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Abstract This paper presents a system for people re-iden-
tification in uncontrolled scenarios using RGB-depth cam-
eras. Compared to conventional RGB cameras, the use of
depth information greatly simplifies the tasks of segmenta-
tion and tracking. In a previous work, we proposed a similar
architecture where people were characterized using color-
based descriptors that we named bodyprints. In this work,
we propose the use of latent feature models to extract more
relevant information from the bodyprint descriptors by re-
ducing their dimensionality. Latent features can also cope
with missing data in case of occlusions. Different proba-
bilistic latent feature models, such as Probabilistic Princi-
pal Component Analysis and Factor Analysis, are compared
in the paper. The main difference between the models is how

the observation noise is handled in each case. Re-identification

experiments have been conducted in a real store where peo-
ple behaved naturally. The results show that the use of the
latent features significantly improves the re-identification
rates compared to state-of-the-art works.

Keywords Bodyprint - Probabilistic PCA - Factor Analy-
sis - Missing Data - Re-Identification - Surveillance - Person
Detection - Appearance Matching - Kinect

1 Introduction

Vision-based systems have become essential in almost every
business. The deployment of camera networks has become
widespread during recent years in domains such as surveil-
lance, marketing, and sports.

The ubiquity of these vision systems, in many cases, al-
lows statistical information about individuals such as trajec-
tory, velocity, behaviour, and occupancy to be obtained. In

order to extract such information, a person’s identity needs
to be tracked through time and space.

For camera networks, an association mechanism is also
required to track people across different cameras. In the case
of overlapping cameras, association turns out to be trivial
since a space-time constraint can be applied in calibrated
scenarios. However, in a general situation with non-overlapping
cameras, the association is generally handled by re-identifica-
tion [11]. Re-identification is still an open problem since
many difficulties may arise in unconstrained scenarios, such
as: changes in illumination, different points of view, pose
variations, occlusions, and behavioural differences.

The recent appearance of RGB-Depth cameras, such as
Microsoft Kinect [1], offers the opportunity to explore the
use of many emergent three-dimensional computer vision
techniques in surveillance scenarios at an affordable cost. In
this work, we make use of kinect cameras for tracking and
describing individuals. A person’s appearance is described
in a first stage by dividing the person into horizontal strips
and extracting the temporal mean colors for each strip. The
main contribution of this work is the introduction of the
latent features that are generated using probabilistic latent
variable models applied over the appearance features. The
use of latent features circumvents some problems that ap-
pear when directly using appearance features such as miss-
ing data, acquisition noise, outliers, and high correlation of
color features. Several metrics are also proposed to match
individuals in the re-identification task.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work in the area of person re-identifi-
cation. In Section 3 , a general overview of the system is
presented, and the main concepts on latent features and the
equations used to extract them from observed features are
provided in Section 4. Different matching metrics, which are
used to compare latent features, are described in Section 5.
The performance of the system is evaluated in Section 6 in



areal scenario. Finally, some conclusions are drawn in Sec-
tion 7.

2 Background

This section presents a review of the most relevant methods
for person re-identification. Additionally, a short introduc-
tion of dimensionality reduction techniques based on proba-
bilistic latent variable models is given in Subsection 2.2.

2.1 Techniques for person re-identification

A common assumption in the literature, which we also con-
sider in this work, is that there is no change of clothes for
each person in all the views. With this assumption, the re-
identification problem focuses on how to describe the ap-
pearance of individuals and how to match them among cam-
eras. A description of techniques grouped by affinity is pre-
sented below.

Appearance is usually described using features of color,
texture and shape. However, color and texture techniques
are by far the most widely used in the literature. Appear-
ance methods for person re-identification are also commonly
grouped into single or multiple-shot methods [11]. Single-
shot methods use only one image to perform identification,
while multiple-shot methods use different images of the same
person obtained by tracking. Multiple-shot methods can ex-
ploit other contextual cues such as spatio-temporal reason-
ing [21].

