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ABSTRACT 16 

The effects of long-term summer deficit irrigation (RDI) strategies on ‘Navelina’ 17 

orange trees (Citrus sinensis L. Osbeck) were assessed in a drip-irrigated commercial orchard 18 

located in Senyera (Valencia, Spain). Three irrigation treatments were applied during five 19 

consecutive years (2007-2011): a control treatment, without restriction, and two RDI 20 

treatments, in which the water reduction was applied during the summer (initial fruit 21 

enlargement phase). During the first three seasons, the trees under the control treatment 22 

received 110% of the theoretically required irrigation dose (ID), and the RDI treatments 23 

received 40% and 60% of the full ID during the deficit period. During the last two years of 24 

the study, the control treatment was irrigated at 100% of the ID and the amount of water 25 
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applied in the RDI treatments was additionally decreased 20% from the reduced ID of the 26 

preceding years. The crop’s response to summer deficit irrigation was analysed in relation to 27 

tree water status, which was assessed by relying on midday stem water potential (Ψst). The 28 

lowest Ψst values were reached, as expected, at the end of the water deficit period and with the 29 

most stressed treatment. These minimum Ψst values ranged between -1.6 MPa in 2008 and -30 

2.5 MPa in 2010. In most occasions, the trees under RDI treatments showed a fast hydric 31 

recovery and had completely re-hydrated one week after restarting irrigation. Summer RDI 32 

treatments did not cause negative effects on either the amount or on the quality of the yield if 33 

the threshold value of Ψst=-2.0 MPa was not surpassed. According to the results, it can be 34 

concluded that long-term RDI strategies may be applied successfully on Navelina orange trees 35 

during summer without negatively affecting the studied parameters while allowing water 36 

savings between 12% and 27%. 37 

 38 

Keywords: yield, fruit quality, regulated deficit irrigation, stem water potential, water use 39 

efficiency. 40 

41 
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 42 

1. Introduction 43 

 44 

Citrus are widely grown under diverse climatic conditions, including in semi-arid 45 

regions. Spain occupies one of the first places in the global ranking of citrus producing 46 

countries, with an average annual production exceeding 6.6 million t. Almost half of total 47 

production (about 3.5 million t) corresponds to the sweet orange group, in which the 48 

‘Navelina’ orange is the most important cultivar, with a production of about 1.1 million t 49 

(MAGRAMA, 2015). 50 

Water scarcity is an important problem in many areas of the world. It particularly 51 

affects the Mediterranean basin, with a semi-arid climate, scarce rainfall, hot summers, and a 52 

dry season that lasts for over three months. Irrigated agriculture is the sector with by far the 53 

largest water consumption. In Spain, about 72% of consumptive water is used for irrigation 54 

purposes (Frenken and Guillet, 2012). 55 

Thus, increasing water scarcity demands a more efficient and optimized use of 56 

irrigation water. One of the most promising approaches for attaining this objective might be 57 

regulated deficit irrigation (RDI). RDI consists of reducing water supplies during certain 58 

stages of crop development, when yield and fruit quality might have a low sensitivity to water 59 

deficits, and providing normal irrigation doses during the rest of the season, especially during 60 

critical periods or phenological stages with a higher sensitivity to water deficits (Chalmers et 61 

al., 1986; Mitchell et al., 1984). Many works have proved the feasibility and effectiveness of 62 

this practice by reducing water use in tree crops with low or null impact on yield and fruit 63 

quality (e.g. Carr, 2012; Ruiz-Sánchez et al., 2010). 64 

In order to adequately control the water stress caused by the application of RDI, it is 65 

important to monitor plant water status or soil water content appropriately. In this sense, stem 66 
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water potential (Ψst) seems to be a sensitive measure of plant water status (Choné et al., 2001; 67 

Ortuño et al., 2006). However, Ψst is not easily measurable, and it is not suited for an 68 

automated irrigation scheduling. As an alternative or complement to tree water status 69 

monitoring, there are different techniques that allow for the continuous measurement of soil 70 

water content. Among others, the frequency domain reflectometry (FDR) probe, with multiple 71 

depth capacitance sensors (Fares and Polyakov, 2006; Paltineanu and Starr, 1997), has shown 72 

excellent performance so far. It is currently widely used for field applications as a decision-73 

making tool for irrigation scheduling (Martí et al., 2013). 74 

González-Altozano and Castel (2003a, 2003b, 2000, 1999) carried out several RDI 75 

tests on an experimental orchard of ‘Clementina de Nules’ citrus trees (Citrus clementina Hort 76 

ex Tan). Different levels of water restriction were compared in the main phenological periods 77 

of crop development, and the effects of water restriction on yield, fruit quality, and water use 78 

efficiency were assessed. They concluded that the effects of RDI treatments depend, among 79 

others, on the phenological period in which the water restriction is applied as well as on the 80 

degree of restriction applied. Specifically, they stated that moderate water reduction during 81 

the initial fruit enlargement phase, after the June fruitlet drop (July and August in the northern 82 

hemisphere), did not affect yield, fruit size, or quality, which allowed for significant water 83 

savings (8-22%). These experiments also defined different pre-dawn leaf water potential (Ψpd) 84 

threshold values to avoid negative effects during the phenological period considered. Thus, 85 

summer Ψpd should not surpass -1.2 MPa, which corresponds to values of Ψst around -1.9 86 

