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Abstract 

As the proper maintenance of intracellular potassium and sodium concentrations is 

vital for cell growth, all living organisms have developed a cohort of strategies to 

maintain proper monovalent cation homeostasis. In the model yeast Saccharomyces 

cerevisiae, potassium is accumulated to relatively high concentrations and is required 

for many aspects of cellular function, whereas high intracellular sodium/potassium 

ratios are detrimental to cell growth and survival. The fact that S. cerevisiae cells can 

grow in the presence of a broad range of concentrations of external potassium (10 µM-

2.5 M) and sodium (up to 1.5 M) indicates the existence of robust mechanisms that 

have evolved to maintain intracellular concentrations of these cations within 

appropriate limits.  In this review, current knowledge regarding potassium and sodium 

transporters and their regulation will be summarized. The cellular responses to high 

sodium and potassium and potassium starvation will also be discussed, as well as 

applications of this knowledge to diverse fields, including antifungal treatments, 

bioethanol production and human disease.  

  



Introduction 1 

Ion homeostasis is a fundamental requirement for all organisms. Many different minerals 2 

are required for essential biochemical processes, but accumulation of these elements is 3 

toxic. As these elements are present as charged molecules in aqueous cellular environments, 4 

they are not able to freely diffuse across cell membranes. Thus, all living organisms have 5 

developed efficient systems to acquire and store these elements and robust mechanisms to 6 

maintain homeostatic concentrations to avoid toxicity.   7 

Saccharomyces cerevisiae has been developed into a productive model to study many 8 

aspects of ion homeostasis based on its advantages as an experimental system and the high 9 

level of conservation throughout evolution of many proteins that transport ions (SAIER 2000; 10 

WOLFE and PEARCE 2006; BOTSTEIN and FINK 2011). Moreover, this model system is amenable 11 

to genome-level approaches, which have extensively characterized the yeast ‘ionome’ and 12 

defined genes and gene networks that contribute to its maintenance (EIDE et al. 2005; YU et 13 

al. 2012). Remarkably, in these studies, a relatively low number of genetic alterations were 14 

shown to have large effects on the mineral composition of yeast cells: approximately 5% of 15 

the strains analyzed in rich media (212 of 4,358 knock-outs) and 9% of the strains analyzed in 16 

minimal media (1065 of 11890 haploid and diploid knock-outs and overexpression strains) 17 

showed significant differences in the relative concentrations of the 13-17 cations tested. 18 

These studies have revealed an important role for mitochondrial and vacuolar function and 19 

the ESCRT pathway (involved in vesicle trafficking) in the regulation of yeast ion 20 

homeostasis. Additionally, many of the strains identified displayed alterations in the 21 

accumulation of multiple elements. Only a scarce number of mutants were shown to be 22 

defective in only one element. These results indicate that the mechanisms that have evolved 23 

to maintain ion homeostasis are robust and in many cases act in a coordinated manner.  24 

Potassium is a key monovalent cation necessary for multiple aspects of cell growth and 25 

survival, for example compensation of negative charges of macromolecules to maintain 26 

electroneutrality, cell turgor and volume, enzyme activity, protein synthesis, and 27 

maintenance of proper membrane potential and intracellular pH. In most cell types, 28 

potassium is accumulated against its concentration gradient to relatively high amounts, 29 

whereas sodium accumulation is actively avoided because of its toxicity. In many 30 

mammalian cell types, this low sodium/potassium ratio at the cellular level is actively 31 

maintained by P type Na+,K+ ATPases, which drive sodium out of the cell in exchange for 32 

potassium (SKOU and ESMANN 1992). The resulting sodium gradient is used for the coupled 33 

uptake of many ions and nutrients via secondary, sodium-coupled carriers. Essentially, yeast 34 

cells maintain low sodium/potassium ratios through efficient and selective potassium uptake 35 

(and not sodium), efficient efflux of excess sodium and efficient sequestration of sodium in 36 

the vacuole. In the majority of these transport processes, a proton motive force created by 37 

H+-ATPases is required.  38 



This review will focus on our current knowledge regarding potassium and sodium transport 39 

and how homeostasis of these ions is achieved and maintained in baker’s yeast. As 40 

mentioned above, although not directly involved in transporting potassium or sodium 41 

themselves, H+-ATPases are key regulators of these transport processes and so will be 42 

discussed first. General aspects of potassium and sodium uptake and efflux will be 43 

considered and our current knowledge regarding the structure and function of the 44 

implicated transporters will be presented. Our understanding of how potassium homeostasis 45 

is regulated and how yeast cells respond to both excess extracellular sodium and potassium 46 

and potassium starvation will be discussed. Finally, some applications of this knowledge to 47 

other fields will also be presented. 48 

The Role of H
+
-ATPases in potassium and sodium transport 49 

Pma1 50 

In S. cerevisiae, the plasma membrane H+-ATPase encoded by the PMA1 gene is largely 51 

responsible for creating the proton motive force across the plasma membrane. This proton 52 

gradient drives nutrient uptake by secondary, proton-coupled carriers (BARNETT 2008). The 53 

PMA1 gene is essential and it encodes a 100 kDa P2-type ATPase that is highly stable and 54 

abundant in the yeast plasma membrane and has been estimated to consume at least 20% 55 

of cellular ATP (BENITO et al. 1991; MORSOMME et al. 2000). The enzyme is activated by 56 

glucose and acidic internal pH and, not surprisingly, alterations in its activity have an 57 

important impact on intracellular pH and ion homeostasis (SERRANO 1983; PERLIN et al. 1988; 58 

GOOSSENS et al. 2000). Mutants with partial loss of function of the PMA1 gene are unable to 59 

grow at low external pH and display tolerance to cations due to alterations in the membrane 60 

potential that lead to a decrease in the uptake of positively charged molecules, such as 61 

Hygromycin B (MCCUSKER et al. 1987; PERLIN et al. 1988). The S. cerevisiae genome contains a 62 

second gene, PMA2 which is approximately 90% identical to PMA1 (SCHLESSER et al. 1988). 63 

Although the Pma2 protein can pump protons and can substitute for Pma1 when expressed 64 

under the control of a strong promoter, in standard growth conditions, this gene is 65 

expressed at very low levels and therefore does not have an important impact on ion 66 

homeostasis (SUPPLY et al. 1993).  67 

Transcriptional regulation of PMA1 (and in some cases PMA2) has been described in 68 

response to carbon source (mediated by the Rap1 and Gcr1 transcription factors), during the 69 

diauxic shift, entry into stationary phase and stress conditions (RAO et al. 1993; PORTILLO 70 

2000; FERNANDES and SÁ-CORREIA 2003). As mentioned, on the protein level, decreased 71 

intracellular pH activates the enzyme, as does glucose addition. The mechanism of activation 72 

by acidic pH is not clear, but it may reflect the pH optimum of the enzyme that has been 73 

observed in reconstituted systems or post-translational modifications yet to be defined on 74 

the molecular level. Glucose activation of Pma1 rapidly results in an increase in the Vmax and 75 

a decrease in the affinity for ATP and is mediated, at least in part, by phosphorylation of the 76 

autoinhibitory C-terminal domain. Although the exact molecular mechanism has yet to be 77 



fully elucidated, several Pma1 phosphorylation sites have been implicated. Specifically, the 78 

phosphorylation of threonine 912 is required for glucose activation, but appears to be 79 

constitutive, while phosphorylation of serine 911 is induced by glucose addition and is also 80 

necessary for full Pma1 activation (LECCHI et al. 2007). The NPR family kinases Ptk2 and Hrk1 81 

have been shown to positively regulate Pma1 activity (GOOSSENS et al. 2000). Evidence has 82 

been presented suggesting the Ptk2 phosphorylates serine 899 of Pma1 (ERASO et al. 2006). 83 

Moreover, a role for the PP1-type phosphatase, Glc7 in the regulation of Pma1 activity has 84 

been proposed (WILLIAMS-HART et al. 2002). In addition, the Yck1 and Yck2 casein kinases 85 

have been reported to negatively regulate Pma1 activity (ESTRADA et al. 1996). Other studies 86 

have suggested a role for calcium-dependent signaling in glucose-mediated Pma1 activation, 87 

although the mechanism is still unknown (TRÓPIA et al. 2006; PEREIRA et al. 2008; BOUILLET et 88 

al. 2012).   89 

V-ATPase 90 

The vacuolar H+-ATPase (V-ATPase) is also involved in determining membrane potential 91 

across membranes of intracellular compartments and accordingly, it plays a crucial role in 92 

several physiological processes, including ion homeostasis (KANE 2007). The V-ATPase is a 93 

protein complex composed of a soluble, multi-subunit V1 catalytic region and a membrane-94 

embedded, multi-subunit VO region, whose structural organization is similar to the F1Fo-95 

ATPase (NISHI and FORGAC 2002; ZHANG et al. 2008). Two V-ATPase complexes have been 96 

identified. The first complex, which is present in vacuolar membranes contains the Vph1 97 

subunit in the Vo complex and is responsible for acidifying the vacuole. In the second 98 

complex, Stv1 substitutes Vph1 and this complex is responsible for the acidification of Golgi 99 

apparatus/endosomes, where it is targeted (TARSIO et al. 2011). The V-ATPase is regulated on 100 

the level of complex formation/dissociation. This regulation seems to be conserved 101 

evolutionarily and is complex. For example, glucose starvation, decreasing intracellular pH, 102 

and poor nutrient conditions favor the dissociation and concomitant reduction in the 103 

activation of the V-ATPase, whereas glucose re-addition and increasing intracellular pH have 104 

the opposite effect (KANE 2012).  105 

In S. cerevisiae, experimental evidence has been reported that shows that the Pma1 plasma 106 

membrane and the V-ATPases act coordinately to control cytosolic pH homeostasis 107 

(MARTÍNEZ-MUÑOZ and KANE 2008). The electrogenic nature of their combined activities is a 108 

major determinate in the generation of not only plasma membrane, but also organellar 109 

membrane potential. As mentioned, this electrochemical gradient is used for the uptake of 110 

nutrients from the cell environment by proton-coupled carriers (BARNETT 2008). It also 111 

thought to play an important role in the ability of yeast cells to accumulate potassium 112 

against a steep concentration gradient and to enable the extrusion and organellar 113 

distribution of potassium and sodium via proton-coupled antiporters (GABER 1992; RODRÍGUEZ-114 

NAVARRO 2000; ARINO et al. 2010). 115 

Potassium uptake and efflux 116 



Since as early as the 1940’s, researchers proposed a relationship between potassium and 117 

proton transport in yeast and during the following years many aspects these transport 118 

processes were characterized (BORST-PAUWELS 1981). The steady state intracellular potassium 119 

concentration in yeast cells is maintained between 200 to 300 mM depending on the strain 120 

and growth conditions and is thought to depend on continuous uptake and efflux processes 121 

(LAPATHITIS and KOTYK 1998; ARINO et al. 2010). As mentioned, the membrane potential 122 

generated by the plasma membrane H+-ATPase is vital for potassium uptake in yeast, 123 

however, the coordination of potassium fluxes across the plasma membrane is also crucial to 124 

maintain proper membrane potential, as demonstrated by the hyperpolarization of mutants 125 

defective in high affinity uptake and the depolarization observed in mutants lacking 126 

potassium efflux systems (MADRID et al. 1998; MARESOVA and SYCHROVA 2005; KINCLOVA-127 

