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Abstract 

Several reports of last decades show that the dielectric properties of healthy and 

malignant tissues of the same body organ are usually showing different values. 

However, no large dielectric studies of human colon tissue have been performed, 

despite being one of the most common types of cancer worldwide. In order to 

provide information regarding this matter, a dielectric characterization of healthy and 

malignant colon tissues is presented. Measurements are performed over ex vivo 

surgery samples obtained from 20 patients, using an open-ended coaxial probe in the 

0.5 – 18 GHz frequency band. Results show that the dielectric constant of colon 

cancerous tissue is 8.8% higher than healthy tissues (p = 0.002). Besides, 

conductivity is about 10.6% higher, but in this case measurements does not have 

statistical significance (p = 0.038). Performing an analysis per patient, the 

differences in dielectric constant between healthy and malignant tissues appear 

systematically. Particularized results for specific frequencies (500 MHz, 900 MHz, 

2.45 GHz, 5 GHz, 8.5 GHz and 15 GHz) are also reported. Findings have a potential 

application in early-stage cancer detection and diagnosis, and can be useful in order 

to develop new tools for hyperthermia treatments as well as to create 

electromagnetic models of healthy and cancerous tissues.  

 

 

1. Introduction 

 

Cancer has become a worldwide health problem, being the second most common cause of death for 

all ages combined in the developed countries. In particular, colorectal cancer comprises around the 

9.7% of the global cancer burden in both sexes, and it is the second most common in women and the 

third in men according to the data presented in (Ferlay et al 2014). The early detection of this kind of 

cancer is crucial in order to reduce its mortality rate. Thus, screening programs are carried out 

periodically among the population at risk. The most frequently screening methods used for colorectal 

cancer include two general categories: stool tests (tests for occult blood or exfoliated DNA) and 

structural exams (endoscopy and computed tomographic colonography). 

Alternatively, microwave techniques are been explored for cancer detection of tissues as well as 

for treatment procedures. In the past decades, a great number of researchers have given their 

contribution to the study of the interactions between biological matter and electromagnetic waves. It 
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was discovered that malignant and healthy tissues differ in the interaction with such waves because 

proteins acquire more surface charges in malignant tumours, and the attraction of these charges for 

water molecules results in the presence of more “bound water” (Bellorofonte et al 2005). Moreover, 

dramatic changes in metabolism, intercellular communication, and adhesion properties of cancer 

cells result in the modification of the number and nature of membrane proteins. Thanks to these 

findings, a prototype of a device containing a nonlinear tuneable oscillator has been developed and 

used with encouraging results in the diagnosis of prostate (Bellorofonte et al 2005, Da Pozzo et al 

2007, Tubaro et al 2008, Gokce et al 2009, Di Viccaro et al 2009), breast (De Cicco et al 2006), 

thyroid (Sacco et al 2007a), gastric (Sacco et al 2007b), rectum (Vannelli et al 2010) and bladder 

cancer (Gervino et al 2007). The operating principle of this non-invasive device, known as 

Bioscanner TRIMprob and presently manufactured by Tema Sinergie (Faenza, Italy), is exposed in 

(Bellorofonte et al 2005, Vedruccio and Vedruccio 2011). The device is externally approached to the 

part of the patient’s body that is under analysis and can detect a decrement of the received signal at 

the fundamental frequency if it finds cancerous tissue due to the damping effects of them.   

Closely related to the former, it has been proved that the absorption rate in malignant tissues is 

higher than in their corresponding healthy tissues (Joines et al 1980, Joines 1984). Hence, tissues 

characterization in terms of their electromagnetic properties (permittivity and conductivity) is crucial 

to determine their different absorption rates. The knowledge of these properties can be useful for the 

development of medical applications such as hyperthermia (Siauve and Lormel 2012), as well as an 

aid in the design of devices for microwave imaging. This technique is based on the contrast in 

dielectric properties between a cancerous tissue and the normal cells that surrounds it. Thus, previous 

knowledge of the dielectric properties of the different tissues is crucial for the design of devices. For 

instance, in (Zhang et al 2013) an antenna conceived to detect malignant breast tissue with this 

method is tested in a phantom that was developed by using previously reported tissue properties. 