MPa.  87 

Most of the RDI studies carried out on citrus provide evidence of the advantages and 88 

benefits of reducing water application during summer. Citrus fruit has the capacity to 89 

accelerate growth after a water deficit period and thus be able to reach their potential size. 90 

This capacity, named compensatory fruit growth, is essential for the successful application of 91 
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summer RDI strategies. However, Ballester et al. (2013) found that summer RDI treatments 92 

applied to Navel Lane Late citrus trees might prevent compensatory fruit growth after 93 

returning to irrigation at full dosage, depending on the duration and degree of severity of the 94 

plant water deficit. The latter study highlights the differences between cultivars in response to 95 

RDI, as well as the need for frequent monitoring of plant water status to avoid an excessive 96 

reduction of fruit weight that may affect yield. 97 

The majority of RDI studies consider the effects of deficit irrigation treatments during 98 

two or three consecutive growing seasons. Other researches deal with the viability of long-99 

term RDI strategies. These long-term RDI strategies may negatively affect yield capacity 100 

(Girona et al., 2005; Intrigliolo et al., 2013; Romero et al., 2004); however, some studies have 101 

reported substantial water savings without any reduction in yield or fruit size (Hueso and 102 

Cuevas, 2010; Johnson et al., 1992). It should be noted that, although there are several studies 103 

addressing the application of RDI to ‘Navelina’ citrus trees (García-Tejero et al., 2010; 104 

Aguado et al., 2012), to our knowledge, no investigation has considered the effects of long-105 

term summer deficit irrigation with this cultivar. 106 

The aim of this study is to analyse the feasibility of long-term summer RDI strategies 107 

in ‘Navelina’ citrus trees and the effects on yield, fruit quality, and vegetative growth during 108 

five consecutive years (2007-2011).  109 

 110 

2. Material and Methods 111 

 112 

2.1 Soil and climate conditions 113 

The experiment was carried out during five consecutive growing seasons (2007-2011) 114 

on a commercial drip-irrigated plot of 1 ha in Senyera, Valencia (39º3’ N, 0º30’ W, 23 m 115 

a.s.l.), which was planted in 1982 with ‘Navelina’ orange trees (Citrus sinensis L. Osbeck) 116 
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grafted on ‘Cleopatra’ mandarin trees (Citrus reshni Hort.) at a spacing of 5 x 5 m, with an 117 

average ground cover of about 52%. 118 

The soil was deep sandy-loam with pebbles of alluvial origin, with an average organic 119 

matter content of 1.17%, an electric conductivity (EC1-5) of 0.14 dS m
-1

, 39.1% of active 120 

CaCO3, and a pH in water (1/25) of 8.0. It was also poor in total nitrogen (0.06%), available 121 

potassium (0.42 meq K
+
 100g

-1
) and phosphorus (20.67 mg P kg

-1
 Olsen). A more detailed 122 

description of the soil characteristics can be found in Martí et al. (2013). 123 

The irrigation water used had an average electrical conductivity (at 25º C) of 0.82 dS 124 

m
-1

, with chloride content lower than 2 meq Cl L
-1

 and a SAR value of 3.53. 125 

Climatic data were provided by the meteorological station belonging to the Irrigation 126 

Technology Service (STR) of the Valencian Institute for Agricultural Research (IVIA) in 127 

Villanueva de Castellón (Spain), less than 500 m from the experimental plot. The climate is 128 

Mediterranean semi-arid. The rainfall and the corresponding evaporative demand (ETo) for 129 

each year are summarized in Table 1. The average annual rainfall in the period 2000-2012 130 

was 624 mm, and the average annual ETo was 1083 mm. The mean annual air temperature 131 

during the same period was 17.1º C. 132 

Trees received fertilisation through the irrigation system at a non-limiting rate of 260-133 

65-130 kg ha
-1

 per year of N, P2O5, and K2O respectively, split in weekly applications from 134 

April to October. Control of plagues and other cultural practices were carried out according to 135 

the usual local criteria in that area and were identical for all treatments. Trees were pruned in 136 

2009 and 2011.  137 

 138 

2.2 Irrigation treatments 139 

Irrigation was scheduled according to crop evapotranspiration (ETc) at local irrigation 140 

conditions (ETc=ETo∙Kc where Kc is the crop coefficient) and effective precipitation (Ep). 141 
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Reference evapotranspiration (ETo) was determined by the FAO56 version of the Penman-142 