ZIMMERMANNOVA et al. 2006; MARESOVA et al. 2006). Thus, it is clear that the coordination of 128 

these processes is crucial for yeast cell growth and survival. In the next sections, the proteins 129 

responsible for mediating the uptake and efflux of potassium across the plasma membrane 130 

will be discussed. 131 

Trk1 and Trk2 132 

In 1984, Rodriguez-Navarro and Ramos proposed a dual mode of potassium transport by 133 

showing that yeast displayed both high and low affinity potassium uptake depending on the 134 

growth history of the cells (RODRÍGUEZ-NAVARRO and RAMOS 1984). In 1988, the first potassium 135 

transporter gene, TRK1 was cloned on the basis of its ability to complement a yeast mutant 136 

defective in potassium uptake (GABER et al. 1988). TRK1 is a non-essential gene that encodes 137 

an integral membrane protein of 1235 amino acids (Figure 1). Based on the structure of the 138 

KcsA K+ channel from Streptomyces lividans, Trk1 has been proposed to be composed of four 139 

repetitions of an M1PM2 motif (DURELL and GUY 1999). M1 and M2 are transmembrane 140 

segments that are connected by the P helix (Figure 1). An extensive mutagenesis analysis has 141 

identified residues in the second transmembrane helix (M2) of the fourth M1PM2 repetition 142 

(M2D) of Trk1 as being crucial for potassium transport (HARO and RODRÍGUEZ-NAVARRO 2003). It 143 

has been proposed that the four M1PM2 repetitions of the Trk1 monomer fold into a 144 

symmetric array and that four Trk1 monomers form a tetramer in the plasma membrane 145 

(DURELL and GUY 1999). Although initial reports suggested that Trk1 is localized in plasma 146 

membrane lipid “rafts”, further characterization of the protein distribution in the yeast 147 

plasma membrane shows that essentially all integral membrane proteins are found in two 148 

classes of microdomains that share biochemical properties with mammalian “rafts”, but the 149 

overall organization and function of these microdomains appears to be quite different 150 

(YENUSH et al. 2005; MALINSKY et al. 2013). 151 

Whereas wild type strains are able to grow in low micromolar potassium concentrations and 152 

exhibit high affinity and high velocity potassium uptake (Vmax 30 nmol/mg cells/min and Km 153 

of 0.024 mM), strains lacking TRK1 are unable to grow in 0.1 mM KCl and show a marked 154 

reduction in potassium uptake kinetics, demonstrating that Trk1 is a major contributor to 155 



high affinity potassium uptake (RODRÍGUEZ-NAVARRO and RAMOS 1984; GABER et al. 1988). Each 156 

transporter has two cation binding sites and normally functions as a K+ co-transporter, 157 

thought to be driven by the membrane potential created by the Pma1 H+-ATPase. However, 158 

this affirmation assumes a plasma membrane potential of -300 mV, which has not be 159 

confirmed experimentally in S. cerevisiae. Thus, other scenarios, such as Trk1 acting as a K+-160 

Na+ symporter cannot be ruled out (reviewed in: (ARINO et al. 2010)).  161 

TRK1 orthologues have been identified in other yeast, fungi and higher plants (RODRÍGUEZ-162 

NAVARRO 2000). In fact, S. cerevisiae contains a second gene, TRK2 that encodes a protein 163 

that is 55% identical to Trk1 (KO and GABER 1991). The proposed topology is the same for 164 

Trk2, with the main structural difference residing in the length of the second cytosolic 165 

segment (Trk1 642 aa; Trk2 326 aa) (Figure 1). Deletion of the TRK2 gene has little effect on 166 

yeast growth, although the potassium requirements of the double trk1 trk2 mutant increase 167 

10-fold, as compared to the trk1 simple mutant (KO et al. 1990). Trk2 was initially proposed 168 

to mediate low affinity transport. However, later studies showed that Trk2, when expressed 169 

from a strong promoter, can mediate high/moderate affinity potassium uptake (RAMOS et al. 170 

1994; MICHEL et al. 2006). Thus, although Trk2 participates in potassium uptake, Trk1 is the 171 

dominant transporter, likely due to the higher expression of the TRK1 gene. Interestingly, 172 

the Trk transporters have also been shown to mediate the efflux of anions such as Cl-, I- and 173 

Br- and SCN- and NO3
-, presumably through the pore created by the formation of the Trk1 or 174 

Trk2 tetramers (KURODA et al. 2004; RIVETTA et al. 2011). Although the physiological 175 

significance of this activity detected in electrophysiology experiments is not clear, it has 176 

been proposed to balance charges generated by Pma1 proton pumping activity (RIVETTA et al. 177 

2011).  178 

As mentioned, Trk1 is the transporter responsible for potassium uptake and as such plays an 179 

important role in yeast physiology. Although there is no evidence for transcriptional 180 

regulation of either TRK1 or TRK2 in response to cation-related stresses, many proteins have 181 

been identified that affect the activity of this transporter, presumably at the post-182 

translational level (Figure 2). For example, the functionally redundant protein kinases 183 

encoded by the HAL4 (SAT4) and HAL5 genes were identified as positive regulators of Trk1 184 

(MULET et al. 1999). Overexpression of these genes confers tolerance to toxic concentrations 185 

of NaCl or LiCl and this phenotype requires the presence of the TRK1 and TRK2 genes. 186 

Moreover, the double hal4 hal5 mutant presents defects in Rb+ uptake and a slow growth 187 

phenotype in minimal media that can be ameliorated with increased external potassium. 188 

Evidence for direct phosphorylation of Trk1 by these kinases is lacking. However, it has been 189 

shown that the Hal4 and Hal5 kinases are required for Trk1 plasma membrane accumulation 190 

(PEREZ-VALLE et al. 2007). The deletion of the last 35 amino acids of the Trk1 protein stabilizes 191 

the transporter in the plasma membrane, suggesting that this region is implicated in plasma 192 

membrane delivery and/or maintenance. Interestingly, several other nutrient transporters, 193 

in addition to Trk1, also fail to accumulate at the plasma membrane in hal4 hal5 mutants 194 



leading to defects in both carbon and nitrogen metabolism, suggesting a more general role 195 

for the Hal4 and Hal5 kinases (PEREZ-VALLE et al. 2010).  196 

The Arl1 protein, which encodes a G protein of the Ras superfamily involved in protein 197 

trafficking, has been suggested to modulate Trk1 activity, as toxic cation sensitivity and a 198 

reduction in Rb+ uptake has been documented in the mutant strain (MUNSON et al. 2004). 199 

Moreover, both HAL4 and HAL5 act as multi-copy suppressors of the arl1 mutant strain. 200 

However, in this report no defect in Trk1 protein levels or trafficking was observed in arl1 201 

mutants, so the mechanism through which Arl1 regulates potassium transport has yet to be 202 

elucidated. Other protein kinases such as Sky1 and Snf1 have also been implicated in the 203 

regulation of Trk1. Mutants lacking the SR protein kinase SKY1 show alterations in Rb+ 204 

uptake and membrane potential, suggested to be mediated by alterations in Trk1 activity, 205 

although the mechanism is unknown and other researchers have described a Trk1-206 

independent role for Sky1 in the regulation of ion homeostasis (EREZ and KAHANA 2002; 207 

FORMENT et al. 2002). In the case of the AMP kinase homologue Snf1, mutant strains are 208 

unable to fully activate potassium uptake. Moreover, it was shown that the residual kinase 209 

activity of a non-phophorylated Snf1 isoform can activate high affinity potassium uptake, but 210 

again, the molecular basis is unknown (PORTILLO et al. 2005). Interestingly, two Snf1 211 

phosphorylation sites are listed in the Phosphogrid database for Trk1, although they have 212 

not be confirmed directly (www.phosphogrid.org). The gene encoding the trehalose-6-213 

phosphate synthase gene (TPS1) has been shown to activate Trk1 (MULET et al. 2004). Several 214 

lines of evidence suggest that the mechanism involves the direct or indirect activation of 215 

Trk1 by glucose phosphates (Glc-1-P and Glc-6-P), which would be in agreement with earlier 216 

studies showing that potassium uptake is activated by increased levels of phosphorylated 217 

sugars (ALIJO and RAMOS 1993).   218 

Protein phosphatases have also been reported to modulate Trk1 activity. First, early reports 219 

suggested that the Ca2+/calmodulin-dependent calcineurin phosphatase is required for Trk1 220 

to properly discriminate between potassium and sodium under conditions of salt stress 221 

(MENDOZA et al. 1994). More recently, it was shown that the absence of calcineurin also 222 

affects high affinity potassium uptake in the absence of salt stress (CASADO et al. 2010). The 223 

mechanism of this regulation is thought to involve the calcineurin-dependent regulation of 224 

the HAL5 gene. Several lines of evidence suggest that a second protein phosphatase, Ppz1 is 225 

an important regulator of Trk1 activity. Strains lacking PPZ1 and the related PPZ2 gene are 226 

tolerant to toxic cations, as are strains that overexpress the Ppz1 regulatory subunit HAL3 227 

(FERRANDO et al. 1995; POSAS et al. 1995; DE NADAL et al. 1998). In addition, strains lacking the 228 

PPZ1 and PPZ2 genes display increased turgor pressure and increased pH, due to excess 229 

potassium accumulation (YENUSH et al. 2002). These phenotypes require the presence of the 230 

TRK1 and TRK2 genes. Furthermore, Ppz1 was shown to co-localize and physically interact 231 

with Trk1 and in ppz1 ppz2 mutants an increase in Trk1 phosphorylation levels are observed 232 

(YENUSH et al. 2005). Taken together, these data suggest that Ppz1 is a negative regulator of 233 

Trk1. Moreover, the interaction between Ppz1 and Hal3 is pH-dependent, leading to a model 234 



in which the Hal3-Ppz1 complex participates in the maintenance of internal potassium 235 

concentrations by responding to changes in internal pH. The kinase(s) responsible for Trk1 236 

phosphorylation and the mechanism by which this class of post-translational modification 237 

alters the properties of the transporter still need to be defined.   238 

An alternative approach that has been taken to identify regulators of Trk1 is high-throughput 239 

screening of the yeast mutant collection looking for genes whose disruption leads to 240 

increased or decreased tolerance to toxic cations, such as hygromycin B (BARRETO et al. 2011; 241 

FELL et al. 2011). In these screens, 150-200 mutants encoding genes belonging to several 242 

functional groups were identified, including protein kinases and phosphatases, transcription, 243 

cell cycle, and DNA processing were enriched. Some of the regulators identified in both 244 

screens have been mentioned above, such as Arl1, Sky1, Hal4, and Hal5. Interestingly, both 245 

screens also identified many mutants related to various aspects of vesicle trafficking, such as 246 

