (A2)T = (AT)2. O

(AN =U U,



Notice that if we first establish that A is bi-dagger in Proposition 2.13,
it then follows that A? is EP from Lemma 2.4.

Proposition 2.14. Let A € C™*" be a 2-EP matriz. Then A is bi-EP.

Proof. Let A be a 2-F P matrix. By Proposition 2.13, A is bi-dagger. It then
implies that (AT)? = (A")2((A")?)T(A")? = (AT)2A%(AT)2. Thus, A(AT)2A =
A(AT)2A2(AT)2A = AAT(ATA?)(AT)2A = AAT(A2AT)(AT)2A. Using the defi-
nition of the Moore-Penrose inverse, AAT(A2AT)(AT)2A = (AATA)AAT(AT)2A =
AZAT(AT)2A = AT(A2ANATA = ATATA(AATA) = AT(ATA?) = ATA2AT. O

Related to a generalization of core inverse introduced by Baksalary and
Trenkler in [3] we have the following result that can be easily shown.

Proposition 2.15. Let A € C"*"™. Then the following statements hold:
(a) A is 2-EP if and only if A° = (Q4A)T.
(b) If A is 2-EP then (A°)' and AT commute.

It is remarkable that a formula similar to (5) can be established in general
for a m-EP matrix A when m > 2. It reads like

and can be obtained computing A™ and using Theorem 2.8 (c). However,
using the expression for A" given in [2], the formula for (A")™ now adds a
not necessarily zero block in position (2, 1) as follows:

(AN =U { (Kesm 0 } U*, (7)

L*E_l (K*Z_l)m_l 0

Proposition 2.16. Let A € C"" be a SD and m-EP matriz. Then the
following statements hold:

(a) A is m-dagger if and only if (XK)™)" = (K*S~1Y)™. In this case, K™
s a partial isometry.

(b) A™ is a partial isometry if and only if (XK)™ is a partial isometry.

10



Proof. Let A be a SD and m-E P matrix written as in (2). Since A is m-EP,
Theorem 2.8 implies that K*K(XK)™ ! = (XK)™ !, I*S>7Y(ZK)™ ! =0,
(XK)™ 'YL =0, and ind(XK) = m—1. By Corollary 6 in [7], it follows that
¥ and K commute and, moreover, ¥~! and K commute and also ¥~ ! and K*

commute. Now, the above conditions can be re-written as K*K™ = K™ 1,
L*K™ ' =0, K™ 'L = 0. Substituting L*(K*)™ ' =0 in (7) we get

= [ 0]

(a) By using (6), we can establish that A is m-dagger if and only if (L K)™)" =
(K*%~1)™. Now, pre- and post-multiplying both sides by ¥™K™ and using
the non-singularity of ¥ we have K™ = K™(K*)™ K™, hance K™ is a partial
isometry.

(b) It follows from comparing expressions for (4™)" and (A™)*. O

We now give an example of a matrix that shows that the concepts ‘A is
m-EP” and ‘A™ is EP’ are really different for m > 3 (and also different from
that of m-dagger one).

Example 2.17. Consider the matrix

(-1 100 1 0

1 =100 -1 0

0 001 -1 1
A=11 100 1 -1
1 -1 00 1 —1

| 1 -100 0 0

of index 3. In this case, it can be checked that

0 0 0 —1/2 1/2 0

0 0 0 —1/2 1/2 -1

gi—| 0 0 0 0o o0 0
o 0 1 0 1 -1/

1/2 —=1/2 0 0 0 1

12 -1/2 0 0 -1 2

11



and A3AT = ATA3 so A is 3-EP. However, using that

-8 8 00 5 1]
8 -8 00 -5 -1
23— 0 0 00 0 0
- 0 0 00 1 -1
6 -6 00 -1 -3
| 6 -6 00 -2 -2 |
and
1/4 —-1/4 0 —11/12 —1/12 5/6_
—1/4 1/4 0 11/12 1/12 —5/6
0 00 0 0 0
3\t
(A9 = 0 00 0 0 01’
3/4 =3/4 0 -7/3 —1/6 13/6
3/4 =3/4 0 -3 -1/2 5/2_

a simple computation shows that the equality A3(A%)" = (A3)TA® does not
hold, so A3 is not EP.