Color histograms, which are easily extracted and scale
invariant, have been proposed in many works [25] [27] [34]
[18] [36] [29] [49]. Bazzani et al. [11] use color global his-
tograms combined with recurrent local patterns that char-
acterize texture after epitomic analysis. The main problem
associated with color histograms is that spatial information
is discarded. In order to avoid this problem, Dikmen et al.
[16] divide the image into a grid of fixed cells where color
histograms are computed at each cell. Other authors [12] di-
vide the image into horizontal strips and characterise color
features for each strip. Bak et al [6] use Mean Riemannian
covariance patches for describing feature distributions, con-
sidering temporal information of appearance. Mazzon et al
[33] use a centered patch in the upper body to describe the
color of a person’s appearance. They complement appear-
ance information with contextual data in order to filter peo-
ple according to potential paths that they can follow.

Many different color spaces are proposed in the litera-
ture to represent color information. However, the most com-
mon choices are RGB [36] [27] [15] [11] and HSV [34]
[23] [18]. A common problem found in re-identification is
the variation of illumination conditions among cameras. For

this reason, some authors [32] propose algorithms to com-
pensate for these variations.

Texture information is usually retrieved using well-known
local descriptors such as SURF [34], SIFT [28] [43], and
Haar [4]. Farenzena et al. [18] use texture information by
searching recurrent local motifs with high entropy. In many,
cases texture information is concatenated with color infor-
mation into a long descriptor as in [40], where LBP features
are merged with RGB and HSV color histograms. Another
alternative for fusing color and texture information is pro-
posed in [30], where LBP features based on the quaternionic
representation are used.

Re-identification algorithms can also be grouped into
holistic [17] and part-based [5] [45]. Although part-based
methods are very promising, holistic methods are still more
robust in challenging scenarios [17]. Some other authors use
other passive biometrics such as face [10], gait [46], and iris
[42]. However, the low resolution of the images, occlusions,
and the variety of poses make biometric-based techniques
ineffective in many scenarios.

Many of the existing re-identification methods share the
idea of representing the human body as a bag of instances
described by appearance descriptors. However, an alterna-
tive matching framework is presented in [39]. In this frame-
work, individuals are represented by means of a vector of
dissimilarity values with a set of stored prototypes. In [22],
a model composed of different orientations of the person is
used. Each orientation is estimated from the person’s trajec-
tory and modelled by a different feature vector.

Recently, several authors have been introducing 3D mod-
els to describe a person’s appearance. Baltieri et al [7] pro-
pose a 3D generic rigid body model that is filled up using
person’s appearance acquired with 2D calibrated cameras.
Papadakis et al. [35] introduce a cylindrical 3D descriptor
for generic object re-identification in controlled scenarios.
The cylinder is filled up with the projection of a set of 2d
panoramic views of the object.

The use of RGB-depth cameras has recently been pro-
posed for person re-identification [3]. The use of these sen-
sors eases the tasks of person segmentation and tracking and
allows calibrated virtual views of the person to be created.
On other hand, Barbosa et al. [8] use Kinect cameras to ex-
tract 3D soft biometric cues such as skeleton and surface-
based features that are invariant to appearance variations.
Their approach is indicated when handling long-term re-
identification problems where a person’s appearance may
change over time. However, this information does not pro-
vide reliable results by itself.

2.2 Learning methods for re-identification

The paradigm of person re-identification can be commonly
addressed as a learning-based problem given the set of fea-
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tures that describe a person in the dataset. Several works
such as [25] [20] [49] use supervised learning to perform
feature selection. As a representative work, Zheng et al. [49]
formulate this problem as a relative distance comparison
learning problem in order to find the optimal similarity mea-
sure for several images of the same person. Other researchers
use unsupervised reduction techniques such as Dictionary
Learning [48], Manifold Learning [31] or PCA-LFDA [38]
to find discriminant features.

In this paper, we follow an unsupervised learning ap-
proach by using probabilistic dimensionality reduction tech-
niques. Dimensionality reduction techniques have been widely
used in machine learning for the purposes of data visualiza-
tion, data compression, noise removal, pattern recognition,
exploratory analysis, and time series prediction. Depending
on the nature of the observations, techniques can be classi-
fied [19] into linear methods such as Principal Component
Analysis (PCA), Factor Analysis (FA) or Projection Pursuit
(PP), and non-linear methods such as Independent Compo-
nent Analysis (ICA) or non-linear PCA, just to cite a few.

