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Abstract The Weighted Least Squares algorithm (WLS) is applied to nu-
merous optimization problems, but requires the use of high computational
resources, especially when complex arithmetic is involved. This work aims to
accelerate the resolution of a WLS problem by reducing the computational
cost (relaying on BLAS/LAPACK routines) and the computational precision
from double to single. As a test case, we design an IIR filter for a Graphic
Equalizer, where the numerical errors due to single precision are easily visual-
ized. In addition, given the importance of low power architectures for this kind
of implementations, we evaluate the performance, scalability, and energy effi-
ciency of each method on two different processors implementing the ARMv7
architecture, widely used in current mobile devices with power constraints.
Results show that the method that exhibits a high theoretical computational
cost overcomes in efficiency other methods with lower theoretical cost in ar-
chitectures of this type.
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1 Introduction

This paper aims at assessing the efficiency and power constraints of Weighted
Least Squares (WLS) algorithms on ARMv7 architecture.

1.1 Weighted Least Squares Problems

Many optimization, parameter estimation, and approximation problems lead
to the task of finding an optimal set of parameters popt (of size of N × 1)
that minimize the error between the model ŷ = f(p) and the reality (or
observations) contained in y, with ŷ and y both of dimensions of M × 1.
Mathematically, these problems can be expressed as

popt = arg min
p
||f(p)− y||. (1)

The uniqueness of the solution and the complexity of the parameter esti-
mation depends both on the type of error norm ||.|| and the type of function
f(.). A particular case occurs when ŷ = f(p) = Mp is linear in p, with M
being the modeling matrix of size M ×N , and the L2-norm is used. Then (1)
becomes a Linear Least Squares (LLS) problem.

In this case, the error to be minimized, denoted as eLS, is the sum of squares
of the deviations:

eLS =

K∑
k=1

|ŷk − yk|2 = ||Mp− y||22 = (Mp− y)T (Mp− y).

We note that, for complex-valued problems, the Hermitian transpose (.)H

(transpose and complex conjugate) should be used instead of (.)T in all equa-
tions throughout the paper.

Since eLS is a second-order function of p, it has a unique minimum, which
can be found by solving the normal equations of the LLS [1]:

(MTM)popt = MTy. (2)

This requires the solution of a symmetric positive definite linear system, and
makes parameter estimation significantly simpler compared to general nonlin-
ear optimization problems. An alternative method consists in computing the
pseudo-inverse of M, given by M+ = (MTM)−1MT , so that

popt = (MTM)−1MTy. (3)

Although both methods are mathematically equivalent, (2) usually yields nu-
merically better-posed algorithms.

Not all optimization problems can be expressed as LLS problems, either be-
cause an output is not a linear function of the parameters or the L2-norm is not
an appropriate metric. However, many of these problems can still be approx-
imated as a LLS problem with additional weights (Weighted Least Squares,



Solving Weighted Least Squares Problems on ARM-based Architectures 3

or WLS). In this case, all deviations (ŷk − yk) are multiplied by a constant
wk before the L2-norm is computed. Mathematically, this can be formulated
as a multiplication with a diagonal matrix W = w, where w is the vector
containing the elements wk. In this case, the error is approximated as

e = ||f(p)−y||2 ≈ eWLS = ||W(Mp−y)||22 = (Mp−y)TWTW(Mp−y).
(4)

If the weight matrix W is fixed, (4) can be solved in one step, similarly to (3),
by simply multiplying both M and p with W:

popt = (MTWTWM)−1MTWTWy. (5)

A special class of WLS algorithms is Iteratively Reweighted Least Squares
[2], where (5) is solved iteratively a number of times in such a way that the
modeling matrix M and the target vector y remain the same, but the weight
matrix W changes. This will have an importance in Sec. 2.2, where Method 2
takes an advantage of recomputing (5) with M unchanged. The IRLS technique
has been applied to numerous optimization problems. This includes FIR and
IIR filter design in Lp sense [2,3], the frequency-domain Steiglitz-McBride
algorithm [4], magnitude-priority filter design [5], and sparse recovery [6], to
name a few.

A numerically similar problem arises when both y and W change, but the
modeling matrix M still remain the same. This is the case when the same basis
functions are used to approximate various observation vectors yn with different
weights Wn. One example is the design of a Parallel Graphic Equalizer, where
the target frequency response of the equalizer filter (corresponding to yn) can
change in time instant n, but the response is modeled as the linear combination
of the same elementary transfer functions [7]. This will again allow the use of
Method 2 presented in Sec. 2.2. Since we have selected the Parallel Graphic
Equalizer as a use case, a short overview is presented in the following.