SNARE proteins and components of the CORVET and HOPS complexes. However, many of 247 

these mutants are not defective in Trk1 plasma membrane accumulation as might be 248 

expected, thus their participation in the regulation of potassium uptake remains to be 249 

defined.    250 

Proteins involved in low affinity potassium uptake  251 

As mentioned, S. cerevisiae cells display high and low affinity potassium uptake depending 252 

on the growth history of the cells and the media employed. Under normal growth 253 

conditions, where the potassium concentration is not limiting, Trk1 would mediate the 254 

majority of the so-called low affinity potassium uptake. When the extracellular potassium 255 

concentration decreases, Trk1 switches to a high affinity mode to mediate growth in the 256 

presence of as little as 10 µM K+. Importantly, deletion of both TRK1 and TRK2 in S. cerevisiae 257 

is not lethal. These mutant strains display ectopic low affinity potassium uptake, indicating 258 

that additional mechanisms of potassium uptake must exist (MADRID et al. 1998). 259 

Electrophysiology studies revealed inward potassium currents in trk1 trk2 mutants, whose 260 

activity is inhibited by calcium (BIHLER et al. 1998; BIHLER et al. 2002). A putative channel was 261 

proposed to be responsible for these currents and named NSC1 (non-specific cation 262 

channel), but the protein responsible was not identified. It has been proposed that the “very 263 

low affinity” potassium uptake observed in trk1 trk2 strains is mediated by multiple 264 

transport processes (reviewed in: (ARINO et al. 2010)). Recently, two putative low affinity 265 

potassium transporter proteins were identified that may account for some of these currents. 266 

Kch1 and Kch2 (Prm6) were identified as necessary components of the pheromone-induced 267 

activation of the high affinity Ca2+ influx system (HACS) (STEFAN et al. 2013). These fungal-268 

specific proteins are predicted to have several transmembrane segments and have been 269 

shown to localize to the yeast plasma membrane. The inward rectifying currents are notably 270 

reduced in strains lacking both KCH1 and KCH2 and overexpression of either gene improves 271 

the growth of trk1 trk2 strains in low potassium medium, supporting a role for these 272 

proteins as potassium transporters or channels. However, under normal growth conditions, 273 



their activity appears to be eclipsed by much higher Trk1 activity. The fact that inward 274 

rectifying currents are still observed in strains lacking trk1 trk2 kch1 and kch2 indicate that 275 

additional mechanisms of potassium uptake are present. Candidates for these uptake 276 

systems include non-specific uptake by the Qdr2 drug/H+ antiporter and sugar and amino 277 

acid permeases (KO et al. 1993; WRIGHT et al. 1997; VARGAS et al. 2007). Finally, deletion of 278 

the gene encoding a small hydrophobic protein called Pmp3, which is highly conserved in 279 

yeast and plants, has been proposed to facilitate cation uptake in a Trk1,2-independent 280 

manner, via an unknown mechanism (NAVARRE and GOFFEAU 2000).        281 

Tok1 282 

At least three different transporters contribute to potassium efflux in S. cerevisiae. Although 283 

both Ena1 and Nha1 can transport potassium, they were first identified based on their 284 

capacity for sodium efflux, and so will be discussed below. The third protein, Tok1, is an 285 

outwardly rectifying plasma membrane potassium channel and it is the only potassium-286 

specific efflux system described in yeast (GUSTIN et al. 1986; BERTL et al. 1993; KETCHUM et al. 287 

1995; ZHOU et al. 1995; REID et al. 1996). The TOK1 gene encodes a protein of 691 amino 288 

acids that contains eight transmembrane segments, the last four of which participate in the 289 

formation of two pore-forming P domains responsible for K+ conductance (Figure 1) 290 

(KETCHUM et al. 1995; MARTINAC et al. 2008). The activity of the channel is regulated by both 291 

membrane potential and external potassium (BERTL et al. 1993; VERGANI et al. 1997; FAIRMAN 292 

et al. 1999). Accordingly, depolarization of the membrane leads to channel opening and 293 

potassium efflux, presumably to restore proper membrane potential. Gating of the channel 294 

is regulated by the carboxy terminal cytosolic segment, which prevents channel closure 295 

(LOUKIN and SAIMI 2002). Although the electrophysiological data generated both in yeast and 296 

Xenopus oocytes clearly define the activity of the Tok1 channel, the physiological role of this 297 

potassium efflux activity remains unclear, as no growth-related phenotypes have been 298 

detected for the tok1 mutant strain (GUSTIN et al. 1986; BERTL et al. 1993; KETCHUM et al. 299 

1995; ZHOU et al. 1995; LESAGE et al. 1996; REID et al. 1996; LOUKIN et al. 1997; BERTL et al. 300 

1998; BERTL et al. 2003). The function of Tok1 may involve plasma membrane potential 301 

maintenance as it has been shown that the tok1 mutant are depolarized, while strains 302 

overexpressing TOK1 are hyperpolarized (MARESOVA et al. 2006). Tok1 has also been reported 303 

to be phosphorylated almost immediately upon sodium chloride treatment by the Hog1 304 

MAP kinase (PROFT and STRUHL 2004). The HOG signaling pathway is a conserved Mitogen 305 

Activated Protein Kinase (MAPK) pathway, which in conditions of hyperosmotic stress leads 306 

to the activation of the Hog1 MAP kinase (reviewed in ((DE NADAL et al. 2002)). Although the 307 

functional consequences of this phosphorylation were not examined in detail in this study, 308 

mathematical modeling predicts that Hog1-mediated phosphorylation of Tok1 reduces Na+ 309 

influx under NaCl stress (KE et al. 2013).  310 

Sodium uptake and efflux 311 



As discussed earlier, due to its toxicity, sodium accumulation is actively avoided by yeast 312 

cells. Under normal laboratory growth conditions, the amount of intracellular sodium is very 313 

low. In the presence of high external concentrations, sodium is thought to enter the cell in 314 

various ways, principally by displacing potassium. For example, Trk1 and Trk2 can transport 315 

sodium, although the affinity is much lower than for potassium (HARO and RODRÍGUEZ-NAVARRO 316 

2002). In fact, in the presence of high sodium, Trk1 is thought to undergo an undefined 317 

modification which improves its capability to discriminate between the two cations and thus 318 

favor potassium uptake (MENDOZA et al. 1994).  Sodium also enters through other non-319 

specific, low-affinity potassium transporters, such as NCS1. These transporters do not appear 320 

to discriminate between these two cations, as trk1 trk2 mutant strains, which depend on 321 

these low-affinity transport mechanisms, accumulate more sodium than the wild type strain 322 

(GÓMEZ et al. 1996).  323 

Pho89 324 

Interestingly, in S. cerevisiae one sodium-dependent nutrient transporter has been 325 

described. The PHO89 gene encodes a sodium-phosphate co-transporter protein of 574 326 

amino acids with twelve predicted membrane-spanning domains (PERSSON et al. 1999)(Figure 327 

1). Expression of the PHO89 gene is induced by both phosphate limitation and alkaline pH 328 

(MARTINEZ and PERSSON 1998; SERRANO et al. 2002). The transporter, whose Km value for 329 

inorganic phosphate is 0.5 µM, is highly specific for sodium and maximum phosphate uptake 330 

is observed at 25 mM NaCl and pH 9.5 (MARTINEZ and PERSSON 1998). Another related gene, 331 

PHO84 encodes a proton-coupled phosphate transporter, which is responsible for phosphate 332 

uptake at acidic pH (PERSSON et al. 1999). Pho89 is the only known sodium-dependent 333 

secondary nutrient transporter in S. cerevisiae. Recent work shows the detectable 334 

accumulation of intracellular Na+ as a result of Pho89 activity only in the absence of Ena1 335 

(SERRA-CARDONA et al. 2014). Moreover, in this same study it was shown that the transcription 336 

of both PHO89 and ENA1 are coordinately regulated during alkaline stress. Thus, it appears 337 

that Ena1 activity is likely to suffice to avoid accumulation of toxic levels of intracellular 338 

sodium introduced via Pho89. 339 

Nha1 340 

Two classes of transport proteins have been shown to be important for sodium efflux in S. 341 

cerevisiae, Nha1 and the Ena family of ATPases. A role for Nha1 in tolerance to toxic sodium 342 

concentrations was initially shown by its recovery in a screen to identify genes improving the 343 

growth of a salt sensitive strain (PRIOR et al. 1996). The NHA1 gene encodes a protein of 985 344 

amino acids, which is predicted to contain twelve transmembrane segments and a large 345 

cytosolic carboxy terminal domain (550 amino acids) (Figure 1). The overall structure and 346 

transporter activity is conserved in all kingdoms of life, although diversity exists in the 347 

physiological function of this family of transporters. In the case of S. cerevisiae, Nha1 is 348 

localized to the plasma membrane and acts as a dimeric, electrogenic proton antiporter with 349 

similar affinity for both K+ and Na+ that is also capable of transporting Rb+ and Li+ (BAÑUELOS 350 



et al. 1998; MITSUI et al. 2005; OHGAKI et al. 2005). Thus, under acidic pH conditions, Nha1 is 351 

able to transport sodium out of the cell, although this is unlikely to be its most important 352 

physiological function. Accordingly, loss or increase of Nha1 function has been shown to 353 

influence cytosolic pH, membrane potential, Trk1-dependent potassium uptake and to be 354 

involved in the initial adaptation to both osmotic and alkaline pH stress (PRIOR et al. 1996; 355 

SYCHROVÁ et al. 1999; BAÑUELOS et al. 2002; PROFT and STRUHL 2004; KINCLOVA-ZIMMERMANNOVA 356 

et al. 2006; KINCLOVA-ZIMMERMANNOVA and SYCHROVA 2006).  357 

The expression of the NHA1 gene has not been found to be regulated under osmotic or pH 358 

stress conditions and thus is thought to represent a constitutively expressed housekeeping 359 

gene (BAÑUELOS et al. 1998). Extensive mutagenesis studies in several yeast species have 360 

identified many amino acids required for activity and substrate specificity (reviewed in 361 

(ARINO et al. 2010)). Several functions have also been ascribed to the large carboxy terminal 362 

tail. For example, a short 16 amino acid sequence predicted start at the end of the last 363 

transmembrane segment and continue into the beginning of the large cytosolic domain is 364 

required for proper function and targeting to the plasma membrane, while amino acids 920-365 

930 have been implicated in Li+ transport (KINCLOVÁ et al. 2001; MITSUI et al. 2004a). In 366 

addition, regions of the Nha1 carboxy terminus have also been defined which are 367 

responsible for the ability of NHA1 overexpression to rescue the synthetic lethality of a 368 

mutant strain lacking both the SIT4 phosphatase gene and the HAL3 gene encoding the 369 

regulatory subunit of the Ppz1 phosphatase (SIMÓN et al. 2003). The sit4 hal3 double mutant 370 

has been reported to have a defect in the G1/S transition of the cell cycle and the 371 

identification of NHA1 as a multi-copy suppressor has led to the suggestion that Nha1 plays a 372 

role in cell cycle progression, although the mechanism of the cell cycle arrest of this mutant 373 

and the basis of the NHA1-mediated rescue are not known (SIMÓN et al. 2001).  374 

