
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1016/j.jclepro.2016.06.173

http://hdl.handle.net/10251/84589

Elsevier

Diego-Mas, JA.; Poveda Bautista, R.; Alcaide Marzal, J. (2016). Designing the appearance
of environmentally sustainable products. Journal of Cleaner Production. 135(1):784-793.
doi:10.1016/j.jclepro.2016.06.173.



 

 

Designing the appearance of environmentally sustainable products 

 

Jose-Antonio Diego-Masa*, Rocio Poveda-Bautistab and Jorge Alcaide-Marzala 

 

a I3B, Institute for Research and Innovation in Bioengineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 
Valencia, Spain; 

b Departamento de Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. 
 

 
* Corresponding author. Tel.:+34 963 877 000. 

E-mail address: jodiemas@dpi.upv.es (J.A. Diego-Mas), 

 

 

Abstract 
The study presented in this paper uses a mathematical model to measure the degree in which a 

product will be perceived as environmentally friendly from its physical attributes. A model based 

on genetic algorithms and neural networks was developed to predict the judgement of the users 

about environmental friendliness of different tables. Opinions of real users about a large set of 

tables were used to train the model. The results of the study suggest that, using this procedure in 

advanced stages of product design process, designers can determine the set of product’s physical 

attributes that best convey the idea of “environmentally sustainable” to the customer. The analysis 

of the obtained model allows establishing how different product’s attributes influence users’ 

perception. From these results, the utilization of users’ affective response models to design the 

appearance of environmentally sustainable products is discussed. 

 

Keywords: Product design; product appearance; environmentally sustainable products; design 

tools. 

 

Highlights 

 A model to measure product’ sustainability appearance from its attributes is developed. 
 The objective is to optimize product design to transmit environmental friendliness to users. 
 The approach presented can be used in advanced stages of product design. 

 
  



1. Introduction 

Consumer awareness and concern for environmental issues has grown in recent years. 

The global survey on Corporate Social Responsibility (CSR) conducted in 2012 in Nielsen 

(2014) revealed that 55% of consumers will pay extra for products and services from companies 

committed to positive social and environmental impact, and that 52% made at least one 

purchase in the past six months from one or more socially responsible companies. The same 

percentage of consumers checks product packaging to ensure sustainable impact. The results of 

a different survey conducted in 2007 by McKinsey to consumers from the eight world’s major 

economies show that 87% consumers are concerned about the environmental and social impacts 

of the products they buy (Bonini et al., 2008). These consumers would prefer companies that 

promote measures for the production of safer and healthier products, consider the impact of 

their business practices on local communities, ensure the safety and health of their workers and 

implement policies of environmental sustainability (Gershoff and Frels, 2015; Luchs et al., 

2010; Nielsen, 2011).  Companies have significant opportunities to differentiate themselves by 

acting responsibly to improve not only corporate image but also willingness of socially 

committed consumers to buy their products. Therefore, companies should better understand 

consumer expectations and perceptions (Albino et al., 2009; Bonini et al., 2007; Gershoff and 

Frels, 2015). 

The surveys mentioned above show a positive relationship between environmental 

attitude of consumers and Green Consumer Behavior; yet the market share of environmentally 

sustainable products is lower than expected when compared to the percentage of customers who 

claim to be interested in sustainable products (Dupré, 2005; Peattie and Crane, 2005; Rex and 

Baumann, 2007). The reason may be that consumers do not always know which environmental 

features characterize a sustainable product (Lin and Huang, 2012), or that many 

environmentally sustainable products do not meet consumers’ expectations due to the gaps that 

exist between consumers’ expectations and their perceptions of those products (Peattie and 

Crane, 2005; Tseng and Hung, 2013).  

Companies apply communication strategies and conventional marketing practices in 

order to improve acceptance of sustainable products in the market  (Delmas and Burbano, 2011; 

Rex and Baumann, 2007). Other measures consist of analyzing how certain aspects of the sales 

environment or packaging can influence consumer decision to purchase green products: price 

presentation (Lee Weisstein et al., 2014), eco-labeling (Atkinson and Rosenthal, 2014), using 

green color (Pancer et al., 2015), etc. However, companies have paid less attention to product 

design and appearance.  

Previous studies show that environmental sustainability could be communicated to 

consumers through product’s appearance (Hassi and Kumpula, 2009; Hosey, 2012), and that 



superior product aesthetic design has a positive effect on confidence and choice likelihood for 

sustainable products (Luchs et al., 2012). Even, some authors propose that products appearance 

can influence their environmental sustainability (Zafarmand et al., 2003). Luchs et al. (2012) 

suggests that it is especially important for firms interested in marketing sustainable products to 

develop market-leading product aesthetic design capabilities. However, very little work focuses 

on how to design the appearance of environmentally sustainable products, and little research on 

design tools for this objective can be found in the literature on sustainability. Some guidelines 

for environmentally friendly product’s form design are found in Hassi and Kumpula (2009). For 

example, small products, plainness, natural material appearance, quality appearance or 

simplicity seem to be attributes related with positive environmental appearance of products. 