Many studies evaluating these properties have been presented. The first works were mostly 

performed over animal tissues since their electromagnetic properties are similar to their analogous 

human tissues. Some tissues were measured from 2 to 4 GHz over bovine specimens in (Brady et al 

1981). In (Foster and Schepps 1981), healthy and malignant canine tissues were studied to relate 

their dielectric properties to water content. Gabriel et al (1996a) reviewed the basic concepts of 

dielectric phenomena in biological tissues and compiled the results of many previous works. In 

(Gabriel 1996), a huge quantity of healthy tissues (mostly animals) were electromagnetically 

characterized up to 20 GHz. Besides, the dependence of the dielectric properties of tissues with 

temperature and time was analyzed over bovine liver tissue in (Chin and Sherar 2001).  

Lately, many spectroscopy studies have been performed over human tissues. In (Joines et al 

1994) several normal and malignant ex vivo human tissue samples were measured in the 50 - 900 

MHz frequency band, showing that the electromagnetic properties of malignant tissues had larger 

values than those from healthy ones. In (Yoo 2004), similar differences were obtained up to 5 GHz. 

The xenograft model was used, in which human tumours were cultivated in mice, grown, extracted 

and measured just after the resection. In (O’Rourke et al 2007), authors investigated the differences 

between normal, malignant and cirrhotic human liver from 0.5 to 20 GHz, concluding as well that 

statistically significant differences exist among the dielectric properties of ex vivo normal and 

malignant liver tissue. In (Lazebnik et al 2007), a similar study was performed for breast cancer.  

Regarding on colon tissue, it has already been addressed in a few reports. In (Joines et al 1994), 

healthy and malignant human colon tissues were measured, but only up to 900 MHz. In (Yoo 2004), 

normal and malignant colon tissues were cultivated using the xenograft model (explained above) and 

measured up to 5 GHz, without presenting fitting parameters. On the other hand, (Gabriel 1996) is 

the only report that includes Cole-Cole parameters for this tissue, but measurements were performed 

over healthy ovine specimens. To the best of our knowledge, there are not studies evaluating both 

healthy and cancerous colon tissues obtained directly through human excisions up to 18 GHz.  

Therefore, in this work measurements on human healthy and cancerous colon samples obtained 

from ex vivo surgery resections are conducted in order to gather information that could assist in the 



detection and treatment of colorectal cancer. The dielectric analysis is performed using the open-

ended coaxial technique, which has been used by most of the studies that present electromagnetic 

properties of biological tissues, like in (Joines et al 1980, Stuchly et al 1982, Joines et al 1994, 

Gabriel 1996, Chin and Sherar 2001, Yoo 2004, Lazebnik et al 2006, 2007, O’Rourke et al 2007). 

The working principle of this technique is detailed in (Athey et al 1982, Stuchly et al 1982). This 

method has been used in different areas, such as chemical mixture (Misra et al 1990), concrete (Filali 

et al 2008) and moisture characterization (Abbas et al 2005) among others. The dielectric 

characterization of this study is performed over the 0.5 – 18 GHz frequency band, particularizing 

results for six   specific frequencies (500 MHz, 900 MHz, 2.45 GHz, 5 GHz, 8.5 GHz and 15 GHz). 

Results are presented, discussed and compared with previous literature reports.        

This paper is organized as follows: in section 2, the procedure of the tissue gathering and the 

measurement methodology are described. In section 3, the characterization of healthy and malignant 

colon tissues is presented, and a comparison with previous works is addressed. Finally, conclusions 

are drawn in section 4.  

 

2. Methods 

 

2.1. Tissue gathering 

The tissue collection protocol was prepared by the project medical supervisors and approved by the 

ethical committee of the Hospital Universitari i Politècnic La Fe, which is the institution where 

measurements were driven. Prior to the tissue acquisition, patients were informed of the aim of this 

clinical study and asked to sign a consent form in which they accepted to take part in it.  

