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Abstract 
 

Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes 
such as pollen development and pollen tube growth. We have isolated and characterized 
PsPMEP, a pea (Pisum sativum L.) pollen specific gene that encodes a protein with homology to 
PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are 
characterised by the presence of a processable amino-terminal PMEI (inhibitory) domain followed 
by the catalytic PME domain. Moreover, several motifs highly conserved among PMEs contain 
the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern 
blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 
days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter 
region we have identified three CArG boxes showing the consensus motif C[A/T]8G, which is 
preferentially bound by the MADS domain of the transcriptional regulator AGAMOUS-like 15 
(AGL15), as well as other conserved cis regulatory elements that have been associated to gene 
pollen specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter 
gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with 
pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression 
was detected in mature pollen grains, during pollen germination and during pollen tube 
penetration and elongation along the transmitting tract and when the pollen tube reaches the 
embryo sac in the ovule.  
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Introduction 

 

Pectin methylesterases (PMEs) produced by plants are involved in diverse physiological 

processes associated to both vegetative and reproductive development (Pelloux et al. 2007). 

Their roles in reproductive development have mainly concerned with pollen development and 

pollen tube growth (Jiang et al. 2005; Francis et al., 2006; Tiang et al., 2006; Bosch and Hepler; 

2006). PMEs belong to family 8 (CE8) of carbohydrate esterases 

(http://www.cazy.org/fam/CE8.html). These enzymes catalyze the specific demethylesterification 

of the homogalacturonan (HGA) fraction, a major component of pectins, within plant cell walls, 

releasing methanol and protons, and creating negatively charged carboxyl groups in the process. 

The demethylesterified HGA can either form Ca
2+

 bonds, which promote the formation of the so-

called ‘egg-box’ model structure, thus forming gels, or become a target for pectin-degrading 

enzymes, such as polygalacturonases, affecting the texture and rigidity of the cell wall. The 

enzymatic activity of PMEs can lead either to cell wall loosening or to cell wall stiffening, 

depending on the apoplastic pH and the availability of divalent cations, thereby affecting shape 

and growth of plant cells. Thus, PMEs have major roles in pectin remodelling in muro. PMEs 

belong to large multigene families and their primary and quaternary structures are conserved 

among plant taxa (Markowic and Janecek 2004). 

 Higher plant PMEs are frequently so-called pre-pro-proteins, in which the mature, active 

part of the protein (PME domain) is preceded by an N-terminal extension (pro-region) that varies 

in length and shows a relatively low level of amino acids identity between isoforms. The pre-

region is required for protein targeting to the endoplasmic reticulum, while only the mature part of 

the PME, without the pro-region, is extracted from the cell wall. Although several functions for the 

pro-region have been suggested (Micheli 2001; Markowic and Janecek 2004; Pelloux et al. 2007; 

Jolie et al. 2010), including targeting of PME to the cell wall, correct folding of PME and inhibition 

of PME enzyme activity, none has been conclusively established. Transient expression studies 

with green fluorescent protein (GFP) fusion proteins suggest that the pro-region is important for 

the correct targeting of the mature PME to the apoplast and data from in vitro growth analysis 

further support the idea that this region also acts as an intramolecular inhibitor of PME activity 

(Bosch et al. 2005). Spatial and temporal regulation of PME activity during plant development is 

based on a large family of isoforms. The pro-region shares similarities with the PME inhibitor 

domain (PMEI domain; Camardella et al. 2000; Scognamiglio et al. 2003). PME inhibitors are 

thought to be key regulators of cell wall stability at the tip of the pollen tube. A classification has 

been created, based on the presence or absence of the PMEI domain: Arabidopsis PMEs of 

group 1 (250 to 400 amino acids; 27-45 kDa) have no PMEI domain; those of group 2 (500-900 

amino acids; 52- 105 kDa) have 1-3 PMEI domains. These groups were formerly known as types 

II and I, respectively. Type-I PME genes contain one to three introns and the deduced proteins 

include a long pro-region, whereas type-II genes contain five or six introns and the pro-region of 

the deduced proteins is missing in most cases. The mature PMEs have similar structures and 

belong to the family of parallel ß-helix proteins with major differences in loops making up the 
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substrate binding cleft. The active site of PMEs is located in the long shallow cleft lined by two 

absolutely conserved aspartic acid residues in the center, Asp 136 and Asp 157 in the carrot 

PME, the first 3D crystallographic structure obtained of a plant PME (Johanson et al. 2002; 

Gummadi et al. 2007).  