Murto et al. (2014) use a basic design tool (image boards) in shaping the appearance of products 

in early phases of design to draw conclusions about how consumers infer sustainability from 

products appearance.  

Although these works suppose an important advance, there are more sophisticated 

design tools to achieve the objective of relating products’ attributes with consumers’ opinions. 

Using these tools could be useful to understand the way in which consumers establish 

relationships between the attributes of products and the environmental sustainability. In product 

design, the ability of a product to evoke emotions in the observer is becoming increasingly more 

important, since it has a decisive influence on purchasing decisions (Chuang and Ma, 2001; 

Creusen and Schoormans, 2005; Desmet, 2003; Holbrook, 1985). In the current market, a great 

variety of products of the same type can be acquired to sufficiently meet users' needs. Therefore, 

product's shape, aesthetic features, visual appearance and ability to convey to the user the 

objectives for which it was designed, are all key to the success or failure of a product (Bloch, 

1995; Chuang et al., 2001; Crilly et al., 2004). Additionally, sales platforms such as the Internet 

limit the user-product relationship to visual interaction, meaning that it is the appearance of a 

product which defines the image the user has of it (Dahan and Srinivasan, 2000; Vriens et al., 

1998).  

This justifies the efforts carried out by many authors (Chen and Yan, 2008; Chen et al., 

2006, 2002; Diego-Mas and Alcaide-Marzal, 2016; Han et al., 2000; Hasdoǧan, 1996; Lai et al., 

2006, 2005; Lin et al., 2007; Park and Han, 2004; Tsai et al., 2006; Yang and Shieh, 2010) to 

provide mathematical models which match the attributes of a product to the consumers' 

affective responses (hereinafter CAR models). These models can be used to estimate how a user 

will assess a product in the early stages of the design process. Product's design can then be 

adapted to evoke the desired emotional response prior to its launch. 

Han & Hong (2003) contends that the user's affective response is based on a cause-

effect relationship with the attributes of the product. In other words, certain product attributes 

lead to a certain user response. This is a basic assumption for the development of a CAR model, 



given that the model can be created by systematically analyzing the relationship between the 

users' responses and products' attributes (Yang and Shieh, 2010). Nevertheless, establishing 

such relationships is not easy given that there are several fundamental problems that must be 

solved. One problem is that the mental process carried out by the user from the time he receives 

the information regarding the product until the time he makes a judgment on it, is in practice, 

unknown. Other problems relate to how to codify the inputs and outputs of the models or to 

determining the mathematical technique whose use is most appropriate for obtaining the model. 

However, the fundamental problem relating to the development of CAR models stems from the 

variety of different users' opinions regarding a single product. Generally, the models are based 

on the premise that there is a cause and effect relationship between the attributes of the product 

and the user's response. Nevertheless, these relationships vary from one user to the next since 

their opinions are not based entirely on the attributes of the object. Individual and external 

conditioning factors such as personal taste, cultural environment, level of education, and 

personal motivations and aims will all lead the perception of each user to vary (Allenby and 

Ginter, 1995; Engel et al., 1995; Hoch et al., 1995). In the case of a model developed to predict 

if a product is perceived as environmental friendly, the personal environmental attitudes of 

consumers could be considered important external conditioning factors. 

Diego-Mas and Alcaide-Marzal (2016) proposes a procedure to develop single users’ 

affective responses models (SUAR models) that address some of the problems in CAR models’ 

development. In the present paper, a SUAR model is developed to predict if a product will be 

perceived as environmentally friendly based only on its physical attributes. There were several 

objectives in this work. One of them was to introduce this kind of design tools in 

environmentally-friendly product design. These models have been proved to be useful for 

predicting user's impulse to purchase or judgements related to essential functionalities of the 

product. However, environmental friendliness of a product is a more specific judgement, and the 

relationships between product attributes and users’ perception could be harder to find. If this 

main objective is achieved, a secondary objective will be to provide insights on the process by 

which consumers infer beliefs about environmental sustainability from the appearance of 

products. To do this, the relationships between inputs and outputs of the obtained model will be 

analyzed. Finally, previous aforementioned studies address the appearance of products in terms 

of seeking inspiration and locating guiding principles for the continuation of a development 

process. Our work focuses on more advanced stages of the product design process, when 

designers are dealing with different product options, and could take advantage of these tools to 

select the most appropriate set of product’s attributes to transmit environmental friendliness. 

Section 2 in this paper will be devoted to an overview of SUAR models. Section 3 will 

show a case study in which a SUAR model is developed to predict if users perceive a product as 



environmental friendly based on its attributes. Results will be shown in Section 4 and will be 

discussed in Section 5.  