Monteith equation relying on daily average data from the meteorological station. The crop 143 

coefficient (Kc) was obtained for this location according to Castel (2005) based on the 144 

percentage of shaded area in the plot (40.5-54.1%). In the studied period, the different mean 145 

seasonal values of Kc values used were as follows: 0.54 in 2007, 0.61 in 2008, 0.59 in 2009, 146 

and 0.54 in 2010 and 2011. The theoretical irrigation dose (ID) to ensure full irrigation was 147 

calculated as ID = ETc-Ep.  148 

Three irrigation treatments were applied: a control treatment, irrigated without 149 

restriction throughout the whole year, and two RDI treatments (T1 and T2), which received 150 

the same amount of water as the control except during the restriction period (the initial fruit 151 

enlargement phase, from mid-July to early September). The established irrigation treatments, 152 

the duration of each one, and the dose applied throughout each growing season are 153 

summarized in Table 2. 154 

During the first three years (2007, 2008, and 2009), the control treatment was irrigated 155 

at 110% of full ID. T1 and T2 received 40% and 60% of full ID during the restriction period, 156 

respectively. 157 

The control treatment was irrigated at 100% of ID in the last two seasons (2010 and 158 

2011). In 2010, the amount of water applied in the RDI treatments was reduced by an 159 

additional 20%. Thus, the T1 and T2 treatments received during the restriction period 32% 160 

and 48% of ID. Finally, in 2011 the data provided by the FDR probes were used for irrigation 161 

scheduling of T2 and as an additional information source of the amount of water applied to 162 

T1. Accordingly, the T2 treatment was scheduled in order to maintain soil water content in 163 

the zone between 0-60 cm of the soil depth in the range 50-60 mm during the restriction 164 

period and between 70-80 mm during the rest of the year. The T1 treatment received 40% of 165 

ID during the restriction period and 100% of ID during the rest of the year. In this treatment, 166 
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the irrigation water applied was also monitored and adjusted depending on the soil water 167 

content measured with the FDR probe in the zone 0-60 cm of soil depth. Thereby, the soil 168 

water content was kept above 50 mm in the zone between 0-60 cm of soil depth during the 169 

restriction period and above 80 mm during the rest of the year. 170 

Considering the five years, the irrigation treatments T1, T2, and control received, 171 

respectively, an average of 42.2%, 58.4% and 101.2% of ID during the water deficit periods.  172 

The experimental design was based on a randomised complete block with three 173 

replicates per treatment. Each experimental unit consisted of a minimum of three rows with 174 

10 trees per row, using perimeter trees as guard. Thus, yield and fruit quality parameters were 175 

determined from a minimum of eight trees per experimental unit. Further details about the 176 

distribution of each replicate of the applied treatments can be found in Gasque et al. (2010). 177 

The irrigation system consisted of a double line (1.8 m spaced) of drip-irrigation with 178 

eight self-regulating drippers per tree with an average flow of 7.4 L h
-1

 per dripper. Irrigation 179 

frequency, identical for all treatments, ranged between six irrigations per week during the 180 

summer and two irrigations per week during the winter. The amount of applied water was 181 

measured through weekly water-meter readings for each irrigation replicate. 182 

 183 

2.3 Tree water status measurements 184 

Midday stem water potential (Ψst) was measured weekly around 12 h (GMT) during 185 

the growing season and less frequently during the winter using a ‘Scholander’ type (SF-Pres-186 

35 by Solfranc Tecnologías, S.L.) pressure chamber, following the procedures described by 187 

Turner (1981). Ψst was measured for a minimum of two south oriented mature leaves per tree, 188 

which had been wrapped in bags at least two hours before, and for two trees per individual 189 

plot for each of the three replicates per treatment.  190 

 191 
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2.4 Fruit and shoot growth  192 

Sixteen fruit per tree (four in each cardinal quadrant) were selected and tagged from 193 

three trees per treatment (one per replicate). Equatorial fruit diameter was measured weekly 194 

every year from the beginning of July until harvest. In the same trees, shoot elongation was 195 

determined during the first growth flush in the spring of 2011 on samples of 16 shoots per tree 196 

(four shoots per cardinal quadrant) from 10 March to 23 May, every 7-14 days. 197 

On the other hand, fresh fruit weight (FW) and dry fruit weight (DW) were determined 198 

each season in four fruit randomly selected per replicate in three moments: before restriction 199 

(BR), at the end of the restriction (ER), and at harvest (H).  200 

With the aim of verifying that RDI treatments started after the end of the ‘June drop’ 201 

as well as to check the treatments’ effects on fruit abscission, the number of fruit fallen were 202 

registered weekly each season in two trees per replicate from fruit-set till harvest. 203 

 204 

2.5 Yield and fruit quality 205 

At the end of each season during the commercial harvest, the yield and its components 206 

were determined in at least eight trees per replicate (24 trees per treatment). The average fruit 207 

weight was evaluated by counting the number of fruit in a minimum of eight boxes per 208 

individual plot, previously weighed (about 20 kg/box). Fruit quality variables: peel, juice, 209 

sugars (Total Soluble Solids, TSS), acid content (Titratable Acidity, TA), soluble solids, pH, 210 

and vitamin C, were determined at harvest with samples of at least nine fruit per individual 211 

plot following the procedures described by González-Sicilia (1951). 212 

Water use efficiency (WUE) was determined as the ratio between yield and total 213 

applied water (irrigation + rainfall). 214 

 215 
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2.6 Vegetative growth 216 

