JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

Supporting Social Knowledge in Multiagent
Systems through Event Tracing

Luis Birdalo, Andrés Terrasa, Ana Garcia-Fornes and Agustin Espinosa

Abstract—Social knowledge is one of the key aspects of MAS
in order to face complex problems in dynamical environments.
However, it is usually incorporated without specific support on
behalf of the platform and that does not let agents take all of the
advantage of this social knowledge. At present time, the authors
of this paper are working in a general tracing system, which
could be used by agents in the system to trace other agents’
activity and that could be used as an alternative way for agents
to perceive their environment. This paper presents first results of
this work, consisting of the requirements which should be taken
into account when designing such a tracing system.

Index Terms—Agents, multiagent systems, social knowledge,
tracing systems.

I. INTRODUCTION

HESE days, the use and importance of multiagent sys-

tems (MAS) has increased because their flexible behavior
is very useful to deal with complex problems in dynamic
and distributed environments. This is not only due to agents
individual features (like autonomy, reactivity or reasoning
power), but also to their capability to communicate, cooperate
and coordinate with other agents in the MAS in order to fulfil
their objectives.

The necessary knowledge to support this social behavior is
referred to by Marik et al in [15] as social knowledge. This
social knowledge plays an important role in increasing the
efficiency in highly decentralized MAS. Social abstractions
such as teams, norms, social commitments or trust are the key
to face complex situations using MAS; however, these social
abstractions are mostly incorporated to the MAS at user level;
this is, from the multiagent application itself, without specific
support from the multiagent platform, by means of messages
among agents or blackboard systems. This weak integration of
high level social abstractions, also mentioned by Bordini et al
in [3], prevents agents in the MAS from exactly knowing what
is happening in their environment, since they depend on other
agents actively informing them about what they are doing. This
dependance on other agents sets out two major problems. First,
it can lead to excesive overhead in some of the agents. And
second, it is also difficult to trust the information provided
directly by other agents using messages in open MAS.

An alternative solution to provide social knowledge could
be an event tracing system, integrated within the multiagent
platform, which could be used by agents in the system to

All authors are from:
Departamento de Sistemas Informaticos y Computacién
Universidad Politécnica de Valencia
cno./ de Vera S/N - 46022 Valencia (SPAIN)
E-mail: {lburdalo,aterrasa,agarcia,aespinos } @dsic.upv.es

perceive their environment without having to actively notify
each change to the rest of the agents which could be interested
in what they do. Such a tracing system, integrated within
the multiagent platform and providing a trustworthy event
set which were capable to reflect not only communication
among agents, but also agents’ perceptions, etc, could be used
as a way to provide social knowledge to the MAS. Also,
such a tracing system would be more trustworthy than agent
messages, since the information would not be proportioned
by agents, but by the multiagent platform itself. Agents could
trust the trace system as much as they can trust the multiagent
platform.

Applications which extract information from the system by
processing event streams at run time are already considered
in the field of event driven architectures [14] and the idea of
an standard tracing system available for processes in a system
already existed in the field of operating systems (and at present
it is contemplated by the POSIX standard[11]). These concepts
can be applied to th field of MAS, where event tracing is still
considered a facility to help MAS developers in the verification
and validation processes.

This paper presents the requirements of such a general,
platform-integrated tracing system applied to MAS. These
requirements should be taken into account in order to develop a
general abstract trace model for MAS, which could be finally
incorporated to a real multiagent platform. The rest of the
paper presents is structured as folows: Section II comments
existing work by other authors in the field of tracing MAS.
Section III presents a set of requirements which should be
taken into account in order to design a general tracing system
which could be used to improve agents sociability. Finally,
section IV comments this work’s main conclusions and future
work which is still to be carried out in order to incorporate
such a tracing system to a MAS.

II. EVENT TRACING IN MULTIAGENT SYSTEMS

One of the most popular tracing facilities for MAS is the
Sniffer Agent provided by JADE[1]. This tool keeps tracking
of all of the messages sent or received by agents in the system
and allows the user/administrator/developer to examine their
content. These messages can be stored in a log file to be
examined after the application has stopped running, so that
the MAS can also be traced off-line. JADE also provides
an Introspector Agent, which can be used to examine the
life cycle of any agent in the system, its behaviors and the
messages it has sent or received.

