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Abstract: In this paper, we evaluate experimentally and model theoretically the intra- and 
inter-core crosstalk between the polarized core modes in single-mode multi-core fiber media 
including temporal and longitudinal birefringent effects. Specifically, extensive experimental 
results on a four-core fiber indicate that the temporal fluctuation of fiber birefringence 
modifies the intra- and inter-core crosstalk behavior in both linear and nonlinear optical power 
regimes. To gain theoretical insight into the experimental results, we introduce an accurate 
multi-core fiber model based on local modes and perturbation theory, which is derived from 
the Maxwell equations including both longitudinal and temporal birefringent effects. 
Numerical calculations based on the developed theory are found to be in good agreement with 
the experimental data. 
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1. Introduction 

Space-division multiplexing (SDM) using single-mode multi-core fibers (SM-MCFs) has 
attracted much attention over the last years to provide large fiber transmission capacity in 
backbone and access optical networks [1-3]. However, advanced SDM transmissions in 
polarization multiplexing SM-MCF systems should deal with the intra- and inter-core 
crosstalk impairment, which presents both a spatial and temporal stochastic nature induced by 
different effects. The spatial dependence of the crosstalk is induced by the longitudinal fiber 
perturbations as macrobending, microbending, and fiber twisting [4]. Moreover, the temporal 
dependence of the crosstalk is induced by: the relative delay between cores [5], the walk-off 
effect due to different group velocities between cores and referred to as the inter-core skew 
[6], changes in the state of polarization of the input signal [7] or the MCF temporal 
birefringence fluctuations.  

In this topic, the spatial random nature of the crosstalk has been extensively investigated in 
[8-13] considering a single polarization and neglecting the intra-core coupling between 
orthogonal polarizations induced by the longitudinal random perturbations, which were 
heuristically inserted in the coupled-mode equations. On the other hand, in [14-17] the 
Manakov equations have been extended to multi-mode fibers (MMFs) and multi-mode 
multi-core fibers (MM-MCFs) to analyze linear and nonlinear propagation in SDM systems 
modeling intra- and inter-core coupling effects. In addition, in [18,19] the mode coupling has 
also been theoretically investigated in MMFs and MM-MCFs considering both orthogonal 



polarizations and the longitudinal random perturbations of the fiber. In [18] the bending and 
twisting of the media were modeled in the coupling matrix (composed by the coupling 
coefficients of the coupled-mode theory proposed in [20] for anisotropic optical waveguides), 
and in [19] the spatial random perturbations were included in the propagation matrix of the 
optical media. In all these previous works [8-19], the longitudinal perturbations of the fiber 
have been described assuming ideal modes but omitting the temporal fluctuations of the SDM 
fiber perturbations. 

Furthermore, the temporal dependence of the crosstalk in SM-MCFs due to the relative 
delay between cores, the inter-core skew and changes in the state of polarization of the input 
signal has been investigated in [5-7] including the fiber perturbations in the coupled-mode 
theory using a heuristic formalism and omitting intra-core and nonlinear effects. In addition, 
the temporal fiber birefringence fluctuation inducing crosstalk temporal dependence has not 
been investigated so far in SM-MCFs. 

This paper reports on the theoretical and experimental investigation of the temporal MCF 
birefringence effects and longitudinal random perturbations and their impact on the intra- and 
inter-core crosstalk in SM-MCFs using a more rigorous formalism. In particular, aimed to 
accurately describe linear and nonlinear intra- and inter-core coupling effects in SM-MCFs 
including both longitudinal and temporal MCF perturbations, we propose and develop a 
coupled local-mode theory (CLMT) considering these random perturbations in the Maxwell 
equations from the onset. As a result, we obtain an accurate fiber model able to predict the 
different types of crosstalk between the polarized core modes (PCMs) in SM-MCFs: (i) the 
intra-core crosstalk (iC-XT) which describes the mode coupling between orthogonal 
polarizations in a given core; (ii) the direct inter-core crosstalk (DIC-XT) modeling the mode 
coupling between the same polarization axis in different cores; and (iii) the cross inter-core 
crosstalk (XIC-XT) involving mode coupling between orthogonal polarizations in different 
cores. To complete our study, we perform extensive experimental measurements on a 
four-core fiber, which are found to be in good agreement with numerical simulations based on 
the proposed CLMT theory. Considering that in previous works [7-13] the crosstalk in MCF is 
usually estimated calculating the mean of the random process, our investigations are mainly 
focused on the behavior of the crosstalk mean between the PCMs. 

The paper is structured as follows. In Section 2, the aforementioned coupled local-mode 
theory is derived from the Maxwell equations. In Section 3, the fiber simulation model is 
described and extensive numerical simulations are performed considering lowly- and highly-
birefringent (LB and HB) cores. The temporal evolution of the MCF random birefringence 
and its impact on the mean of the linear and nonlinear iC-, DIC- and XIC-XT is also reported. 
The experimental validation of the theoretical model is performed in Section 4 on a 
homogeneous four-core fiber (4CF). Finally, in Section 5 the main conclusions of this work 
are highlighted. 

2. Coupled local-mode theory 

Coupled local-mode theory (CLMT) for SM-MCF media including both temporal and 
longitudinal birefringent effects in the Maxwell equations is reported in this section. 
As depicted in Fig.1, in a real two-core MCF, each core m = a,b can be modeled as a series of 
birefringent segments with a different time-varying retardation and random orientation of the 
local principal axes. Therefore, the first-order electrical susceptibility tensor χij

(1) can slightly 
fluctuate along the fiber, as a consequence of external perturbations such as bending, twisting, 
and temperature variations, as well as due to manufacturing imperfections [4,21]. As a result, 
in each segment of a given core m, the propagation constant of the PCMs LP01x and LP01y 
presents a different value due to the mentioned slight changes, and therefore, the transversal 
function of each PCM “mi” (i = x,y) is also modified.  

In order to model theoretically this scenario, the concept of local mode is included in the 
classical perturbation theory [22]. A local mode can be defined as an eigenfunction in a short 
core segment where the propagation constant and the transversal Bessel function [23] are 
approximately invariant. Hence, each core can be separated in different segments and 



local modes where the longitudinal and temporal birefringence conditions are approximately 
constant.  

Core a

Core b

MCF 

segment
 

Fig. 1: Multi-core fiber comprising different birefringent segments in cores a and b with longitudinal and temporal 
varying fluctuations in the refractive index tensor. 