Trunk perimeter (TP) was measured at marked sections above the graft (about 30 cm 217 

above the ground) on eight trees per replicate at the beginning and at the end of each season. 218 

Moreover, tree size, percentage of shaded area and volume of the tree top were also 219 

determined in the same trees. 220 

 221 

2.7 Soil water content 222 

During the last two years (2010-2011) the volumetric water content in the soil profile 223 

was monitored every 30 minutes using a multisensor capacitance probe (ENVIROSCAN, 224 

Sentek Sensor Technologies) based on FDR. Therefore, three FDR probes were installed in 225 

July 2009 on the north side of one tree per treatment, placed 25 cm from the emitter’s line. 226 

The capacitance probes were properly installed within the active root system zone. Each 227 

probe presented four sensors. The first three sensors, located at 10, 30, and 50 cm of depth, 228 

covered practically 90% of the active root system (estimated during probe installation), while 229 

the fourth was outside of this zone (70, 80, and 60 cm depth in the probes for treatments T1, 230 

T2, and the control, respectively). More details about the installation of these probes can be 231 

found in Martí et al. (2013). 232 

 233 

2.8 Statistical analysis 234 

Statistical analyses were performed using the SPSSv16 package (SPSS Inc., Chicago 235 

IL) with a one-way analysis of variance (ANOVA), given that data fit the assumptions of the 236 

parametric tests (test K-S). Differences among treatments were studied with the Tukey test 237 

(95%). 238 

 239 
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3. Results and discussion 240 

 241 

The evolution of midday stem water potential (Ψst), fruit growth, and the fruit’s 242 

relative diameter in relation to the control are depicted in Fig. 1 (period 2007-2009) and Fig. 2 243 

(period 2010-2011). Rainfall and the ETo evolution during each period are also shown in 244 

these figures. The amount of water applied in each irrigation treatment, water use efficiency 245 

values (WUE), as well as yield parameters and its components are summed up in Table 3. 246 

During the period 2007-2009, the Ψst values in control trees were around -0.9 MPa. 247 

Although very low Ψst values were occasionally measured, e.g. end of 2007 (around -1.65 248 

MPa), in general, it can be accepted that the Ψst values in the control treatment were within 249 

normal midday stem water potential ranges of well-irrigated citrus trees (Ballester et al., 250 

2014; Syvertsen and Albrigo, 1980). 251 

The lowest Ψst values reached in deficit treatments occurred on the 31
th

 August of 252 

2007 and 2008 (around -1.71 and -1.60 MPa, respectively); both values were registered 253 

during the most severe restriction treatment (T1) (Fig. 1C). These Ψst values were higher (less 254 

negative) than the suggested threshold values for citrus under summer water deficits 255 

(González-Altozano and Castel, 1999, 2003a), and they did not suggest significant water 256 

stress levels according to Domingo et al. (1996). 257 

Based on the Ψst values observed during the period 2007-2009 both in the RDI and 258 

control treatments, and also on the results obtained that will be discussed later, the irrigation 259 

dose applied during the period 2010-2011 was reduced (100% of full ID) from that applied in 260 

the preceding growing seasons (110% of full ID) (Table 2). 261 

Despite this reduction, the evolution of tree water status for all treatments showed a 262 

similar trend during the five years of study. The Ψst values observed for the control trees 263 

during the period 2010-2011 were around -1.0 MPa. These values indicate that the control 264 
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trees were always fully irrigated, although the irrigation dose that was applied was 265 

additionally reduced. Moreover, before the restriction period, hardly any differences with 266 

respect to the control in the Ψst values of the RDI treatments were detected, which maintained 267 

a high level (around -1.0 MPa), indicating a total absence of water stress.  268 

The evolution of the Ψst reflected well the restriction periods as well as some 269 

unexpected water cut-offs that occurred during November and December of 2007 and 270 