JADEX]18] provides a Conversation Center, which allows
a user to send messages directly to any agent while it is

20

executing and to receive answers to those messages from
a user-friendly interface. It also provides a DF Browser to
track services offered by any agent in the platform at run
time and a BDI Tracer which can be used to visualize the
internal processes of an agent while it is executing and show
causal dependencies among agents’ beliefs, goals and plans.
Apart from these facilities, JADEX also incorporates a Remote
Agent, which provides access to some of JADE’s tracing
facilities, like the Agent Introspector and the Sniffer Agent.

The JACK[20] multiagent platform does not provide a snif-
fer agent, but it supports monitoring communication among
agents by means of Agent Interaction Diagrams. It also pro-
vides other introspecting tools with different functionalities:
a Design Tracing Tool, to view internal details of JACK
applications during execution, and a Plan Tracing Tool, to
display and trace the execution of plans and the events that
handle them. JACK also provides debugging tools that work at
a lower level of abstraction in order to debug the multiagent
system in a more exhaustive way: Audit Logging, Generic
Debugging/Agent Debugging.

Other examples of tracing facilities provided by platforms
is ZEUS’ Society Viewer[10] which, apart from showing or-
ganisational inter-relationships among agents in the system, it
can also show messages exchanged among agents. ZEUS also
provides an Agent Viewer, which allows the user/administrator
to monitor and change the internal state of the agent, its
actions, used resources, etc. JASON[4], [5] provides its Mind
Inspector Tool, to examine the internal state of agents across
the distributed system when they are running in debugging
mode.

Apart from those tools provided by multiagent platforms
themselves, there are many tracing facilities provided by third
party developers. This is the case of Java Sniffer[21], devel-
oped by Rockwell Automation, a stand alone java application
based on JADE'’s Sniffer Agent which is able to connect to
a running JADE system in order to track messages among
agents, to reason about them and to show them to the user
from different points of view. Another third party tool based
on JADE’s Sniffer Agent is ACLAnalyser[9], which intercepts
messages interchanged by agents during the execution of the
application and stores them in a relational database. After the
execution, this message database can be inspected to detect
social pathologies in the MAS. Later work by the same authors
([8]) combine results obtained with ACLAnalyser with data
minning techniques to help in the MAS debugging process.

MAMSY, the management tool presented in [19] lets the
system administrator monitorize and manage a MAS running
over the Magentix multiagent platform[2]. MAMSY provides
graphical tools to interact with the MAS and visualize its
internal state at run time, including not only nodes and agents,
but also organizational units. It also provides a message tracing
tool, similar way to JADE’s Sniffer Agent, which lets the
system administrator visualize message interchange among
agents.

In [16], the authors describe an advanced visualisation tools
suite for MAS developed with ZEUS, although the authors also
claim these tools could be used with other platforms (more
precisely, with CommonKADS). The developed suite allows

JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

for inspecting message interchange among agents in a society,
displaying graphically the different tasks in the society and its
execution state, examining and modifying the internal state of
any of the agents in the system and comparing statistics not
only for individual agents, but also for agent societies. It also
allows for the graphical display of the different tasks in the
society and their execution states, examining and modifying
the internal state of any of the agents in the system and
comparing statistics not only for individual agents, but also
for agent societies.

Tracking messages has also been used in [17], which
comments an ampliation of the Prometheus methodology and
the related design tool to help the designer to detect protocol
violations by tracing conversations among agents in the system
and to detect plan selection inconsistencies.

Lam et al present in [13] an iterative method based on
tracing multiagent applications to help the user understanding
the way those applications internally work. Lam et al also
present a Tracer Tool which implements the described Tracing
Method. The Tracer Tool can be applied to any agent system
implementation, regardless of agent or system architecture,
providing it is able to interface with Java’s logging API
(directly or via a CORBA interface). Results obtained with this
method were presented in [12]. Bose et al present in [7] a com-
bination of this Tracer Tool with a Temporal Trace Language
(TTL) Checker presented in [6]. This TTL Checker enables the
automated verification of complex dynamic properties against
execution traces.