In this way, in contrast with [4-13] where the longitudinal and temporal MCF 
perturbations are heuristically inserted in the coupled-mode theory assuming ideal modes, we 
include the longitudinal and temporal MCF random perturbations in the Maxwell equations 
considering local modes. The resulting coupled local-mode equations include oscillatory 
terms and mode-coupling coefficients (MCCs), which are longitudinal and temporal 
dependent. This CLMT formalism will allow us to model the impact of the different 
longitudinal and temporal fiber random perturbations on the crosstalk among the different 
PCMs and find the predominant linear and nonlinear MCCs describing iC-XT, DIC-XT and 
XIC-XT. 

2.1 Nonlinear coupled wave equations 

Our initial goal is to include the MCF random perturbations in the theoretical analysis from 
the Maxwell equations. We start by analyzing the coupled wave equations of an anisotropic 
and nonlinear SM-MCF. Considering monochromatic electric fields with both orthogonal 
polarizations and slowly varying amplitude functions, the real wave function of the global 
electric field (Ɛ), the linear polarization (Ƥ(1)) and the nonlinear polarization (Ƥ(3)) of a weakly 
guiding MCF can be written as [24-26]: 
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where Ei,ω0, Pi,ω0
(1) and Pi,ω0

(3) are the complex amplitudes, ω0 is the angular frequency of the 
optical carrier and c.c. are the complex conjugate terms. In this work, the semicolon symbol in 
Eqs. (1) is used to separate the rapid temporal oscillation of the optical carrier from the slow 
temporal evolution of the complex amplitudes modeling temporal birefringence fluctuations 
or additional temporal variations as the fluctuation of the state of polarization of the input 
signal. Although the MCF dispersive effects inducing crosstalk time dependence [27] have 
been omitted in Eqs. (1) when assuming monochromatic electric fields, they will be discussed 
at the end of section 2.3. In addition, the complex amplitude vector Pi,3ω0

(3) of the nonlinear 
polarization in 3ω0 was omitted, taking into account that the phase-matching condition in this 
nonlinear term is not satisfied in silica fibers [24]. The complex amplitude of the linear and 
nonlinear polarizations can be expressed as [25]: 
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where the first-order electrical susceptibility tensor χij
(1) is assumed longitudinal and temporal 

dependent due to the MCF perturbations. Moreover, the third-order susceptibility χijkl
 (3) can be 

approximated in silica media to [26]: 
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where χxxxx
 (3) = χijkl

 (3) with i = j = k = l = x and δij is the Kronecker delta function defined as 
δij = 1 when i = j and δij = 0 otherwise. 

From the first and second Maxwell equations (Ampère’s and Faraday’s laws) in the time 
domain and using Eqs. (1)-(3), the nonlinear coupled wave equations for the complex 
amplitudes are found to be:  
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where Δ is the Laplacian operator; εr,i = 1+χii
(1); σ = χxy

(1); γ = 0.75·χxxxx
(3); k0 = ω0/c0 is the 

wavenumber at the vacuum and Ei,−ω0 = (Ei,ω0)*, where * denotes complex conjugation. Note 
that we have assumed in Eq. (4b) that χxy

(1) = χyx
(1) in order to satisfy the Poynting theorem 

[28] when considering monochromatic electric fields in silica media. 
Now, in order to simplify the mathematical discussion and without loss of generality, 

we consider a MCF comprising two cores a and b. Thus, the relative electric permittivity of 
the MCF εr,i is defined in each polarization axis i = x,y as (we use the symbol := to indicate 
definition): 
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where εr,ai, εr,bi and εr,ci are the relative electric permittivity in the cores a, b and in the 
cladding, respectively; Δεr,ai and Δεr,bi are the difference between the relative electric 
permittivity  of the cladding and those of cores a and b, respectively; and nai, nbi and nci are the 
refractive index in each polarization axis in cores a, b and in the cladding region, respectively, 
considering both LB- and HB-MCFs. The linear birefringence is observed when εr,x ≠ εr,y and 
the circular birefringence is given by: 
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Furthermore, considering the low nonlinear nature of silica media, the nonlinear parameter γ is 
assumed constant in each dielectric region of the MCF. 



2.2 Coupled local-mode equations 

From the perturbation theory [22], the electric field of Eqs. (4) can be approximated in the 
MCF media as (i = x,y): 
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where Emi is the complex amplitude of the electric field of the PCM “mi” considering isolated 
cores; Ami is the complex envelope; Fmi is the transversal local eigenfunction which can be 
calculated using the equivalent refractive index nmi

(eq) of the PCM “mi” as detailed in the 
Appendix; and Фmi is the complex phase function modeling MCF longitudinal random 
perturbations, temporal birefringence effects and optical attenuation:  
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where α is the power attenuation coefficient of the MCF (assumed similar in each PCM), and 
ϕmi is the real phase function involving the longitudinal and temporal MCF perturbations: 
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Here, βmi is the unperturbed phase constant of the polarized core mode “mi”; βmi
(B) is the phase 

perturbation modeling macrobends; and βmi
(S) is the phase perturbation including structural 

fluctuations induced by microbending, twisting, temporal fiber birefringence and additional 
temporal variations as the fluctuation of the state of polarization of the laser. It should be 
noted that the functions Ami, Fmi and Фmi also depend on the angular frequency ω0. However, 
considering monochromatic electric fields the frequency dependence has been omitted in the 
notation. 

Furthermore, as it was pointed out previously, the Fmi function is assumed longitudinal 
dependent. Considering that the phase function Фmi is modified along the MCF length, the 
transversal function Fmi should also be modified along the longitudinal direction of the fiber. 
Hence, assuming the function Fmi(x,y;z,t)·exp(−jФmi(z;t)) as local eigenmode in Δz ≥ λ, the 
following Helmholtz equation should be satisfied in each “mi” polarized core mode: 
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Therefore, using Eq. (5) and assuming that ∂zFmi ≈ 0 and ∂z
2Fmi ≈ 0 in Δz ≈ λ, we obtain the 

following relation: 
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where ΔT = ∂x
2 + ∂y

2 is the transverse Laplacian operator. A similar expression is found for the 
polarized core mode bi exchanging ‘a’ by ‘b’ in Eq. (10). Now, substituting the global electric 
field given by Eq. (7) into the nonlinear coupled wave equations Eqs. (4) using Eq. (10), 
considering the slowly varying envelope approximation with ∂z