September and October of 2008. In both years, these water cut-offs produced rapid and 271 

important drops of Ψst in autumn for all treatments. 272 

In all seasons, after the beginning of the restriction, a slow and continuous Ψst drop 273 

was indicative of the progression of the water deficit period during the RDI treatments. The 274 

minimum potential values were reached at the end of this period every year, and, as might be 275 

expected, the higher the restriction level, the lower the values dropped. At the end of the 276 

restriction period of 2010, minimum the Ψst values for the five years were reached (-2.5 MPa 277 

in the T1 treatment and -2.1 MPa in T2) (Fig. 2C). In all seasons except for 2010, one week 278 

after restarting the full ID, trees of both RDI treatments had completely re-hydrated. In 2010, 279 

the subsequent hydric recovery of the trees under RDI treatments was faster for T2 and much 280 

slower for the more restrictive T1. This recovery rate, together with the degree of stress 281 

suffered, affected both the size and quality of the fruit, as will be discussed below. The use of 282 

data provided by the FDR probes in 2011 to schedule irrigation for T2 and to better adjust the 283 

applied dose for T1 appeared to be useful to avoid detrimental stress levels. Consequently, the 284 

obtained potential values were higher (less negative) than those reached in 2010, causing 285 

lower hydric stress. 286 

During the restriction period, a slight deceleration of fruit growth was observed for the 287 

deficit treatments during all years excepting 2008 (Figs. 1B and 2B). However, fruit diameter 288 

differences in comparison to the control were only significant (p < 0.05) in 2007, without 289 
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affecting the final fruit weight (Table 3). In 2009, 2010, and 2011, these differences did not 290 

reach statistical significance, but a slower growth of fruit under T1 and T2 was observed. 291 

The rapid hydric recovery observed in deficit treatments after finishing the restriction 292 

was reflected in a higher relative growth of fruit under these treatments in comparison to the 293 

control (Figs. 1D and 2D). This fruit growth acceleration, known as compensatory fruit 294 

growth, is usual when irrigation at full dose restarts after a water restriction period (Chalmers 295 

et al., 1986; González-Altozano and Castel, 2003a; Mitchell and Chalmers, 1982; Ruiz-296 

Sánchez et al., 2000). Compensatory fruit growth was not found in fruit under the RDI 297 

treatments in 2008. This was in accordance with the absence, during this year, of growth 298 

deceleration. 299 

In 2011, the trees under the RDI treatments showed a rapid hydric recovery at the end 300 

of the restriction, a situation which is in accordance with the more rapid fruit growth under 301 

stressed treatments (Fig. 2D). This finding notes once again the importance of recovering and 302 

maintaining an adequate water status in the trees after the restriction and until harvest, which 303 

allows for fruit growth compensation. The minimum potential values reached by trees of the 304 

RDI treatments in 2011 (Ψst = -1.95 MPa in T1 and Ψst = -1.6 MPa in T2), did neither cause 305 

negative effects on the production nor on the quality of harvest (Table 3). 306 

Regarding fruitlet drop, it was similar for all treatments in all of the studied years 307 

(results not shown). In all growing seasons, the ‘June drop’ had concluded by the end of June 308 

(DOY 182) and always before the start of the restriction treatments. The end of water 309 

restriction neither produced appreciable fruitlet drop nor flowering for any treatment or year. 310 

In addition, the irrigation restrictions neither affected the flowering process nor the growth 311 

flush after June (Fig. 2). Finally, as depicted in Fig. 2B, shoot growth of the first flush was 312 

clearly separated in time from the period of fruit growth and occurred long before the 313 
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restriction period started. Therefore, the required conditions for achieving successful 314 

implementation of RDI in Navelina citrus trees were fulfilled. 315 

Attending to the influence of the irrigation treatments on yield and its components 316 

during the entire period (Table 3), significant differences were observed in yield between 317 

years (p < 0.05) ranging from 134.4 kg/tree in 2008 to 43.3 kg/tree in 2009, with an average 318 

of 79.8 kg/tree for the control treatment. These differences were mainly due to the number of 319 

fruit/tree, ranging in control trees from 185 fruit/tree in the least productive year (2009) to 593 320 

fruit/tree in the most productive one (2008). Differences in average fruit weight were not so 321 

marked and ranged from 231.6 g (in 2008) to 296.0 g (in 2007). It should be noted that the 322 

aforementioned slowdown in fruit growth of stressed trees was observed during all years 323 

except 2008, while it had been expected that due to the higher crop load, the effects of water 324 

stress in 2008 should have been more evident. The reported results indicate that the effects of 325 

water deficit on the fruit growth rate were of minor importance, given that only small 326 

differences between treatments were detected in this parameter, even in 2010, when the 327 

lowest Ψst values for the five years were registered. However, there were differences in the 328 

pattern of fruit growth between years, indicating that, with moderate levels of stress (such as 329 

those suffered by trees during the present study), the number of fruit/tree has greater influence 330 

on the production and on the final fruit size than the level of stress reached. 331 

The RDI treatments yielded systematically higher production than the control, 332 

although these differences were only significant (p < 0.05) in the growing seasons 2009 and 333 