 Many of the characterized genes which are specifically expressed during pollen 

development, pollen germination and pollen tube growth encode proteins that are likely to play a 

role in cell wall metabolism, like is the case of PMEs. Earlier studies revealed that expression of 

PME genes is strongly regulated in a tissue-specific manner (Li et al. 2002). The temporal 

expression of such genes has been studied and they are found to be expressed late in 

microsporogenesis reaching a maximum in mature microsporocytes. In some cases continued 

expression in the pollen tube has also been demonstrated (Kononowicz et al. 1992; Bosch and 

Hepler 2005). The genetic and molecular mechanisms that control the penetration of pollen tubes 

through stigmatic and stylar tissues still poorly understood. The wall in the tip region of the pollen 

tube is composed of a single pectin layer. The PMEs catalyze the demethylesterification of 

homogalacturonans releasing acidic pectins and methanol, contributing to cell development by 

regulating the mechanical and chemical properties of plant cell walls (Micheli 2001).  

Several studies have led to the identification of pollen tube-specific PMEs that could be 

involved in the processes of pollen tube development and its interaction with female floral tissues 

(Wakeley et al. 1998; Futamura et al. 2000; Li et al. 2002). Recent advances in our understanding 

of PME functions in reproductive development have mainly concerned their roles in pollen 

development and pollen tube growth demonstrated using reverse genetics. The first functional 

analysis of a pollen tube-expressed PME was described by Jiang et al. (2005). VANGUARD1 

(VGD1) is an Arabidopsis thaliana gene that encodes a PME-homologous protein required for 

enhancing the pollen tube growth in the style and transmitting tract tissues. The vgd1 mutation 

resulted in defects of male gametophytic function (pollen tubes structurally unstable) but did not 

affect female gametophytic function. Moreover, it has been shown in Arabidopsis that 

QUARTET1 (QRT1), which is expressed in pollen and surrounding anther tissues, has a role in 

pollen tetrad separation during floral development and has PME activity when expressed in E. coli 

(Francis et al. 2006). Rodríguez-Llorente et al. (2004) reported the presence of a gene family of 

at least eight differentially expressed PMEs in the model legume Medicago truncatula. One sub-

family is represented by a single symbiotic gene (MtPER) that could participate in the infection 

process during nodulation and two pollen-expressed genes that could be involved in pollen grain 

development (MtPEF1 and MtPEF2).  

Pollen specific PMEs are of special interest because their putative roles in pollen 

maturation, germination and pollen tube growth. Here we show the isolation and characterization 

of a pollen specific gene of pea (PsPMEP) which product shows homology to PMEs. The 

PsPMEP promoter has different conserved cis regulatory elements putatively responsible of gene 

pollen specific expression and three CArG boxes showing the consensus motif that is 

preferentially bound by the MADS domain of the transcriptional regulator AGL15 (Tang and Pery 

2003). The PsPMEP promoter fused to the uidA reporter gene shows specific GUS activity in the 
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mature pollen grains, during pollen germination and in the growing pollen tubes of transgenic 

Arabidopsis thaliana plants. Therefore, the PsPMEP promoter interestingly maintains its 

expression pattern in a non-leguminous species and suggest that PsPMEP plays a role during 

pollen development and pollen tube growth.   

 

Materials and methods 

 

Plant material 

Pisum sativum cv. Alaska plants were used in this study. Plants were grown in the greenhouse, at 

22°C (day) and 18°C (night) with a 16 h light / 8 h dark photoperiod, in a mixture of soil:sand (3:1) 

irrigated with Hoagland N
o
.1 solution supplemented with oligoelements (Hewitt 1966). Arabidopsis 

thaliana cv. Columbia (Nottingham Arabidopsis stock centre, UK) plants were grown in cabinets 

at 21
o 

C under long-day (16 h light) conditions, illuminated by cool-white fluorescent lamps (150 

mol quanta m
-2  

sec
-1

 ), in a (1:1:1) mixture of sphagnum : perlite : vermiculite and irrigated with 

water and, once a week, with the same mineral solution. 

 

Isolation and sequence analysis of the PsPMEP gene 

Poly(A)
+
 RNA obtained from pea pollen and pollinated stigmas was amplified by RT-PCR to 

isolate cDNA fragments with homology to PME genes. For preparation of poly(A)
+
 RNA from total 

RNA we used the  Dynabeads mRNA purification kit (Invitrogen, http://www.invitrogen.com). RT-

PCR experiments were carry out using degenerated primers corresponding to two conserved 

domains in almost all plant PMEs: GVYNE (5’-GGNGTNTAYAAYGAR-3’) and YLGRPW (5’-CCA 

NGGNCTTCCTARRTA-3’). We isolated a cDNA fragment corresponding to the expected length, 

552 bp, which was cloned in the pGem-T-easy vector (Promega, http://www.promega.es/) and 

sequenced. Later on, a screening of a pea genomic library generated in the vector EMBL4 using 

partially EcoRI digested genomic DNA was performed, using the 552 pb fragment obtained by 

RT-PCR as a probe. The hybridization and washings were carried out using standard procedures 

(Sambrook et al. 1989). ʎ DNA from the positive plaques was extracted using a ʎ DNA extraction 

kit (Qiagen, http://www.qiagen.com) and a 4.8 Kb ʎ DNA fragment containing the complete 

PsPMEP gene was sequenced (GenBank accession n.: KC964536). Primers used for 

sequencing are listed in supplementary table S1. The full-length ORF cDNA was isolated by RT-

PCR from Poly(A)
+
 RNA obtained from pea pollinated stigmas, using primers containing the start 

and the stop codon (5’ATGGCAGAGGGTGGTGATGCAC-3’ and 5’-

TCACCATGTAAGCACTGTCTTTTTG-3’), and cloned into the pGEM-T-easy vector (Promega, 

http://www.promega.es/). 