More generally, for m > 3 the matrix B = A® J,,(0) of index m satisfies
that A is m-EP but A™ is not EP. In addition, it can be checked that
neither A is 3-dagger nor B is m-dagger for m > 3 (see Lemma 2.4).

Remark 2.18. For m > 3, it is not possible to deduce (ii)-(iv) from Propo-
sition 2.13 assuming that A is m-EP. A similar proof allows us to prove only

the following statements: (ZK)™(K*S " H™(SK)™ = (SK)™, (SK)™(K*S~ ™ =
(SK)mL(K*S7 1)L and (K*S-1)™(SK)™ = (K*S1)mL(SK)m1,

Proposition 2.19. If A is m-EP with the decomposition as in (2) then
K is a partial isometry of C((XK)™ %) into C", that is KK*K(XK)™ 2 =
K(ZK)™2.

Proof. It follows pre-multiplying expression in Theorem 2.8 (b) by L and
using that LL* =1 — KK™*. ]

We close this section with the following remark. In [8], the authors proved
that if A is m-EP then ind(XK) = m —1. Can we assure that XK is always
an (m — 1)-EP matrix? Example 2.17 illustrates that this is not the case.

12



3 More properties of m-E P matrices

Next, we state some links between m-FE P matrices, Moore-Penrose inverses,
Drazin inverses, and DMP inverses.

Theorem 3.1. Let A € C™" be a matriz of index m. Then A is m-EP if
and only if ATATTE = AmFLAT = A™,

Proof. ‘Only if’ part is easy. ‘If’ part. Let ATA™Hl = Am+IAT — Am
Consider A™*1AT = A™. Pre-multiplying by A¢ gives AmAT = A?A™. Post-
multiplying ATA™+ = A™ by A? gives ATA™ = AmA?. But AYA™ = A™A?

Hence ATA™ = A™ AT, O
Corollary 3.2. If A € C™" is an m-EP matriz then A = A™(AT)m+ =
(AT)m-i—lAm_

Proof. Firstly we define X = A™(A")™*+!1. Taking into account the definition
of m-E P matrix and applying repeatedly Theorem 3.1 we have

(a) XAX = Am(AT)m+1AAm(AT)m+1 — AQm(AT)m+1A(AT)m+1 — AmATAAT(AT)m —
AmAT (AN = Am(AhmH = X

(b) Am+1X —_ Am+1Am(AT)m+1 — Am

(C) AX = AAm(AT)erl — Am(AT)m — (AT)mAm — (AT)mATAerl — (AT)"HlAmA —
Am(ADm LA = X A.

By the uniqueness of the Drazin inverse, X = A¢. Now, by using the defini-
tion of m-EP matrix we arrive at A™(Af)m+ = (AT)m+1Am, O

We can conclude that when A is m-FE P then the (two unknowns) equation
AmX =Y A™ holds for any pair of X,Y € {AT, A4 A4}

Theorem 3.3. Let A € C™*" be a matrix of index m. Then A is m-EP if
and only if AZTA™ = AmMADT = AdA™ = AmAd = ATA™ = A AT,

Proof. (=) We first prove that if A is m-EP then A%TA™ = A™A%T and
AmAT = AYA™ . In fact, pre-multiplying ATA™ = A™AT by A?A, we have
AT A™ = Am AT Since AMALT = A™ AT, the other half of the statement
follows. Now, premultiplying ATA™ = A™AT by A?A we get AYTA™ =
ATAATA™ = ATAAMAT = ATA™H AT = Am AT, Now, the result follows by
Theorem 3.1.

(<) is trivial. O

13



Proposition 3.4. Let A € C"™" be m-EP and a partial isometry with m >
2. Then (a) (AN™A = A(AN)™ and (b) (AT)"HA = A(AT)"He = (AT)mHa-l
for all integer ¢ > 1.

Proof. (a) We have (AN)™A = (A")"A = (A*A™)* = (ATA™)* = (AmAT)* =
(AMLAAT) = AAT(A™ 1) = AAT(A*)m L = AAT(AT)™=1 = A(AT)™.
(b) It can be proved by induction on ¢ using (a). ]

Proposition 3.5. Let A € C™" be m-EP and a partial isometry. Then
(AT = AT(A™F=1YT for any integer ¢ > 1.