2011. Different results were reported by García-Tejero et al. (2010 and 2012) in Navelina 334 

citrus trees, in a study in which more severe water stress was applied during the flowering, 335 

fruit growth and maturity phases; in this study the number of fruit per tree was significantly 336 

lower in trees held under deficit irrigation. The response to water stress may therefore vary 337 
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depending on the duration and severity of treatments, as stated by other researchers (Ballester 338 

et al. 2013;Treeby et al. 2007). 339 

A higher number of fruit per tree usually involves a smaller fruit size. However, this 340 

was not the general trend in the present study. Here, the trees under deficit treatments 341 

produced in some cases (e.g. T2 in 2007 and T1 in 2009) more fruit per tree than the control 342 

trees (p < 0.05), while no differences were found in average fruit weight (Table 3). Moreover, 343 

in 2011, the fruit size under T1 and T2 was very acceptable and, at the same time, higher than 344 

the annual average (246.2 g), while these treatments yielded many more fruit per tree than the 345 

control (p < 0.05). Both deficit treatments returned significantly higher production than the 346 

control, despite having reached, as aforementioned, a minimum potential value of Ψst=-1.95 347 

MPa in the most stressed treatment. 348 

The higher number of fruit per tree in trees under deficit irrigation occurred after the 349 

growing seasons in which lower Ψst values were reached, and/or after certain unscheduled 350 

water stress levels during autumn. Therefore, results seem to indicate that trees that had 351 

previously suffered from stress could be more sensitive to an occasional shortage of water in 352 

autumn, which might have favoured to some extent the fruiting-flowering-fruit-set process. It 353 

should be pointed out that no significant differences were observed between treatments with 354 

respect to the variables that define tree size (trunk perimeter, percentage of shaded area, 355 

volume of the tree top) either before the beginning of this study or any of the five years during 356 

the study. Although on average, the size of the trees under RDI was slightly higher than that 357 

of the control trees (6-12% in volume of tree top; 3-4% in trunk perimeter), this small 358 

difference does not explain the large differences found in yield. 359 

The relationship of fresh to dry weight accumulated in the fruit (FW/DW) for each 360 

treatment is shown in Table 4. Before restriction (BR), it was verified that this relationship 361 

was similar between treatments each year. When the restriction period was complete (ER), the 362 
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relationship FW/DW was lower for the RDI treatments than for the control during all the 363 

seasons, and the differences were statistically significant (p < 0.05) in four of the five years. 364 

These results indicate that the RDI fruit still accumulated dry matter during the restriction 365 

period, thus reducing FW in comparison to the control treatment (Table 4). As no differences 366 

in the FW/DW relationship were detected before restriction, the differences found when the 367 

restriction period was concluded could be attributed to the treatments that had been applied. 368 

Once restarting full irrigation, compensatory fruit growth under RDI treatments occurred at 369 

the expense of accumulated dry matter. Therefore, these differences tend to disappear at 370 

harvest (H). 371 

Only during 2010, when the highest stress levels were reached in RDI treatments, no 372 

differences were observed in dry matter accumulation in the fruit at the end of the restriction 373 

period (ER). There was also no compensatory fruit growth, and at harvest, the fruit of these 374 

trees tended to be smaller than those under the control (Table 3). The differences were 375 

significant (p < 0.05) in treatment T1, with the highest concentration of dry matter (lower 376 

ratio FW/DW), indicating that the harvest took place when these fruit were less hydrated; they 377 

also probably still had a certain capacity for growth. 378 

Table 5 shows the influence of irrigation treatments on fruit quality. In contrast to 379 

other RDI studies (Ballester et al., 2014; García-Tejero et al., 2010; Yakushiji et al., 1996) 380 

that found a significant increase in TSS and TA under RDI strategies, in this study, no 381 

significant differences were found in comparison to the control in any of the studied fruit 382 

quality parameters with the exception of the lower juice content in the fruit under T1 in 2010. 383 

The higher concentration of sugar and soluble solids reported in other studies could be due to 384 

the longer duration of the stress period or to the higher levels of water stress suffered.  385 

Regarding to the juice content, it was on average (excluding the 2010 season) 47.9% 386 

of the fruit weight, similar to the normal values for this variety (48.2% according to 387 
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Sanchotene Gonçalves, 1998), and very similar to those found by other authors in ‘Lane Late’ 388 

citrus fruit (Pérez-Pérez et al., 2009). In 2010, the fruit showed lower juice content values 389 

than those cited in the literature and much lower values than in other seasons. In 2010, the 390 

fruit under the RDI treatments were also the smallest ones within the five years. These 391 

differences in juice content and fruit size were especially noticeable in the T1 treatment after 392 

having reached the lowest values of stem water potential (Ψst = -2.5 MPa). This result 393 

provides evidence that the stress level reached in this treatment during 2010 exceeded the 394 

recommended level. However, the T2 treatment, after having reached a minimum value of Ψst 395 

= -2.1 MPa, did not affect the production or the quality of the fruit. Even though the fruit of 396 

this treatment were smaller than those of the control, the differences were not significant, 397 

indicating the proximity to the stress level to avoid negative effects. 398 

In 2011, when less water was applied, although distributed in a more suitable way than 399 

in 2010 as reflected in the Ψst evolution (Fig. 2), production under RDI was much higher than 400 

under the control due to a higher number of fruits per tree. Although fruit size was also 401 

affected, this effect was relatively minor given that the final fruit size in the more stressed 402 

treatment (T1) was higher (no significant differences) to that of the control average in the 403 

entire period. In addition, the internal quality of the fruit was not affected, indicating that the 404 