2Ami ≈ 0 in Δz ≈ λ, multiplying 
by the respective Fmi(x,y;z,t)·exp(+jϕmi(z;t)) and integrating in an infinite cross-section area of 
the MCF (as indicated in [22] for the classical derivation of the perturbation theory), we 
obtain the following coupled local-mode equation: 



            

        

      

, ,

, , ,

, ,

; ; ; ; exp ; ;

                     exp ; ; χ ; ;

                     ; exp ; ;

                     exp

z ax ax ax ax ay ay ax ay

bx ax ax bx ax bx z bx

ax by by ax by

j A z t c z t A z t m z t j z t A z t

j z t k z t j z t A z t

z t j z t A z t





 

    

      

  

            

          

22

* 2

,

; ; ; ; ;

1
                     exp ; exp 2 ; ; ; ,

2

ax ax ax ay ax

ax ay ax ax ay

z q z t A z t g z t A z t A z t

z g z t j z t A z t A z t



 

 
  

   

            (11)
 

where cax, max,ay, kax,bx, χax,bx, ηax,by, qax and gax are the mode-coupling coefficients (MCCs) 
defined in the next subsection; and the mismatching functions are defined as Δϕay,ax := ϕay−ϕax, 
Δϕbx,ax := ϕbx−ϕax and Δϕby,ax := ϕby−ϕax. It should be noted that the theoretical model is 
completed by three additional coupled local-mode equations for the ay, bx and by polarized 
core modes, which can be obtained just by exchanging the corresponding subindexes in 
Eq. (11). It is worth mentioning that additional nonlinear terms modeling cross-coupling 
effects should be included in Eq. (11) for coupled MCFs with a core pitch value (dab) lower 
than three times the core radius (R0). However, if we assume a MCF with dab >> 3R0, the 
self-coupling effect is the predominant nonlinear coupling effect and the additional nonlinear 
terms can be neglected [13].  

2.3 Linear and nonlinear mode-coupling coefficients 

The linear MCCs of the coupled local-mode equation Eq. (11) are defined as: 
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with [29]: 
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where fT is the twist rate along the MCF length; p11 and p12 are components of the 
photo-elastic tensor [30]; and na(b) is the average value of the material refractive index of each 
core excluding temporal birefringence fluctuation. It should be remarked that considering the 
temporal birefringence random fluctuation of na(b) of the order of ~10−7 (as it is experimentally 
verified in Section 4), this fluctuation can be neglected when na(b) is raised to the fourth power 
in Eq. (13). In addition, the nonlinear MCCs are given by the expressions (in W−1·m−1): 
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where Nax(z;t):= ∫∫Fax
2(x,y;z,t)dS∞; S∞ is the infinite cross-sectional area of the MCF; and Sa(b) 

is the cross-sectional area of each core. It should be noted that, in coherence with [18], the 
longitudinal random perturbations of the fiber are included in the MCCs. Nevertheless, in our 
method we have considered not only longitudinal perturbations, but also temporal ones. As a 
result, the derived MCCs are found to be time dependent. Moreover, note that our model 
inherently incorporates these stochastic perturbations, as they were directly included in the 
Maxwell equations. Specifically, they also appear in the exponential terms of Eq. (11), which 
account for possible slight changes in the longitudinal or temporal birefringent conditions. 

The linear MCCs χax,bx, cax and kax,bx are similar to the linear MCCs investigated in [13], 
where it was observed that kax,bx is the predominant linear MCC and that χax,bx and cax can be 
neglected. However, if polarization effects are included in the Maxwell equations, two new 
linear MCCs appear, max,ay and ηax,by, which model the iC-XT and XIC-XT, respectively. In 
order to investigate whether these coefficients should be maintained in Eq. (11) when 
compared with kax,bx, the ratios max,ay/kax,bx and ηax,by/kax,bx are analyzed following a similar 
procedure to the one discussed in [13].  

Assuming a straight MCF with constant twist rate fT and without temporal birefringence, 
the linear MCCs max,ay and ηax,by are found to be only longitudinal dependent and are 
maximized when considering homogeneous PCMs with nai = nbi (i = x,y) and Fax(bx) = Fay(by). 
As a result, the spatial average of the ratios <max,ay(z)/kax,bx(z)> and <ηax,by(z)/kax,bx(z)> can be 
calculated from Eqs. (12) with a similar derivation as in [13]: 
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where R0 is the core radius, nc is the cladding refractive index and the modal parameters ua(b) 

and wa(b) are given by [23]. As an example, the ratios given by Eqs. (16) are calculated 

assuming an ideal straight homogeneous two-core fiber with parameters: na(b) = 1.45, n = 1.44, 

λ = 1550 nm, R0 = 4 μm. 
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Fig.  2: Comparison of the linear mode-coupling coefficients (MCCs) max,ay and ηax,by with the linear MCC kax,bx using 
the spatial average ratios given by Eqs. (16) for different constant twist rate values fT and core pitch ratio dab/R0: 
(a) <max,ay/kax,bx> and (b) <ηax,by/kax,bx>. (Legend shown on Fig. 2(b) also applies to Fig. 2(a)). 



Figure 2 shows the behavior of the calculated ratios for different constant twist rate values 

fT and different values of the ratio between the core pitch and the core radius dab/R0. From 

Fig. 2(a), it can be noted that max,ay should be maintained in Eq. (11), since this MCC is 

usually of the same order or higher than kax,bx. As expected, the higher the twist rate value fT, 

the higher the mode coupling between the x and y orthogonal polarizations in a given core. 

However, as depicted in Fig. 2(b), the linear MCC ηax,by can be neglected in Eq. (11) for any 

core pitch value. Hence, the XIC-XT will depend directly on the iC-XT of both cores, as 

verified in next sections. Note that the MCC analysis considering heterogeneous cores with 

na ≠ nb is not included in Fig. 2 because the conclusions in the predominant linear MCCs are 

found to be identical. 

As a result, redefining the complex envelopes as      ; : ; exp 2A z t z t z  and 

considering all adjacent cores to core a in a N-core MCF, the final expression of the coupled 

local-mode equation for the polarized core mode ax including linear and nonlinear intra- and 

inter-core crosstalk in MCF media with dab > 3R0 is given by the expression: 
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Furthermore, considering non-monochromatic electric fields in Eqs. (1) and performing a 

similar mathematical discussion from the Maxwell equations, the CLMT can also be used to 

describe optical pulse propagation in SM-MCFs including inside the brackets of the left-hand 

side of Eq. (17) the dispersion operator 
,

ˆ
t axD  defined as    1

, 1

ˆ : !
k k k

t ax ax tk
D j k

 


   , where 

   0:
k k

ax ax    . In addition, the inter-core skew and the additional dispersive effects 

inducing a crosstalk time dependence [6,27] can also be modeled via this dispersion operator. 