1.2 The Parallel Graphic Equalizer

Equalizers correct or enhance the spectrum of a signal in order to meet a
desired requirement. Equalizers are widely used in music production and in
sound reproduction to control the timbral balance of music [8,9], as well as
to reduce the effects of room acoustics on the sound quality [10]. In graphic
equalizers, the user controls the gain of each frequency band using a set of
sliders, which approximately modulate the desired magnitude response [7,11–
14]. Common graphic equalizers control the gain at 31 frequencies spaced one
third of an octave.

The basic idea of the Parallel Graphic Equalizer [7] is that based on the
slider positions set by the user (top plot in Figure 1), a smooth frequency re-
sponse (the target response y) is computed. The actual equalization filtering
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Fig. 1 At the top: an example of sliders positions. In the bottom: Magnitude response that
must be produced at the graphic equalizer with these sliders positions.

is done by a parallel set of second-order filters, whose coefficients are com-
puted by a WLS design, where the weights W are a function of the target
response y. That is, each time the sliders change, the target response y and
weights W are updated based on the slider positions, and a new popt must be
computed following (5). Note that the modeling matrix M remains fixed. The
performance of a graphic equalizer can be evaluated by the maximum differ-
ence that the resulting frequency-presents with respect to the target response
at the command points (black points at the bottom of Figure 1). For a high-
quality equalizer, the differences must be lower than 1 dB at the command
points [7,15].

1.3 ARM-based architectures

Graphic equalizers are of special interest for mobile or hand-held audio devices.
In general, this kind of appliances is severely constrained by energy consump-
tion, which commonly results in limited performance rates. In this scenario,
low power processors become mandatory. During the last years, ARM Cor-
tex processors have become an appealing solution that combines a relatively
high floating-point performance together with a restrained energy footprint,
attracting the interest from the scientific community to leverage them in order
to accelerate critical tasks.

ARM processors have been previously applied in different signal process-
ing applications targeting multimedia applications. In [16], the authors pro-
pose different implementations for FIR and IIR filtering in the field of audio
processing in the time-domain. Performance of a spatial audio application is
reported in [17]. Various image processing algorithms have been accelerated
using ARM architectures in [18].
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The main goal of this paper is to evaluate how the computational time
required to solve a WLS problem can be reduced. Two strategies for accel-
erating the resolution of a WLS problem are analyzed. On the one hand, we
study the computational cost of three different methods when the WLS prob-
lem is a part of a real-time application. To this end, we leverage versions of
software libraries for numerical linear algebra, such as LAPACK (Linear Al-
gebra Package) [19] and BLAS (Basic Linear Algebra Subprograms) [20]. On
the other hand, we accelerate the resolution of a WLS problem by reducing
the computational precision from double to single. We evaluate the behavior
of the three methods for both single and double arithmetic in order to assess
their numerical stability for the particular case of designing a graphic equal-
izer. Finally, given the importance of low power architectures for this kind
of implementations, we evaluate the performance, scalability, and energy effi-
ciency of each method on two different processors implementing the ARMv7
architecture, widely used in current mobile devices with power constraints.

The rest of the paper is structured as follows. Section 2 proposes three dif-
ferent methods to tackle an IRLS problem, and casts the underlying operations
in terms of the LAPACK/BLAS routines that allow a tuned implementation.
Section 3 reports the performance, scalability, and energy efficiency of the
proposed methods. Finally, Section 4 closes the paper with a few concluding
remarks.

2 Methods for solving an IRLS problem

In order to tackle (5), we evaluate three different methods:

– Method 1: solving the normal equations.
– Method 2: computing the QR decomposition to the matrix before weight-

ing.
– Method 3: computing the QR decomposition to an extended matrix con-

structed by matrix M and vector y, both of them weighted by matrix
W.

Note that Method 2 takes advantage of the fact that the modeling matrix
M stays fixed, thus some parts of the solution can be pre-computed. This is
the case for IRLS problems and also for the Parallel Graphic Equalizer used
as a test case. Methods 1 and 3 are more general in the sense that they do not
make this assumption, so they can be used for a wider set of WLS problems.
Hereafter, the notation A\b means solving the linear system Ax=b.

2.1 Method 1

The first method consists in solving the normal equations. To this end, we
need to carry out the operations described in Table 1 in sequential order. The
fourth column of Table 1 shows the BLAS/LAPACK routines that are used



6 Jose A. Belloch et al.

Table 1 Operations carried out by Method 1. Costs are given in floating-point arithmetic
operations (flops)

Operations Description
Computational

Routine
Cost (flops)

M←WM
Weighting of matrix M.

MN –
W is a diagonal matrix

y←Wy Element-wise Multiplication M –

A←MTM Matrix-Matrix Multiplication MN(M + (M − 1)) xgemm

b←MTy Vector-Matrix Multiplication 1N(M + (M − 1)) xgemv

popt ← A\b Solving the linear system (1/3)N3 + 2N2 xgesv

for the implementation1. Note that the computation of the product MTM
and the solution of the linear system is often a source of numerical rounding
errors in practice [21].