The samples used in this work were taken from surgery resections. After surgeons removed the 

entire cancerous piece from patients, one malignant sample was taken from each excised piece. Since 

the healthy tissue that surrounds cancer was also resected during surgical procedures, a normal 

sample was also taken from the excised piece, having thus a healthy (colon mucosa) and a malignant 

sample of each patient. Samples were placed in different empty plastic receptacles, closed 

hermetically and sent to the measurement room. The elapsed time between cancer removal and its 

measurement was approximately 20 minutes. The size of the samples was not constant, as one can 

observe in figure 1. Still, their width and thickness were at least 1.5 cm and 0.5 cm respectively in 

order to provide rigorous results by avoiding thickness effect, as explained in (Folgerø and 

Tjomsland 1996, Hagl et al 2003). In this work, healthy and malignant colon tissues of 20 patients 

have been gathered and characterized. 

Figure 1. Example of healthy colon wall (1-2) and colon cancer tissue (3). 



 
 

Figure 2. Measurement system used, comprising a commercial open-ended coaxial probe (1), 

a vector network analyzer (2) and a computer (3), as well as other interconnection 

instruments (auxiliary coaxial cable, connectors, Ethernet cable) and measurement tools 

(sample elevator, laboratory stand). 

 

2.2. Measurement system and data acquisition 

Measurements were conducted in a conditioned room placed in the digestive endoscopy area of 

Hospital Universitari i Politècnic La Fe of València, Spain. The open-ended coaxial method was 

used to find the electromagnetic parameters of healthy and malignant tissues. This dielectric 

characterization system consists of an open-ended coaxial probe (Keysight 85070E Slim Form 

Probe, 2.2 mm outer diameter) connected to a vector network analyzer (Keysight Fieldfox N9918A) 

and controlled by an external computer, as one can see in figure 2. The vector network analyzer was 

configured to measure the reflection coefficient at the end of the coaxial probe in the 0.5-18 GHz 

frequency band with an output power of -3 dBm, 1601 resolution points and 1 kHz of IF bandwidth. 

Prior to the arrival of a tissue sample to the measurement room, a calibration of the system was 

performed, following the guidelines presented in (Marsland and Evans 1987). In this procedure, the 

reflection coefficients of open circuit (air), short circuit and distilled water were captured and 

processed in order to relate a reflection coefficient’s measurement with its corresponding dielectric 

parameters. The calibration was checked by measuring a standard (0.1M NaCl solution) and 

comparing the measured parameters with literature (Buchner et al 1999). Afterwards, the tissue 

sample was placed on an acrylic sheet over the sample elevator, pressing enough the centre of the 

tissue with the open-ended coaxial probe to ensure the absence of air between them. After that, its 

reflection coefficient was captured by the vector network analyzer and its complex relative 

permittivity r, which is the ratio between the complex permittivity of the tested material and the free 

space permittivity, was found and stored with the aid of an application controlled by the external 

computer.  

One sample of healthy colon tissue and one sample of malignant colon tissue were measured for 

each one of the 20 patients. Every sample was measured five times, taking the averaged value. 

 

2.3. Data analysis 

The dielectric constant r’ and the conductivity  are the electromagnetic properties of the healthy 

and malignant colon tissues that are analyzed in the results section. Both electromagnetic properties 

can be obtained through the measurement of the complex relative permittivity. The dielectric 

constant, which is the real part of the relative permittivity, is a frequency-dependent property that 



represents the energy that a material stores when an electric field is applied. The conductivity, which 

is deduced from the imaginary part of the permittivity r”, comprises the mechanisms of 

electromagnetic losses inside the material due to electron movement (electric conductivity) and 

molecular polarization. Conductivity can be computed as:  

 

 "
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where 0 is the permittivity of free space (8.854x10-12 F/m). The measurements and the subsequent 

analysis (mean, standard deviation and distribution fitting) are performed in the 0.5 – 18 GHz 

frequency band. Moreover, as commented above, results are also particularized for six frequencies: 

500 MHz, 900 MHz, 2.45 GHz, 5 GHz, 8.5 GHz and 15 GHz. These frequencies have been chosen 

in order to give specific values of our measurements and analyse them in the following sections. 

Besides, 500 MHz, 900 MHz and 5 GHz bands allow us to compare our results with literature data. 

In addition, particularized data for 900 MHz and 2.45 GHz can be useful for the design of devices 

that work in the 915 MHz and 2.45 GHz ISM bands (electromagnetic properties of 900 and 915 

MHz are almost identical). The last two frequencies (8.5 and 15 GHz) have been chosen for offering 

specific data at upper frequencies, since there are no more ISM bands licensed until 24.125 GHz. 