PCA is the most extended method. It does a linear pro-
jection of the observed data onto a subspace of lower dimen-
sionality such that the variance of the projected data is maxi-
mized. A probabilistic treatment of PCA (PPCA), which can
be expressed as a probabilistic latent variable model prob-
lem, has been proposed in [41] and [37]. PPCA is based
on a linear-Gaussian framework in which all of the marginal
and conditional distributions are Gaussian. The probabilistic
treatment has the advantage of elegantly solving some prob-
lems of direct PCA such as missing data due to occlusions
and outliers.

Other probabilistic methods, such as Factor Analysis (FA)
[9], are also linear Gaussian latent variable models that are
similar to PPCA. The only difference between them relies
on the covariance matrix of the observed data given latent
variables. In PPCA, it is full covariance matrix, whereas in
FA it is diagonal. In this paper, we will explore the use of
different probabilistic models to extract latent features, as
explained in Section 4.2.

3 System Overview

The re-identification system proposed in this paper is in-
tended to work in uncontrolled environments where people
can move and behave freely. An example of such a scenario
is a store where two cameras cover the entry and exit ar-
eas, respectively. In this scenario, we want to re-identify the
people that entered the store at the exit. The cameras are as-
sumed to cover non-overlapping areas and the illumination
conditions between cameras can be different. Althoughwe
only consider the case of two cameras in this set up, the sys-
tem can be extended to work with more cameras.

Figure 1 shows the block diagram of the system for one
camera node. After scene calibration [3], given the depth of
a pixel (provided by the sensor), it is possible to obtain its
height with respect to the ground. Knowing the height of
every pixel allows a Height Map to be built [47]. A Height
Map looks like a top-view of the scene where the pixel val-
ues represent the height of the highest point of the person in
the image captured by the sensor as a function of the ground
coordinates. Figure 1 shows an example where the depth im-
age is converted to a Height Map. People can be easily de-
tected as local maxima of the Height Map as shown by the
red circle in Fig. 1.

The tracking module receives detections of people and
either assigns them to pre-existing tracks or starts new tracks.
It is possible to track several people simultaneously. The
tracker allows to gather information of the same person over
time.

For each frame of a tracked person, we create a vec-
tor with the appearance information. Each element of this
vector contains the mean color of a horizontal strip at each
height. These vectors are appended over time, creating a
temporal color signature for a person (Fig. 1). The tempo-
ral signature is finally summarized by a bodyprint, which
contains the mean color together with its variance for each
height (Fig. 2 shows a few examples of bodyprints). The
bodyprint extraction also entails basic color normalization to
deal with changes in illumination and cameras. For a more
detailed explanation of this step, we encourage the reader to
consult our previous work [3].

Finally, probabilistic latent variable models are used to
extract latent features from the bodyprints. These features
provide a solution to cope with noisy data, outliers, and oc-
clusions, which generate missing data in the descriptor grid.
Re-identification is performed by comparing latent features
of people captured from different cameras. The next sec-
tion provides detailed information about the latent feature
extraction step.

4 Latent Feature Extraction

In this section, we first discuss some of the weaknesses of
bodyprints. To get around these difficulties, different latent
feature models are proposed in Section 4.2. In the sequel,
matrices are represented in bold upper case, column vectors
are represented in bold lower case and real scalars are rep-
resented in italic lower case.

4.1 Motivation

Bodyprints were introduced in our previous work [3]. Al-
though this descriptor achieves remarkable re-identification
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Fig. 2 Some examples of bodyprints. All the examples show different outliers generated by carried objects. Figure ¢ presents missing data in the

lower body.

rates compared to other state-of-the-art methods, its perfor-
mance may be degraded in complex scenarios by some envi-
ronmental variables, such as non-uniformly distributed changes
in illumination, the presence of carried objects, occlusions,
etc. Table 1 lists several of these extrinsic factors and how
they affect the bodyprints. In addition, other intrinsic param-
eters (related to the descriptor), such as the height of the hor-
izontal strips can also affect performance since thin strips
generate high dimensional and correlated feature vectors.