Sequence alignment and similarity comparisons of the inferred protein were performed using the 

MACVECTOR 9.5 software (MacVector, Inc., http://www.macvector.com/). The deduced amino 

acid sequence was aligned using the CLUSTALW tool in MACVECTOR 9.5 and further refined by 

hand. Secondary structure prediction of the mature protein was performed using the SOPMA 
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application (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html; 

Combet et al., 2000). Frequency distribution of different cis-regulatory elements in the PsPMEP 

promoter was analyzed in the PLACE database (http://www.dna.affrc.go.jp/PLACE/).  

 

Phylogenetic tree 

The phylogenetic tree was inferred by Neighbor-Joining using Poisson-corrected amino acid 

distances. Reliability of internal nodes was assessed using bootstrap with 1000 pseudo-

replicates. Tree inference was conducted using MEGA version 4 (Tamura et al. 2007). The tree is 

based on the alignment of conserved PMEs domains (Pfam01095) predicted with the SMART 

program (http://smart.embl-heidelberg.de/). 

 

Structure modelling 

The PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/) was used to search for protein structures 

suitable to be used as templates for modelling. Carrot pectin methylesterase (Johansson et al. 

2002) (PDB id. 1GQ8) was chosen as the template for mature PsPMEP. The Swiss Model server 

(http://swissmodel.expasy.org/) was used to generate the enzyme model. DeepView-Swiss-

PdbViewer (http://spdbv.vital-it.ch/) was used to analyse the structures and generate the figures.  

 

Expression analysis of PsPMEP 

For Northern blot, root nodules, leaves, roots, stems and flower buds were collected, frozen in 

liquid nitrogen and stored at -80°C. Total RNA (15 µg) was isolated using 500 µl of extraction 

buffer (4% p-aminosalicylic acid, 1% 1,5 naphtalenodisulfonic acid) and 1 ml of phenol:chloroform 

(1:1). The RNA was precipitated in 1/10 V of NaOAc 3M, 2V of EtOH 100% on ice. The resultant 

pellet was dissolved in water and finally the RNA precipitation took place overnight at 4°C on an 

equal volume of 8M lithium chloride. Total RNA was separated by electrophoresis in 

formaldehyde-agarose gel, transferred to Hybond N
+
 membranes (Amersham Biosciences, 

http://www.gehealthcare.com/), and hybridized with the 
32

P-labelled 552 bp fragment under 

standard conditions (Sambrook et al. 1989).                                   

RNA in situ hybridization with digoxigenin-labelled probes was performed on 8 µM longitudinal 

paraffin sections of Pisum sativum flowers as described in Gómez et al. (2004) and on pollen 

grains (whole-mount) as described in de Almeida Engler et al. (1998). Digoxigenin-labelled 

antisense and sense RNA probes were synthesized from the 552 bp cDNA fragment of PsPMEP 

cloned into the pGEM-T-easy vector (Promega, http://www.promega.es/), using the 

corresponding T3 and T7 RNA polymerases and following the manufacturer’s instructions 

(Roche, http://www.roche-applied-science.com/). The RNA probes were hydrolyzed to 150 nt 

before use in the hybridizations reactions. Control experiments were performed with the sense 

probe and no significant signal was detected. Photographs were taken with a light microscope 

(Eclipse E600 Nikon, http://www.nikon.com). 

 

Chimaeric construct PsPMEP::uidA and production of transgenic A. thaliana plants 
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Analysis of the PsPMEP promoter was carried out using a chimaeric construct in the vector 

pBI101 containing the nopalin synthase constitutive promoter (nos-pro) fused to the nptII gene 

(kanamycin resistance) and a 2138 bp HindIII/SalI fragment containing the 5’ region upstream of 

the PsPMEP start codon fused to the uidA gene (-glucuronidase) and the polyadenilation signal 

of the nopalin synthase gene (nos-ter) as terminator in the 3’ ends of both genes (Fig. 5a). 