However, data for MICS band (403.5 MHz) and 433.92 ISM band have not been provided since our 

coaxial probe only allows measurements above 500 MHz.  

The measurements of the statistical significance (P-values) of the differences in the dielectric 

parameters between healthy and malignant tissues have been computed using the parametric Mann-

Whitney U test for two samples, when necessary.  

 

3. Results and discussion 

 

3.1. Statistical analysis 

In this section, we provide the statistical results obtained for the measured healthy and malignant 

tissues from the 20 patients. In figure 3, the mean of the dielectric constant r’ and the conductivity  

of all healthy and malignant colon tissues are presented, along with their standard deviation (in error 

bar format). Comparing both kind of tissues, in figure 3(a) one can observe that the dielectric 

constant of malignant colon tissue is around five points higher than healthy tissue in absolute terms 

(5.06 ± 2.49 averaging up to 4 GHz), while above 4 GHz this difference tends to decrease. Analyzing 

the entire frequency band in relative terms, the mean of the dielectric constant of malignant tissues is 

8.8% higher at all frequencies (p = 0.002). In (Schepps and Foster 1980) is explained that this 

significant difference is due to the higher water content that cancerous tissues have. Moreover, since 

proteins acquire more surface charges in cancerous tissues, water molecules are attracted to them 

causing an increment of “bound water” (Bellorofonte et al 2005). On the other hand, error bars show 

a lower standard deviation of the dielectric constant of malignant tissues with respect to the healthy 

ones in the whole frequency band, showing thus a fewer dispersion of the measurements of this kind 

of tissues. This effect was also noticed at the liver ex vivo report of (O’Rourke et al 2007).  

Regarding the conductivity, in figure 3(b) we observe that the differences between normal and 

cancerous cells are small and only noticeable above 6 GHz (p = 0.038), but they have low statistical 

significance since error bars are highly superimposed in almost all the studied frequency band. These 

differences increase with frequency due to the frequency factor that multiplies the imaginary part of 

the permittivity as one can see in (1). Again, the standard deviation of malignant tissues is lower than 

healthy ones, as one can observe in the error bars of the figure.  

A Kolmogorov-Smirnov test that has been applied over several distribution fitting functions has 

shown that the measurements of both dielectric constant and conductivity follow a logistic 

distribution around the mean at most frequencies. The logistic is a kind of continuous distribution 

that is similar in shape to the normal or Gaussian distribution but with heavier tails. 



 
 

Figure 3. Mean of the dielectric constant (a) and the conductivity (b) of healthy and 

malignant colon tissue, along with their standard deviation in error bar format. 

 

The mean and the standard deviation of the dielectric parameters of healthy and malignant tissue 

for the six discrete frequencies are presented in table 1. One can observe that the absolute differences 

between normal and malignant tissues are more noticeable in dielectric constant rather than in 

conductivity. However, in percentage terms the differences are similar. The relative difference in 

dielectric constant between both types of tissues is 8.9% (p < 0.001), 9.5% (p < 0.001), 9.7% (p < 

0.001), 9.6% (p < 0.001), 9.0% (p < 0.001) and 8.0% (p < 0.001) from the lowest to the upper 

discrete frequency respectively, whereas the relative difference in conductivity is 9.5% (p = 0.003), 

8.9% (p = 0.001), 9.7% (p < 0.001), 11.2% (p < 0.001), 11.6% (p < 0.001) and 10.2% (p = 0.011), 

respectively. 

 
Table 1. Statistical data of healthy and malignant measurements. Mean and standard 

deviation values. 