 

2. Overview of SUAR models 

The development of CAR models stems from supposing that the user's affective 

response is based on a cause-effect relationship with the attributes of the product. However, the 

fundamental problem relating to the development of these models is the variety of different 

users' opinions regarding a single product due to individual and external conditioning factors. 

Taking the above into account, a SUAR model approach develops several CAR models for 

several single users. These individual models do not suffer from the dispersion of users’ 

opinions and it is supposed that they will be more accurate. The disadvantage is that these 

models would only be valid for one user. However, although the perceptual relationships to be 

modeled are different for different users, if the opinions of a group of users regarding a selected 

sample of products are similar enough, it can be concluded that their perception processes and 

specific conditioning factors are similar. Consequently, by grouping users based on the 

similarity of their judgments, a mathematical model can be generated for a user representative 

of each one of those groups. With a certain margin of error, these models would be valid for all 

users included in their cluster. The mean market response could be determined weighting the 

response from each model by the relative size of the cluster containing the user from which the 

model was obtained. Several conditions must be fulfilled to develop models with this procedure 

(Diego-Mas and Alcaide-Marzal, 2016). Well-defined user clusters are needed. These clusters 

must be dissimilar between them and, at the same time, the opinions of the users inside each 

cluster must be similar. If this condition is not achieved, individual models will not be 

representative of the users in their cluster.  

It should be recalled that other approaches, like using the mean opinion of all users to 

train a model, could obtain results that outperform this approach when trying to predict the 

market global response. However, apart from less effort to develop the model, a SUAR model 

has the advantage of being that the distribution of opinions of the users can be known. 

2.1. Developing the model 

Figure 1 shows the procedure to obtain the model. After having determined the type of 

product and the opinion for which a model is to be created, a sufficiently large and varied 

sample of products of this type is selected, and an image of each product is then obtained. Then, 

the attributes defining the appearance of the product are determined. The attributes can be 

qualitative variables (such as color) or quantitative (number of different colors). In the case of 

the qualitative attributes, the different levels for each of the attributes (red, green, blue, etc.) is 



then determined. The number of attributes should be sufficient to completely define each 

product.  

A large enough group of potential users for the product chosen is selected and divided 

into clusters. The criterion to group the users is the judgment made with respect to the different 

products subject to study. A small set of products representative of the different types available 

in the market (Products Reduced Sample) is shown to the users. To conform the Product 

Reduced Sample (PRS), the products are grouped according to their attributes, and depending 

on the number of clusters, one or two products are chosen from each cluster.  

 

Figure 1. Procedure to obtain the users’ response model 

 

After having obtained users’ responses regarding the PRS, they can be grouped into 

clusters and a representative user from each group can be chosen. Each of the representative 

users is interviewed again, and this time they are requested to give their opinion on the complete 

sample of products. The data obtained is then used to obtain a model of each of the 

representative users.  

The individual mathematical models use Artificial Neural Networks (ANNs) and 

Genetic Algorithms (GAs). An ANN is a mathematical model that represents a distributed 

adaptive system built by means of multiple interconnecting processing elements, just as real 

neural networks do. ANNs are used in many fields of research (design, psychology, robotics, 

biology, production or computer science, to name a few) (Principe et al., 2000) due to their 

ability to adapt, learn, generalize, organize or cluster data. Given their ability to learn (in 

comparison with sequential systems), they are instruments which are suitable for generating 

models such as those described in Section 2, there being various uses of  ANNs in this area  



(Chen and Yan, 2008; Dasgupta et al., 1994; Hsiao and Tsai, 2005; Ishihara et al., 1997; Lai et 

al., 2006, 2005; Tsai et al., 2006; Yang and Shieh, 2010). 

The training process of ANNs is as follows: the users' answers to the products sample 

are grouped into three sets of data: the training set, which is used to train the model, the cross 

validation set, which is used during the training to avoid overfitting (Sarle, 1995) and the test 

set, which is used to verify the adjustment of the model once trained. The training set is 

presented to the network and the outputs obtained in each case are compared against the desired 

output to calculate the network error. Then, the weights of neuron connections are modified 

according to the selected training algorithm in order to minimize this error. This process is 

repeated until a criterion previously established is reached, for example, when the error value 

gets to a threshold or stops decreasing. 

 

Figure 2. Generation of neural networks using genetic algorithms 

 

Each individual model is composed of two ANNs, one unsupervised learning ANN and 

another parallel processing ANN (Figure 2). The information regarding product attributes, 

which has been appropriately filtered and weighted, reaches an ANN, which must then pre-

process and combine it to give rise to new significant information, transforming the input 

samples into a new space where the information about the samples is retained, but the 

dimensionality is reduced. The type of network is an unsupervised learning network which 

performs a principal component analysis (PCA-ANN). This network enables significant 

characteristics of a group of data which have not been previously classified to be differentiated 

since the network attempts to find redundancies and patterns internally based on which to group 

the information. An ANN of this type will have as many inputs as attributes established to 



define the product. The number of outputs will be determined during the training of the model. 