As mentioned above, Nha1 has been implicated in the initial adaptation to hyperosmotic 375 

stress. In addition to Tok1 (see above), upon salt stress, the Hog1 MAP kinase also very 376 

rapidly phosphorylates Nha1 on T765 and T876 (PROFT and STRUHL 2004). Experimental data 377 

presented by these authors show that, under certain conditions, this post-translational 378 

modification increases its ability to confer tolerance to NaCl and so was interpreted as 379 

activating Nha1 sodium extrusion activity. Subsequently, Kinclova-Zimmermannova and 380 

Sychrova showed that sorbitol treatment decreases Nha1 K+ efflux activity in a Hog1-381 

dependent manner (KINCLOVA-ZIMMERMANNOVA and SYCHROVA 2006). Further experiments are 382 

required to definitively determine the function and molecular mechanism of this post-383 

translational modification. In agreement with a role for multiple phosphorylation in the 384 

regulation of Nha1, the phospho-binding 14-3-3 protein, Bmh1, was found to interact with 385 

Nha1 and to influence toxic cation tolerance (ZAHRÁDKA et al. 2012).  However, the Nha1-386 

Bmh1 interaction does not require the presence of the Hog1 kinase and the mechanism by 387 

which this interaction may affect Nha1 activity is as yet undefined. An additional 12 388 

phosphorylation sites are listed in the Phosphogrid database in the carboxy terminus of 389 

Nha1, some of which are suggested to respond to salt stress and may represent candidates 390 



for 14-3-3 protein interaction sites (www.phosphogrid.org). Another protein, named Cos3 391 

has also been described to interact with Nha1 (MITSUI et al. 2004b). Gain or loss of function 392 

of this gene has been shown to alter salt resistance in a Nha1-dependent manner, although 393 

the mechanism by which it may regulate the antiporter is unclear, especially considering that 394 

it is localized mostly to the vacuolar membrane.  395 

Ena1 396 

As mentioned, at acidic intracellular pH the Nha1 antiporter can extrude sodium, whereas at 397 

higher pH, the Ena1 transporter is principally responsible for sodium extrusion (BAÑUELOS et 398 

al. 1998). Chromosome IV of most yeast genomes contains 3-5 tandem copies encoding ENA 399 

P-type ATPases, which are classified in the fungal-specific IID subfamily (for reviews, see 400 

(BENITO et al. 2002; ARINO et al. 2010; PALMGREN and NISSEN 2011)). One exception is the 401 

CEN.PK strain and its derivatives that encode only one divergent ENA gene called ENA6 402 

(DARAN-LAPUJADE et al. 2009). In the rest of the strains analyzed, the ENA genes encode 403 

identical or nearly identical proteins that are 1091 amino acids long and are predicted to 404 

contain ten transmembrane segments and a larger cytosolic nucleotide-binding domain 405 

between the fourth and fifth membrane helices (Figure 1). ENA transporters are localized to 406 

the plasma membrane and form a typical phospho-enzyme intermediate, using the energy 407 

generated from ATP hydrolysis to transport K+, Na+ or Li+ (with varying affinities) against 408 

their concentration gradient (HARO et al. 1991; WIELAND et al. 1995; BENITO et al. 1997). Lack 409 

of the ENA genes, either in the CEN.PK strains or by genetic manipulation deleting the 410 

complete cluster, leads to marked salt and alkaline pH sensitivity, confirming the role of 411 

these genes as important participants in sodium (and lithium) extrusion (HARO et al. 1991; 412 

DARAN-LAPUJADE et al. 2009). At the post-translational level, very little is known regarding 413 

possible regulation of ENA proteins. Strains lacking the SRO7 gene, which encodes a protein 414 

involved in exocytosis homologous to the Drosophila Lgl tumor suppressor gene, were 415 

shown to be salt sensitive and to display defects in the proper accumulation of Ena1 at the 416 

plasma membrane, although no further progress has been made (LARSSON et al. 1998; 417 

WADSKOG et al. 2006). By contrast, a considerable amount of information is available 418 

regarding the transcriptional regulation of the key component of this gene cluster, ENA1. 419 

Here, the major contributors will be discussed, but for more details, excellent reviews are 420 

available (RUIZ and ARINO 2007; ARINO et al. 2010). 421 

Under standard growth conditions, the expression of the ENA genes is low, as observed for 422 

the rest of the transport proteins discussed above. However, in contrast to other 423 

transporters whose mRNA levels are generally unaltered by environmental conditions, 424 

expression of the ENA1 gene is specifically and markedly  increased in response to osmotic, 425 

saline and alkaline pH stress via the action of several signaling pathways (MENDOZA et al. 426 

1994; MÁRQUEZ and SERRANO 1996; LAMB et al. 2001)(Figure 2). Under conditions of mild saline 427 

(0.3-0.4 M NaCl) and osmotic stress, the HOG pathway plays a dominant role in ENA1 428 

induction (MARQUEZ and SERRANO 1996). As mentioned above, among the first regulatory 429 



events to occur upon Hog1 activation is the phosphorylation of Nha1 and Tok1 (PROFT and 430 

STRUHL 2004). However, activated Hog1 quickly accumulates in the nucleus and mediates the 431 

induction of ENA1 (and many other target genes) via several mechanisms (FERRIGNO et al. 432 

1998; POSAS et al. 2000; REP et al. 2000). First, Hog1 phosphorylates the bZip transcription 433 

factor Sko1 and converts the Sko1-Ssn6-Tup1 complex from a transcriptional repressor to an 434 

activator (PROFT and STRUHL 2002). In addition, the histone deacetylase complex Rpd3-Sin3 is 435 

recruited to the ENA1 promoter in a Hog1-dependent manner, facilitating the association of 436 

RNA polymerase II and transcriptional activation (DE NADAL et al. 2004).  Finally, Hog1, like 437 

other MAP kinases, has also been shown to be involved in transcriptional elongation of many 438 

of its target genes under stress conditions, but whether this activity of Hog1 is involved in 439 

ENA1 induction has not been reported (reviewed in (DE NADAL and POSAS 2011)).  440 

Another important pathway regulating the induction of the ENA1 gene under stress 441 

conditions is mediated by the protein phosphatase, calcineurin (MENDOZA et al. 1994). 442 

Calcineurin is a calcium/calmodulin-dependent, PP2B-type heterodimeric phosphatase 443 

composed of one of two redundant catalytic subunits (Cna1 or Cna2) and the regulatory 444 

subunit encoded by the CNB1 gene (KLEE et al. 1988). Osmotic stress has been proposed to 445 

provoke a calcium burst responsible for the activation of the calcineurin pathway 446 

(MATSUMOTO et al. 2002). Induction of the expression of the gene encoding the Na+-ATPase 447 

by calcineurin occurs mainly through the dephosphorylation of the transcription factor Crz1 448 

which has been shown to bind to two calcineurin-dependent response elements (CDRE) in 449 

the ENA1 promoter and activate transcription (MENDIZABAL et al. 2001). Mutations in genes 450 

encoding another protein phosphatase, Ppz1 and its regulatory subunit, Hal3, have also been 451 

shown to affect ENA1 expression (FERRANDO et al. 1995; POSAS et al. 1995). As discussed 452 

above, Ppz1 is a negative regulator of Trk1. In the ppz1 mutant, an increase in basal ENA1 453 

transcription is observed and it has been shown to be fully dependent on the 454 

calcineurin/Crz1 pathway, suggesting that Ppz1 is a negative regulator of calcineurin (RUIZ et 455 

al. 2003). Mutants lacking both the PPZ1 and PPZ2 genes display an increase in internal K+ 456 

and a more alkaline cytosolic pH, which contribute to even higher basal levels of ENA1 457 

(YENUSH et al. 2002). In this case, both the calcineurin/Crz1 pathway and a second alkaline 458 

responsive element in the ENA1 promoter contribute to the higher mRNA levels (RUIZ et al. 459 

2003).       460 

Although it has been shown that the Hog1 and calcineurin pathways account for the vast 461 

majority of ENA1 induction in response to saline and osmotic stress, other pathways have 462 

also been identified that contribute to the regulation of ENA1 expression in response to 463 

different stresses (MARQUEZ and SERRANO 1996). For example, several studies have shown 464 

that the C2H2 family zinc finger transcription factor, Rim101 is important for ENA1 induction 465 

in conditions of alkaline stress, in cooperation with the AMP kinase homologue, Snf1 (see 466 

below) and the calcineurin pathway (LAMB et al. 2001; SERRANO et al. 2002; PLATARA et al. 467 

2006). Rim101 acts as a negative regulator of the Ngr1 repressor. Thus, upon activation of 468 

Rim101, Ngr1-mediated repression is released, leading to transcriptional activation of ENA1 469 



(LAMB and MITCHELL 2003). Mutants lacking RIM101 are sensitive to toxic cations and this 470 

phenotype was initially attributed to defects in the induction of ENA1 transcription. 471 

However, in response to moderate saline stress, ENA1 induction is not affected in rim101 472 

mutants, likely due to the dominant role played by the Hog1 pathway. In this case, the 473 

Rim101 pathway is required for proper accumulation of the Ena1 protein (M. Marques and L. 474 

Yenush, submitted).  475 

 ENA1 expression has also been shown to respond to nutrient availability. For example, ENA1 476 

expression is under glucose repression: expression is higher in media containing galactose, 477 

instead of glucose as the carbon source (ALEPUZ et al. 1997). This induction has been shown 478 

to require ENA1 promoter sequences that are bound by the Mig1 and Mig2 transcriptional 479 

repressors and to be mediated by the Snf1 kinase (ALEPUZ et al. 1997; PROFT and SERRANO 480 

1999). Mutants lacking the snf1 gene are sensitive to toxic cation concentrations (ALEPUZ et 481 

al. 1997). In addition to its role as a regulator of Trk1, mentioned above, defects in ENA1 482 

induction have also been postulated to contribute to this snf1 phenotype. However, in the 483 

case of salt stress, it appears that the Ngr1 repressor, and not Mig1, are involved in Snf1-484 

mediated ENA1 induction (YE et al. 2008). Interestingly, in the case of alkaline stress, both 485 

MIG and Ngr1 promoter elements have been implicated in Snf1-dependent ENA1 induction 486 

(PLATARA et al. 2006). Signal transduction routes responding to nitrogen source quality can 487 

also influence ENA1 expression. More specifically, treatment with rapamycin, which inhibits 488 

the TORC1 signaling pathway, has been shown to lead to an increase in ENA1 mRNA levels 489 

(CRESPO et al. 2001). The salt sensitivity of mutants in two TOR-regulated GATA transcription 490 

factors, Gln3 and Gat1, and the presence of GATA motifs in the ENA1 promoter suggest that 491 

these proteins mediate rapamycin-dependent ENA1 induction. However, additional studies 492 

showing  the absence of ENA1 regulation by the Sit4 phosphatase, a regulator of Gln3, and 493 

the cytoplasmic localization of Gln3 under salt stress conditions have called into question the 494 

validity of this straightforward model (MASUDA et al. 2000; TATE and COOPER 2007). Finally, the 495 

Protein kinase A (PKA) pathway has been implicated in the inhibition of ENA1 induction by 496 

controlling the subcellular localization and increasing the repressor activity of the Sko1 497 

transcription factor and by antagonizing the calcineurin pathway, through the 498 

phosphorylation of Crz1 (NAKAMURA et al. 1993; PASCUAL-AHUIR et al. 2001; PROFT et al. 2001; 499 