Frequency 
Malignant Tissues Healthy Tissues 

r’ (S/m) r’ (S/m) 

500 MHz 63.16±2.05 1.06±0.08 57.86±2.96 0.97±0.08 

900 MHz 60.80±2.27 1.20±0.09 55.55±3.06 1.10±0.09 

2.45 GHz 57.19±2.46 2.17±0.10 52.14±3.11 1.98±0.12 

5 GHz 53.10±2.49 4.87±0.28 48.46±3.12 4.38±0.30 

8.5 GHz 47.25±2.22 9.89±0.74 43.35±2.94 8.86±0.84 

15 GHz 37.47±2.02 20.11±2.21 34.68±2.33 18.24±2.68 

 

The complex permittivity of biological tissues exhibits several dispersion regions in which its 

value varies strongly with frequency (Vander Vorst et al 2006). At these regions, the imaginary part 

of the relative permittivity (known as loss factor) shows a local maximum, whereas the dielectric 

constant has steeper slopes. The most significant dispersion regions are the , and , which 

affect at different frequency bands (Martinsen et al 2002, Wolf et al 2012). In order to make the 

permittivity data of biological tissues accessible, results are usually fitted to a Cole-Cole equation of 

different poles (Gabriel et al 1996b, Lazebnik et al 2006), with each pole characterizing a specific 

dispersion region. We fit our results using two poles of the Cole-Cole equation since only two 

dispersion regions (and  can be appreciated in figure 3(a):  
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where M is the number of poles of the equation, is the angular frequency (2f), 0 (F/m) is the 

permittivity of free space and , m, m (s), m and s (S/m) are the fitting coefficients of (2). These 

coefficients are computed in MATLAB for the mean of both normal and malignant data minimizing 

the sum of squares and using the trust-region-reflective method, which is based on trust regions. 

 
Table 2. Fitting coefficients of (2) for our healthy and malignant measurements. 

Malignant 
 1 1 (ps) 1 2 2 (ns) 2 s (S/m) 

3.690 55.268 7.915 0.114 0.983e3 10.900 6.490e-2 0.005 

Healthy 
 1 1 (ps) 1 2 2 (ns) 2 s (S/m) 

2.746 50.580 7.487 0.116 1.196e3 16.090 8.530e-2 0.005 

 

The first pole is the most significant of the Cole-Cole fitting curve for the studied frequency band. 

This pole describes the -dispersion, which is related to the relaxation frequency of water (around 20 

GHz at room temperature) and thus with the water content of tissues. One can observe that the 

relaxation time (1) of this pole is slightly higher for the malignant fitting, which implies a lower 

relaxation frequency. Nevertheless, the value of this parameter is similar in both fittings, which 

indicates similar trends of the permittivity curves. The term 1 is also higher for the malignant 

fitting, being a term related to the static dielectric constant (dielectric constant when frequency tends 

to zero). This parameter implies higher values of dielectric constant at the frequencies under study 

since the trend of the healthy and the malignant curves are almost the same, as mentioned before.  

On the other hand, the second pole characterizes the previous dispersion region (-dispersion), 

and it is computed in order to take into account the change of trend in dielectric constant that can be 

noticed at frequencies below 1 GHz in figure 3(a). This dispersion is usually ascribed to the 

relaxation of bound water molecules, but other mechanisms like intra-protein motions seem to affect 

at those frequencies (Foster and Schwan 1989, Vander Vorst et al 2006, Wolf et al 2012). The fitting 

values of this dispersion are not very meaningful since part of this relaxation (f < 500 MHz) has not 

been measured.  

The parametric values found for our healthy measurements are in agreement with those presented 

by (Gabriel 1996), especially those of the -dispersion (Gabriel (1996) data of the first pole:  = 4, 

1 = 50, 1 = 7.958 ps, 1 = 0.2). To the best of our knowledge, it is the only report that includes 

Cole-Cole parameters for colon tissue. The differences in , 1 and 1 between healthy and 

malignant tissues are in the same order than those presented in (O’Rourke et al 2007), in this last 

case from human ex vivo liver tissue.  

 

3.2. Difference between healthy and malignant tissues among patients 

In this section, we compute the difference in dielectric constant between the healthy and the 

malignant tissue of each patient (r’), and then we analyse how this difference varies among the 20 

patients (in terms of its probability distribution and standard deviation). Although the mean of this 

difference can be computed almost directly from the wideband data, its standard deviation should be 

studied in order to evaluate the dispersion of such difference in every patient. A Kolmogorov-

Smirnov test has been performed at each frequency testing several distribution functions in order to 

characterize the kind of distribution that better fits the difference between tissues of the same patient. 

The test has shown that the logistic distribution is the one that better fits this difference at most 

frequencies. For instance, the difference at 2.45 GHz follows a logistic distribution of mean = 

5.04anda scale parameter s= 1.37, as shown in figure 4(a).  