The outputs of the PCA-ANN will be used as inputs for a second ANN, a Modular Multilayer 

Perceptron (MMP). This kind of networks are actually several networks which process the 

inputs in parallel and re-combine the outputs to obtain a common result (Principe et al., 2000).  

During the training of the model, it is necessary to determine which ANN structure is 

most appropriate for solving the problem. Specifically, the following should be established: the 

weight of each product attribute in the response, the number of PCA-ANN outputs 

(eigenvalues), the number of layers of the (MMP), the number of neurons by layer, the weights 

of the synaptic connections between the neurons and the type of transfer function of each 

neuron. Given that the number of parameters to be determined is large, it is advantageous to use 

a metaheuristic to solve the problem. For this purpose, a GA (Dam and Saraf, 2006; Kim et al., 

2005) is used during training to establish the most appropriate combination of parameters 

(Figure 2). 

GAs perform a stochastic guided search based on the evolution of a set of structures as 

it occurs in natural species evolution (Goldberg, 1989). The starting point is a set of problem 

solutions called individuals. This first set is randomly generated and called initial population. 

Each individual is an ANN, and it is coded by a finite length chain called chromosome.  Each 

individual solution is evaluated using an evaluation function to determine its suitability for the 

requirements of the problem. The population undergoes several transformations that yield a new 

population (new generation). These transformations are guided by some genetic operators, the 

most common being selection, crossover and mutation, which combine or modify the 

chromosomes representing the individuals. Crossover and mutation operators are applied to 

create a new generation of individuals that inherit the best characteristics of their predecessors. 

For this purpose, the individuals that will participate in each of the genetic operators, and those 

that will survive and pass on to the following generation, are selected previously by mean of the 

selection operator. The process is repeated with the new set of individuals until a certain number 

of iterations is reached, or until a certain number of iterations without a new best solution have 

been performed, making the individuals evolve to better solutions to the problem. 

Characteristics and development process of SUAR models could be reviewed in Diego-

Mas and Alcaide-Marzal (2016).  

 

3. Materials and methods 

A case study was used to determine to what extent a SUAR model can predict consumer 

opinion on whether a product is perceived as environmentally friendly from its physical 

attributes. The product was selected taking into consideration that, a priori, the weight of the 

non-functional attributes had a significant impact on the users' assessments. The product finally 

chosen was tables, including end tables, coffee tables, console tables, dining tables and similar 



products. It could be considered that this product is simple enough, and its non-functional 

attributes, such as product appearance, affect the final selection of a product. 

To get the consumers’ opinion on the products, they were asked the question “Does this 

table appear to be environmentally friendly?". The question was asked while showing users 

each product. No labels, packaging or further information of the products were provided to the 

interviewed customers since the purpose of this work was to evaluate to what extent product 

design communicated environmental awareness to customers. According to Pancer et al. (2015), 

the presence of cues traditionally used to signal environmental friendliness increases the ability 

with which consumers are initially able to categorize the product as environmentally friendly, 

and this is a critical determinant of consumers’ responses. However, at present there are many 

small and large manufacturers of home furniture that manufacture these products touting them 

as eco-friendly, claiming that they are made from raw materials that are harmless to the 

environment, avoid deforestation or use of protected species, and employ non-polluting 

manufacturing processes. In this way, the consumer knows that these products could be 

manufactured respecting the environment.  

 

3.1– Product sample 

Several specific journals of home furniture and websites of factories that manufacture 

tables were consulted to obtain product samples which represent all the different types of the 

product and its most common attributes. Rather than using real products, images of the products 

can be used to develop the model. Using images of the products makes it easier to develop the 

models without affecting the quality of the results, since photographic representation suffices to 

communicate most of the concepts and sensations in the same way that the real product would 

do (Artacho-Ramírez et al., 2008).  