KAFADAR and CYERT 2004).      500 

Intracellular K
+
/Na

+
 transport proteins 501 

One shortcoming of many of the approximations routinely used to study ion homeostasis in 502 

yeast is that the intracellular distribution of the different elements is not always considered. 503 

It has long been known that yeast cells accumulate many solutes, including cations, in the 504 

vacuole and this sequestration has been proposed to be important for both proper 505 

homeostasis and survival in response to ionic stress conditions (OKOROKOV et al. 1980; PERKINS 506 

and GADD 1993; NASS et al. 1997). The presence of ion transporters in the membranes of 507 

organelles indicates that subcellular compartmentalization and distribution of ions is actively 508 



maintained by the cell. The first attempts to measure the distribution of potassium in yeast 509 

was carried out in 1976 using energy-dispersive X-ray microanalysis (ROOMANS and SEVÉUS 510 

1976). These authors concluded that the amount of potassium was similar in the cytoplasm 511 

and nucleus and that vacuoles contained half the amount of potassium found in the cytosol. 512 

For these experiments, the cells were incubated overnight in water, a treatment that is likely 513 

to distort the cation distribution as compared to cells that are actively growing. Several 514 

studies reported data estimating the cytosolic vs. vacuolar distribution in different yeast 515 

species by using treatments that specifically permeabilize the plasma membrane (OKOROKOV 516 

et al. 1980; PERKINS and GADD 1993; DE NADAL et al. 1999; MONTIEL and RAMOS 2007). Although 517 

informative, these approaches do not account for ion content in other compartments, as all 518 

of the non-cytoplasmic ion content is generally attributed to the vacuole. More recently, 519 

Herrera and co-workers used subcellular fractionation protocols and atomic emission 520 

spectrophotometry to better define the distribution of both potassium and sodium under 521 

different growth conditions (HERRERA et al. 2013). While their results confirm the 522 

accumulation of potassium and sodium in the vacuole relative to the cytosol, they also show 523 

that the nucleus contains an important percentage of the total intracellular potassium (and 524 

sodium, if present) which is maintained constant under different growth conditions, 525 

consistent with the results reported by Roomans and Sevéus (ROOMANS and SEVÉUS 1976). 526 

The authors propose that potassium and sodium enter non-specifically through nuclear 527 

pores and act to neutralize the negative charges found in this organelle, analogous to that 528 

reported in mammalian cells (STRICK et al. 2001). On the other hand, they show that the 529 

amount of potassium (and especially sodium when added to the medium) is relatively low in 530 

the cytosol and find that the amount of cytosolic potassium does not markedly change 531 

during potassium starvation, indicating mobilization from the vacuole under these 532 

conditions. The main characteristics of the transporters that contribute to this subcellular 533 

distribution of potassium and sodium will be presented below and are shown schematically 534 

in Figure 2. 535 

Vacuole  536 

Vnx1 537 

The main proton-coupled antiporter mediating potassium or sodium transport across the 538 

vacuolar membrane is encoded by the VNX1 gene (CAGNAC et al. 2007). The protein encoded 539 

by this gene is 908 amino acids long and predicted to contain 13 predicted transmembrane 540 

segments and a 242 amino acid amino terminal cytosolic domain. Vnx1 was identified in a 541 

functional screen of all antiporter mutants predicted to be localized to the vacuolar 542 

membrane or endosomes looking for alterations in Na+/H+ or K+/H+ exchange activity in 543 

purified vacuoles (CAGNAC et al. 2007). Protein sequence alignments place Vnx1 in the CAX 544 

(calcium exchanger) family, but this protein shows no calcium transport activity. Instead, this 545 

transporter exchanges protons for potassium or sodium ions, having a higher affinity for the 546 



latter. Thus, Vnx1 uses the proton gradient generated by the Vma1 H+-ATPase (see above) to 547 

mediate the transport of potassium (or sodium, if present) into the vacuole.  548 

Vcx1 and Vch1 549 

A second transporter, encoded by the VCX1 gene was subsequently shown to be responsible 550 

for the residual potassium/H+ exchange activity remaining in vacuoles purified from vnx1 551 

mutants (CAGNAC et al. 2010). This transporter, which is 411 amino acids long with 11 552 

transmembrane helices, was first characterized as a vacuolar Ca2+/H+ exchanger and this 553 

likely represents its main activity, although as stated, Vcx1 can also transport K+ (CUNNINGHAM 554 

and FINK 1996; POZOS et al. 1996). The crystal structure of this protein was recently solved, 555 

which may aid in defining the molecular determinants of substrate specificity (WAIGHT et al. 556 

2013). A recent study has provided evidence that another transporter, encoded by the VCH1 557 

gene functions as a vacuolar K+/Cl- co-transporter (PETREZSELYOVA et al. 2013). Vch1 contains 558 

1120 amino acids and 12 putative transmembrane segments. Although its transport activity 559 

has not been directly tested, based on sequence homology to other members of the cation-560 

Cl- co-transporter (CCC) family, the subcellular localization and phenotypic data 561 

demonstrating a role in the proper maintenance of intracellular potassium and vacuolar 562 

morphology, Vch1 very likely mediates electroneutral symport of potassium and chloride 563 

ions into the vacuole (ANDRÉ and SCHERENS 1995; PETREZSELYOVA et al. 2013).           564 

Endosomes/Golgi 565 

Nhx1 566 

Among the organellar monovalent cation transport proteins, the endosomal Na+/H+ 567 

antiporter encoded by the NHX1 gene was the first identified in yeast and may be the most 568 

extensively characterized (NASS et al. 1997). The Nhx1 antiporter has 12 predicted 569 

hydrophobic domains distributed over a total length of 633 amino acids. Not all of the 570 

reports in the literature are consistent regarding Nhx1 topology, but the observation that 571 

the carboxy terminal sequence of Nhx1 has been shown to interact with at least one 572 

regulatory protein (see below) suggests that it is likely that this region of the protein is 573 

cytosolic (WELLS and RAO 2001; ALI et al. 2004). Several reports have established that this 574 

transporter localizes to the membrane of late endosomes (the pre-vacuolar compartment), 575 

as well as recycling endosomes and the trans-Golgi network, where it contributes to pH 576 

maintenance within vesicles by mediating potassium (or sodium, if present) sequestration in 577 

these compartments in exchange for protons (NASS and RAO 1998; BRETT et al. 2005; KOJIMA et 578 

al. 2012). Disruption of the gene leads to several phenotypes, including sensitivity to low pH 579 

and high salt, a decrease in cytosolic pH and vesicle trafficking defects, a function shown to 580 

require the ion transporter capacity (BOWERS et al. 2000; BRETT et al. 2005; MUKHERJEE et al. 581 

2006). Accordingly, a role for Nhx1 in osmotic shock adaptation and sequestration of toxic 582 

cations and surplus potassium has been documented (NASS and RAO 1999; QUINTERO et al. 583 

2000). Nhx1 was also described to be necessary for the recruitment of the ESCRT-0 584 



component Vps27 to endosomes necessary for multi-vesicular body (MVB) formation in a 585 

cell-free assay, although a second report, using a genetic approach, suggests a role for Nxh1 586 

downstream of MVB formation (KALLAY et al. 2011; MITSUI et al. 2011). Finally, a link between 587 

Nhx1 and vesicle fusion and a physical interaction between the carboxy terminus of Nhx1 588 

and a Rab family GTPase- activating protein (Gyp6) has been reported (ALI et al. 2004; QIU 589 

and FRATTI 2010). Therefore, it appears that Nhx1 may be involved in several aspects of 590 

vesicle trafficking in yeast. 591 

Kha1 592 

Kha1 is the sodium or potassium-proton antiporter that shares the highest level of homology 593 

to bacterial antiporters (RAMÍREZ et al. 1998). The KHA1 gene encodes an 873 amino acid 594 

protein predicted to have 12 transmembrane segments, which, although initially thought to 595 

be a plasma membrane transporter, has been shown to localize to the membrane of the 596 

Golgi apparatus (RAMÍREZ et al. 1998; FLIS et al. 2005; MARESOVA and SYCHROVA 2005). The 597 

phenotypic characterization of the kha1 mutant alone or in combination with other mutants 598 

suggests that it acts as a proton-coupled antiporter facilitating the accumulation of 599 

potassium in this organelle (MARESOVA and SYCHROVA 2005). Specifically, the alkaline pH 600 

sensitivity of this mutant can be ameliorated by high external potassium. Additional studies 601 

have provided evidence for a broad substrate specificity by showing that in strains lacking 602 

the Arl1 GTPase, Kha1 increases potassium, sodium and lithium tolerance (MAREŠOVÁ and 603 

SYCHROVÁ 2010). Although the transporter activity has not yet been tested directly, Kha1 is 604 

thought to participate in the regulation of potassium and pH homeostasis in the Golgi 605 

apparatus, likely in coordination with the Gef1 chloride channel (FLIS et al. 2005). 606 

Mitochondria 607 

Ion fluxes are especially important in the mitochondria. The respiration-dependent negative 608 

membrane potential of mitochondria facilitates the entry of cations such as potassium, 609 

which, if not counter-acted, would result in excessive accumulation and osmotic swelling 610 

(reviewed in (BERNARDI 1999)).  Potassium-proton exchange (KHE) in the inner mitochondrial 611 

membrane is an essential element of Peter Mitchell’s chemiosmotic theory proposed in 612 

1961 (MITCHELL 1961). Although this activity has been well-documented in purified 613 

mitochondria from many different organisms (reviewed in (BERNARDI 1999)), the 614 

identification of the protein(s) responsible for KHE has been elusive. In S. cerevisiae, three 615 

genes have been identified to play a role in KHE: MDM38, YLH47 (MRS7) and YDL183c 616 

(NOWIKOVSKY et al. 2004; FROSCHAUER et al. 2005; ZOTOVA et al. 2010). MDM38, which was first 617 

identified in a comprehensive screen for searching for genes that affect mitochondrial 618 

function and morphology, appears to play to most important role in KHE (DIMMER et al. 2002; 619 

NOWIKOVSKY et al. 2004; NOWIKOVSKY et al. 2007; ZOTOVA et al. 2010). Mdm38 is the orthologue 620 

of the human protein Leucine zipper–EF-hand–containing transmembrane 1 (LETM1), which 621 

is thought to be responsible for the seizures observed in patients with Wolf-Hirschhorn 622 

syndrome (ENDELE et al. 1999; RAUCH et al. 2001; SCHLICKUM et al. 2004). Expression of this 623 



gene in yeast can rescue the mitochondrial function and morphology phenotypes of mdm38 624 

mutants (NOWIKOVSKY et al. 2004). Although some authors suggest that LETM1 may be 625 

involved in mitochondrial Ca2+/H+ exchange, several lines of evidence suggest that the 626 

physiological function of Mdm38 and LETM1 is related to KHE (reviewed in (NOWIKOVSKY and 627 

BERNARDI 2014)). Ylh47 (Mrs7) is homologous to Mdm38, whereas the protein encoded by 628 

the YDL183c gene shares no sequence similarity. However overexpression of either YLH47 or 629 