  
 

Figure 4. Statistics of the difference in dielectric constant between the healthy and the 

malignant tissue from the same patient: (a) probability distribution at 2.45 GHz and (b) mean 

difference along with its standard deviation in error bar format. 

 

In figure 4(b), the averaged difference in dielectric constant between the healthy and the 

malignant tissues of the same patient is presented, as well as its standard deviation (in error bar 

format). This difference is statistically significant at the studied frequency band (p = 0.002), and its 

value is higher at lower frequencies (f < 3 GHz). This difference is reduced gradually with the 

increment of frequency, also in relative terms. This decrement could be explained by the information 

presented in (Joines et al 1980, Joines 1984). In these works is exposed that the greatest difference 

between the electromagnetic absorption of healthy and malignant tissues has a maximum peak 

between 100 and 800 MHz, centred approximately in 400 MHz, which can be related to the 

maximum differences of permittivity among them. Data particularized for the discrete frequencies 

are presented in table 3.  

 

Table 3. Averaged difference in dielectric constant Δεr’ and conductivity Δ between the 

healthy and the malignant tissue from the same patient. Mean and standard deviation values.  

Frequency Δεr’ Δ(S/m) 

500 MHz 5.25±2.58
a
 9.10e-2±8.40e-2 

900 MHz 5.25±2.57 9.86e-2±8.72e-2 

2.45 GHz 5.04±2.61 0.19±0.12 

5 GHz 4.63±2.54 0.49±0.29 

8.5 GHz 3.90±2.42 1.03±0.65 

15 GHz 2.79±2.13 1.86±1.55 

a
 Standard deviation of the measurement. 

 

The mean differences in conductivity Δ are very low and thus have a low practical significance, 

especially at low frequencies as one can see in table 3 (p = 0.038). On the contrary, differences in 

dielectric constant r’ are high as well as statistically significant (p = 0.002), being more noticeable 

at lower frequencies as commented above.  

 

 



3.3. Comparison with previous studies 

In order to validate our results, the dielectric properties of healthy and malignant colon tissues that 

have been obtained in this work are next compared to previously published data in which colon 

tissue dielectric spectroscopy is also addressed. The gathered information from literature is listed in 

table 4 and represented in figure 5. 

 
Table 4. Previously published works on ex vivo dielectric information of colon tissue. 

Source Type Frequency Fitted Data
a
 Reference 

Ovine Healthy 10 Hz – 20 GHz Yes (Gabriel 1996) 

Human Healthy, Malignant 50 MHz – 900 MHz No (Joines et al 1994) 

Human
b
 Malignant 200 MHz – 5 GHz No (Yoo 2004) 

a
 A fitting equation of the results is available. 

b
 Malignant human colon tissue cultivated in mice. 

  

 

Regarding healthy colon tissue, (Gabriel 1996) is the only work that presents dielectric 

measurements along with the coefficients of a fitting equation. Although the measurements of this 

source were performed over ovine tissue, this is the most important and spread study of biological 

dielectric spectroscopy. In figure 5, one can observe that both the dielectric constant and the 

conductivity reported in (Gabriel 1996) are very similar to those obtained through our healthy 

measurements, especially in conductivity (almost identical in the whole frequency band). Regarding 

the dielectric constant from (Gabriel 1996), although it is slightly higher at lower frequencies, it 

tends to converge to our results as frequency increases. On the contrary, (Joines et al 1994) colon 

healthy parameters are too distant from our measurements and (Gabriel 1996) values, although the 

trends are similar. 
In table 5, the dielectric parameters of malignant colon tissue obtained in this work are compared 

to those obtained in previously published studies (only discrete data available). In (Joines et al 1994), 

ex vivo human colon tissue was measured up to 900 MHz. In (Yoo 2004), malignant colon tissue was 

also measured, in this case up to 5 GHz. In this work, human tumours were cultivated in mice, 

grown, extracted and measured just after the resection using the xenograft method. The comparison 

is performed in four of the discrete frequencies (when data are available). 

 
Table 5. Dielectric parameters for the three different colon malignant sources. Mean and 

standard deviation values. 