As it can be appreciated, tracing facilities in MAS are
usually conceived as debugging tools to help in the validation
and verification processes. It is also usual to use these tracing
tools as a help for those users which have to understand how
the MAS works. Thus, generated events are destinated to be
understood by a human observer who would probably use
them to debug or to validate the MAS and tracing facilities
are mostly human-oriented in order to let MAS users work in
a more efficient and also comfortable way. Some multiagent
platforms provide their own tracing facilities, although there
is also important work carried out by third party developers.
However, even those tracing facilities which were not designed
by platform developer teams are usually designed for a specific
multiagent platform. There is not a standard, general tracing
mechanism which let agents and other entities in the system
trace each other as they execute like the one provided by
POSIX for processes.

III. TRACING SYSTEM REQUIREMENTS

From the viewpoint of the tracing process, a MAS can
be considered to be formed by set of tracing entities, or
components that are susceptible of generating and/or receiving
tracing events. The tracing system needs to consider, at least,
the following list of components inside the MAS as tracing
entities: agents, organizational units (or any type of agent
aggregation supported by the multiagent platform) and the
multiagent platform itself (and its components).

Unlike existing work on tracing MAS, previously mentioned
in Section II, a tracing system which could be used as a

BURDALO ET. AL.: SUPPORTING SOCIAL KNOWLEDGE IN MULTIAGENT SYSTEMS THROUGH EVENT TRACING 21

knowledge provider must not be human-oriented, but entity-
oriented, so that these tracing entities are able to receive
events and process them or incorporate them to their reasoning
process at run time in order to take advantage from that.

In order to generate trace events, the source code of tracing
entities needs to be instrumented to include the code which
actually produces such events. Attending to where this instru-
mentation code is placed, trace events can be classified as
platform events or application events.

Platform events are instrumented within the source code of
the platform (either in its “core” or in any of its support-
ing agents). These events represent the generic, application-
independent information that the platform designer intends to
provide to agents. On the other hand, application events are
instrumented within the code of the application agents. These
events represent customized run-time information defined by
the application designer in order to support specific needs of
the application agents.

The rest of the section presents a set of requirements which
should be taken into account when developing such a tracing
system. These requirements have been classified in three main
groups: functional, efficiency and security requirements.

A. Functional requirements

Tracing roles. Any tracing entity in the MAS must
be able to play two different roles in the tracing
process: event source (ES) and event receiver (ER).
From the viewpoint of tracing entities, these two
tracing roles are dynamic and not exclusive, in the
sense that each tracing entity can start and stop
playing any of them (or both) at any time, according
to its own needs. The relation between ES and ER
entities is many to many: it must be possible for
events generated by an ES entity to be received by
many ER entities, as well as it must also be possible
for an ER entity to receive events from multiple ES
entities simultaneously.

Chronologically ordered event delivery requiere-
ment: Events generated in the system must be de-
livered to ER entities in chronological order or, at
least, include information related to the time when
they were produced to allow ER entities to process
them in chronological order.

Dynamic definition of event types. Trace events
can be classified in event types attending to the
information which is generated and attached to them
when they are generated. In order to let the event
processing be more flexible and efficient, it must
be possible for tracing entities to dynamically define
new event types at run time. This must be applied to
both platform and application event types.
Publication of event types. At any time, ER entities
must be able to know which ES entities are producing
events and of which types. So, as a consequence of
event types being dynamic, the tracing system should
keep and up-to-date list of such traceable event types
(and ES entities) and to make this list available to
all tracing entities in the MAS.

On-line and off-line tracing. In order to let entities
work with both historical and run time information,
both on-line and off-line tracing should be supported.
In on-line tracing, events are delivered to ER entities
as they are traced by the tracing system (with a po-
tential delay due to the internal processing of events
by the tracing system). In contrast, in off-line tracing,
events generated by ES entities are not delivered to
running entities, but stored in a log file. Both tracing
modes must not be exclusive, meaning that it must
be possible for the events generated by any ES entity
to be delivered to some ER entities while also being
stored in some log files. However, the tracing system
does not need to support concurrent access to the
events stored in a log file.

B. Efficiency requirements

In any computing system, tracing can be a very expensive
process in terms of computational resources. In the case of
MAS, the fact that they are by nature highly decentralized
systems, both in number of running entities (agents) and hosts,
can make their tracing even more expensive. In this context,
the tracing process must be optimized in order to minimize the
overhead it produces to the system, since a very sophisticated
but excessively costly tracing system can become completely
useless in practice. The following list introduces a minimal
set of efficiency design guidelines that should be considered
when designing a tracing system for MAS, in order to make
this system realizable and useful. The first two requirements
focus on the potential overload of the tracing system while the
last one allows entities to set their own limits in the resources
devoted to the tracing process.