Arabidopsis thaliana cv. Columbia genetic transformation was performed by vacuum infiltration 

and selection of the plants resistant to kanamycin as described Bechtold et al. (1993), using the 

strain C58 of A. tumefaciens. The kanamycin resistant plants were transferred to pots with 

vermiculite: perlite: peat (1: 1: 1) and grown in culture chambers at 22ºC in long-day conditions 

until the seeds were collected. Control plants were also transformed with the empty plasmid 

pBI101. 

 

-glucuronidase (GUS) histochemical assay 

Transformed plants were submitted to histochemical analysis of the -glucuronidase activity. 

Vegetative and floral tissues were infiltrated using two vacuum pulses of 5 min in a GUS assay 

buffer [0.1 M NaH2PO4, 10mM Na2EDTA.H2O, 0.5 M K3Fe(CN)6, 0.1% Triton X-100 and 0.3% 5-

bromo-4-chloro-3-indolyl -D-glucuronide (X-Gluc)] and incubated in this solution at 37ºC for 16 

hours. Afterwards, de-staining was carried out using successive washes with ethanol of 50
o
, 70

o
 

and 90
o
. GUS positive zones were identified as those coloured blue. Light photographs were 

made with a dissecting microscope (MZ28 Leica, www.leica-microsystems.com/) and a bright-

field microscope (Diaphot Nikon, http://www.nikon.com). 

Results 

PsPMEP isolation and sequence analyses 

In order to isolate and characterize pollen specific genes belonging to the PMEs family in pea, 

mRNA from pollinated stigmas and pollen was amplified by RT-PCR using degenerated primers 

of well conserved regions present in different pollen specific PMEs. The RT-PCR fragment 

obtained was used in the screening of a pea genomic library and five putative clones were 

isolated. After four consecutive rounds of screening, a purified phage clone containing a full size 

cDNA was subjected to further analysis. A 4800 pb cDNA fragment was sequenced and, after 

verifying that contained a gene with homology to PMEs, was named PsPMEP (GenBank 

accession n. KC964536). The coding region is comprised between the nucleotides 2139 (ATG) 

and 4009 (TGA). This region is interrupted by one intron at position 3183-3269. At nucleotides 

4813 to 4818 was located a consensus sequence of polyadenilation (AATAAT).  

The deduced protein sequence has 584 aminoacids, an estimated molecular weight of 

65.57 kDa and an estimated isoelelectric point of 6.83. The hydropathic profile of PsPMEP shows 

a region of hydrophobic amino acids. This region is located between the amino acids 1 and 29, 

and could represent the signal peptide. Protein sequence comparison with different PMEs shows 
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that the mature protein has 353 amino acids, an estimated molecular weight of 40.10 kDa and an 

estimated isoelectric point of 8.01.  

 The deduced amino acid sequence of the mature protein shows high homology with other 

pollen specific PMEs of different plant species, including Inverted Repeat-Lacking Clade (IRLC) 

legumes like Medicago truncatula (Q9SC89, Q9SC90) and Medicago sativa (Q42920). Other 

plant species with pollen specific PMEs showing homologies with PsPMEP are: Arabidopsis 

thaliana (AAX13972, O80722, Q9FJ21, AEE35001, ABI97858.1), Brassica napus (P41510), 

Brassica rapa (Q42608), Petunia integrifolia subsp. Inflate (Q43043), Nicotiana tabacum 

(AAX13972), Salix gilgiana (Q9MBB6) and Zea mays (Q24596). A Neighbor-Joining Tree 

regarding the homologies between PsPMEP and the selected pollen specific PMEs is shown in 

Fig. 1. We inferred the phylogeny based on the alignment of mature enzyme sequences of 14 

representative PMEs from pollen, which are clustered into four clades (A to D). The low boostraps 

values suggest that sequences comprised in cluster A forms only one clade. All four clades are 

well supported by boostrap. Remarkably, several of the lineages, including PsPMEP, show 

evidence of accelerated rates of evolution. However, to identify signatures of accelerated 

evolution would require further evolutionary analysis that may shed light on the selective 

constrains underlying such accelerated evolution. 

 

PsPMEP structure analysis 

The analysis of PsPMEP sequence revealed that it is a typical group 2 pectin methylesterase 

composed by a pre region (signal peptide), comprising amino acids 1 to 29, a PMEI domain, 

which should have an inhibitory effect on the enzymatic activity, and a catalytic PME domain. A 

processing signal (RRLL sequence) is present between the two domains (Fig. 2a and b). Only the 

polypeptide region corresponding to the PME domain is present in the cell wall as mature protein. 

A search of the protein Data Bank for homologues of PsPMEP yielded carrot PME, with a 

sequence identity of 46%, as the best available template to model the mature protein. Fig. 2c 

shows the model of the PME domain. Similarly to other proteins of the CE8 family, the structure 

consists of a single domain made of right-handed parallel -strands folded into a triangular prism. 