However, the fiber dispersion effects are omitted in this work in order to evaluate only the 

time dependence of the crosstalk induced by the temporal birefringence fluctuations of the 

MCF, as it was pointed out previously. Alternatively to the CLMT, the theoretical models 

reported in [14-19] can also be extended to describe the temporal perturbations of the optical 

media inducing a crosstalk time dependence in MMFs and MM-MCFs. 

3. Equivalent refractive index model and numerical simulations 

In this section, the MCF simulation model is detailed and extensive numerical simulations of 
the crosstalk mean between the PCMs are performed considering temporal and longitudinal 
birefringent effects of the optical media. We observe that the temporal birefringence 
fluctuation of each core modifies the average value of the iC-, DIC- and XIC-XT. In addition, 
fiber twisting is proposed as a strategy of birefringence management to balance the inter-core 
crosstalk between the PCMs of different cores. 

3.1 Equivalent refractive-index model with longitudinal and temporal perturbations 

In a given core m of a SM-MCF, the longitudinal and temporal perturbations of the MCF 
should be included in the equivalent refractive index nmi

(eq) of each “mi” polarized core mode 
(LP01,mx and LP01,my). This index determines the value of the ϕmi and Fmi functions, as well as 
of the mode-coupling coefficients. In turn, these coefficients can be obtained via numerical 
integration of Eqs. (12) and (15) or through the closed-form expressions reported in [13] 
together with Eq. (16a) (substituting the material refractive index na by nax

(eq)). Furthermore, 



the ϕmi functions can be approximated in a short MCF segment, where the longitudinal MCF 
random perturbations are assumed to be approximately constant, as: 
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Fig. 3. Multi-core fiber simulation model including longitudinal perturbations and temporal birefringence effects. 

Hence, the ϕmi functions, MCCs and the coupled local-mode equations can be numerically 
solved by using the proper expression for nmi

(eq)(z;t), which should include the longitudinal 
and temporal MCF perturbations. In [10], the equivalent refractive index model was proposed 
assuming a single polarization and without including temporal birefringence effects. Here, in 
order to simulate also a slowly varying longitudinal and temporal MCF birefringence 
fluctuation in a time period spanning several days, we extend the equivalent refractive index 
model of [10] as depicted in Fig. 3.  

In particular, considering a MCF with lowly-birefringent (LB) or highly-birefringent (HB) 
cores, the Monte Carlo method with S random iterations can be performed in each PCM “mi”, 
which is characterized in a given day j by the following parameters: 

 The Monte Carlo s-th iteration identified by the subindex s = 1,…,S. 

 The number of segments Nm of the core m. Each core segment is identified by the 
subindex l = 1,…,Nm. 

 The equivalent refractive index of the “mi” PCM (i = x,y) of the l-th segment 
associated with the s-th iteration for the j-th day: 
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where nmi,j,s-l (t) describes the temporal birefringence fluctuation of the MCF given by 
a Gaussian random process as detailed later; θ0 is the offset of the twist angle of the 
MCF reference axis at z = 0; θm is the offset of the twist angle of core m measured 
from the MCF reference axis as shown in Fig. 3; dm is the Euclidean distance of 
core m to the MCF center; and RB,l and fT,l are the bending radius and twist rate in the 
l-th segment, respectively. It should be noted that the local orientation of the fiber 
principal axes (given by Eqs. (13) and (19)) is different in each segment as a 
consequence of the longitudinal changes in the twist rate between adjacent segments. 
On the other hand, although in the numerical simulations and the experimental work 
of the next sections we have not considered temporal changes in the bending radius 
and twist rate, in a real deployed MCF system the environmental factors could induce 
temporal fluctuations in the bending radius and twist rate of the optical media. In that 
case, RB,l and fT,l should be regarded as time-dependent variables. In addition, the 
temporal birefringence fluctuation |nmy,j,s-l(t) – nmx,j,s-l(t)| of the MCF is modeled by a 



Gaussian random process N(μ(t),σ2) with mean μ(t) = Δnm,j describing the value of 
the intrinsic linear birefringence in core m and day j, and variance σ2 = δnm,l modeling 
the photo-elastic effect in the l-th segment induced by the macrobend RB,l as [31]: 

3 2 2

, B,0.011 ,m l m c ln n d R                                        (20) 

where nm is the average value of the material refractive index of core m given by 
Eq. (14) and dc is the MCF cladding diameter. Thus, the value nmi,j,s-l (t) can be 
calculated in the l-th segment and s-th iteration as (i = x,y): 
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3.2 Numerical simulations  

The numerical analysis of the crosstalk between the PCMs was performed in line with the 
MCF simulation model detailed in previous subsection. Two different 150 m homogeneous 
two-core fibers (TCFs) comprising LB and HB cores were considered in the numerical 
simulations, as depicted in Fig. 4. The number of simulated segments and the average value of 
the linear birefringence in each core <Δnm,j> is indicated in Table 1.  

We have assumed cores a and b with different birefringence average value and a different 
number of segments in the LB-TCF case, in order to compare the simulation results with the 
crosstalk behavior observed in the experimental measurements of the next section. As it is 
experimentally verified, the higher the birefringence average value <Δnm,j> is assumed in a 
given core m, the lower is the number of segments Nm that should be considered. Additional 
MCF parameters employed were: dab = 36 μm, dc = 125 μm, R0 = 4 μm, na = nb = 1.45, 
nc = 1.44, θ0 = 0, and λ =1550 nm. Although in a real LB-MCF the core radius R0 can also 
present longitudinal fluctuation, it is a less time-consuming approach to consider the 
longitudinal fluctuation of this fiber parameter as manufacturing imperfections encoded by 
<Δnm,j> in each core m = a,b. In HB-MCFs with elliptical cores, the intrinsic birefringence can 
also be included in <Δnm,j> assuming R0 as the average value of the minor and major axis 
dimensions. 
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Fig 4. Schematic cross-sections of multi-core fibers simulated: (a) lowly- and (b) highly-birefringent cores. 