Figure 2 shows some challenging examples. A repre-
sentative frame of the tracked person is shown next to the

temporal signature and its corresponding bodyprint in each
example. The first column of the bodyprint represents the
temporal mean color at each height and the second column
represents the variance of the three color channels. In Fig. 2
(a), a person enters the store and gets a red shopping basket
from a stack of baskets. In the temporal signature, the shop-
ping basket appears as an outlier that increases the red color
variance especially in the lower part, as shown in Fig. 3.
Other carried objects, such as the child shown in Fig. 2 (b)
or the shop items shown in Fig. 2 (c) and Fig. 2 (d), also
produce outliers in the bodyprint and increase the color vari-
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Table 1 Examples of surrounding and enviromental factors and how they affect the bodyprints.

Extrinsic factors

How the features are affected

Non-uniform changes in illumination
Pose variations
Gait
Occlussions
Carried objects
Flat-colored clothes

Non-uniform color variance

Non-uniform color variance

Non-uniform color variance
Missing data

Outliers or non-uniform color variance

Highly correlated features

ance at the corresponding heights. Note that they should be
treated as outliers because the person’s appearance is differ-
ent from entrance to exit. Finally, in Fig. 2 (c), the feet of
the person are never visible, so the corresponding parts of
the bodyprint are missing.

1800

1400

1200

Variance (intensity levels)

a 20 40 &0 80 100 120 140 180 180 200
Person height (cm)

Fig. 3 Color variance of a contaminated bodyprint. The appearance of
the red shopping basket produces a high variance in the red channel.

4.2 Latent feature models

The previous examples show that bodyprint features are highly

correlated. This fact suggests that bodyprints lie in a much
lower dimensional space, and, hence, the use of dimension-
ality reduction techniques seems appropriate to extract rel-
evant features. An additional advantage of reducing the di-
mensionality of the descriptor is that noise that does not lie
in the reduced feature space can be removed, thereby allevi-
ating the problems caused by outliers.

Classical dimensionality reduction techniques such as
Principal Component Analysis (PCA) or Linear Discrimi-
nant Analysis (LDA) cannot cope with missing data and they
do not consider additional information such as the variance
of the observed features. For this reason, we propose apply-
ing probabilistic latent variable models that are equivalent to
classical techniques in the case of non-missing data and also
allow information about the variance of the observed data to
be incorporated. Note that the variance contains information
about the confidence of observed feature values.

Fig. 4 Different latent-feature extraction models. In (a), the noise is
considered to be isotropic and constant for all samples. In (b), the noise
is modeled by a diagonal matrix and is constant for all samples. In
(c), there is a different diagonal matrix representing the noise for each
sample.

Probabilistic latent feature models are usually represented
by graphs [13], as shown in Fig. 4. In the graph, model vari-
ables are placed in circles. The difference between white
circles and blue circles is that in the blue circles, the vari-
ables are observed or measured, whereas in the red circles,
the variables are not observed and can be inferred from ob-
served features. This is why they are called latent features.
The rectangular box surrounding the circular variables in the
graph represents a plate. Each plate embeds [V training sam-
ples of which only a particular {xy,,2,} pair is depicted.
Both x,, and z,, are vectors of length [, and [, respectively.
While x,, represents the observed color features of a per-
son (bodyprints), z, denotes the corresponding latent vari-
ables (I, < [,) that we want to extract by inference. Terms
outside the plate indicate the model parameters: mean, pro-
jection matrix and noise that are shared among all training
and test samples. These parameters are obtained during the
training stage using the EM algorithm [37] because there is
no a maximum likelihood closed solution for some of the
proposed models .

In the following, we introduce the different probabilistic
latent feature models that we have used in this work. The
main difference among models is how noise is handled in
each case.

Probabilistic PCA (PPCA). The purpose of PPCA is to cap-
ture the covariance structure of an observed dataset by as-
suming a linear transformation between the latent and ob-
served spaces. In PPCA, all marginal and conditional distri-
butions are assumed to be Gaussian. The equations of the



generative model are:
Xn =Wz, +pu+e (D

where W is an [, x [, linear transformation matrix that
converts from latent to observed spaces, p is an [, vector
that represents the model mean, and € is an [, zero-mean
isotropic Gaussian noise vector, p(€) = N (€|0, 0¢*I). Note
that the columns of W correspond to the eigenvectors of the
principal subspace, which we call eigen-bodyprints.