Several motifs highly conserved among PMEs (underlined amino acids in Fig. 2a and depicted in 

blue in Fig. 2c) contain essential residues (Q363, Q385, D386, D407 and R474) involved in 

substrate binding and catalysis. Fig. 2d shows a detail of the catalytic site of the enzyme. The 

positioning of residues D407 and D386 agree with their presumed role as nucleophile and 

acid/base catalyst, respectively, on the deesterification reaction. 

 

PsPMEP expression pattern 

Northern blot analysis showed that this gene is specifically expressed in stamens from 4 days 

before anthesis until anther dehiscence (Fig. 3a). This timeframe corresponds to the 

developmental stage in which the microspore mitosis is over and the walls (exin and intin) of the 

pollen grain begin to be synthesized (pollen maturation). No PsPMEP expression was located in 

other vegetative or floral tissues (Fig. 3b and c). At stage 2 days before anthesis, PsPMEP 
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expression was specifically located in anthers and in pollinated carpels after anthesis (Fig. 3c). 

These results indicated that PsPMEP could be a pollen specific gene. 

The expression analysis of this gene was also performed by in situ hybridization on 

paraffin sections of pea anthers at different developmental stages. We observed that the gene 

expression is located only in the pollen grains (Fig. 4a and b). Furthermore, “whole mount” 

hybridizations using isolated pollen grains during the stage of anthesis indicated gene activity in 

mature pollen (Fig. 4c and d). 

 

Characterization of the PsPMEP promoter 

To characterize the PsPMEP promoter region, 2138 bp upstream of the transcription start codon 

were sequenced. The sequence analysis of this region showed the presence of different 

regulatory motifs involved in the specificity and intensity of pollen gene expression. Three cis 

regulatory elements of special relevance were identified: the AGAAA and AATTGA motifs that 

have been described to be responsible of the pollen specific expression of different genes and 

three CArG boxes showing the consensus motif C[A/T]8G, which is preferentially bound by the 

MADS domain transcriptional regulator AGL15. The well conserved cis regulatory element 

AATTGA, located at positions -647(+), -845(-), contains the TGA triplet that was shown to 

comprise an active part in other similarly regulated pollen specific promoters. The pollen specific 

motif AGAAA was located at positions -187, -622, -1037, -1170, -1436(+), -2097(-). The CArG 

boxes for AGL15 were located at positions -266, -384, -985(+/-). Other putative pollen specific 

motifs identified in the PsPMEP promoter sequence are summarized in supplementary table S2. 

 The functional analysis of the PsPMEP promoter was achieved by genetic transformation 

of Arabidopsis thaliana plants, using a chimaeric construct in the vector pBI101 with the PsPMEP 

promoter driving the expression of the uidA reporter gene (Fig. 5a). The results obtained showed 

a similar expression pattern of this gene in A. thaliana when compared with the pollen specific 

expression of PsPMEP in pea. GUS activity was located in anthers (pollen sacs) from 4 days 

before anthesis to anthesis (Fig. 5c and d) and it was restricted to the later developmental stages 

of the pollen grains (pollen maturation; Fig. 5d, arrow). High GUS expression was also detected 

during pollen germination (Figure 5e, arrow). No GUS activity was detected in leaves (Fig, 5f), 

shoots (Fig. 5g), roots (Fig. 5h), unpollinated carpels (Fig. 5i), siliques (Fig. 5j) or seeds (Fig. 5k).  

GUS expression was maintained during pollen tube elongation along the transmiting tract of the 

style and ovary (Fig. 5l, arrow). This expression pattern was maintained till the pollen tube 

reached the embryo sac in the ovule (Fig. 5m, n; arrows). These results indicated that the 2138 

bp fragment contains the regulatory sequences necessary to direct the PsPMEP expression, 

showing the same pollen specific pattern in Arabidopsis than in pea. In addition, we detected that 

PsPMEP is also expressed during pollen germination and pollen tube growth.  
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Discussion 

 

Pollen tube growth and progression in the carpel is an important step in the sexual reproduction 

of a flowering plant. Progression of the pollen tube through stigma, style, and transmitting tract is 

essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. 

During this process the pollen tubes invade the stigmatic tissue, penetrate the style, and deposit 

the two sperm cells into the embryo sac where they fuse with the egg and central cell to form the 

zygote and endosperm. However, the genetic and molecular mechanisms that control the 

penetration of pollen tubes through stigmatic and stylar tissues are currently poorly understood. 

The wall of the pollen tube tip is composed of a single layer of pectin and, unlike most other plant 

cell walls, does not contain cellulose or callose. Pectin methylesterases (PMEs) likely play a 

central role in the pollen tube elongation and determination of pollen morphology (Tian et al. 

2006). Moreover, a compatible interaction between pollen tubes and stigmatic cells is required for 

triggering degradation of the stigmatic and stylar cell walls (Atkinson et al. 1993; Hiscock et al. 

1994; Johnson and Preuss 2002; Lord and Russell 2002).  