Proof. In order to demonstrate that the reverse order law (A™1)T = AT(A™)T
holds we have to show: C(AA*(A™)*) C C((A™)*) and C((A™)*A™A) C C(A)
(see [5], Theorem 1.4.2, Page 23). To prove the first inclusion, we apply
Proposition 3.4 (a) obtaining C(A(A*)™*1) = C(A(AT)™!) = C(A(AT)mAT) =
C((AT)™AAT) = C((Af)™) = C((A%)™). So, C(AA*(A™)%) C C((A™)").

We now observe that if A is m-E P then it is easy to see that A™(AT)™ =
(AT)y™A™. Then, second inclusion follows as C((A™)*A™A) = C((AT)mA™A) =
C(A™(AT)™A) C C(A). Thus, the assertion has been proved for ¢ = 1. Ap-
plying Proposition 3.4 (b), the equality for the remaining cases follow by
induction. O

It is well known that (AT)? = (A2%)" does not hold in general. In [7],
Hartwig and Spindelbock studied some conditions for a square matrix A to
be bi-dagger. We show that this equality holds for m-E P partial isometries
and that all properties indicated in their paper are valid for this class of
matrices. Note that, when A is a 2-E'P matrix, A is not a ¢-FE P matrix for
any integer ¢ > 3. Despite this, we can show the following.

Theorem 3.6. Let A € C™*™ be a m-EP matriz. The following hold:
(i) ATA™TE = AmHaAT = Amta=L for qll integer ¢ > 1.
(1) ATA™TIAT = ATA™ and ATA™HIAT = A™H4=2 for all integer q > 2.

(iii) If A is a partial isometry then (A™F9)T = (AN)™+4 for all integer ¢ > 0,
so A™T9 4s partial isometry for each integer ¢ > 0.

Proof. (i) It follows by induction on ¢ using Theorem 3.1.

(ii) Notice that ATA™TIAT = ATA™ since ATAMTIAT = (ATA™)AAT =
AMATAAT = ATA™. Now, using (i) twice we have ATA™HIAT = Amta—1 AT =
Am+q—2_
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(iii) Firstly we prove the assertion for ¢ = 0. From the condition ATA™ =
A™AT it is easy to see (AT)mA™ = A™(AT)™. Premultiplying (AT)™A™ =
Am(AT)m by A™, and using Theorem 3.1 repeatedly we have the following
AM(AT)MA™ = AMm AT (AT)™ = AM—L(AMFLAT)(AT)mL = Am=lgm(AT)m—1 =
AMTZ(AMHLAT)(AT)m=2 = AM2AM(AT)m=2 = ... = AmHLAT = A™,

Further, as before, from (AT)™A™ = A™(AT)™ we have (AT)mA™(AT)™ =
Am(AT)ym+m - Now, using Proposition 3.4 repeatedly, we get the following
Am(Afymam = AmA(A(ATymm) = Amo(ATymmet g4 ATy
AmM=2(ATymIm=2 — .. = (AT)™, Thus, (AH)mA™(AT)™ = (AT)™,

Finally, we show that A™(A")™ and (AT)™A™ are hermitian. Since AT =
A, we have A™(AT)™ = A™(A*)™ = A™(A™)* which is hermitian. Similarly,
(AT)mA™ is hermitian. Hence, (A™)" = (AT)™.

The remaining cases can be showed by induction using Proposition 3.5.

[

Finally, some geometrical facts can be deduced for m-FE P matrices. Recall
the Sylvester rank formula for M, N € C™" [9]:

rank(MN) = rank(N) — dim(N (M) NC(N)).
Proposition 3.7. Suppose that A is m-EP. Then the following facts hold:

(a) C(ATAT) = C(A™) = C(A™A*) = C(ATA™). Consequently, rank(A™AT) =
rank(A™) = rank(A™A*) = rank(ATA™) = rank(A™)*.

(b) N(A")nc(A™) = {0}.
(¢c) N(A)NC(A*A™) = {0}.
(d) N(AmA*)NC(A) # {0}
(e) C(A™) S C(A")NC(A).