RDI strategy adopted this year was more appropriate (minimum potential Ψst = -1.95 MPa 405 

under T1). All these results suggest that Ψst = -2.0 MPa might be considered a potential 406 

threshold value which should not be exceeded to avoid the negative effects of applying RDI 407 

in summer. 408 

The most suitable parameter for reflecting the effect of irrigation treatments on 409 

vegetative growth was the increment in trunk perimeter (ΔTP). The values of ΔTP from 2007 410 

to 2011 were 0.12, 0.10, and 0.13 meters in T1, T2, and the control, respectively. No 411 

statistical differences were found between treatments, showing that water restriction did not 412 



18 

 

affect trunk growth. This finding is contrary to those commonly found in experiments carried 413 

out with different tree crops, specifically citrus, and could be due to the larger development 414 

and age of the trees. In the present study, the trees were 25 years old at the beginning of the 415 

experiment, whereas in other studies, trees were 8-10 years old (Clementina de Nules, 416 

Ballester et al., 2014, 2011; González-Altozano and Castel, 2000), and seven years old (Navel 417 

Lane Late, Ballester et al., 2013). In these studies with younger trees, it was verified that 418 

trunk growth under RDI was lower than under full irrigation. Probably, the lower growth 419 

potential due to the size and age of the trees in the present study prevented the RDI treatments 420 

from affecting the growth of the trunk. Hence, with the reported results, after five years of 421 

study, it is not expected that the application of long-term summer RDI strategies have 422 

significant effects on production, which is ultimately supported by trunk and roots (tree size 423 

and height). 424 

Although in citrus, water use efficiency (WUE, Table 3) may be affected by the timing 425 

and fruit stage where the water restriction is applied (Carr, 2012), in this case, it is evident 426 

that summer RDI treatments provided significantly higher WUE than the control treatment, as 427 

is generally associated (Fereres and Soriano, 2007), which contrasts with the results shown in 428 

other experiments with citrus trees (Ballester et al., 2014; García-Petillo and Castel, 2004). 429 

 430 

4. Conclusions 431 

 432 

Based on the results derived from this study, long-term RDI strategies during the 433 

summer (initial phases of fruit enlargement) can be successfully applied in commercial 434 

Navelina citrus trees. 435 

Ψst = -2.0 MPa is proposed as potential threshold value which should not be surpassed 436 

in order to avoid negative effects on yield or on the quality of fruit. During the whole period 437 
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of study, water savings between 12% and 27% resulted in only a slight reduction in average 438 

fruit weight in the RDI treatments, in the more restrictive cases, which was balanced with a 439 

higher yield. 440 

FDR probes were very effective for adjusting the applied doses to avoid detrimental 441 

stress levels. In the context of this work, using FDR probes could be considered a preliminary 442 

step for achieving more accurate irrigation scheduling. 443 

According to the obtained results, the application of summer RDI in Navelina is much 444 

more cost-effective than the traditional full doses under the boundaries tested. Therefore, the 445 

practical and reliable information provided in this work could be employed for optimizing 446 

water management in commercial applications. 447 

 448 
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LIST OF FIGURE CAPTIONS 

 

Fig. 1. Evolution during 2007, 2008 and 2009 of: ETo and Rainfall (A), fruit diameter 

(B), midday stem water potential (C), and relative diameter fruit growth of RDI 

treatments in relation to the control (D. The vertical dotted lines show the beginning and 

the end of the restriction period. Harvest dates were 8
th

 January, 17
th

 November and 18
th

 

December for the first, second and third season, respectively. 

 

Fig. 2. Evolution during 2010 and 2011 of: ETo and Rainfall (A), fruit growth (2010-

2011) and shoot growth of the first flush (2011) (B), midday stem water potential (C), 

and relative diameter fruit growth of RDI treatments in relation to the control (D). The 

vertical dotted lines show the beginning and the end of the restriction period. Harvest 

dates were 26
th

 January 2011 and 13
th

 January 2012, respectively. 
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Table 1. Rainfall and evaporative demand (ETo) registered at the meteorological station 2 

nearest to the experimental plot during the studied period. 3 

 2007 2008 2009 2010 2011 

Rainfall (mm) 869 796 840 566 616 
ETo (mm) 1160 1124 1202 1132 1067 

 4 

 5 

 6 

 7 

 8 
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Table 2. Irrigation treatments applied during the experimental period (2007 to 2011). 2 

Treatment  Irrigation doses applied 

 
 2007 - 2009 2010 2011 

T1 
Restriction period

[a] 
40% ID 32% ID 40% ID

[b] 

Rest of the year 110% ID 100% ID 100% ID
[b] 

T2 
Restriction period 60% ID 48% ID 50-60 mm

[c] 

Rest of the year 110% ID 100% ID 70-80 mm
[c] 

control Whole year 110% ID 100% ID 100% ID 

ID means theoretical full irrigation dose 3 
[a]