Images of 164 tables were gathered. The environmental sustainability of the tables was 

not a criterion for selecting them. Although our objective was to relate the product’s attributes 

with the degree in which users perceive the table as environmentally friendly, tables without this 

condition could have attributes that elicit this sensation. Conversely, an environmentally 

friendly table may seem otherwise. After analyzing the sample of tables, and the information 

obtained by consulting specialized journals in home furnishings, 18 relevant product attributes 

were identified: Primary Material, Secondary Material, Primary Color, Secondary Color, Finish, 

Trend, Board form, Board embossment, Complexity, Geometry, Edges shape, Legs form, 

Extendable, Number of legs, Board levels, Legs frame, Reinforcements and Height. Each of 

these attributes had different numbers of possible levels. Finally, 75 attribute levels were 

identified. As an example, seven attribute levels were assigned to "Primary Material" (metal, 

wood, glass, plastic, marble, carton and other). One attribute level was then assigned to each of 

the 18 attributes for each of the 164 tables. Afterwards, in order to obtain the PRS, the 164 cases 



were clustered into groups based on their attributes levels using a TwoStep cluster algorithm 

(SPSS_Inc, 2007). This procedure enabled clusters to be created based on both continuous and 

categorical variables and the automatic selection of the number of clusters. The TwoStep cluster 

algorithm was applied to the sample of 164 tables, and the algorithm was enabled to determine 

the appropriate number of clusters, which was set at a maximum of 10. The products were 

clustered via the Bayesian information criterion and the similarity among clusters was measured 

using multinomial probability distribution among the variables. As a result of this analysis, 8 

clusters were established, each of which contained from 12 to 34 tables. A table from each 

cluster was chosen randomly to form the PRS. The same selected tables formed the test set that 

would be used to generate the individual models. On the other hand, 32 tables were selected to 

form the cross validation set (approximately 20% of the available data) so that all the clusters 

were represented in the data set. The remaining 124 tables formed the training set. 

 
3.2– Selection of Representative Users 

114 people were chosen to be interviewed (51 men and 63 women) with age ranging 

from 21 to 46 years old. Although it is difficult to define the appropriate sample size for each 

study, according to Chambers and Wolf (1996) and Mammasse and Schlich (2014), sample 

sizes which are over 100 are generally considered appropriate for most market studies. 

Engelbrektsson (2002) and Karlsson et al. (1998) concluded that experience and knowledge 

were essential factors to assess specific matters about a product. Also, Schoormans et al. (1995) 

suggest that product expertise allows customers to understand product information faster, to fill 

in missing information, and to discriminate the important aspects of the product. In this study, 

respondents were not requested to be particularly interested in eco-products because the main 

purpose of the survey was to develop an overall model; yet they were requested to know the 

meaning of environmentally friendly and what features should be expected of a product to be 

considered eco-friendly. 

In order to conduct the survey, a web application was developed which enabled each 

product to be presented to the respondent in random order together with the judgment the 

respondent was required to make (Does this table appear to be environmentally friendly?). The 

responses were to be given on a six-level Likert scale, and ranged from "Completely in 

agreement" to "Completely in disagreement". No neutral option was provided, therefore, 

respondents were forced to opt for one side of the scale. Subjects were permitted to take as long 

as they needed to answer the survey. The average time to complete the rating was one minute 

and six seconds. The subject's answers were numerically codified, being assigned a whole 

number ranging from -3 for "Completely in disagreement" to 3 for "Completely in agreement". 

The opinions of 114 potential users were obtained regarding 8 tables representatives of the 



different types of this product on the market. This information was used to group the users 

based on how similar their opinions regarding the products were. 

For the purpose of obtaining the Representative Users (RUs), a k-means clustering analysis 

was carried out based on the responses given for each table using SPSS, 16.0. This analysis was 

performed to obtain groups of users with homogeneous opinions. The centers of the clusters 

were automatically selected and updated after each assignment of a case to a cluster. The 

number of case reassignment reiterations was limited to 15 and the distance between cases was 

measured using a simple Euclidean metric. K-means clustering requires the specification of the 

number of clusters into which the cases are to be divided.  Therefore, various analyses were 

carried out with different numbers of clusters. The criterion for selecting the appropriate number 

of cluster was to obtain the maximum distance between the centers of the obtained clusters and 

the minimum distance between the users and the center of their clusters.  

Based on these rules and the number of cases per cluster, 4 significant clusters were 

identified. Convergence was achieved in the sixth iteration in which there was no change in the 

cluster centers. Given that the iterative resolution of the analysis was not invariable with regard 

to the order of the cases, the stability of the solution was evaluated by comparing the results of 

the same analysis with different orderings of the cases. 21, 35, 25 and 33 users formed the final 

clusters. To choose a RU from each cluster, the distance of each user in a cluster to the center of 

this cluster was analyzed, the users closest to the center of each cluster being chosen. Four RUs 

were obtained in this manner. 

 

3.3 – Obtaining individual models for representative users. 

Each of the four RUs was interviewed and requested to take part in the study, for which 

they were financially rewarded. The survey previously conducted was then repeated, but now 

including the total sample of 164 tables. The survey was developed over different sessions to 

avoid the effect of boredom (Brace, 2013; Savage and Waldman, 2008). The tables were 

presented to each user in random order in order to prevent the possible effect of having 

presented the products in same order. The users' responses, on a Likert Scale of -3 to + 3 were 

standardized to range from -1 to + 1, and the standardized responses were then used for training 

the individual models. Populations of 30 chromosomes were used in the GA and the maximum 

number of generations was set at 100. The objective function employed was to minimize the 

mean square error (MSE) in the cross validation data set. The MSE was measured on the 

outputs of the standardized model ranging from -1 to 1. The crossover probability was set at 0.9 

and the mutation probability at 0.01.  