It can be demonstrated [13] that in PPCA the posterior
distribution of the latent features can be expressed as:

D(2Zn|Xn) = ]\f(zm|1\/I_1VVT(xn — u),aozl\/[_l) 2)

where M = WT'W + ¢21. The previous equation is impor-
tant because it is used to obtain maximum likelihood esti-
mates of the latent features once the model parameters have
been obtained.

The use of EM to obtain model parameters is straight-
forward. During the Expectation step, maximum likelihood
estimates of the latent features are obtained using the current
model parameters:

Elza] = M'"W7 (x — p)
E[Znzn!] = 02M ™! + E[z,]E[za]" 3)

where p is the mean of the observed bodyprints. Then, model
parameters are updated during the Maximization step:

Z E[znznT]]

N
1
2 _ § 2 T‘NTT
0p = ND n:1{HXn - IJ‘H - 2E[Zn] (Xn - I‘l’)

W= [Z(Xn — p)E[zn]"

n=1

+Tr(E[znzn” [WITW)}  (4)

This process is repeated until convergence of the parame-
ters. To evaluate the convergence, the EM algorithm uses the
log-likelihood of the observed data as the objective function
(see [44] for details).

PPCA with missing data. The problem of the EM algorithm
as formulated in Equations 3 and 4 is that it cannot deal
with missing values in the observed bodyprints (caused by
occlusions). Fortunately, the EM provides a natural way to
handle missing values. The three main differences that are
found when dealing with missing data are:

— The mean of the observed bodyprints, p, cannot be com-
puted in a closed form and needs to be estimated in each
iteration.

— The covariance matrix of the posterior distribution of the
latent features, (Eq. 2), is different for each training sam-
ple since it depends on which variables of the bodyprint
are observed in each sample.

— The formulation to obtain the transformation matrix W
is more complex in this case, because each row of W
needs to be calculated independently.

To indicate which bodyprint features have been observed,
we use the binary matrix O so that O(m,n) = 1 if the m
feature of the training sample n is observed. Similarly, O,,
is the set of indexes of the observed bodyprint features for
sample n and O,,, is the set of samples for which feature m
has been observed. Using an element-wise formulation of
Eqs 3 and 4, the EM steps can be modified to deal with miss-
ing data using only the columns of W and rows of x,, that
correspond to the observed values (see [26] for a detailed
explanation). In the Expectation step the latent features for
each sample are estimated using the observed data and the
current estimates of the parameters:

Elzn] = Mp' > (xa(m) — p(m)) W )
meO,
Elznzn’] = Z (02M;! + E[za]E[za]F) (6)
meO0,,
where W,y is the m*" column of W and M,, = > wmwa—l—
meO,

o21. Note that M, is different for each training sample. In
the Maximization step, the model parameters are updated
using the expected latent features:

(Xn(m) — WTE[zn]) @)

[ > E[znznT}] (8)

o= 3 {xn(m) — WhEza] — pu(m)” +

m,ne0
—&—WEIMn*le} 9)

Factor Analysis (FA). Factor Analysis is a latent variable
model that is similar to PPCA. The main difference between
them is that, in the generative model of Eq. 1, the noise dis-
tribution in FA is:

p(€) = N(e[0,®) (10)

where W is a general diagonal [, X [, matrix. The advan-
tage of FA compared to PPCA is that it is a more flexible
model that can capture different noise levels in the observed
bodyprint features. The example of Figure 3 shows that this
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situation can often appear in our re-identification context.
Since W is a diagonal matrix, the noise is also considered
to be independent for each bodyprint feature in FA. This as-
sumption is necessary to reduce the number of model pa-
rameters and avoid over-fitting.

The FA model can also be adapted to deal with missing
bodyprint features using the EM algorithm. The equations
for the algorithm are derived similarly as in PPCA, yielding
the following expression for the Expectation step:

E[zn] = Gn > Wm¥,,! (xn(m) — p(m)) (11
meO0y,

Elzazy] = Y (Gu +Elza]E[za]") (12)
n€O0m,

where G, = Y. I+ wn¥'wX)~! For the Maxi-

meO,
mization step:

-1
Wm = | Y (xn(m) — p(m))E[zy] [ > E[ZnZE]]
neO, neOm,
W, = diag{S,— (13)
- wmﬁ S™ Elzn] (xa(m) — pa(m))7}
m neOm
where Sy, = 3 (ta(m) — p(m)) () — pa(m)".