Restriction period: 17/07-02/09 in 2007 and 2008; 13/07-13/09 in 2009; 12/07-30/08 in 2010, 12/07-4 
28/08 in 2011. 5 
[b] 

Theoretical irrigation dose adjusted according to the soil water content measured with the FDR 6 
probe between 0-60 mm of the soil depth. The soil water content was kept above 50 mm in the 7 
restriction period and above 80 mm during the rest of the year. 8 
[c]

 Water content (mm) between 0-60 cm of the soil depth recorded by the FDR probe. 9 
 10 

 11 

 12 
 13 
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Table 3. Amount of water applied in each irrigation treatment, yield and its components, and 2 

water use efficiency (WUE). 3 

Year Treatment 
Irrigation 

(mm) 

Water 

savings 

(%) 

Yield 

(kg/tree) 

Relative 

yield (%) 

nº fruits/tree 

(-) 

Average 

fruit weight 

(g) 

WUE 

(kg/m
3
) 

2007 

T1 396 23 79.2 112.4 281 292.1 2.50* 

T2 431 16 84.1 119.4 309* 282.3 2.59* 

control 516 -- 70.5 100 242 296.0 2.04 

2008 

T1 410 20 140.4 104.5 637 220.5 4.70 

T2 429 16 146.8 109.3 680 217.9 4.80 

control 515 -- 134.4
[a]

 100 593 231.6 4.11 

2009 

T1 371 27 72.7* 168.1 306* 241.6 2.22* 

T2 449 12 64.0* 148.0 291* 224.6
[b]

 1.84* 

control 512 -- 43.3
[a]

 100 185 235.8 1.19 

2010 

T1 265 27 76.0 104.8 352* 214.7* 3.69 

T2 285 21 88.6 121.0 420* 217.2 4.16* 

control 362 - 73.2 100 311 237.6 3.15 

2011 

T1 248 21 108.7* 143.4 433* 256.1* 5.03* 

T2 253 20 102.9*
 
 135.7 407* 253.6* 4.73* 

control 315 - 75.8 100 282 271.3 3.25 

* significant differences with respect to control treatment of each year (p<0.05). 4 
[a]

 significant differences between years (p<0.05). 5 
[b]

 significant differences respect to treatment T1 (p<0.05). 6 
 7 

 8 
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Table 4. Relation Fresh Weight/Dry Weight (FW/DW), before restriction (BR), at the 

end of the restriction (ER) and at harvest (H) in each treatment and year.  

 Treatment 2007 2008 2009 2010 2011 

BR T1 3.82 - - 3.98 4.49 

BR T2 3.83 - - 3.87 4.65 

BR control 3.85 - - 3.89 4.53 

ER T1 5.74* 5.51* 5.68* 4.77 5.09* 

ER T2 5.68* 5.79* 6.01* 4.77 5.19* 

ER control 6.61 6.31 6.85 4.83 5.64 

H T1 6.52 6.11* 9.08 3.81* 5.63 

H T2 6.51 6.59 9.48 4.17* 5.81 

H control 6.50 6.98 9.81 4.68 5.90 

* significant differences with respect to control treatment of each year (p<0.05). 
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Table 5. Fruit quality parameters of ‘Navelina’ citrus trees per treatment and year. 2 

Year Treatment 
Peel 

% 

Vitamin C 

(mg/100 g juice) 

Juice 

(%) 

TTS 

(º Brix) 

TA 

(% Acids) 

Maturity 

index (-) 

pH juice 

(-) 

2007 

T1 26.89 65.05 50.46 10.57 1.08 9.84 3.33 

T2 27.08 68.68 51.66 10.67 1.05 10.37 3.36 

control 26.44 70.31 50.86 10.63 0.89 12.08 3.46 

2008 

T1 26.59 68.25 46.57 9.50 1.15 8.29 3.12 

T2 26.36 63.34 43.80 9.87 1.01 10.09 3.14 

control 26.22 67.61 46.28 9.10 0.92 10.10 3.10 

2009 

T1 29.47 74.57 48.53 10.73 0.74 14.51 3.41 

T2 31.63 67.97 54.10 10.80 0.68 15.84 3.29 

control 26.90 67.27 51.23 11.00 0.74 15.27 3.15 

2010 

T1 28.73 90.47 35.87* 13.13 1.15 11.41 3.43 

T2 27.13 94.22 38.57 13.73 1.21 11.44 3.41 

control 29.07 95.62 41.47 13.53 1.04 12.99 3.51 

2011 

T1 31.53 77.34 43.57 11.73 1.04 11.52 3.51 

T2 30.83 77.14 42.33 11.07 0.91 12.25 3.65 

control 28.53 77.70 45.13 11.03 0.95 11.67 3.60 

*significant differences with respect to control treatment of each year (p<0.05). 3 
TSS: Total Soluble Solids content 4 
TA: Titratable Acidity 5 
 6 
 7 
 8 
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