YDL183c can suppress mdm38 mitochondrial dysfunction and the triple mdm38 ylh47 630 

ydl183c mutant has more severe phenotypes than any of the single or double mutant 631 

combinations (NOWIKOVSKY et al. 2004; ZOTOVA et al. 2010). All three proteins are predicted to 632 

have a single membrane spanning domain and so are not likely to mediate KHE individually. 633 

However, all three proteins have been shown to be present in high molecular weight 634 

complexes and both Mdm38 and Ylh47 can oligomerize, leading to the hypothesis that these 635 

proteins are functionally redundant, necessary co-factors of an as yet unidentified KHE 636 

(ZOTOVA et al. 2010) (Figure 2).   637 

Physiological consequences and cellular responses to alterations in potassium and sodium 638 

concentrations 639 

Saline stress 640 

Perturbations in the extracellular and/or intracellular concentrations of sodium and 641 

potassium lead to diverse cellular responses. As discussed above, sodium is actively extruded 642 

from yeast cells, so that a physiological response to low sodium (assuming sufficient 643 

potassium is present) is not expected. However, in the case of exposure to high 644 

concentrations of sodium, yeast cells respond on several levels and the response varies 645 

according to the severity and duration of the treatment. High sodium concentrations present 646 

a dual toxicity; ionic stress and hyperosmotic stress.  One factor contributing to ionic toxicity 647 

is the capacity of sodium to displace potassium or in some cases magnesium in the active 648 

sites of some enzymes. For example, the HAL2 gene, which confers halotolerance upon 649 

overexpression, encodes for a nucleotidase that hydrolyses 3’-phosphoadenosine-5’-650 

phosphate (PAP) to AMP that requires magnesium for catalysis (MURGUÍA et al. 1996). 651 

Inhibition of this enzyme by low concentrations of lithium or sodium leads to the 652 

accumulation of toxic amounts of PAP and structural data suggests that lithium ions occupy 653 

a magnesium binding site necessary for proper catalysis (ALBERT et al. 2000).   654 

To avoid sodium toxicity, yeast cells actively maintain a high K+/Na+ ratio. In response to 655 

saline stress, sodium extrusion, limitation of sodium entry and vacuolar sequestration are 656 

key processes, as discussed above. Ena1 and Nha1 are largely responsible for sodium 657 

extrusion under alkaline and acidic conditions, respectively and their activation represents 658 

one important physiological response to high sodium concentrations (BAÑUELOS et al. 1998). 659 

High salt concentrations also exert hyperosmotic shock and an essential component of the 660 

response to this class of stress is the metabolic adjustment toward production and 661 

accumulation of the compatible solute, glycerol to maintain water balance (for reviews see: 662 



(BLOMBERG 2000; HOHMANN 2002)). Under these conditions, yeast cells also transiently arrest 663 

cell cycle progression and reduce both transcription and translation, presumably to provide 664 

time for adaptation, and Hog1 has been directly implicated in many of these processes (TEIGE 665 

et al. 2001; PROFT and STRUHL 2004; CLOTET and POSAS 2007; MELAMED et al. 2008).  666 

An important aspect of the salt stress response also involves remodeling of the gene 667 

expression profile. Several studies have examined the transcriptional response to high 668 

sodium concentrations and depending on the conditions employed, as many as 400 and 250 669 

genes may be up-regulated or down-regulated, respectively (POSAS et al. 2000; REP et al. 670 

2000; CAUSTON et al. 2001; YALE and BOHNERT 2001). Many of the genes whose mRNA levels 671 

are altered under saline stress are also regulated in a similar manner under a variety of 672 

stress conditions, and so represent a general stress response mediated in large part by 673 

Protein kinase A ((HOHMANN et al. 2007) and references therein). The kinetics of the 674 

transcriptional regulation of individual genes during stress conditions varies widely, with 675 

many promoters responding quickly and transiently and others whose regulation is slower 676 

and in some cases prolonged, likely correlating with the function of the encoded protein in 677 

the acute response or long term adaptation, respectively. Hog1 is required for the regulation 678 

of a subset of genes in response to saline stress, including ENA1, as discussed above, and 679 

those necessary for glycerol production (ALBERTYN et al. 1994; NORBECK et al. 1996). 680 

Interestingly, the vast majority of the genes up-regulated in response to hyperosmotic stress 681 

are not required for cell survival under these conditions (WARRINGER et al. 2003). A recent 682 

report, using a novel signal rewiring approach, suggests that the Hog1-dependent induction 683 

of only the GPD1 (glycerol‐3‐phosphate dehydrogenase‐1) and GPP2 684 

(glycerol‐3‐phosphatase‐2) genes, involved in glycerol biosynthesis, is necessary for 685 

osmoadaption (BABAZADEH et al. 2014).  686 

Analysis of gene expression has revealed many key features of stress responses. However, as 687 

mentioned, the alteration of the expression pattern of specific genes does not necessarily 688 

indicate an essential role for the encoded protein in stress adaptation. For example, even if 689 

an mRNA accumulates under certain stress conditions, the transcript must still be translated 690 

and the protein correctly processed, delivered and possibly activated in order to carry out its 691 

function. Several proteomics approaches have been undertaken to study changes in total 692 

protein accumulation under conditions of salt stress (reviewed in (SZOPINSKA and MORSOMME 693 

2010)). Irrespective of the technique employed, all studies confirm the accumulation of key 694 

enzymes needed to shift metabolism towards glycerol production, underscoring the 695 

importance of this physiological response (BLOMBERG 1995; NORBECK and BLOMBERG 1996; LI et 696 

al. 2003; SOUFI et al. 2009). A strong correlation between the subset of osmotic shock up-697 

regulated proteins and their corresponding mRNA changes is observed in almost all cases, as 698 

would be expected. However, the overall relationship between the proteomic data and 699 

published mRNA changes are generally poor, indicating the complexity inherent in 700 

extrapolating from gene expression data, as mentioned above. One study analyzed 701 

specifically the plasma membrane proteins whose levels are affected during salt stress using 702 



a quantitative, gel-free iTRAQ labeling approach (SZOPINSKA et al. 2011). Twelve plasma 703 

membrane proteins, including both eisosome components Lsp1 and Pil1, involved in 704 

endocytosis, were shown to accumulate, whereas 20 proteins, including Pma1 and ABC 705 

transporters, glucose and amino acid transporters, t-SNAREs, and proteins involved in cell 706 

wall biogenesis decreased during salt stress treatments. These data fit well with an increase 707 

in endocytosis of nutrient permeases in response to salt stress and are consistent with the 708 

decrease in amino acid uptake observed under these conditions (NORBECK and BLOMBERG 709 

1998).   710 

Increased intracellular potassium  711 

Like sodium, addition of high extracellular concentrations of potassium (> 1 M) also leads to 712 

hyperosmotic stress and so in this aspect the cellular response will be similar to that 713 

discussed above for sodium. Due to the efficacy of the Ena1 and Nha1 extrusion systems and 714 

the reduction in Trk1 activity, wild type cells do not accumulate high internal concentrations 715 

of potassium, even in the presence of very high extracellular potassium. However, mutants 716 

lacking the ENA gene cluster, NHA1 or both the PPZ1 and PPZ2 phosphatases are sensitive to 717 

high extracellular potassium, due to reduced extrusion or inability to inhibit uptake, 718 

respectively (BAÑUELOS et al. 1998; YENUSH et al. 2002). The ppz1 ppz2 mutant has been used 719 

as a tool to study some aspects of the physiological consequences of steady state increases 720 

in intracellular potassium. These strains were shown to have an increase in cell size and the 721 

intracellular pH and to display plasma membrane depolarization and constitutive activation 722 

of the Slt2/Mpk1 cell wall integrity pathway, suggesting that the cell wall is reinforced to 723 

counteract the tugor pressure resulting from increased intracellular potassium (YENUSH et al. 724 

2002; MERCHAN et al. 2004). Interestingly, resistance to DNA damaging agents is also reduced 725 

in ppz1 ppz2 mutants and these phenotypes are rescued by further disruption of the TRK1 726 

and TRK2 genes or of the SLT2/MPK1 gene and are phenocopied by overexpression of a 727 

constitutively active version of the Slt2/Mpk1 MAP kinase kinase, MKK1 (MERCHAN et al. 728 

2011). Thus, it appears that the constitutive activation of the MAP kinase pathway required 729 

for cell wall reinforcement in ppz1 ppz2 mutants is detrimental for some aspects of DNA 730 

integrity.             731 

Potassium starvation 732 

Many studies have investigated various aspects of the physiological response to and 733 

consequences of lowering internal potassium concentrations, either by modifying the 734 

external media or by examining strains with genetic modifications that lead to reduced 735 

potassium uptake, namely the trk1 trk2 and hal4 hal5 mutants. Strains lacking the TRK1 and 736 

TRK2 genes are hyperpolarized and have a slightly decreased intracellular pH, even under 737 

non-limiting potassium conditions, despite the fact that the internal potassium 738 

concentration is not different from the wild type control (MADRID et al. 1998; NAVARRETE et al. 739 

2010). The hyperpolarization of the trk1 trk2 mutants explains the general sensitivity to toxic 740 

cations, whereas the reduced intracellular pH has been attributed to decreased Pma1 741 



activity, which fits well with the reduction in amino acid uptake also observed in these 742 

mutants (YENUSH et al. 2002; NAVARRETE et al. 2010). Mutants lacking the genes encoding for 743 

the HAL4 and HAL5 kinases share many of the same phenotypes with the trk1 trk2 mutants, 744 

such as acidic intracellular pH, decreased amino acid uptake and sensitivity to toxic cations, 745 

which is expected for strains lacking positive regulators of these potassium transporters 746 

(PEREZ-VALLE et al. 2010). However, the hal4 hal5 mutants appear to have additional, Trk1-747 

independent defects which lead to a decrease in the accumulation of many nutrient 748 

transporters at the plasma membrane, although the molecular mechanism underlying this 749 

defect has yet to be defined (PEREZ-VALLE et al. 2007; PEREZ-VALLE et al. 2010). Despite the fact 750 

that different conditions were used, analysis of the gene expression profiles of both hal4 751 

hal5 and trk1 trk2 mutants shows a strong correlation among the genes that are up- or 752 

down-regulated (correlation coefficient = 0.77) and indicate cellular processes that are 753 

altered in both mutants, such as methionine biosynthesis (PEREZ-VALLE et al. 2010; BARRETO et 754 

al. 2012). Part of this phenotype may be explained by the marked reduction observed in the 755 

accumulation of the high affinity methionine permease, Mup1, which correlates with 756 

reduced methionine uptake (PEREZ-VALLE et al. 2010). Studies of these mutants highlight 757 

aspects of cell function that are affected in strains where high affinity potassium uptake is 758 

permanently disabled. Another physiological situation is the adaptation process that takes 759 

place in response to a sudden drop in external potassium concentrations.  760 

Several approaches have been taken to analyze wild type and mutant strains either grown in 761 

or shifted to media with limiting potassium concentrations in order to characterize the 762 

changes produced by the starvation and the cellular responses that lead to the re-763 

establishment of potassium homeostasis. After several hours of potassium starvation, wild 764 

type strains lose 70% of their internal potassium, the cell volume decreases by about 20% 765 

and cells become hyperpolarized, but the internal pH remains essentially the same 766 