Factor Analysis with known noise. Figure 4.b shows the graph
representation of FA. It can be observed that ¥ remains con-
stant for all samples and that it is inferred from the training
samples as are the other model parameters. However, this
can be a strong simplification because not all samples are
equally corrupted by the noise. In this work, we propose a
small modification to the FA model that is depicted in Fig-
ure 4.c. With this modification, it is possible to introduce
different noise distributions for each sample. The noise dis-
tribution for each sample is a zero-mean multivariate Gaus-
sian with diagonal covariance matrix ¥,,. Note that ¥, is
placed in a blue circle, which means that the noise distribu-
tion is measured and introduced into the model. The main
advantage of this new approach is that by introducing an es-
timate of W,,, we provide information about which features
in each bodyprint are more reliable and which color features
are less important (higher color variance over time). Note
that since ¥, is different for each bodyprint, the informa-
tion about the reliability of the features is different for each
bodyprint.

If the noise parameters are provided to the algorithm, the
only model parameters that need to be estimated during the
training stage are the model mean p and the projection ma-
trix W. The EM equations used to obtain the model param-
eters in this case are the same as in the FA model except that

W¥,, no longer needs to be maximized (Eq. 13) and remains
fixed (its value is provided as an input to the algorithm).

To obtain the noise distribution for each person, ¥,,, we
use the corresponding temporal signatures (Figure 2). The
idea is that, for each height, it is possible to extract the mean
color over time together with the color variance since the
color at each strip may vary over time. Again, to reduce the
number of parameters, we assume that color features at dif-
ferent heights and color channels are independent (¥,, is
diagonal).

4.3 Model discussion

The models introduced in Section 4.2 use the same proba-
bilistic framework to extract the discriminant features. The
probabilistic approach in combination with the EM iterative
method to find the projection coefficients gives the algo-
rithm the possibility to naturally handle features with miss-
ing data and to work with high dimensional feature vectors.
The main difference among methods is based on how the
noise covariance matrix is modeled. In PPCA, the noise is
constant for all the samples and spatial dimensions. There-
fore, this approach is indicated when there is no prior con-
dition about noise. In contrast, the conventional FA method
models the covariance matrix as a constant diagonal matrix,
which means that each dimension may have different noise.
In both cases, the covariance matrix is inferred during the
EM iterations and directly affects the quality of the feature
selection. On the other hand, the variant of FA with known
noise considers that the noise is observed for each sample
and dimension, so it does not need to be estimated through-
out the EM loop. Therefore, it can be used to estimate the
latent variables more accurately if the noise is correctly ob-
served.

The experimentation in this paper will discuss which of
the different approaches is more convenient for the purpose
of person re-identification in multi-shot scenarios, where a
person’s appearance over time can be described as a unique,
stable color feature vector with known variance.

5 Matching metric

The latent feature models introduced in Section 4 assume
that the number of color features in the bodyprints are the
same for all of the samples. More precisely, the height of
each person is always quantized into 100 bins and a color
feature of the bodyprint is obtained for each bin. Since the
height of each person may be different, the quantization step
is adapted accordingly. The idea behind using a fixed num-
ber of color features in the bodyprints is that we wanted to
decouple appearance information from height information.
In our preliminary experiments, we found that the height



normalization of bodyprints was very useful in reducing the
dimensionality of the latent space because the variability
of the training samples is reduced with the normalization.
However, height information is also very important for our
re-identification objective, and, for this reason, height infor-
mation must be incorporated into the similarity metric.

Let z; and z; respectively be the latent features of per-
son ¢ and j obtained using any of the methods proposed in
Section 4.2. The similarity S(4, j) between these two people
is defined as follows:

AH

S(i,j) = M(zi,z5)e” "~

(14)

where the first term measures the appearance similarity us-
ing the latent features and the second term penalizes the dif-
ference in height, AH, between the two people. The con-
stant v controls how the confidence decreases and its value
was empirically determined (v = 4cm). In our experiments,
several appearance measurements for M(z;,z;) are com-
pared. Specifically, we evaluated Euclidean, cosinus, Eucli-
dean-Mahalanobis, and cosinus-Mahalanobis distances. De-
tails about the implementations of these measurements can
be found in [14].