Selective event delivery. Each ER entity should
be able to express which event types it wants to
receive, and the tracing system should only deliver
events which belong to such types to the entity.
Furthermore, each ER entity should be able to change
dynamically which events it wants to receive, since
entities may need different tracing information at
different times during their execution.

Selective event tracing. The tracing system should
not spend resources in tracing events which belong to
event types that currently no entity wants to receive.
Resource limit control. Each ER entity should be
able to limit the maximum amount of its resources
to be allocated to receive events, both in on-line and
off-line tracing modes. In on-line tracing, if there is
some memory data object where events are delivered
to until they are retrieved by the corresponding ER
entity, then this entity should be able to define the
maximum amount of memory devoted to such data
object. In off-line tracing, the ER entity that sets the
tracing up to the corresponding log file should be
able to define the maximum size of the file.

C. Security requirements

Tracing in an open MAS has obvious security issues, since
many of the events registered by the tracing system may

22

contain sensitive information that can be used by agents to take
advantage from, or even to damage, the MAS. This scenario
enforces the necessity of applying some security policy over
the events that can be delivered to entities, specially if they are
application entities. This policy can be materialized in many
different ways, but in essence, it has to allow for the definition
of security rules in the MAS that limit the availability of events
to the right ER entities. The following list of requirements
express a minimum set of restrictions by which it is possible
to incorporate such security rules to the tracing system.

Authorization to ER entities. Each ES entity in
the system must be able to decide which ER en-
tities can receive the events that it generates. This
can be accomplished by means of an authorization
mechanism, provided by the tracing system, which
can be used by ES entities to restrict the event
types that are available to each ER entity. Such
authorization rules must be dynamic, so that ES
entities are able to modify the list of authorized ER
entities corresponding to each event type at run time.
Supervisor entities. Situations where an entity must
be able to access to other ES entity’s events in order
to fulfil its objectives, even though the ES entity does
not agree with that, are very common in MAS. This
can happen, for instance, in normative environments
where an agent has to watch the other in order to
verify that norms are not being violated and to apply
the corresponding sanctions in case they are. The
tracing system must also provide mechanisms to let
an ER receive events generated by an ES without its
authorization under some circumstances.
Delegation of authorizations. If an ER entity is
currently authorized to be delivered events corre-
sponding to certain event types, then this entity can
delegate this authorization to other ER entities in the
system; then, each of them can do so with other
entities (potentially forming an authorization tree).
At any node in the tree, the corresponding entity
can add or remove delegations dynamically. If a
delegation is removed, all the potential subsequent
delegations (subtree) are also removed.

Platform entities authorization. By definition, the
tracing system must be granted the authorization for
all event types defined in the MAS, both at the
platform and application levels. This is required for
the tracing system to be able to keep track of any
event being generated in the MAS, independently of
the privacy rules defined by each ES entity.

IV. CONCLUSIONS AND FUTURE WORK

Social knowledge is one of the most important features
that make MAS appropiate to deal with complex problems
in dynamic and distributed environments. The key to this is
the capacity of agents to communicate and coordinate with
other agents in the MAS in order to get their objectives.
This capacity, though based on high level social concepts
such as social commitments, trust, norms or reputation, is

JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

usually incorporated to the MAS at user level, using messages
or blackboard systems, without support from the multiagent
platform. This can produce too much overhead, reducing the
scalability of the MAS. Also, it has to be taken into account
that sometimes it is difficult to trust information from other
agents, specially in open MAS.

A general event tracing system, which agents in the MAS
could use to trace other agents in their environment, could be
used as a more appropiate and trustworthy social knowledge
provider. This paper presents the first step towards defining
such a tracing system, which is the identification of its re-
quirements. This paper has identified requirements in different
aspects: functionallity, efficiency and security.