Table 1. Number of segments and linear birefringence average values considered in the analysis 

TCF 
Parameters  

Number of 
segments Nm 

Linear birefringence 
average value <Δnm,j> 

Cores LB HB LB HB 

a 8 1 5·10−7 4·10−4 

b 6 1 1.2·10−6 4·10−4 

Figure 5 shows the simulation results of the iC-XT, DIC-XT and XIC-XT mean between 
the PCMs in the LB-TCF of Fig. 4(a) when varying the linear birefringence value Δna,j and 
Δnb,j throughout a 10-day period (j = 1,…,10). Following [12,13], the crosstalk mean from a 
PCM ξ to a PCM υ is defined as μυ,ξ := E[Pυ(z=L)/Pξ(z=L)], where E[·] is the expectation 



operator, L is the MCF length and (υ,ξ) ∈ {ax,ay,bx,by}2. Monte Carlo method was performed 
over 100 iterations (S = 100) considering a constant bending radius of RB = 100 cm along the 
MCF. In addition, two different twist rate average values of fT = 0.05 and 1 turns/m were 
assumed with Gaussian random fluctuations between adjacent segments around ~0.02 turns/m 
in both cases. The simulation results are shown in Figs. 5(a1)−5(c1) and Figs. 5(a2)−5(c2) for 
each twist rate average value, respectively. The temporal fluctuation of the linear 
birefringence Δnm,j (m=a,b) depicted in Figs. 5(a1) and 5(a2) was calculated from a Gaussian 
distribution N(<Δnm,j>,10−7) considering a similar evolution in both cores in coherence with 
the experimental results of the next section.  

As we can notice from Figs. 5(a1) and 5(a2), the higher the linear birefringence Δnm,j, the 
lower the iC-XT mean observed in a given core m. The main reason for this comes from the 
higher phase mismatching between the intra-core PCMs LP01,mx and LP01,my. If the linear 
birefringence Δnm,j increases, the phase mismatching between both orthogonal polarizations 
increases reducing the iC-XT mean. Furthermore, increasing the fiber twisting from 0.05 to 
1 turns/m, the iC-XT mean is also increased in both cores due to the increment of the circular 
birefringence, as it is observed when comparing the iC-XT levels in Figs. 5(b1) and 5(b2). 
Note that, as the global birefringence (linear+circular) increases and prevails over the 
temporal random birefringence fluctuation (~10−7), the temporal fluctuation of the iC-XT 
mean decreases. This is confirmed by the results for core b in Fig. 5(b2) (with a minimal 
excursion of 2 dB) and by the experimental measurements presented in the next section.  

On the other hand, as depicted in Figs. 5(c1) and 5(c2), the XIC-XT mean presents the 
same temporal evolution as the iC-XT mean indicating that XIC-XT is mainly generated by 
the intra-core mode coupling, as it was pointed out in Section 2. Thus, the XIC-XT mean is 
lower than the DIC-XT mean when the iC-XT mean of both cores is lower than 0 dB. 
However, increasing the fiber twisting from 0.05 to 1 turns/m, the iC-XT mean increases 
higher than 0 dB in core a the 1st, 3rd,5th, 6th and 8th days. As a result, the XIC-XT mean is 
higher than DIC-XT these days, as shown in Fig. 5(c2).  

0 1 2 3 4 5 6 7 8 9 1011
0
2
4
6
8

10
12
14
16
18
20

Core a

Core b

L
in

ea
r 

B
ir

ef
ri

n
g

en
ce

0 1 2 3 4 5 6 7 8 9 1011
-25

-20

-15

-10

-5

0

5

10

iC
-X

T
 (

d
B

)

ay,ax ax,ay

by,bx bx,by

IC
-X

T
 (

d
B

)

bx,ax ax,bx by,ay ay,by

by,ax ax,by bx,ay ay,bxx10−7

0 1 2 3 4 5 6 7 8 9 1011
0
2
4
6
8

10
12
14
16
18
20

L
in

ea
r 

B
ir

ef
ri

n
g

en
ce

Days

x10−7

(a1)                                           (b1)                                           (c1)

(a2)                                   (b2)                               (c2)

0 1 2 3 4 5 6 7 8 9 1011
-60

-55

-50

-45

-40

-35
fT = 0.05                                   fT = 0.05 fT = 0.05

fT = 1.00                                  fT = 1.00 fT = 1.00

0 1 2 3 4 5 6 7 8 9 1011
-25

-20

-15

-10

-5

0

5

10

iC
-X

T
 (

d
B

)

Days
0 1 2 3 4 5 6 7 8 9 1011

-60

-55

-50

-45

-40

-35

IC
-X

T
 (

d
B

)

Days  
Fig. 5. Simulation results of the crosstalk behavior between the polarized core modes in a 150 m two-core fiber with 
lowly-birefringent cores, considering the temporal fluctuation of the linear birefringence of each core with a twist rate 
value of fT = 0.05 and 1 turns/m: (a) Simulated linear birefringence evolution in cores a and b throughout a 10-day 
period; (b) intra-core crosstalk evolution; and (c) direct and cross inter-core crosstalk evolution. (iC-XT: intra-core 
crosstalk, IC-XT: inter-core crosstalk). 
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Fig. 6. Simulation results of the crosstalk behavior between the polarized core modes in a 150 m two-core fiber with 
highly-birefringent cores considering the temporal fluctuation of the linear birefringence of each core with a twist rate 
value of fT = 0.05 and 1 turns/m: (a) Simulated linear birefringence evolution in cores a and b throughout a 10-day 
period; (b) intra-core crosstalk evolution; and (c) direct and cross inter-core crosstalk evolution. (iC-XT: intra-core 
crosstalk, IC-XT: inter-core crosstalk). 

Figure 6 shows the simulated results considering the 150 m HB-TCF depicted in Fig. 4(b) 
with an average value of the linear birefringence of <Δnm,j> = 4·10−4 in both cores (m = a,b), 
as indicated in Table 1. The crosstalk behavior in the HB-TCF was also calculated over 100 
iterations assuming the same bending and twisting conditions as in the LB-TCF. Figures 
6(a1)−6(c1) and Figs. 6(a2)−6(c2) show the simulated results for twist rate average values of 
fT = 0.05 and 1 turns/m, respectively.  