The GA must determine the number of layers of the ANNs, the number of neurons in 

each layer, the transfer function in each neuron (which could be linear, hyperbolic tangent or 

logistic sigmoid ) and some parameters of the learning rule as step size and momentum (Dam 



and Saraf, 2006; Kim et al., 2005). The GA was allowed to vary the number of neurons in each 

layer of the PCA-ANN (number of principal components) from 3 to 15. Sanger's learning rule 

(Oja, 1992; Sanger, 1989) (also called Generalized Hebbian Learning) was used during 

unsupervised learning training stage. The MMP could have one or two hidden layers and the 

number of neurons by layer could range from 5 to 20 in the first layer and from 2 to 10 in the 

second layer (Sarle, 1995). The MMP learning algorithm was Back Propagation with 

Momentum (Rumelhart et al., 1986). The learning rate for the hidden layers could range 

between 0.1 and 0.4, and between 0.1 and 0.2 for the output layer. Momentum ranged from 0.1 

to 0.3 for the hidden layers and from 0.1 to 0,.2 for the output layer. The maximum duration of 

the unsupervised learning phase was set at 3,000 epochs, with a learning rate of 0.01 decaying 

to 0.001. The minimum network training passes for the MMP were 500 and the cut off was 

5,000. 

 

4 - Results 

The average GA run time required to obtain the individual models was 1 hour and 31 

minutes on a PC with a 3.60 GHz processor and 12 GB RAM. Table 1 shows the characteristics 

of the models found. The MSEs in this table are the errors committed by the model when 

predicting the users' opinions on the tables of the test set. These products were not used for 

training the model, and using them makes it possible to measure whether the models are able to 

generalize their results. The models obtained for each RU differ not only in terms of the weight 

of the connections among neurons, but also in the number of principal components of the PCA-

ANN, the number of hidden layers and the number of neurons in each layer of the MMP. On the 

other hand, the activation function type of neurons of each layer differs across models, being 

logistic sigmoid the most commonly employed.  

 

Table 1. Characteristics of the best models obtained for each RU. 

 RU 1 RU 2 RU 3 RU 4 
Hidden Layers 1 2 1 1 
Neurons in the PCA-ANN 14 9 12 12 
Neurons in the MMP first hidden layer 15 16 18 17 
Neurons in the MMP second hidden layer - 9 - - 

Test MSE 0.6751 0.3954 0.3211 0.7374 
 

Table 2 shows the obtained results. For each cluster of users, Table 2 shows the RU’s 

opinion, the prediction of the model corresponding to the cluster and the mean of the actual 

opinion of all user of the cluster. The RUs opinions are the actual responses for each product in 

the PRS of the user selected to develop the model of the cluster. The Model row shows the 

prediction for each product obtained using the model for the cluster. Finally, the Cluster mean 

row shows the mean of the responses for each product calculated using the opinions of all users 



belonging to the cluster. The last column of Table 2 presents two MSEs for each cluster. The 

first one is the MSE committed when using the model results to predict the RU’s opinion. The 

second one is the MSE when using the model to forecast the mean opinion of all users in the 

cluster. 

In order to predict the global rating of tables it is necessary to calculate the mean of the 

values predicted for each individual model weighted by the percentage of users represented by 

each model according to equation 1.      

௜ܲ = (෍ ௜݌
௠. ݊௠

ே೘

௠ୀଵ

)/ܰ 

Eq. 1 

Where: 

- Pi is the global rating predicted for the product i. 

- Nm is the number of individual models developed. 

- p୧
୫ is the assessment of product i predicted using the individual model m. 

- nm is the number of users belonging to the cluster of users m. 

- N is the total number of users employed to develop the models.    

 
Table 2. Representative users’ opinions, models’ predictions, and clusters’ mean opinions on Reduced 
Product Sample. 