Some of the presented requirements set important problems
out. Some of these problems are more obvious. For example,
the problem of delivering events in chronological order in
a distributed MAS. However, others are less evident. For
instance, the problem of determining which ES entity is the
owner of each trace event, since the instrumented code that
produces an event is not always within the source code of the
entity which originated it. Just as an example, consider events
could as property of those entities which source code has been
instrumented to produce them. In this case, all platform events
would belong to the multiagent platform, while agents in the
MAS would only be owners of application events. It could
be more understandable and easier to incorporate considering
that events belong to the ES entity which originated them.

Future work will include the design of a general abstract
model for MAS which contemplated all of the requirements
exposed above and which, after that, could be implemented
and incorporated to a multiagent platform.

ACKNOWLEDGMENT

This work is partially supported by projects PROME-
TEO/2008/051, CSD2007-022 and TIN2008-04446, which is
co-funded by the Spanish government and FEDER funds.

REFERENCES

[1] U. AGREEMENT. Jade administrator’s guide. sharon.cselt.it.

[2] J. Alberola, L. Mulet, J. Such, A. Garcia-Fornes, A. Espinosa, and
V. Botti. Operating system aware multiagent platform design. Fifth
European Workshop On Multi-Agent Systems (EUMAS 2007), pages
658-667, 2007.

[3] R. Bordini, M. Dastani, and M. Winikoff. Current issues in multi-agent
systems development (invited paper). Post-proceedings of the Seventh
Annual International ..., Jan 2007.

[4] R.Bordini and J. Hiibner. Jason: A java-based interpreter for an extended
version of agentspeak. page 31, Mar 2007.

[5] R. Bordini, J. Hubner, and R. Vieira. Jason and the golden fleece of
agent-oriented programming. MULTIAGENT SYSTEMS ARTIFICIAL
SOCIETIES AND SIMULATED ..., Jan 2005.

[6] T. Bosse, C. Jonker, L. van der Meij, and A. S. Specification and
verification of dynamics in cognitive agent models. ... of the sixth
international conference on intelligent agent ..., Jan 2006.

[7]1 T. Bosse, D. Lam, and K. Barber. Tools for analyzing intelligent agent
systems. Web Intelligence and Agent Systems, Jan 2008.

[8] J. Botia, J. Hernansaez, and A. Gomez-Skarmeta. On the application
of clustering techniques to support debugging large-scale multi-agent
systems. Springer, 2007.

[9] J. Botia, J. Hernansaez, and F. Skarmeta. Towards an approach for
debugging mas through the analysis of acl messages. MATES, Jan 2004.

[10] J. Collis, D. Ndumu, H. Nwana, and L. Lee. The zeus agent building
tool-kit. BT Technology Journal, Jan 1998.

BURDALO ET. AL.: SUPPORTING SOCIAL KNOWLEDGE IN MULTIAGENT SYSTEMS THROUGH EVENT TRACING 23

(11]

[12]

(13]

[14]
[15]

[16]

IEEE. 1003.1, 2004 EDITION IEEE Standard for Information Technol-
ogy Portable Operating System Interface (POSIX). 2004.

D. Lam and K. Barber. Debugging agent behavior in an implemented
agent system. ... Workshop on Programming Multi-Agent Systems at
the Third ..., Jan 2004.

D. Lam and K. Barber. Comprehending agent software. Proceedings of
the fourth international joint conference on ..., Jan 2005.

D. Luckham. The power of events. Addison-Wesley, Jan 2002.

V. Mafik and M. Pechoucek. Social knowledge in multi-agent systems.
Systems, Jan 2004.

D. Ndumu, H. Nwana, L. Lee, and J. Collis. Visualising and debug-
ging distributed multi-agent systems. Proceedings of the third annual

[17]

[18]
[19]

[20]
[21]

conference on Autonomous ..., Jan 1999.

L. Padgham, M. Winikoff, and D. Poutakidis. Adding debugging support
to the prometheus methodology. Engineering Applications of Artificial
Intelligence, Jan 2005.

A. Pokahr and L. Braubach. Jadex tool guide. page 66, Sep 2008.

V. Sanchez-Anguix, A. Espinosa, L. Hernandez, and A. Garcia-Fornes.
Mamsy: A management tool for multi-agent systems. 7th International
Conference on Practical Applications of Agents and Multi-Agent Sys-
tems, 2009.

A. O. Software. Jack tm tracing manual. page 85, May 2008.

P. Tichy and P. Slechta. Java sniffer 2.7 user manual. 2006.