6 Evaluation

In this section, we evaluate the proposed latent feature mod-
els in the context of person re-identification. Information
about the dataset on which the experiments are carried out
is provided in Section 6.1. Section 6.2 describes the system
evaluation methodology. Finally, the re-identification results
are presented in Section 6.3.

6.1 Dataset description

The re-identification results presented in this work were ob-
tained using data recorded in a real store. The people in the
videos were not aware of the cameras, and therefore they be-
have naturally. The raw recorded data is publicly available
at [2] so that other researchers can evaluate their algorithms
with a common dataset. Although we used all of the avail-
able frames for each person to extract the features, other re-
searchers might use different schemes, such as key frame
selection algorithms or even neglect depth information. For
this reason, we thought that it was important to deliver the
raw data together with the masking information for each per-
son so that different schemes can be tested and compared.
In our recording set-up, two different and non-overlapping

RGB+depth cameras covering entrance and exit areas were
installed. The cameras were hanging on a wall 3 meters
above the ground and pointing 30 degrees downwards. Since

dataset can be seen in Fig. 8. In each row, the same per-
son can be seen at the entrance and at the exit. The dramatic
changes in pose and view angles can be observed. It can also
be observed that the people are free to carry objects, shop-
ping baskets, or push shopping carts. In total, the dataset
contains 73 different people, where each person is tracked
at least during 7 frames and a mean of 15 frames. The image
size is 320x240p and the frame rate of image acquisition is
7 fps for each camera.

6.2 Evaluation methodology

To evaluate the performance of our system, we used the re-
identification rate and the average cumulative match charac-
teristic (CMC) curves [24] over 40 trials. The re-identification
rate shows the percentage of correct matches. The CMC
curve represents the re-identification probability given that
the good match is in the first » ranked candidates. The re-
identification rate is a particular case of CMC with r = 1.

In the experiments, we analyzed the contribution of the
probabilistic latent variable models presented in Section 4.2
applied to color features such as bodyprints, and we com-
pared the results against state-of-the-art works such as SDALF
[18] and PRDC [49]. Although these methods do not use
depth information and are therefore at a disadvantage in the
comparison, we just wanted to compare them to show the
real contribution of this work as a robust ensemble for iden-
tification. Note that none of the works used in the compari-
son use any other contextual cues such as temporal causality
(a person at the exit must first have entered). Even though
this type of contextual information is very valuable because
it reduces the effective search population in a real scenario,
we preferred to ignore it so that the results reflect only the
re-identification abilities of the algorithms.

The proposed models (Fig.4) were trained using the bodyprints

of the people at the entrance. Once the models were trained,
the latent features of all bodyprints were extracted. Finally,
the matching was conducted using the metrics described in
Section 5.

6.3 Results

Similar to PCA, the columns of the projection matrix W
can be interpreted as the directions in the observed feature
space that capture more variance of the training data. The
maximum number of latent features that can be obtained is
limited by the number of training samples in a dataset (in
our case 73). Usually, latent features that capture more vari-
ance are considered to be more relevant since they contribute
more to the reconstruction of the observed feature space. In

cameras were placed at different locations, illumination changes most pattern recognition problems, the number of latent fea-

were likely to occur. A few examples of the people in the

tures to be considered is a trade-off between capturing as
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much variance as possible and discarding low variance fea-
tures that capture the noise of the training set.

In this work, we studied the influence of the number of
latent features for all the models and metrics proposed in
the paper. As mentioned above, the evaluation was carried
out using the re-identification rates for each case. Figures 5,
6, and 7 show the re-identification rates for all of the pro-
posed cases. The first general conclusion is that a few latent
features are enough to extract the relevant information in all
of the cases, which confirms our initial hypothesis about us-
ing dimensionality reduction techniques. Another result is
that the Euclidean metric is the one that attains the best per-
formance for the three latent models.