 

  Product  
 

 
1 2 3 4 5 6 7 8  

 
        MSE 

CLUSTER 1 

RU1 -1 -3 2 -3 3 -2 1 2 
0.6751 

Model -0.34 -2.10 1.20 -1.78 2.32 -2.82 1.75 2.57 

0.5480 
Cluster mean -0.95 -1.67 1.66 -1.95 2.24 -1.71 1.57 1.05 

CLUSTER 2 

RU2 -2 -2 2 -3 3 -3 2 2 
0.3954 

Model -0.81 -1.32 2.01 -2.40 3.17 -2.30 1.41 2.25 

0.4889 
Cluster mean -1.71 -1.60 1.63 -2.43 1.63 -1.86 1.35 1.71 

CLUSTER 3 

RU3 1 1 2 -1 3 -1 2 2 
0.3211 

Model 1.46 1.62 0.99 -0.55 2.78 -0.55 2.63 2.32 

0.3271 
Cluster mean 1.12 1.16 1.32 -0.84 2.16 -1.2 1.52 2.08 

CLUSTER 4 

RU4 -3 -2 1 -2 1 2 -1 -1 
0.7374 

Model -2.14 -2.65 1.45 -1.25 1.84 0.81 -1.90 -2.02 

0.6942 
Cluster mean -2.36 -1.06 2.06 -2.24 1.18 -0.24 -1.94 -2.30 



 

Figure 3. Mean rating of the Reduced Product Sample by all users (Actual Mean) compared to the rating 
obtained using the mathematical models (Global Model Mean). 

 
 

These values were calculated using the opinion of all the 114 users interviewed in this 

study. The Global Model Mean represents the mean rating predicted by the SUAR model 

obtained in this study calculated using Equation 1. The MSE between the predictions of the 

SUAR model developed in this study and the actual mean of the responses was 0.2139. 

Finally, using the model obtained for each cluster, a sensitivity analysis was performed 

in order to measure the influence of each attribute on the degree in which the product seems 

environmental friendly. In this case, it was measured the effect that each neural network’s inputs 

was having on the network’s output. This provides feedback as to which inputs are the most 

significant. To perform this analysis, the inputs to the network are shifted slightly (dither) and 

the corresponding change in the output is reported (Principe et al., 2000). Finally, the influence 

of each input on the output change is calculated as a percentage. Figure 4 shows the results 

obtained setting dither at 0.1. For each cluster of users the percentage of influence of each 

attribute is shown, as well as the mean value over the corresponding axe. 

 



Figure 4. Percentage of influence of each attribute on the degree in which the tables seem environmental 

friendly by cluster. The mean percentages are shown over each axe. 

 
5. Discussion 

 

Sustainability can be transmitted to consumers through product attributes. Product 

aesthetics, oriented towards sustainable appearance, improves confidence of consumers in 

product sustainability and increases purchasing decisions of sustainable products (Luchs et al., 

2012). It could be said that products should not only be eco-friendly, but should also appear to 

be so. Therefore, it is important for manufacturers interested in sustainable products to take 

advantage of the capabilities of product’s appearance to communicate their sustainability 

friendliness and to give clear references to their environmental credentials.  

Advances have been made in this regard (Hassi and Kumpula, 2009; Murto et al., 2014) 

that suggest guidelines or tools for early phases of product’s design. These procedures are 

intended for exploratory stages of development, when designers are looking for inspiration and 



the particular characteristics of the product have not been defined. Our work is destined to more 

advanced design phases, when products are partially defined and designers are looking for a 

combination of a set of attributes that best transmit the sustainability friendliness. Finding this 

optimal product is not an easy task due to the complex relationships between products’ physical 

attributes and users’ perceptions. For example, white and green colors are usually associated 

with sustainability friendliness, but it strongly depends on the type of product and on other 

attributes like textures or shapes. Therefore, using mathematical models of the users’ 

perceptions can be useful in this process.    

The results obtained in this work lead us to conclude that the mathematical model found 

seems able to predict the degree in which a product will be perceived as environmentally 

friendly depending on its design attributes. The individual models obtained for each RU are 

capable of predicting individual users' judgments with enough accuracy. After having obtained 

the individual models, the mean response of all users can be obtained by weighting the 

responses of the individual models using the size of each cluster of users.  

The development of models to predict users’ opinion requires a lot of effort and survey 

time. Many users and many responses by user are necessary to generate the data to obtain the 

statistical models. This study has used a SUAR model, a different approach to generate models 

that looks for reducing the amount of time and effort to obtain a market model. It should be 

recalled that other approaches, like using the mean opinion of all users to train a model, could 

obtain results that outperform this approach when trying to predict the market global response. 

However, apart from less effort to develop the model, a SUAR model has the advantage of 

being that the distribution of opinions in each cluster of users is well known. 

As stated before, several conditions must be fulfilled to develop models with this 

procedure. Well-defined user clusters are needed. These clusters must be dissimilar between 

them and, at the same time, the opinions of the users inside each cluster must be similar. If this 

condition is not achieved, individual models will not be representative of the users in their 

cluster. The obtained results show that this condition seems to be accomplished in our case 

study. The clusters of users are obtained using their opinions about a set of products. Therefore, 

it could be supposed that the users belonging to the same cluster share a similar decision making 

process to decide if a table seems environmental friendly (Diego-Mas and Alcaide-Marzal, 

2016).  