(NAVARRETE et al. 2010). The transcriptional response to potassium starvation has been 767 

studied in two ways. In the first approach, cells were grown in chemostat cultures in the 768 

presence of limiting concentrations of potassium (HESS et al. 2006). The transcriptional 769 

response was moderate, with a total of approximately 110 different genes up- or down-770 

regulated more than 3-fold in the two lowest potassium concentrations tested (0.65 and 1.3 771 

mM), as compared with the non-limiting potassium control. The majority of the affected 772 

transcripts encode proteins involved in nitrogen metabolism. Subsequent experiments 773 

revealed ammonium toxicity under limiting potassium conditions and suggest that yeast cells 774 

respond to this toxicity by secreting amino acids (HESS et al. 2006). Ammonium was 775 

suggested and later proven to enter through the Trk potassium transporters as part of a 776 

second study investigating the transcriptional response to short-term potassium starvation 777 

(BARRETO et al. 2012). In this study, cells were grown in the presence of non-limiting 778 

potassium and then shifted to essentially potassium-free media (15 µM) and the 779 

transcriptional profile was determined at a series of time points using microarrays. More 780 

than 800 genes were shown to be up-regulated at least one time point, whereas more than 781 

900 genes were shown to be down-regulated. The bulk of the transcriptional response was 782 



not observed until 60 minutes. Based on the transcriptional profile and further experiments, 783 

the shift to potassium-free media was shown to lead to a myriad of effects, including 784 

induction of oxidative stress, alterations in sulfur metabolism, phosphate starvation, 785 

pronounced reduction in genes necessary for ribosome biogenesis and translation, 786 

activation of the retrograde pathway, alteration of cell cycle-related gene and protein 787 

expression profiles and blockage of septin assembly. A similar study was also done using a 788 

different approach: Serial Analysis of Gene Expression (SAGE)-tag sequencing (ANEMAET and 789 

VAN HEUSDEN 2014). After 60 minutes of potassium starvation, mRNA levels of 105 and 172 790 

genes were significantly up- or down-regulated, respectively. Although a lower number of 791 

genes were shown to be differentially expressed using this technique, there is a reasonable 792 

correlation between both studies, especially for genes related to the cell cycle and 793 

phosphate starvation. More recently, a detailed study confirmed and further characterized 794 

the phosphate deprivation response triggered by potassium starvation (CANADELL et al. 2015). 795 

Proteomics approaches have also been employed to examine the changes at the level of 796 

protein accumulation in control and trk1 trk2 mutants and in both non-limiting potassium 797 

and in response to potassium starvation (CURTO et al. 2010; GELIS et al. 2012). Whereas, in 798 

the trk1 trk2 mutants, no differentially expressed proteins were identified in non-limiting 799 

potassium medium, the studies using potassium-starved trk1 trk2 cells showed a marked 800 

decrease in the total amount of protein recovered after prolonged potassium starvation. 801 

However, as stated by the authors, in both studies the protein recovery was sub-optimal and 802 

so key changes in individual protein accumulation of proteins outside the pI and molecular 803 

weight range and/or below the abundance threshold may have gone undetected in these 804 

experimental approaches.   805 

A mathematical model has helped to determine key events required for effective adaptation 806 

to potassium starvation (KAHM et al. 2012). This approach has revealed a complex interplay 807 

between biophysical forces and molecular regulation facilitating potassium homeostasis by 808 

predicting that proton extrusion and an increased rate of the bicarbonate reaction are vital 809 

for cells to maintain a minimal concentration of intracellular potassium in response to 810 

sudden starvation. Upon shifting cells to potassium-free media, potassium loss proceeds in 811 

two phases; an initial rapid loss, followed by a longer and slower decrease in internal 812 

potassium. In trk1 trk2 mutants, the second phase of potassium loss is much less 813 

pronounced than in the wild type, presumably due to the hyperpolarization of the 814 

membrane. This observation indicates that the lack of the high affinity transporters is not 815 

playing a pivotal role in net potassium loss during starvation. Using what is referred to as a 816 

reverse tracking algorithm, an initial burst of Pma1 activity and the bicarbonate reaction are 817 

predicted to be necessary to maintain the minimum amount of intracellular potassium 818 

required for viability. In both cases, this burst in activity will hyperpolarize the plasma 819 

membrane, but by two different mechanisms: Pma1 activation will lead to a decrease in the 820 

internal positive charge due to proton pumping outside the cell, whereas the bicarbonate 821 

reaction will lead to increased internal negative charge due to the accumulation of HCO3
- 822 

inside the cell. Importantly, the increase in Pma1 activity and transient activation of the 823 



bicarbonate reaction in response to potassium starvation predicted by the model were both 824 

confirmed experimentally. The mechanisms by which the cells sense and signal changes in 825 

the external potassium concentrations are still unknown, but this study highlights the 826 

usefulness of mathematical models to elucidate important aspects of cell physiology. These 827 

authors also present evidence showing that internal steady state potassium concentration is 828 

determined by the external concentration, thus indicating that potassium homeostasis is an 829 

example of non-perfect adaptation. A more recent study showed that the Trk1 and Trk2 830 

transporters are required for the stabilization of intracellular potassium content by affecting 831 

the internal potassium concentrations attained at low extracellular potassium content 832 

(HERRERA et al. 2014).    833 

Extrapolations and Applications  834 

As summarized above, a large number of laboratories have contributed to various aspects of 835 

the study of potassium and sodium transport in the model yeast S. cerevisiae. This 836 

information is important from a purely scientific point of view, but it also has many different 837 

applications, some of which will be mentioned here. For example, the experimental data 838 

generated has been used to construct mathematical models describing complex 839 

physiological processes, such as response to potassium starvation and to hyperosmotic 840 

shock (KLIPP et al. 2005; KAHM et al. 2012; KE et al. 2013). The predictive power of these 841 

models has confirmed the validity of these types of approaches and can serve as a 842 

framework for modeling processes in multi-cellular organisms.  843 

On the other hand, the S. cerevisiae model system has been used as a point of reference to 844 

compare and contrast mechanisms of ion homeostasis in other yeast species, including those 845 

that cause disease in humans. Studies of the distribution and function of sodium and 846 

potassium transporters in non-conventional yeast species have been expertly reviewed 847 

(RAMOS et al. 2011). Briefly, in most yeast species studied to date, surplus potassium and 848 

sodium are extruded via the joint participation of NHA antiporters, ENA ATPases and TOK 849 

potassium channels, whereas potassium uptake is mediated by various combinations of at 850 

least three types of systems unevenly spread among the yeast species: TRK and HAK (High 851 

Affinity K+) transporters and the ACU (Alkali Cation Uptake) ATPases. Yeast HAK transporters 852 

are homologous to the Kup system of Escherichia coli and have been proposed to work as 853 

K+–H+ symporters with a high concentrative capacity (RODRÍGUEZ-NAVARRO 2000). Whereas 854 

HAK transporters are found in many species, including higher plants, functional ACU ATPases 855 

have been described only in non-conventional yeast, such as Ustilago maydis, Pichia 856 

sorbitophila and the extremely halotolerant and adaptable fungus, Hortaea werneckii 857 

(RODRÍGUEZ-NAVARRO 2000; BENITO et al. 2004; PLEMENITAŠ et al. 2014). Thus, it appears that 858 

many of the general aspects of sodium and potassium transport described above are well-859 

conserved, but depending on the niche, alternative strategies for acquiring and maintaining 860 

potassium and sodium homeostasis have evolved.  861 



A large body of evidence indicates that excessive potassium efflux and intracellular 862 

potassium depletion are key early steps in apoptosis in mammalian cells (YU 2003). Several 863 

studies suggest that these changes are also implicated in cell death in yeast. For example, 864 

prolonged potassium starvation has been shown to lead to cell death through a process in 865 

which many of the biochemical markers associated with apoptosis in metazoan cells are 866 

detected, such as phosphatidylserine externalization, changes in chromatin condensation, 867 

DNA and vacuole fragmentation, as well as enhanced accumulation of reactive oxygen 868 

species (ROS) (LAUFF and SANTA-MARÍA 2010). Moreover, both potassium and proton fluxes 869 

were shown to influence glucose-induced cell death (HOEBERICHTS et al. 2010). Using a series 870 

of mutants defective for Pma1 activity or potassium uptake or efflux, it was shown that cells 871 

that had either reduced Pma1 activity or maintained higher internal potassium 872 

concentrations were less sensitive to cell death produced by glucose addition to starved 873 

cells, whereas those with lower internal potassium were more sensitive. These effects were 874 

also correlated with ROS production and the authors suggest that this is a key event in 875 

inducing cell death under these conditions.  876 

Thus, it appears that in yeast, as in mammalian cells, internal potassium homeostasis is vital 877 

for cell survival and conditions which alter this balance can lead to cell death. This notion is 878 

further supported by studies demonstrating a connection between the fungicidal activities of 879 

killer toxin K1, Histatin 5 (Hst 5) and lactoferrin with potassium homeostasis (AHMED et al. 880 

1999; SESTI et al. 2001; BAEV et al. 2003; BAEV et al. 2004; ANDRÉS et al. 2008). Although not all 881 

the data reported are consistent with this hypothesis, Tok1 has been proposed to be the 882 

target of the yeast viral killer toxin K1, which has been shown to bind to and activate the 883 

channel from both sides of the plasma membrane (AHMED et al. 1999; SESTI et al. 2001; 884 

BREINIG et al. 2002). Hst5, a histidine-rich cationic protein produced in human saliva, is a key 885 

component of the non-immune defense system of the oral cavity that possesses both 886 

fungistatic and fungicidal activities against several potentially pathogenic fungi, such as 887 

Candida albicans, Candida glabrata, Candida krusei and Cryptococcus neoformans (TSAI and 888 

BOBEK 1997a; TSAI and BOBEK 1997b). This toxin induces non-cytolytic efflux of cellular ATP, 889 

potassium, and magnesium, implicating these ion movements in the mechanism of Hst5 890 

toxicity. Genetic approaches suggest that Tok1 modulates Hst5-mediated toxicity, whereas 891 

Trk1 was shown to be a critical effector of its fungicidal activity in C. albicans (BAEV et al. 892 

2003; BAEV et al. 2004). Similarly, lactoferrin, a protein present in all mammalian mucosal 893 

secretions, exhibits antifungal and antibacterial activities through a mechanism that is still 894 

being defined (FARNAUD and EVANS 2003). Lactoferrin causes a rapid release of potassium 895 

from C. albicans cells and cell death can be inhibited by high extracellular potassium or by 896 

treatment with chloride or potassium channel blockers, suggesting a role for potassium 897 

channels in the mechanism of action of this fungal toxin (VIEJO-DÍAZ et al. 2004a; VIEJO-DÍAZ et 898 

al. 2004b; ANDRÉS et al. 2008).       899 

As alluded to above, alterations in potassium homeostasis also affect plasma membrane 900 

potential, nutrient uptake and survival at alkaline pH, which in turn have been linked to 901 



flocculation, invasiveness and virulence. For example, hyperactivation of Ppz phosphatases 902 

results in alteration of potassium transport leading to Protein kinase A activation and 903 

increased expression of the flocculin-encoding FLO11 gene, thus modulating flocculation and 904 

invasive growth in S. cerevisiae (GONZÁLEZ et al. 2013). Whether this mechanism is relevant in 905 

pathogenic fungi is still to be determined. A very relevant finding in this context is the 906 

identification of ENA1 as a virulence gene in Cryptococcus neoformans (IDNURM et al. 2009). A 907 

subset of a library of signature-tagged insertion mutants of this human pathogenic fungus 908 

was screened in a murine inhalation model to identify genes required for virulence. 909 