 PME-related genes are expressed in pollen of many diverse plant species, including 

legumes like alfalfa (Qiu and EricKson 1995) or Medicago truncatula (Rodríguez-Llorente et al. 

2004). Here we described a pea pollen specific gene that codifies a protein with homology to 

PMEs and with a putative role in pollen maturation, pollen germination and pollen tube growth. 

PsPMEP sequence analysis showed the typical composition of group 2 methylesterases (Pelloux 

et al. 2007) made of a pre-region (signal peptide), which will drive the protein to the 

endoplasmatic reticulum, a pro-region (PMI, inhibitory domain) present in many plant PMEs and 

invertases and a catalytic domain (PME, mature protein). The pro-PME is modified in the Golgi 

and secreted later to the apoplastic space. Only the region located between the amino acids 260 

to 560 of PsPMEP would be finally present in the cell wall as mature protein. This catalytic 

domain, presumably active, is highly similar to carrot PME (Johanson et al. 2002), which we used 

as template for modelling. Markovic and Janecek (2004) carried out a comparison of 127 amino 

acid sequences of the CE8 family. Their analysis showed the existence of five conserved motifs: 

44_GxYxE, 113_QAVAL, 135_QDTL, 157_DFIFG, 223_LGRPW (Daucus carota numbering) 

holding critical residues for substrate binding and enzyme activity. Thus, Q113 and Q135 form an 

anion hole which stabilizes the negatively charged transition product of the catalytic reaction. 

D157 and D136 are respectively the nucleophile and acid/base catalyst whereas R225 interacts 

with the nucleophile assuring its right spatial orientation. All these residues are present and 

correctly positioned in mature PsPMEP, strongly supporting that PsPMEP encodes for a 

functional esterase. 

In the PsPMEP promoter region we have identified a conserved cis regulatory element 

(AATTGA) at position -647/-642 upstream of the ATG codon, which has been described to be 

responsible of the pollen specific expression in the alfalfa MsPG3 promoter (Rodríguez-Llorente 

et al. 2004). Moreover, analysis of the MsPG11 regulatory region revealed the presence of an 

AAATGA motif, which was described by Weterings et al. (1995) in the NTP303 promoter of N. 
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tabacum and the Bp10 promoter of B. napus as a putative pollen specific cis-regulatory element. 

In all these motifs, the TGA triplet was shown to be important for the pollen specific activity. The 

possibility that expression of the reporter gene in the pollen could be controlled through this 

AATTGA motif in the MsPG3 promoter was investigated in Nicotiana tabacum plants by mutating 

the TGA triplet. This TGA sequence was changed to AAA and the resulting mutated version of 

the complete MsPG3 promoter was fused to the uidA (GUS) reporter gene and introduced into 

tobacco. A low level of expression of the reporter gene in the transgenic plants carrying the 

mutated promoter region suggested that the expression of this promoter in tobacco pollen grains 

was effectively regulated through the AATTGA element. Other interesting motif present in the 

PsPMEP promoter is AGAAA, which is responsible of the specific activation in pollen of the 

tomato LAT52 gene (Bate and Twell 1998). 

 We have also identified three CArG boxes showing the consensus motif C[A/T]8G, which 

is preferentially bound by the MADS domain transcriptional regulator AGAMOUS-Like 15 (AGL15; 

Tang and Perry 2003). MADS-box genes encode a large family of transcription factors, most of 

them are expressed during reproductive development controlling flowering time, meristem and 

floral organ identity and fruit development. AGL15 is the only member of the MIKC subgroup 

identified to date that is preferentially expressed during embryo development (Zhu and Perry 

2005). Therefore, PsPMEP could be a target gene of the MADS domain protein AGL15. However 

AGL15 regulatory function at the molecular level is still missing. Therefore, the presence of the 

above mentioned CArG boxes suggests that PsPMEP could be a target gene of the MADS 

domain protein AGL15. This molecular interaction, if confirmed experimentally, could help to 

uncover a role for AGL15 in the control of pollen development. 

 In higher plants, different PME isoforms are encoded by multiple gene families (Richard 

et al. 1996; Micheli et al. 1998; Markowic and Janecek 2004) and act in the demethylesterification 

of cell wall pectin, contributing to different processes of plant development (Micheli 2001). 

Therefore, the PsPMEP product may be involved in growth of the pollen tube by modification of 

the pollen tube wall. PsPMEP was expressed specifically in developing pollen grains and it is not 

expressed elsewhere. Functional analysis of the PsPMEP promoter fused to the uidA gene 

showed a similar expression pattern of this gene in A. thaliana when compared with the pollen 

specific expression of PsPMEP in pea. GUS expression was located initially in the anthers (pollen 

sacs) at 4 days before anthesis till anther dehiscence and it was restricted to the later 

developmental stages of the pollen grains (pollen maturation). High GUS expression was also 

detected during pollen germination and the expression was maintained during pollen tube 

elongation along the transmitting tract of the style and ovary. This expression pattern was 

maintained till the pollen tube reached the embryo sac in the ovule. These results indicated that 

the PsPMEP promoter is also functional in a non-leguminous plant, showing the same pollen 

specific expression pattern than in pea.  