The results of the sensitivity analysis performed in this work show that users of each 

cluster use different criteria to judge if a table is environmentally friendly. The distribution of 

the attributes’ weights is more uniform in clusters 1 and 2 than in clusters 3 and 4. Users from 

cluster 3 give much importance to Primary Material (13.88%) and Primary Color (12.42%). The 

most weighted attributes in cluster 4 are Trend (11.65%) and Primary Material (11.04%). In 

clusters 1 and 2 there are not attribute’s weights over 8% except Primary Material in cluster 2 



(9.61%). If we consider all clusters, Primary Material, Primary Color and Trend seem to be the 

most important product attributes when the users judge if a table is environmental friendly. On 

the other hand, the number of legs of the table seems to be of little importance. 

From the sensitivity analysis and the results for each cluster some hypotheses could be 

stated. For example, although users in cluster 3 and 4 consider the Primary Material of a table 

an important attribute, they assess this attribute in different ways. While users in cluster 4 seem 

consider negative using metal or glass as raw material for a table, users in cluster 3 consider it 

positive. This difference could be associated with a different knowledge and perception about 

lifecycle, reuse and recyclability of these materials between users. Consumers do not always 

know what makes a product sustainable (Lin and Huang, 2012), and users’ level of knowledge 

influences the way in which the product is perceived. For example, industrial designers perceive 

products in a different way than common users (Hsu et al., 2000). Another example of 

information that could be extracted from the sensitivity analysis is that the attribute Trend is one 

of the most weighted mainly due to users in cluster 4. For these users the table style seems to be 

good indicator of the environmentally friendliness of a table, and it seems from the results that 

old-fashioned tables are assessed negatively. However, these hypotheses must be validated in 

future researches. In this work, we looked for direct relationships between the attributes of the 

products and perceptions of generic users. Therefore, in the case study, the environmental 

concern or knowledge of the users has not been used as a criterion for selecting them. In the 

same way, the sample of tables was conformed without considering their actual environmental 

respect, and cues to signal environmental orientation of product (as labels or brochures) have 

not been used. It would be advantageous to analyze if the users in the same cluster share other 

similar characteristics in addition to their opinion over a set of products. For example, a future 

research could determinate if users particularly interested in environmental friendly products or 

having good knowledge about this kind of products belong to a specific cluster. If users of this 

cluster are supposed to be green consumers, green manufacturers could design tables 

specifically oriented to users of this cluster, given that it is supposed that these users translate 

their environmental concern into actively purchasing green products (Leonidou et al., 2010). 

In product design field it is well-known that price has influence in product’s perception 

and choice. Firstly, price could act as a filter to eliminate certain alternatives and, secondly, 

price may become a part of the decision process, particularly if price differences between the 

alternatives are perceived as significant to the customer (Monroe, 1982).  Something similar 

occurs with brands (Dawar, 1994). In this paper, price and brand of the products were not 

included in the survey. This is because the objective was to develop a tool useful in early stages 

of the product design process, when it is difficult to establish the final price of the product. 

Moreover, the price could not be considered as a direct designer’s choice, but the consequence 

of the selection of the raw materials and the production processes.  



In the case study of this work a SUAR model has been developed to predict the degree 

in which users judge if a table is environmentally friendly. Although this kind of models have 

been applied to other products in previous works (Diego-Mas and Alcaide-Marzal, 2016), future 

researches must develop models for more complex products. The number of attributes to be 

considered in more complex products may be larger. Therefore it may be more difficult to 

obtain the mathematical models because of the larger number of model’s input variables. 

Moreover, in complex products more complex relationships between the attributes may be 

present, making harder to fit the model. 

 

6. Conclusions 

This paper proposes a procedure to develop single users` affective responses models 

(SUAR models), based on artificial neural networks and genetic algorithms, to predict if a 

product will be perceived as environmentally friendly based on its physical attributes. The 

developed global model is formed by several sub-models, one for each cluster of customers. 

Therefore, it is possible to obtain the predicted perception of environmental friendliness of a 

product for each cluster of customers. A sensitivity analysis can be used to establish how 

product’ attributes influence the perception. 

The procedure described may prove useful to manufacturers and designers interested in 

developing environmentally friendly products. The model can be applied in design stages in 

which products have been partially defined, and where designers are looking for the best 

combination of product’ attributes in order to transmit to the future customers the sustainability 

friendliness of the object. An initial conceptual design of a product could be introduced to the 

model obtaining the predicted perception. Then, the designer could vary the product design 

checking how the variations affect the customers’ perception and, finally, obtaining the most 

suitable combination of attributes for the desired market response.  

Using this kind of model manufacturers and designers interested in developing 

sustainable products can take advantage of the capabilities of product’s appearance to 

communicate their sustainability friendliness to consumers, beyond the usual way of tagging the 

product as eco-friendly.  
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