Inactivation of the ENA1 gene led to an avirulent phenotype, which was attributed to the 910 

reduced viability of this mutant under alkaline pH conditions. The ability of fungi to grow in 911 

slightly alkaline conditions is essential for pathogenesis because, in general, many human 912 

host environments have a relatively high pH (reviewed in: (DAVIS 2009)). This also explains 913 

the important role of the alkaline-responsive PacC/Rim101 pathway in pathogenic yeast 914 

virulence in found in several species (reviewed in (CORNET and GAILLARDIN 2014)).  915 

Sensitivity to antifungal drugs is also affected in mutants with alterations in potassium 916 

homeostasis. Studies in S. cerevisiae have revealed that treatment with ketoconazole, 917 

miconazole or amiodarone leads to potassium efflux, similar to that observed for Hst5 and 918 

lactoferrin (PEÑA et al. 2009; CALAHORRA et al. 2011). Ketoconazole and miconazole are 919 

members of the azole class of antifungal drugs , whose main mechanism of toxicity is the 920 

inhibition of the biosynthesis of the fungal specific sterol, ergosterol by directly binding and 921 

inactivating cytochrome P-450, thus leading to alterations in the properties of the yeast 922 

plasma membrane (reviewed in: (SAAG and DISMUKES 1988)). Amiodarone is a cationic 923 

amphipathic drug that interacts preferentially with lipid membranes and has been used 924 

clinically as an anti-arrhythmic agent for many years (MASON 1987). It was shown to have 925 

broad fungicidal activity (COURCHESNE 2002). Studies aimed at determining the mechanism of 926 

action in yeast showed that mutation of PMA1, TOK1 or ENA1‐4 protected against 927 

aminodarone toxicity, suggesting that initial drug-induced hyperpolarization is important in 928 

the mechanism of antifungal activity and this was confirmed by decreasing the membrane 929 

potential by glucose removal or addition of salts (MARESOVA et al. 2009). This transient 930 

hyperpolarization is followed by depolarization, Ca2+ and H+ influx and loss in cell viability 931 

(COURCHESNE and OZTURK 2003; MARESOVA et al. 2009; PEÑA et al. 2009). Other observations 932 

consistent with a role for the determinants of potassium homeostasis in fungal drug 933 

sensitivity of pathogenic yeast includes studies showing that disruption of ENA1 and NHA1 in 934 

C. neoformans alter membrane potential and the sensitivity to several antifungal drugs (JUNG 935 

et al. 2012). Finally, in the case of C. glabrata, treatment with another azole drug, 936 

fluconazole was shown to lead to membrane hyperpolarization and increased sensitivity to 937 

cationic drugs (ELICHAROVA and SYCHROVA 2014). Moreover, in strains lacking ENA1 and/ or the 938 

CNH1 cation ATPase this combined treatment was even more effective.   939 

Taken together, these observations clearly indicate that the proteins involved in determining 940 

and maintaining plasma membrane potential through the modulation of potassium 941 



homeostasis represent promising targets for complimentary antifungal treatments. The fact 942 

that, for example, the TRK1 gene, which has no homologues in mammalian cells, is present 943 

as a single copy in the C. albicans genome and the sequence of the MPM segments (see 944 

section on Trk1) is highly conserved among fungal species suggests that inhibitors of this 945 

protein have the potential to be broad-spectrum antifungal treatments with potentially low 946 

toxicity (MIRANDA et al. 2009). 947 

S. cerevisiae is also used in a wide range of industrial processes. The impact of potassium 948 

homeostasis on nutrient uptake and cell survival will obviously affect many aspects of yeast 949 

performance in industrial fermentations. One poignant example was recently reported 950 

showing the direct effect of both external and internal potassium and pH on ethanol 951 

tolerance in conditions relevant for the industrial production of bioethanol (LAM et al. 2014). 952 

These authors showed that increasing the potassium concentration and the pH of the media 953 

leads to important improvements in both ethanol tolerance and production under high-954 

glucose and high–cell-density conditions, essentially by boosting cell viability. These results 955 

were confirmed using yeast mutants that were engineered to have increased internal 956 

potassium and pH by increasing Trk1 activity (ppz1 ppz2 mutants) and ectopically 957 

overexpressing PMA1. The ethanol production of these modified laboratory strains was 958 

superior to industrial stains currently in use. The authors suggest that this protective effect 959 

of augmenting potassium and proton fluxes is due to the counteraction of the dissipation of 960 

the potassium and proton gradients caused by partial permeabilization of the plasma 961 

membrane in the presence of high ethanol concentrations. Their work shows that these 962 

complex, but genetically determined biophysical parameters may be key points of 963 

intervention for the development of yeast strains capable of higher bioethanol production in 964 

industrial settings.     965 

The knowledge and reagents generated in S. cerevisiae have also served as a platform for 966 

discovery and characterization of ion transporters from both plants and mammals. For 967 

example, in the case of plant ion transporters, yeast mutants defective in high affinity 968 

potassium transport (trk1 trk2) were used to identify and determine structure/function 969 

relationships for the plant potassium channels KAT1 and AKT1 (ANDERSON et al. 1992; 970 

SCHACHTMAN et al. 1992; SENTENAC et al. 1992; ANDERSON et al. 1994; UOZUMI et al. 1995; 971 

NAKAMURA et al. 1997). The Arabidopsis thaliana SOS (Salt Overly Sensitive) pathway, 972 

consisting of the SOS1 sodium ATPase, the SOS2 protein kinase and the SOS3 Ca2+ sensor 973 

was functionally reconstituted in yeast strains devoid of ENA1‐4, NHA1 and NHX1 (QUINTERO 974 

et al. 2002). The Arabidopsis thaliana CHX17 gene was shown to complement the S. 975 

cerevisiae kha1 mutant phenotypes, suggesting that this transporter can function as a K+/H+ 976 

exchanger in the Golgi of yeast (MARESOVA and SYCHROVA 2006). Finally, several studies have 977 

used S. cerevisiae nhx1 or ena1‐4 nha1 nhx1 mutants to study plant intracellular Na+/H+ 978 

exchangers from both rice and Arabidopsis thaliana (GAXIOLA et al. 1999; QUINTERO et al. 979 

2000; FUKUDA et al. 2004; KINCLOVÁ-ZIMMERMANNOVÁ et al. 2004). These studies demonstrate 980 



the level of conservation that exists between yeast and plants and confirms the utility of 981 

yeast model systems for the study of higher organisms. 982 

Not surprisingly, this same complementation approach has been used for the 983 

characterization of mammalian ion transporters as well. For example, several functional 984 

studies of inward rectifying potassium channels have been done using trk1 trk2 mutants (for 985 

examples see: (TANG et al. 1995; MINOR et al. 1999; HASENBRINK et al. 2005; HAASS et al. 2007; 986 

SCHWARZER et al. 2008; D'AVANZO et al. 2010)). These heterologous expression systems have 987 

also been used for high-throughput screenings searching for small molecule modulators of 988 

potassium channels (ZAKS-MAKHINA et al. 2004; ZAKS-MAKHINA et al. 2009; BAGRIANTSEV et al. 989 

2013). The heterotrimeric ENaC sodium channel has also been functionally expressed in 990 

yeast and shown to increase salt sensitivity (GUPTA and CANESSA 2000). Mutations in this 991 

sodium channel have been linked to an inherited form of hypertension called Liddle’s 992 

Syndrome (SHIMKETS et al. 1994). Other transporters, such as the Na+,K+-ATPase, the CFTR 993 

(cystic fibrosis transmembrane conductance regulator) chloride channel and a Na+-994 

phosphate co-transporter have also been studied by heterologous expression in yeast (for a 995 

review see: (KOLB et al. 2011)). Using ena1‐4 nha1 nhx1 mutants, several mammalian Na+/H+ 996 

exchangers have also been characterized (MONTERO-LOMELÍ and OKOROKOVA FAÇANHA 1999; 997 

FLEGELOVA et al. 2006; XIANG et al. 2007). One very interesting study used the yeast model 998 

system to characterize mutations in the human NHE9 Na+/H+ antiporter that have been 999 

associated with autism (KONDAPALLI et al. 2013). In this study, equivalent mutations found in 1000 

autistic patients were introduced into the NHX1 gene and functional studies of these 1001 

modified transporters showed that two of them led to a loss of Nhx1 function. Finally, as 1002 

discussed earlier, another example of the utility of yeast to contribute to the definition of 1003 

the function of the proteins encoded by disease related genes is the discovery that the 1004 

LETM1 gene, responsible for seizures associated with some forms of Wolf-Hirschhorn 1005 

Syndrome, can functionally complement the mdm38 yeast mutant mitochondrial KHE 1006 

phenotypes (see above) (NOWIKOVSKY et al. 2004).  1007 

In conclusion, our knowledge regarding potassium and sodium transport in yeast is quite 1008 

extensive, but far from complete. Although most of the major transporters have been 1009 

identified and extensively characterized, some fluxes, such as the low affinity potassium 1010 

uptake NSC1 activity and the mitochondrial K+/H+ exchange across the inner membrane, 1011 

await molecular characterization. Moreover, several ORFs with weak sequence homology to 1012 

mammalian ion transporters still have unknown functions and may help to complete the 1013 

picture, especially in the case of the intracellular distribution of potassium and sodium. Our 1014 

understanding of the regulation of many of these transporters, especially on the post-1015 

translational level is also very limited. Integration of the signals leading to the establishment 1016 

and maintenance of ion homeostasis in response to changing environments is an area where 1017 

progress still needs to be made. Given the importance of this field to basic science and its 1018 

applications ranging from industrial processes to plant salt and drought tolerance and 1019 

mammalian physiology, disease states and drug discovery, new advances in the study of 1020 



yeast potassium and sodium transport are likely to bring new insight with both expected and 1021 

novel impacts in the future.   1022 
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Figure Legends 1027 

Figure 1. Saccharomyces cerevisiae plasma membrane potassium and sodium 1028 

transport proteins. For each protein the standard name, systematic name, Yeast 1029 

transporter information code based on the Transport classification system (YETI), 1030 

transporter type, proposed topology and substrate specificity are shown (cations in 1031 

bold are preferred substrates).  Numbers at the end of each sequence represent the 1032 

length of the protein. See text for more details and references. 1033 

Figure 2. Schematic representation of transporters and regulators controlling 1034 

potassium and sodium transport in Saccharomyces cerevisiae. See text for details and 1035 

references.  1036 
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