 Studies have shown that mature PMEs could have different modes of action. They may 

act either randomly or linearly along the pectin chain (Markovic and Kohn 1984; Micheli 2001). It 

is commonly believed that random demethylesterification of pectin depends on acidic PMEs, 
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whereas linear demethylesterification of pectin requires basic PMEs (Micheli 2001). The PsPMEP 

mature protein showed a predicted basic isoelectric point of 8.61. Therefore, PsPMEP may act by 

linear demethylesterification of pollen wall pectin. The linear demethylesterification on 

homogalacturonans by PME gives rise to blocks of free carboxyl groups that could interact with 

Ca
2+

, creating a pectate gel (Goldberg 1996). The Ca
2+

 pectate gel is believed to contribute to cell 

wall stiffening and cell attachment by limitation of the action of endopolygalaturonases and 

formation of Ca
2+

 pectate gel lawn. 

To date there is not any annotation in the GenBank concerning genes with homology to 

pollen specific PMEs in pea (Pisum sativum L.), a model legume also relevant by its agronomic 

interest. We have identified a new pea pollen specific PME (PsPMEP) and characterized its 

native expression pattern by Northern-blot and in situ hybridization. Also, we introduced a 

PsPMEP promoter-gus gene fusion into Arabidopsis thaliana plants, corroborating the spatial and 

temporal expression of PsPMEP previously observed in pea. Our results suggest that PsPMEP 

could be implicated in pollen development and pollen tube growth through stigma, style and 

transmitting tract within female tissues. Further functional analyses, using reverse genetics 

approaches, are needed to confirm the role of the PsPMEP protein in such processes. A 

possibility is to silence the orthologous gene in the model legume Medicago truncatula which is 

relatively easy to transform. In addition, the PsPMEP pollen specific promoter seem to be a 

promising candidate to target expression of a desired gene during late pollen development or 

pollen tube growth and to induce male sterility, fused to a cytotoxic gene, without affecting plant 

development (Roque et al. 2007; Pistón et al. 2008; García-Sogo et al. 2010, 2012). This 

approach could help in overcoming problems related to transgene escape from GM crops to 

organic or traditional ones.  
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Figure legends 

Fig. 1. Neighbor-Joining Tree of selected pollen specific PMEs. The numbers next to the 

nodes refer to bootstrap values from 1000 pseudo-replicates. Accession numbers for the PME 

proteins used in this N-J tree are: AAX13972, O80722, Q9FJ21, AEE35001and ABI97858.1 

(Arabidopsis thaliana); P41510 (Brassica napus); Q42608 (Brassica rapa); Q43043 (Petunia 

integrifolia subsp. inflata); AAX13972 (Nicotiana tabacum); Q9MBB6 (Salix gilgiana); Q24596 
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(Zea mays); Q9SC89, Q9SC90 (Medicago truncatula); Q42920 (Medicago sativa) and 

KC964536, PsPMEP (Pisum sativum). Branch lengths are proportional to sequence divergence. 

Fig. 2. Structure of PsPMEP. a. Deduced amino acid sequence of the cDNA-encoded 

polypeptide. The predicted signal peptide and the processing motif (RRLL) are represented in 

bold type. The PMI domain in marked in red. The sequence corresponding to the PME domain is 

shadowed. Blocks of residues highly conserved among pectin methylesterases are underlined. 

Putative catalytic residues, D386 (red) and D407 (blue) are marked. b. Schematic representation 

of the domain structure of PsPMEP. c. Homology-based model of the pectin methylesterase 

domain. Groups of highly conserved amino acids are depicted in blue color. d. Detail of the pectin 

methylesterase active site showing the putative catalytic residues D386 (acid-base catalyst) and 

D407 (nucleophile). 

Fig. 3. Northern blot analysis of the PsPMEP expression in different vegetative and floral 

tissues of pea. a. Expression was detected in stamens (St) from 4 days before anthesis till 

anthesis, but not in floral buds (F) at 6-8 days before anthesis. b. No expression was detected in 

vegetative tissues like roots (R), mature shoots (S), young shoots (YS), leaves (L) and tendrils 

(T). c. Anther-specific expression of PsPMEP in flowers at 2 days before anthesis and in 

pollinated carpels after anthesis (PC). There is no expression in the other floral organs: sepals (S-

2), petals (P-2) and unpollinated carpels (C-2) at 2 days before anthesis. 