It should be noted from Figs. 6(a1) and 6(a2) that we cannot observe a significant 
temporal birefringence fluctuation, since the temporal random fluctuation of Δnm,j was 
assumed to be of the same order as in the LB cores (around 10−7), much lower than the linear 
birefringence average value of <Δnm,j> = 4·10−4 in the HB cores. Therefore, the temporal 
evolution of the iC-XT mean was found approximately similar in both cores with a maximal 
excursion of 1 dB, approximately. In addition, note that the iC-XT mean is much lower than 
in LB cores due to a higher mismatching between the refractive index of the intra-core PCMs. 
However, increasing the fiber twisting from 0.05 to 1 turns/m the iC-XT mean increases from 
−33 dB to −20 dB, as shown in Figs. 6(b1) and 6(b2). Considering the low average value and 
temporal fluctuation of iC-XT in both cores a and b, the XIC- is lower than DIC-XT for both 
fT values, as shown in Figs. 6(c1) and 6(c2). Nevertheless, when the average value of the fiber 
twist rate increases from 0.05 to 1 turns/m, the difference between DIC- and XIC-XT mean is 
reduced from +30 to +17 dB due to the increment of the iC-XT mean in both elliptical cores. 

An additional comment on the results of Figs. 5 and 6 is in order. The mode coupling from 

the PCM ξ to PCM υ is the same as from υ to ξ, with (υ,ξ) ∈ {ax,ay,bx,by}2. This is to be 
expected when operating with a large bending radius RB, for which the condition Δϕξυ ≈ Δϕυξ 
can be inferred from Eqs. (18) and (19)  for both LB-and HB-MCFs. 

In order to further analyze the longitudinal MCF random perturbations induced by MCF 
bending and twisting, a multi-parameter simulation of the CLMT was performed over 80 
Monte Carlo iterations considering a 2 m LB-TCF with cores a and b comprising a single 
segment with the same birefringence average value of <Δnaj> = <Δnbj> = 10−7. The temporal 



birefringence fluctuation of the TCF was omitted in this simulation. The numerical results are 
shown in Fig. 7. 
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Fig. 7. Multi-parameter simulation of the crosstalk between polarized core modes varying the bending radius (1/RB) 
and the twist rate (fT) in a 2 m homogenous two-core fiber with lowly-birefringent cores. (a) intra-core crosstalk mean 
ay-ax, (b) direct inter-core crosstalk mean bx-ax, and (c) cross inter-core crosstalk mean by-ax. 

Figure 7 depicts the mean of: iC-XT ay-ax (similar to by-bx when assuming cores with 
similar birefringence), DIC-XT bx-ax and XIC-XT by-ax when changing the bending radius 
RB and fiber twisting conditions fT. As it can be noticed from Fig. 7(a), we cannot observe 
intra-core mode coupling between ax-ay with fT = 0 in 2 m of LB-TCF. Macrobending 
increases the phase mismatching between the PCMs ax and ay without inducing iC-XT due to 
the photo-elastic effect [31]. As a result, significant XIC-XT cannot be observed for short 
MCF lengths when fT = 0, as in the case of Fig. 7(c). Nevertheless, an average level of 
DIC-XT between −100 and −50 dB can be noted from Fig. 7(b) in non-twisting conditions 
depending on the bending radius value. In addition, the higher the twist rate and the bending 
radius, the higher the iC-, DIC- and XIC-XT mean due to the reduction of the phase 
mismatching between the different PCMs of the TCF. Note that DIC- and XIC-XT means are 
balanced when the iC-XT mean achieves the value of 0 dB in Fig. 7(a). Therefore, MCF 
twisting can be proposed as a potential strategy for birefringence management to balance the 
inter-core crosstalk between the different PCMs for short MCF distances. For MCF distances 
of several kilometers, the iC-XT mean increases and the difference between the mean of the 
DIC- and XIC-XT are reduced. 

Finally, we analyze the crosstalk behavior between the PCMs when operating in 
nonlinear regime. To this end, we simulated a LB-TCF with fiber parameters: L = 5 m, 
fT = 0.08, RB = 100 cm, Nm = 2 segments, S = 80 iterations, dab = 36 μm, dc = 125 μm, 
R0 = 4 μm, na = nb = 1.45, nc = 1.44, and λ =1550 nm, with a constant birefringence value in 
each core of Δna(b),j = 10−7 (omitting temporal fluctuation). The power launch level injected 
into the PCM ax was increased from 0 to 40 dBm. The behavior of the mean of the iC-XT 
(ay-ax), DIC-XT (bx-ax) and XIC-XT (by-ax) is shown in Fig. 8. 
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Fig. 8. Numerical results of the nonlinear crosstalk evolution considering a theoretical range of the power launch level 
in the ax polarized core mode in a homogeneous 5 m lowly-birefringent two-core fiber: (a) nonlinear intra-core 
crosstalk mean between ay-ax, and (b) nonlinear direct and cross inter-core crosstalk mean between bx-ax and by-ax. 
(iC-XT: intra-core crosstalk, DIC-XT: direct inter-core crosstalk, XIC-XT: cross inter-core crosstalk). 



It should be noted from Fig. 8(a) that the iC-XT mean remains unchanged for a power 
launch level PL = Pax(z=0) lower than 40 dBm. Therefore, we conclude that the nonlinear 
birefringence induced by the nonlinear polarization P(3) in Eqs. (4) does not increase the 
iC-XT when considering realistic optical power levels. Moreover, as shown in Fig. 8(b), the 
mean of DIC- and XIC-XT is reduced as the power launch level increases. This is because the 
Kerr effect detunes the phase constants of PCMs between different cores, as reported in [12]. 
Furthermore, the difference between the DIC- and XIC-XT mean is constant around 5 dB 
when the optical power launch increases, due to the constant behaviour of the iC-XT in the 
nonlinear regime. 

4. Experimental results  

In order to validate the theoretical analysis of the previous sections, experimental 
measurements are performed on a homogeneous four-core fiber (4CF) analyzing the temporal 
birefringence fluctuation of the optical media and its impact on the mean of the linear and 
nonlinear crosstalk between the PCMs. The employed experimental set-up is shown in Fig. 9. 
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Fig. 9. Experimental set-up for intra- and inter-core crosstalk evaluation between the polarized core modes of cores 1 
and 3 of a four-core fiber (4CF), considering multi-core fiber temporal birefringence fluctuation and both linear and 
nonlinear power regimes. 