Frequency 
Present study (Joines et al 1994)

a
 (Yoo 2004)

b
 

r’ (S/m) r’ (S/m) r’ (S/m) 

500 MHz 63.16±2.05 1.06±0.08 57.50±12.07 0.90±0.24 64.86±2.46 1.17±0.04 

900 MHz 60.80±2.27 1.20±0.09 56.00±11.76 1.08±0.29 62.75±2.38 1.32±0.05 

2.45 GHz 57.19±2.46 2.17±0.10 - - 59.72±2.27 2.33±0.09 

5 GHz 53.10±2.49 4.87±0.28 - - 55.95±2.13 5.55±0.21 
a
 SEM (standard deviation of the mean) values provided for the dielectric constant and 

conductivity. Transformed to standard deviation value with the number of samples measured.
 

b
 Mean values taken from figures. A global standard deviation of ±3.8% from the mean value 

was provided for complex permittivity measurements. 

 

One can observe that both the dielectric constant and the conductivity from (Yoo 2004) are 

always higher than those obtained in our study at all frequencies, which in turn are always higher 

than those from (Joines et al 1994). In particular, our malignant measurements are very similar to 

those from (Yoo 2004). These differences in the absolute values can be explained by the distinct 

mean elapsed times between the excisions and measurements of each study, as well as the different 



sample source and preparation. As we commented previously, the elapsed time from excision time to 

the dielectric characterization is approximately 20 minutes in our work. On the other hand, in (Yoo 

2004) this time is sharply reduced because measurements were performed just after the removal of 

the tumour sample, whereas in (Joines et al 1994) this time is extended between one and two hours. 

Even though the absolute values of the dielectric parameters of the three sources are different, one 

can observe similar trends among them with the increment of the frequency. The dielectric constant 

decreases 2.36, 1.50 and 2.11 points in our study, (Joines et al 1994) and (Yoo 2004) respectively 

when frequency is increased from 500 MHz to 900 MHz. Besides, conductivity rises 0.14, 0.18 and 

0.17 S/m respectively, almost the same increase in the three sources with the same frequency 

increment.  

Given the big size of the analyzed samples and the short elapsed times between their collection 

and measurement, the presented ex vivo spectroscopy results should be very similar to measurements 

obtained through in vivo conditions. However, since some works in which other cancerous tissues 

have been analyzed report the apparition of unexpected trends or an extra relaxation mechanism 

around 15 GHz in in vivo conditions (Choi et al 2004, O’Rourke et al 2007), additional 

measurements should be perform in order to confirm or discard these mechanisms in colon tissue. 

 

4. Conclusions 

 

In this study, the electromagnetic properties of ex vivo healthy and malignant colon human tissues 

have been presented. Tissues were gathered from 20 ex vivo surgery resections. Measurements were 

performed using the open-ended coaxial technique in the 0.5-18 GHz frequency band, particularizing 

results as well for six specific frequencies (500 MHz, 900 MHz, 2.45 GHz, 5 GHz, 8.5 GHz and 15 

GHz).  

The values obtained for healthy and malignant tissues are in agreement with previously published 

results, with slightly differences in their values probably caused by the diverse elapsed times 

between tissue removal and measurement as well as distinct tissue sources and preparation (e.g., 

xenograft model in mice). For the full band of frequencies analysed, the dielectric constant of 

malignant colon tissue is on average 8.8% higher than the dielectric constant of healthy one (p = 

0.002). This difference is even higher at frequencies below 4 GHz. Regarding the conductivity, the 

relative difference has a similar behaviour, despite that the absolute differences are much lower than 

in dielectric constant. The within-patient analysis has shown greater dielectric constants from 

malignant tissues when compared to healthy tissues, with significant differences that appear 

systematically.    

Figure 5. Dielectric constant (a) and conductivity (b) of healthy and malignant colon tissues 

obtained in our study and reported in literature. 

 

 



These results have a potential application in cancer detection and diagnosis, and can be useful in 

order to develop new diagnosis devices, tools for hyperthermia treatments and to create 

electromagnetic models of healthy and malignant colon tissues. Further colon in vivo measurements 

should be performed in order to confirm the reported trends in this condition, as well as to assess the 

dielectric behaviour of additional colon lesions. 
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