2.2 Method 2

An alternative method consists in using the QR decomposition of the matrix
M = QR, where Q is an orthogonal matrix and R is an upper triangular
matrix. Thus, the pseudo-inverse is computed as

(WM)+ = (MTWTWM)−1(WTMT )

= (RTQTWTWQR)−1(RTQTWT )

= (RT
1 ETER1)−1(RT

1 ET )

= R−11 (ETE)−1R−T1 RT
1 ET

= R−11 (ETE)−1ET ,

where E = WQ1. Note that R = [RT
1 0]T and Q = [Q1 Q2]. Thus, we can

discard those elements of Q that are multiplied by zeros. In order to obtain
ETE, we need to obtain a second QR decomposition:

ETE = RT
EQT

EQERE = RE
T
1 RE1,

where RE = [RE
T
1 0]T . Now we can compute popt as

popt = (WM)+(Wy)

popt = R−11 (RE
T
1 RE1)−1ET (Wy)

RE
T
1 RE1R1popt = ET (Wy).

1 The character(x) in the routine names should be replaced by s, d, c, z to indicate
operations with single or double precision arithmetic on real or complex values.



Solving Weighted Least Squares Problems on ARM-based Architectures 7

Table 2 Operations carried out by Method 2. Costs are given in floating-point arithmetic
operations (flops)

Operations Description
Computational

Routine
Cost (flops)

E←WQ1
Weighting of matrix Q1.

MN –
W is a diagonal matrix

y←Wy Element-wise multiplication
M –

W is a diagonal matrix

c← ETy Vector-Matrix Multiplication N(M + (M − 1)) xgemv

RE1 ←WQ1
Computation of the R matrix

(2/3)(N2)(3M −N) xgeqrf
from the QR decomposition of E

u← RE
T
1 \c Solving

3N2 xtrsmv← RE1\u three triangular

popt ← R1\v linear systems

Denoting c = ETWy, v = R1popt, and u = RE1v, we have to solve three
triangular linear systems to obtain popt:

RE
T
1 u = c, (6)

RE1v = u, and

R1popt = v.

With this approach, the pseudo-inverse does not need to be fully computed
every time the sliders change; besides, the first QR decomposition can be pre-
computed. This new method only requires the computation of vector c and
the solution of the three triangular in (6), which can be obtained via the
corresponding invocations to the BLAS routine xtrsm. The computational
algorithm that must be executed when the sliders of the graphic equalizer
change is summarized, step by step, in Table 2.

2.3 Method 3

A variation of Method 2 consists in carrying out the QR decomposition of the
whole system and solving the linear equation as suggested in [21]. To this end,
a matrix A is formed by concatenating matrix M with vector y as

A = [WM Wy] (7)

Thus, matrix A is of size M × (N + 1). Afterwards, the QR decomposition
of matrix A is computed, obtaining two matrices QA and RA. Extracting the
main triangular part of RA (in Matlab notation),

R′A = triu(RA(1 : N, 1 : N)),
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and the first N rows of column (N+1) of RA,

r′A = RA(1 : N,N + 1),

the solution can be obtained by solving the triangular linear system:

popt = R′A\r′A (8)

The solution of (8) together with the two QR decompositions, performed
by the LAPACK routine xgels, present a computational cost of 2(N2)(M −
N/3)+N2 flops. To this cost, we have to add MN+M from the multiplications
of WM and Wy in (7).

3 Performance of the IRLS algorithms

We analyze next the behavior of the IRLS algorithms in order to assess the
numerical precision of each method (for the particular case of designing a
graphic equalizer), as well as their computational performance and energy
efficiency on an ARMv7 architecture.

3.1 Numerical Precision

In order to evaluate the numerical stability of the three methods, we compute
the frequency-response of the graphic equalizer considering single and double
precision arithmetic.

When using single precision, the curve obtained via Method 1, depicted in
Figure 2 (left), barely fits the target response at the graphic equalizer. From
the acoustic point of view, the maximum difference between the computed
frequency-response at the target command points (slider positions) approaches
6.3058 dB, which significantly exceeds the desired 1 dB threshold error for de-
signing a graphic equalizer [7]. This phenomenon occurs because the condition
of the matrix M is very high, and therefore the matrix M is close to singular
or badly scaled.

Figure 2 (right) illustrates the curves obtained from Methods 2 and 3, which
practically coincide. We can appreciate that the frequency-response matches
the target response quite accurately. From the acoustic point of view, the max-
imum difference from the computed frequency-response, at target command
points (slider positions), is 0.4193 dB for Method 2 and 0.4195 dB for Method
3. These values are within the tolerance range of 1 dB.