A tunable continuous-wave external cavity laser (CW-ECL) at 1550 nm with a linewidth 
of 50 kHz was used along with two polarization controllers (PC1 and PC2). The first 
polarization controller (PC1) was employed to align the polarization axes of the CW-ECL and 
the polarization beam splitter (PBS) in a back-to-back (B2B) connection, as detailed in Fig. 9. 
A polarization analyzer (Optellios PS2300) was used to verify that the output light of the PC1 was 
linearly polarized along the x axis by maximizing the upper branch of the PBS in the B2B 

connection. The second polarization controller (PC2) was inserted to modify the polarization 
launched into a given core of the 4CF. The additional erbium doped fiber amplifier (EDFA) 
followed by a variable optical attenuator (VOA) was employed only for the nonlinear 
crosstalk analysis between the PCMs. A 3D fan-in/fan-out device with 2.2 dB insertion losses 
was employed in order to inject and extract the optical power launched into a 150 m 
homogeneous single-mode 4CF Fibercore SM-4C1500(8.0/125) spooled on a reel with a 
constant bending radius of 100 cm and constant twist rate of 1 turns/m inside a methacrylate 
box to reduce the external perturbations. In addition, the laboratory room was isolated and the 
air cushions were inflated in our active optical table to minimize the external perturbations 
induced by human activity. 

The crosstalk behavior between the PCMs of cores 1 and 3 was analyzed in the linear and 
nonlinear regime by injecting into a given PCM an optical power launch level of 0 dBm and 6 
dBm, respectively. In the nonlinear regime, the EDFA gain was maximized in order to reduce 
the crosstalk averaging due to amplified spontaneous emission (ASE) noise, as recommended 
in [12], and the power launch was controlled by the VOA. The optical power of the two PCMs 
(LP01,mx and LP01,my) of a given core m (with m = 1,3) was separated with the PBS and 
measured with a power meter comprising two different channels (Thorlabs PM320E). 



The mean of the linear and nonlinear iC-, DIC- and XIC-XT between the PCMs of cores 1 
and 3 was estimated using the wavelength sweeping method [10,12] from 1540 to 1590 nm 
with 5 pm step. The CW-ECL was previously tested between 1540 and 1590 nm to confirm 
that the polarization remains unchanged when sweeping the laser wavelength. It should be 
noted that the wavelength sweeping method can also be used to estimate the value of the 
linear birefringence of each core in different days, as detailed in [32,33]. Moreover, it should 
be remarked that the impact of the dispersive effects and the inter-core skew effect on the time 
dependence of the crosstalk [6,27] was minimized using a CW-ECL with a reduced linewidth 
of 50 kHz. As it was experimentally verified, considering that the linear birefringence of each 
core remains unchanged during more than 10 hours, we analyzed the temporal birefringence 
fluctuation by performing measurements at different days and months. 
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Fig. 10: Experimental results of the temporal linear birefringence fluctuation over different days and months of a 
150 m 4CF, and corresponding intra- and inter-core crosstalk mean between cores 1 and 3. A power launch level of 
PL = 0 dBm was used in linear regime (NL: nonlinear regime with PL = 6 dBm). (a) Linear birefringence evolution of 
cores 1 and 3, (b) intra-core crosstalk 1x-1y and 3x-3y, and (c) direct- and cross-inter-core crosstalk 1i-3j with i,j = x,y 

Figure 10 shows the temporal fluctuation of the linear birefringence and the crosstalk 
mean behavior between the PCMs of cores 1 and 3 measured in six consecutive days in 
October 2015, four consecutive days in January 2016, and five consecutive days in March 
2016, with similar temperature conditions in the laboratory set-up. As shown in Fig. 10(a), 
cores 1 and 3 present a different average value of the linear birefringence estimated to be 
<Δn1,j> = 4.9·10−7 and <Δn3,j> = 1.2·10−6, respectively. It can be noted that the average value 



of the linear birefringence is constant in each core the three different measured months. 
Moreover, although the average value of the linear birefringence is different in each core, the 
temporal evolution of the linear birefringence presents a similar shape in both cores, in line 
with our assumptions in Section 3. 

As depicted in Figs. 10(a) and (b), the higher the linear birefringence in a given core, the 
lower the mean of the iC-XT. Furthermore, it should be noted that iC-XT in core 3 is lower 
than in core 1 due to a higher mismatching between the orthogonal polarizations. In line with 
the simulations of Section 3, the iC-XT mean presents a lower temporal fluctuation in the 
more birefringent core (core 3), which occurs when the average value of the birefringence is 
higher than the temporal random birefringence fluctuation (~10−7). In addition, we can 
observe from Fig. 10(c) that the temporal evolution of the XIC-XT mean presents the same 
behavior as the iC-XT mean, indicating that XIC-XT depends directly on the iC-XT of both 
cores. As a result, DIC-XT is higher than XIC-XT when iC-XT is lower than 0 dB in both 
cores, as it was observed the 3rd and 4th days (October 2015), the 7th day (January 2016), and 
the 13th and 14th days (March 2016). Furthermore, the experimental measurements of Fig. 10 
fit correctly with the CLMT simulation when using Eqs. (17)-(21) with the parameters 
indicated in Table 1 for the LB-TCF with N1 = Na = 8, N3 = Nb = 6 and assuming a temporal 
birefringence Δn1,j = Δna,j and Δn3,j = Δnb,j as depicted in Fig. 10(a). Therefore, we conclude 
that the more birefringent a given core is, the lower number of segments should be used to 
simulate the crosstalk between the PCMs, as was pointed out in Section 3. 

On the other hand, the nonlinear crosstalk between de PCMs 1y-1x, 3y-3x, 3x-1x and 3y-1x 
was also measured the 5th, 6th and 15th days with a power level of 6 dBm launched into the 
corresponding PCM, taking into account the insertion losses of 2.2 dB of the 3D fan-in 
device. As it was previously observed in Section 3, the iC-XT mean presents the same value 
in nonlinear regime considering that the nonlinear birefringence can be neglected for realistic 
optical power launch levels lower than 40 dBm. In addition, the DIC- and XIC-XT mean is 
reduced around 1 dB keeping constant the difference between both inter-core crosstalk types 
as a direct consequence of the constant behavior of the iC-XT mean in nonlinear regime. 