The PPCA model achieved a re-identification rate of 62.5%

using a small number of latent features (a number between
20 and 30 components). In the case of FA with unknown

variance, the best performance was a little bit smaller (61.1%.)

although the performance never decreased with more latent
features. In the case of FA with known noise, the best re-
identification rate was also 62.5% using 40 latent features.
Even though the best rate in FA with known noise equaled
the best rate of PPCA, the results in general were worse than
in PPCA. This general lower performance in FA is due to the
fact that the noise may not be accurately estimated, since we
only considered the variation of the mean color per strip over
time, but we did not take into account the noise introduced
in the estimation of the mean color at each strip at a single
frame.

Figure 8 shows several correct matching examples using
20 PPCA latent features. The left and right columns show
the images obtained at the entrance and exit, respectively.
The persons that are matched in each case have been sur-
rounded by an ellipse. Note that in our dataset we do not
impose any restriction on the person’s behaviour, so in the
second example the old woman is pushing a shopping cart
at the entrance but the cart does not appear at the exit. These
examples show how our algorithm can effectively deal with
big changes in pose and also with outliers produced by car-
ried objects. For instance a shopping basket in the first exam-
ple and a shop item in the third example. In contrast, Fig. 9
shows a few examples where re-identification failed. The
examples clearly show the difficulty of our dataset where
in many cases people are wearing similar clothes and re-
identification is even difficult for the human eye.

In Table 2, we compare the re-identification rates achieved

using the latent features with our previous work using ex-
plicit features or bodyprints [3]. It can be observed that the
use of latent features has significantly improved the perfor-
mance, which is mainly due to the fact that the latent fea-
tures have naturally chosen the discriminative features that
contain the relevant information.

Figure 10 shows a comparison of the performance of the
latent features that is calculated using PPCA with 20 com-

PPCA
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Fig. 5 Probability of detection (rank » = 1) using PPCA for different
numbers of principal components.
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Fig. 6 Probability of detection (rank » = 1) using FA with unknown
variance for different numbers of principal components.
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Fig. 7 Probability of detection (rank » = 1) using FA with known
variance for different numbers of principal components.

ponents versus SDALF [18] and PRDC [49]. The figure also
shows the benefit of using the height difference factor of
Eq. 14. As can easily be seen, our method overtakes the ref-
erence methods especially for the lower ranks in the CMC
curve. This difference in the results is caused by two men-
tioned factors: 1) the use of depth information allows a per-
son appearance to be described taking into account their real
height under a frontal perspective obtained by applying the
inverse camera projection; 2) the use of latent features al-
lows missing data to be handled, removes noise, finds the
discriminant features, and provides a useful tool for working
with the temporal signature of a person over time by com-
pressing all the different appearances into a stable feature
vector plus a variance that is absorbed by the latent model
during training.

Table 2 Summary of the best re-identification rates for the proposed
methods

Feature type Re-identification Rates

Explicit Appearance Features [3] 52.5%
PPCA 62.5% @20 components
FA unknown variance 61.5% @40 components
FA known variance 62.5% @40 components




Fig. 8 Examples of correct matches using the PPCA method with 20
components (rank » = 1). The left and right columns show people at
the entrance and exit of the shop, respectively.

7 Conclusions

In this paper, we have introduced the concept of latent fea-
tures for person re-identification. Latent features are extracted
from an explicit appearance descriptor (named bodyprint)
using different probabilistic latent variable models. The use
of latent features minimizes some problems such as outliers,
noise, missing data, and correlation of bodyprint features.

In this work, different latent variable models have been
proposed and compared. The basic difference among them
is how noise is handled in each case. The results show that
the best re-identification rates are obtained using PPCA, al-
though FA with unknown variance provides more stable re-
sults since the re-identification rate does not decrease when
more latent features are used. Compared to our previous
work, which is based on bodyprints and the state-of-the-art
methods for person re-identification, the use of latent fea-
tures significantly increases the global performance.

One of the current problems of our system is that bodyprints

assume a Gaussian distribution for the color features at each
height. However, this is too strong an assumption when out-
liers are present or when the color distribution is multimodal
(clothes with colored stripes). For this reason, our future
work will focus on the use of new appearance models that
can cope with this multi-modality and on how latent features
can be used in this context.

Fig. 9 Examples of incorrect matches using the PPCA method with 20
components (rank r = 1).

100 Cumulative Matching Characteristic (CMC)
T T T T

Matching rate (%)

—— SDALF
30 — PRDC b
~— PPCA with height
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Fig. 10 Performance comparison using CMC curves
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