Proof. (a) Ononehand C(A™AT) C C(A™) = C(A™1A) = C(A™TAATA) C
C(A™AT), and on the other hand C(A™A") = C(A™A*) since AT =
A*(AA*)T and A* = ATAA*. The last equality follows by definition.

(b) Using (a) and the Sylvester rank formula we have rank(A™) = rank(ATA™) =
rank(A™) — dim(N(AT) N C(A™)). Then, dim(N(AT) N C(A™)) = 0 and
thus N (A*) NC(A™) = N(AT) N C(A™) = {0}.
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(c) Using that AT = (A*A)TA* we have ATA™ = [(A*A)T][A*A™]. The
Sylvester formula and item (a) give N (A*A)T N C(A*A™) = {0}. Since
N(A*A)T = N(A*A) = N(A*A) = N(A) we arrive at N (A)NC(A*A™) =
{0}.

(d) Using that AT = A*(AA*)! we have AmAT = [AmA*|[(AA*)T]. The
Sylvester formula gives rank(A™) = rank(A) — dim[N(A™A*) N C(A)]
where we have used that C(B') = C(B*). Since rank(A™) = rank(A™) <
- < rank(A?) < rank(A) we get dim[N(A™A*)NC(A)] # 0.

(e) The orthogonal spaces to C(A™) = C(ATA™) yield the following N'((A™)*) =
N((Am1)*ATA) D N(A), and computing again the orthogonal spaces
we arrive at the result.

]

4 The m-normal class of matrices

In this section we study an interesting particular case of m-E P matrices.
The class of square matrices A of index m satisfying A*A™ = A™A* will be
called m-normal matrices. We observe that:

(1) If N is any p X p normal matrix then

{ (0 0 } ®)

is m-normal.

(2) A matrix can be m-normal without being a partial isometry, e.g., A =

[ aa } , where a € R,a # 0, 1.
—a a
For some related results on m-normal matrices we refer the reader to [11]
where some characterizations are given in the setting of rings. However, we
point out that in [11] m does not correspond necessarily to the index.

In order to obtain a characterization for m-normal matrices, we take a
matrix A € C™*" of rank r > 0 in the Hartwig-Spindelbock decomposition,
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ie.,

YK YL ..,
a-o [ S,

as in (2). Then A is m-normal if and only if

(ZL)*(ZK)™ =0
(BK)™YSL) =0
(SK)" 1?2 = (SK)*(SK)™

This last result can be proved as the previous one for m-FE P matrices and
its proof is omitted.
Consider the following matrix A decomposed in its Jordan canonical form:

| —a a| | —a 1 01 0 —1/a
A_l—a a}_{—a O}[O 0]{1 —1} @ €R,a70.
It can be seen that m = 2, A*A% = A?2A* and ATA% = ATA? using that

1 —a —a
T
A_4a2{ a a]

Indeed, every Jordan block J,,(0) is m-normal and m-EP.
However, the matrix

V2/2 V2/2

a- | vz V2
0 0
0 0

o O O O
o= O O

is 2-FE P (to compute AT observe that the 2 x 2 sub-matrix in the N-W corner
is nonsingular and the 2 x 2 sub-matrix in the S-E is J3(0)) but A is not
2-normal.

Since a normal matrix is £ P, our next result is not unexpected. It follows
that the class of m-normal matrices is a subclass of class of m-FE P matrices.

Theorem 4.1. If A € C"*" is a m-normal matriz then A is a m-E P matrix.
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Proof. Let A be m-normal. So, A*A™ = A™A*. Post-multiplying both sides
by AAT we have A*AMAAT = AmA* AAT, that is, A*A™HTAT = AmA*(AAT*
or equivalently A*A™*1AT = A™A*. Pre-multiplying both sides by (A")* we
get (AAT)*AMHLAT = (AT)* A*A™ that is, AATA™HAT = AATA™ or equiv-
alently A™+t1 AT = A™. Similarly by pre-multiplying both sides of A*A™ =
A™A* by ATA and then post-multiplying by (A")* and using A™A* = A*A™,
we have ATA™T! = A™ Thus m-normality implies m-E Pness. O

We close this paper noticing that a partial isometry is m-FE P if and only
if it is m-normal.
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