Moreover, although the crosstalk analysis between the PCMs is restricted only to cores 1 
and 3, the linear birefringence Δnm,j was also measured in cores 2 and 4. The average value of 
the linear birefringence of cores 2 and 4 was found to be <Δn2,j> ≈ <Δn4,j> ≈ 7·10−7. 
In addition, the average value of the iC-XT mean of each core was analyzed as a function of 
the average value of the linear birefringence <Δnm,j> including a numerical simulation of the 
CLMT. 
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Fig. 11: Experimental measurement and simulated results of the intra-core crosstalk (iC-XT) mean evolution with the 
average value of the linear birefringence. Solid points: measured data of cores 1, 2, 3, 4 in a 150 m homogeneous 
four-core fiber. Dashed line: simulation results using the coupled-local mode equation, Eq. (17). 

Figure 11 shows the experimental and simulated results of the iC-XT mean evolution 
when increasing the average value of the linear birefringence <Δnm,j> in a given core using 
Eqs. (17)-(21) considering 80 Monte Carlo iterations. It was assumed a core m with the fiber 
parameters of the 4CF Fibercore SM-4C1500(8.0/125): nm = 1.452, nc = 1.444, λ = 1550 nm, 



dab = 36 μm,  dc = 125 μm. The distance to the reference center of the 4CF is fixed at 
dm = dab/√2 = 25.46 μm. The bending radius and the twist rate was assumed with a similar 
value as in the experimental set-up with RB = 100 cm and fT = 1 turns/m, respectively. It can 
be noted that the iC-XT mean is reduced when the average value of the linear birefringence 
<Δnm,j> increases inducing a higher phase mismatching between orthogonal polarizations. 
Furthermore, it was confirmed that the simulated results fit correctly with the experimental 
measurements of each core, validating the theoretical analysis reported in previous sections. 

The experimental analysis reported in this section addresses a non-real deployed SM-MCF 
system with constant bending and twisting conditions. For real deployed MCF systems, the 
results herein presented should be refined by considering the multimode regime, higher fiber 
distances and random bending radius and twist rate along the fiber length. Furthermore, the 
polarization-mode dispersion (PMD) and the inter-core skew should also be investigated in 
real deployed MCF systems. To this end, distributed and lumped analytical models can be 
proposed in MCF media as in standard single-mode systems [34,35]. Alternatively, the CLMT 
can also be employed to evaluate the impact of the longitudinal and temporal fiber 
perturbations on the statistics of the PMD. 

5. Conclusions 

In this paper, we have reported the theoretical and experimental analysis of the intra- and 
inter-core crosstalk behavior in SM-MCF including the temporal and longitudinal 
birefringence perturbations of the optical media. In order to propose an accurate analytical 
model, the coupled local-mode theory was derived from the Maxwell equations including both 
temporal and longitudinal MCF birefringence perturbations in the phase functions and MCCs 
of the polarized core modes. Two new MCCs max,ay (z;t) and ηax,by (z;t)  were found modeling 
iC-XT and XIC-XT, respectively. The theoretical analysis shows that ηax,by coefficient can be 
neglected indicating that the XIC-XT mean depends directly on the iC-XT mean observed in 
both cores a and b, as it was verified numerically and experimentally.  

In addition, a MCF simulation model of the CLMT was proposed and validated 
experimentally including both longitudinal and temporal birefringent effects in the equivalent 
refractive indexes nmi

(eq). The numerical simulations comprising LB and HB cores indicate 
that the higher is the linear birefringence in a given core, the lower is the value and the 
temporal fluctuation of the iC-XT mean. Furthermore, the XIC-XT mean presents the same 
temporal evolution as the iC-XT mean indicating that XIC-XT is mainly generated due to 
intra-core mode coupling. As a result, the XIC-XT mean is lower than the DIC-XT mean 
when the iC-XT mean of both cores is lower than 0 dB. Both DIC- and XIC-XT are balanced 
when iC-XT mean achieves the value of 0 dB in each core. Hence, MCF twisting was 
proposed as a birefringence management strategy in short MCF distances to balance the DIC- 
and XIC-XT. However, when higher MCF distances of several kilometers are considered, the 
iC-XT mean increases reducing the difference between the mean of the DIC- and XIC-XT. In 
nonlinear regime it was observed that the nonlinear iC-XT mean remains unchanged when the 
power level launched into a given polarized core mode increases. In contrast, the DIC- and 
XIC-XT mean is reduced in nonlinear regime showing a similar evolution. Finally, extensive 
experimental measurements performed in three different months using a homogeneous 4CF 
confirm the crosstalk behavior observed in the numerical simulations between the PMCs. The 
experimental validation also pointed out that the temporal linear birefringence evolution is 
similar in different cores of the optical media. 

Appendix: calculation of the transversal local eigenfunctions Fmi(x,y;z,t) 

The transversal local eigenfunction Fmi for the PCM “mi” can be calculated using the 
closed-form expressions detailed in [23] for the LP01 mode in the cores and cladding regions. 
However, considering that the local eigenfunction depends on the longitudinal and temporal 
MCF random perturbations, it should be calculated as a function of the equivalent refractive 
index nmi

(eq) detailed in Section 3. Therefore, the eigenfunction Fmi(r;z,t) can be expressed in a 
local polar coordinate system (r,φ,z) of a given core m as: 
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(22) 

where r = (x2+y2)1/2; R0 is the core radius (assuming all cores of the MCF with identical 
radius); umi and wmi are the modal parameters of the PCM “mi”, which can be calculated as: 
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1 4
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              (23a) 

     2 2; ; ; ,mi mi miw z t V z t u z t                                             (23b) 

and Vmi(z;t) is the normalized frequency of the PCM “mi”: 

      
2

eq 2

0 0; ; ,mi F mi cV z t k R C n z t n 
                                     

(24) 

with nmi
(eq) given by Eq. (19), CF an auxiliary parameter referred as the correction factor and nc 

the material refractive index of the cladding. The correction factor CF is included in Eq. (24) 
to calculate the correct values of the normalized frequency when using the nominal value of 
the core radius. It is worth mentioning that in real SMFs and MCFs, the core radius presents 
longitudinal variations along the fiber length, as was pointed out previously in Section 3. In 
order to consider these core radius fluctuations, we have included in Eq. (24) the correction 
factor CF, which should be calculated using the cut-off wavelength (λC) of the fiber as a 
reference. Specifically, the correction factor is found as CF = 0.7 in Section 3.2 and CF = 0.9 in 
Section 4 (λC = 1410 nm). Moreover, note that in Eq. (24) it was assumed the same material 
refractive index of the cladding for the x and y polarization axes. 
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