In summary, we can conclude that Methods 2 and 3 meet the required
accuracy for a graphic equalizer even if executed in single precision; Method
1, however, renders large numerical errors that exceed the target threshold.

Regarding double precision, all three methods obtain a frequency-response
of a graphic equalizer that fits the target response accurately. All methods
achieve a maximum difference from the computed frequency-response at target
command points of less than 1 dB, with a maximum difference of 0.6564 dB.
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Fig. 2 Left: Target response and frequency-response obtained using Method 1. Right: Tar-
get response and frequency-response obtained using the QR-based methods (Methods 2 and
3).

3.2 Computational Performance

In this section, we evaluate the computational performance on a low power
system. To this end, we have implemented the three methods on an Exynos
5422 ARM-based System-on-Chip equipped with big.LITTLE technology. We
have performed these measurements considering a small matrix M with di-
mensions 244× 125, that is a typical size for an audio equalizer; and a larger
one, with dimensions 8000 × 4000, that is common in image-related signal
processing applications.

We have obtained the processing time for each method, varying the number
of cores used in the computation, for two different microarchitectures: ARM
Cortex-A7 and Cortex-A15. During those tests, both types of cores operated
at a frequency of 1.4 GHz. We have used a reference LAPACK implementa-
tion linked with an architecture-tuned BLAS implementation (BLIS version
0.2.0 [1]) with multi-thread support.

Figure 3 shows that the double-precision codes require twice the execution
time of the single precision solution. In the four subfigures it becomes clear
that the use of the Cortex-A15 cores reduce the processing time by a factor of
4 compared to the Cortex-A7. Regarding the scalability and focusing on the
size (8000×4000), all methods show a significant speed-up when the number of
cores increases from one to two cores, but the acceleration decreases with three
and four cores. The speed-up using the Cortex-A15 cores achieves a highest
value of 2, and a maximum value of 3 for the Cortex-A7.

Regarding the small problem (244× 125), the multicore processing barely
influences the processing time. For the Cortex-A15 and Cortex-A7 cores, the
speedup is practically negligible. The processing time of Method 2 is insignifi-
cantly larger than that of Method 3. This could be due to the LAPACK routine
degsl/segsl. Note that we have discarded the performance of Method 1 for
the single-precision execution, since it offers invalid results for the specific
application of the graphic equalizer. Despite Method 1 presents a higher theo-
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Fig. 3 Processing Time for each proposed method for sizes of matrix M 8000 × 4000 and
244× 125 considering operations with single and double numerical precisions. M.

retical computational cost, it offers the best computational times compared to
the other methods, improving even the results obtained with the Cortex-A15.

3.3 Energy efficiency

An interesting aspect to analyze the energy efficiency of the methods. To
this end, we have measured the power dissipation with the pmlib frame-
work [22] for each one of the configurations evaluated in the previous sub-
section. Specifically, we have collected instantaneous power readings in order
to obtain the average power dissipated during each execution. Afterwards, we
obtained energy efficiency metric that considers: computational cost relaying
on BLAS/LAPACK routines, average power rate and processing time. Specifi-
cally, we show at Figure 4 the GFlops/Watt for each one of the configurations.

As we can appreciate, Method 1 offers maximum efficiency compared to
Method 2 and 3 for double precision executions. For this case, the decisive
factor is the low processing time that Method 1 requires for the execution.
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Fig. 4 GFlops/Watt for each proposed method for sizes of matrix M 8000 × 4000 and
244× 125 considering operations with single and double numerical precisions.

This factor together with the low consumption of the Cortex-A7 makes that
the combination of Method 1 with double precision and executed on Cortex-
A7 being the most efficient implementation achieving 24 GFloops/Watt for a
large size and 5 GFloops/Watt for a small size. For simple precision, Method
2 and Method 3 achieves similar efficiency being Method 2 slightly higher
than Method 3. In any case, both Methods obtain a third of efficiency that is
achieved by Method 1.

4 Conclusions

In this paper, we have analyzed QR-based methods for improving the perfor-
mance of applications that rely on the IRLS algorithm. Two of these methods
are especially appealing, from the perspective of numerical accuracy, and en-
able the use of single precision. Concretely, for the specific application of the
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graphic equalizer, the QR-based methods result in more accurate frequency-
responses than Method 1.

We have executed these methods for the WLS problem both in single and
double precision on an ARM-based architecture composed of four Cortex-A7
cores and four Cortex-A15 cores. We have assessed both their computational
performance and energy efficiency for different configurations. We have to
highlight the efficiency of Method 1 when it is implemented on Cortex-A7
in double precision. This efficiency overcomes in three times the rest of the
configurations in double precision.
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