Fig. 4. PsPMEP expression pattern analyzed by in situ hybridization. In situ hybridization on 

paraffin sections of pea anthers at 2 days before anthesis. a. Control section hybridized with a 

PsPEMP sense probe. b. Anther section hybridized with the antisense probe. PsPMEP 

expression was located exclusively in the pollen grains and not in other anther tissues. c. “Whole 

mount” of isolated pollen grains hybridized with the sense probe as control. d. “Whole mount” 

hybridization with the antisense probe on isolated pollen grains at anthesis showing PsPMEP 

expression. Co: Connetive tissue; Ep: epidermis; Po: pollen grains; En: endotecium; Vb: vascular 

bundles.  

Fig. 5. Expression analysis of the PsPMEP promoter fused to the uidA gene in transgenic 

Arabidopsis thaliana plants. a. PsPMEP::uidA chimaeric construct in the vector pBI101 

containing the nopalin synthase constitutive promoter (nos-pro) fused to the nptII gene 

(kanamycin resistance), the PsPMEP promoter fused to the uidA gene (-glucuronidase, GUS-

intron) and the polyadenilation signal of the nopalin synthase gene (nos-ter) as terminator at the 

3’ ends of both genes. b. Transgenic A. thaliana flowers at one day before anthesis transformed 

with the empty vector pBI101 (control). c. Transgenic A. thaliana flowers carrying the chimaeric 

construct PsPMEP::uidA showing GUS expression in the pollen sacs of developed anthers. d. Id. 

a detailed view of the pollen sacs (arrow) with mature pollen grains showing GUS expression. e. 

GUS expression in the germinating pollen grains (arrow) located on the stigmatic papillae. f. No 

GUS expression in leaves. g. Id. in shoots. h. Id. in roots. i. Id. in unpollinated carpels. j. Id. in 
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siliques. k. Id. in seeds. l. GUS expression in the elongated pollen tubes along the stylar and 

ovarian transmiting tract. m-n. The PsPMEP expression pattern was maintained till the pollen 

tube (Pt) reached the embryo sac (Es) in the ovule (Ov).  

Supplementary material 

Table S1. Primers used to sequence the PsPMEP genomic clone. 

Table S2. Putative pollen specific motifs identified in the PsPMEP promoter region (-1 to -2133). 
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Table S1.  

Primers Sequence (5' to 3') 

PEC2 GCCCACAAAACATCAAGCCCGTGG 
PEC3 CTTACATGGTGATTTCGATAGTGTG 
PEC4 GTGTGGCTTCCGTGTTTTACTATTTGTAG
PEC5 GGTGATGGTGGCCAGAAATCAAG 
PEC6 CTTTCCATTGGAGAATTCGCCCGAG 
PEC8 GGCAGAGGGTGGTGATGC 
PEC7 GAATATATCTTCTCAAAGATAAATA 
PEC1R CTGACCCATGAAGGTGTATCG 
PEC2R CTGATTCCAATGCAAAATAGCTTATGG 
PEC3R CGCATGGTGTGTACGTAAAG 
PEC4R CACCATGTAAGCACTGTCTTT 
PROPEC1 CCTCACAAGCCAATTATCTCTTC 
PROPEC2 GAAGAGATAATTGGCTTGTGAGG 
PROPEC3 CTGAAATGATGGCGAGAGCATTGC 
PROPEC3B GTATATGTGGTTTATTGGTTGAGG 
PROPEC4B GATGCCTATATACTTGATGCC 



 
Table S2 
 

Promoter             Position Consensus Reference 

CArG-box (AGL15) -266, -384, -985 (+/-)  C(A/T)8G Tang & Perry, 2003 

LAT52 -187, -622, -1037, -1170,  

-1436 (+), -2097 (-) 

AGAAA Bate & Twell, 1998 

 
LAT52 -846 (+) GTCAATT Twell et al., 1989, 

1990, 1991 
 
TUA1 

 
-213, -880, -1004 (+), -164,  
-723, -1198, -1947 (-) 

 
TGTGG (PB motif) 

 
Carpenter et al., 
1992 

 
AVP1 

 
-243, -611, -992, -1342,  
-1605 (+) 

 
AGTCA (similar to 
“Q element”) 

 
Mitsuda et al., 2001 

 
ZM13 

 
-1547 (+), -1469 (-) 

“Q element” 
AGGTCA 

 
Hamilton et al., 1998

 
ZM13 

 
-223 (-) 

Sequence 
TGGTTA of the 
52/56 motif 

 
Hamilton et al., 1998

 
 
Bra r 1 

-148, -864, -935, -947, 
-1052, -1150, -1280, -1447, 
-1516, -1522, -2008 (+), -61, 
-102, -1067, -1319, -1337, 
 -1644, -2103 (-) 

 
Sequence GTGA 
of the 56/59 motif 

 
Okada et al., 1999 

 
MsPG3 

 
-647 (+), -845 (-) 

 
AATTGA 

 
Weterings et al., 
1995 

 

 


